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Abstract

Models describing marital fertility are under consideration. In Arnqvist [2], a
normal approximation of the Waiting model was introduced. In this report a
modification of the normal approximation is suggested. This specification allows
the data to be left truncated and censored, which gives the possibility to apply
the normally approximated waiting model in datasets as from the United Nations
World Fertility Services. The model is appropriate except for extremely high
fertility intensities, when it gives rise to bias in the parameter estimations. In
this case, therefore, a bootstrap method is suggested to estimate and correct
the bias. This means that the normal approximated waiting model is a good
competitor to the well known Poisson or Coale-Trussell model. It also uses an
understandable fertility specification.
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1 Introduction

1.1 Background

In Arnqvist [1], it was shown that individual fertility data could be better de-
scribed by a “waiting model” than by the Poisson model as suggested in Brostrom
[4], Trussel [9], Coale & Trussell [5]. The waiting model adds a waiting time after
each pregnancy, and this modification gives a much better fit than the Poisson
model assumption. However, when data is in the same form as UN:s World Fer-
tility Surveys [10], which are for population age-specific grouped data, usually
of the form given in Table 1, the model derived in Arnqvist [1] is not possible

Table 1: Design of the age-specific grouped data. Here B, = 3_7_; baj and b,;
equals the number of children the jth woman in the a™® interval has given birth
to, and E, = Y_7_, eq; where e,; equals the time the jth woman has been under
exposure in the a'® interval, a = 1,2,...,6.

Age interval 20-24 | 25-29 | 30-34 | 35-39 | 40-44 | 45-49
Number of births | B; B, Bs By Bs Bg
Exposure Time E, Es Es E, Es Eg

to apply directly. This suggested the introduction of an approximation of the
waiting model, and in Arnqvist [2], a normal approximation of the waiting model
was derived. This lead to the existence of two models; the Poisson model and the
normal approximated waiting model, both describing marital fertility.

The main difference between the two models is the interpretation of fertility. A,
denotes the fertility measure in the Poisson model. It is estimated by B,/ E,, and
it is some artificial measure of fertility. 6, is the fertility measure for the normal
approximated waiting model. 6, here means possibility to be pregnant and it is
the intensity measure during the active exposure time. The exposure time for one
individual in the a*® interval denoted e,;, is divided in two parts. One active part,
where the individual is assumed to have the possibility to become pregnant, and
a nonactive part, where the individual cannot be pregnant. 6, was introduced in
Arnqvist [1], and it is specified in the same way as Coale-Trussell specified A, in
their intensity model,

k+m-v,)

oa:na-e(

This is more like the mother natures idea of pregnancy, during the time a woman
is pregnant she cannot be pregnant again.

In order to compare the two different models with respect to the intensity 6,,



a transformation of the intensity A, in the Poisson model has to be made. The
transformation can be made if the expectation that is calculated under the normal
approximation of the waiting model

4,1
E[Nw(t)] = 110w’

is set equal to the expectation of the Poisson model,
E[Nw(t)] = Aat,

and solved for 0,. Here Ny (t) denotes the number of pregnancies one individual
receives in an interval of length ¢ years.

In Arnqvist [2], the normal approximation was compared with the Poisson model
for simulated populations. The comparison was made for the intensity estimation
0, and the estimation of the mean E[Nw/(t)], and the variance Var[Nw(t)] for
the number of the births for the simulated populations.

The simulated populations were generated by assuming that the exposure times
for one individual consists of two parts; one active part, which is exponentially
distributed, where the individual is assumed to have the possibility to become
pregnant, and a nonactive part, denoted waiting time W of one year, where the
individual cannot be pregnant. Further, it was assumed that every individual in
the population was exposed during her whole reproductive time, meaning [19, 51)
years of age, so there were no late marriages and early deaths or migrations.

Why should we consider the newly invented fertility measure? One reason can
be that the estimation of fertility, here denoted 0,, really gives an estimation of
the opportunity to become pregnant. The understanding of A, under the Poisson
model approach is somewhat more difficult. One possible interpretation in that
model is that B,/E, is a rate. Another reason is that when comparing the
different models ability to predict the intensity or the number of births, B, in
the interval I,, it was an improvement to use the normal approximated waiting
model. If the variance or the standard deviation are also estimated, the Poisson
model gives very biased estimates. The conclusion of Arnqvist [2] is that the
Poisson model is as good as the normal approximated waiting model in the sence
of predicting intensity or predicting the number of births for low and moderate
intensities, but for larger intensities it does not work.

To really convince ourselves that this is a good approach, one essential step needs
to be carried out. We need to investigate how the normal approximated waiting
model behaves when the summerized data consists of truncated and censored
individual data, due to late marriages and migrations or death. First, however,
the normal approximated waiting model needs to be reformulated so it covers
this situation.



2 Approximation of the waiting model

In Arnqvist [2], the following approximation was suggested. It is assumed that
the number of pregnancies B,, for a population within the six intervals 20 —
24, 25—29,...,44 —49 is distributed independently, asymptotically normal when
the number of individuals is increasing, and we denote it B, ~» AsN(p,,02), so
the approximated likelihood function of the data can be expressed as

e 1 _Ba_ a.2
LA(”I:---:#Gaalza"'lgg)=II emp( ( 2 2#) )’
a=1 “2 o-ﬂ'-

To2

where

fta = No Sk P(Nw(t) = k)

and

02 = No Y (k — pa)? P(Nw(t) = k).

N, is the number of individuals that have complete exposure times in the interval
a. The index A in L 4(-) will from now on be dropped. The mean and the variance
of the number of births for an individual Nw(t), in an interval of length ¢ years
and a waiting time of length W years, was suggested to be approximated as

ot

Bw(t] = o )
and
Var[Nw()] quW‘js‘ (2)

This can further be used to estimate the parameters (k,m), together with the
asymptotic variance of the parameters in the model. If yu, and o? are replaced
with the normal approximations, they become

6,1t
@ — Na—
# 110, W
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They can be simplified if the assumption that W = 1 is used, since then

0,1t
#a = Nag— -



and
0,1
2 = N—m——. 4
a, Na (1 e 90)3 ( )
So, (3) and (4) are used, and if we set 9 = (k,m), and B= (B4, ..., Bs) then the

approximated likelihood function becomes

L($,8)= [ 1 exp | - (7~ i)

= 0.t 0,1
‘1\/2WN3(—11“9—)3 QN“W

Furthermore, if we use a parameterization of intensity, simular to that suggested
by Coale-Trussell,

lga=mek—l—m’uﬂ

which describes the fertility as a product of natural fertility and fertility control,
(where the two parameters k and m are the parameters that need to be estimated),
then the approximated likelihood function, that should be maximized, can be
written as

L(T/J,B) =

B _ naek+mu¢ Nat 2
° " 1tngertms

2n, ektmva N ¢
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1
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This likelihood covers the case when the individuals are under exposure over
whole time intervals I,, but the information contained in Table 1 are not N,, the
number of individuals per interval. Instead it is E,, the total exposure time for
the women in the population under study. This means that the exposure time
eq; for a specific individual in one interval can vary between 0 and 5 years.

However, if instead we consider that the number of births B, in the intervals
depends on the given exposure time E,, this suggests another specification of the
normal approximation of the waiting model. Assume that the number of births
B, in an interval I, for a population is related to stationary pieces of exposure
times for individuals, then the expectation of the number of births can be written
as

Na 0 g{i
E[B. = E[b.i|E.] = - Elei]
% 0 &
8, .o 0.
= an[g ew] = T3 BB



We can use E, as an unbiased estimator of E[E,], and then E[B,] can be approxi-
mated by E, 6,/(1+86,). In the same manner, if we assume that exposure intervals
for the individuals are not to short, then the linear approximation (4) together
with the estimator can be used again to approximate the variance according to

0.E,

V(I'F'[Ba] = m-

(For a discussion of this approximation of the variance, see the appendix). This
can be rephrased as: for a given population and a given time interval I,, the num-
ber of births B, given the exposure time E, of the married women is distributed
independently, asymptotically normal, i.e B,|E, ~ AsN(p,0?), together with
the assumption that the B,’s are independent for different intervals, meaning
that our asymptotic likelihood can be specified according to

L(¢,BIE) =
k+m vg 2
e 1 (B T2 ms)
11 ezp | — “ ,  (6)
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where E = F,,..., Fs.

What happens is that E, replaces N, ¢ in the likelihood specification. This means
that we need the new formula (6) for the estimation of the fertility measure 6,.

In the previous specification of the likelihood (5), we could consider the fertility
measure applied to individual data. Here, maybe we need to be somewhat more
careful. This is due to the fact that the exposure time consists of pieces of dif-
ferent length, and the fertility measure can be understood as some mean fertility
measure for the individuals in the population.

The derivatives of the model developed in Arnqvist [2] apply almost directly. The
only change is the replacement of E, for N,¢. This means that the numerical
iterative routine that was used in the previuous study also can be used here.

3 Simulation study

To see whether or not this specification of the normal approximated likelihood
is good or not, a simulation study has been performed. Five different parameter
settings of (k,m) have been chosen according to Table 1, see also Arnqvist [2],



specifying the fertility intensity in the populations. Throughout the simulations
it is assumed that each population consists of 100 individuals.

Table 1: The parameter values that specify the intensity used in the simulation
of the population data generated according to the waiting model.

Parameter value
k m
0.00 0.00
-0.75 -0.75
-0.75 0.75
0.75 -0.75
0.75 0.75

3.1 Populations with truncations and censorings

In the simulation study performed in Arnqvist [2], it was assumed that each
woman was under observation over the whole time interval of interest, meaning
from twenty to fifty years. Here, in this simulation study, we try to make more
realistic assumptions. This means that first, it is assumed that the marriage times
follow a distribution giving left truncated entering times of study, and second that
there are censorings due to movement or deaths of individuals in the population.

The problem now is to find the patterns for the marriage times and the censor-
ing or end of study times. By using a real dataset, here from Vastanfors, it is
possible to at least approximate this pattern. (For a demographic discussion and
treatment of the Vastanfors data see Bengtsson [3]). In Figure 1, the distribu-
tion for the marriage times, together with the loglogistic distribution estimated
from the marriage times in the Vastanfors data are shown. It can be seen that a
distribution starting at 0 and with a peak around 25 is suitable for this. Several
possible distributions can be chosed for this purpose, both discrete and continuous
distributions, but the choice landed on the continuous family, here represented
with the lognormal-, gamma-, weibull-, and the loglogistic-distribution. The
loglogistic distribution is chosen due to its good performance and simple form.
The fit between the loglogistic distribution and the Vastanfors data is not per-
fect, but for this simulation study it seems sufficient. The loglogistic distribution
is parameterizised according to

be@B B —1
(1+ €@ B zP)?’

f(zla, B) =



where the parameter estimates were obtained through the MLE principle. They
are a = —3.20, 8 = 8.90.
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Figure 1: The histogram of the marriage times in the Viastanfors data together
with the estimation of the loglogistic density distribution. The Vastanfors data
consists of 915 married woman.

Figure 2 shows the censoring times or end of study times for the Vastanfors
data. Maybe, this could be described by a mixture of two distributions, where
the first one should cover the age interval [20,50) and the second distribution
[50,100). But since every distribution with positive continuous density can be
approximated with the uni form distribution on a short interval we have chosen
it to cover the death and/or immigration times.
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Figure 2: The distribution of the migration and death times for the Vastanfors
data.

This means that in this simulation for each individual in the population first
a loglogistic entering time m is generated and then a uniform leaving time
[ ~ U(m,90) is added to the entering time. The number of pregnancies within



the intervals is determined in the same way as in the simulation with no truncation
and no censoring, see Arnqvist [2]. Therefore, the summerized data will consist of
stationary pieces following the assumptions that are made within the derivation
of the normal approximation of the waiting model in section 2.

3.2 A preliminary investigation

To have an idea of what is going on, three pictures are given with 10 simulated
populations on each parameter setting according to Table 1. Each population is
assumed to consist of 100 individuals. The estimation of the parameter values
(k, m) are given under three different models here. The first model is the Poisson
model or Coale-Trussel model, the second model is the normal approximated
waiting model and the third model is the waiting model which was derived in
Arnqvist [1]. The waiting model is the model that uses individual data while the
other two use summerized data. It is possible to estimate the parameters within
the waiting model since the data are generated as individual data. In Figure
3, the parameter estimates for the three models are plotted. Figure 3a) are the
parameter estimates of (k,m) in the Poisson model, Figure 3b) are the parameter
estimates of (k,m) under the normal approximation of the waiting model and in
Figure 3c) the parameter estimates under the waiting model using individual
data are given. We can see in Figure 3 that for very extreme populations with
unusually high fertility levels, there is bias in the parameter estimations. This is
the case in the parameter estimations for all three models. It also shows that the
waiting model that uses individual data has the least bias, but since it is also an
approximation the predictions are a little off.

3.3 Simulation results

Tables 2 and 3 give the result for the Monte Carlo study. 10000 repetitions has
been made on each parameter setting according to Table 1. Table 2 shows the
parameter estimates of (k,m) for the two models, the Poisson model and the
normal approximated waiting model. The waiting model that uses individual
data is not considered here since it takes to long to find the parameter estimates
in this model. Table 3 gives the estimated mean and standard deviation of the
intensity given the two different models. If we compare these results with the
results from the simulation study that was performed in Arnqvist [2], we see that
the estimates are more variable here. That is due to, of course, the censoring and
the truncation of the data. However, in the mean estimation of the intensity we
do no worse here. By inspection of Table 2, we notice that there is still bias in the
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Figure 3: Three pictures showing the parameter estimates of (k,m) in the inten-
sity specification of five different parameter settings under three different models.
Picture a) is the result of the analysis under the Poisson model, picture b) is
for the normal approzimation and picture c) is the result of the analysis in the
waiting model using individual data. The simulated number of individuals is 100.
It is assumed that the entering time is loglogistic distributed and the leaving time
uniformly distributed for each individual.



Table 2: The parameter estimates from the two different models; The Poisson
model (PM) and the normal approzimated waiting model (NAWM). The number
of replicated populations is 10000 and (k,m) are the parameters in the intensity
specification in the simulation of the waiting model.

PM NAWM

mean | s.d. mean | s.d.
k| 0.00]( & |-0.411|0.068 || k, | 0.001 | 0.092
m | 0.00 || &, | -0.146 | 0.089 || i, | 0.010 | 0.111
k|-075 | k, |-1.000 [ 0.090 || &, |-0.746 | 0.108
m | -0.75 || 2, | -0.758 | 0.099 || 77, | -0.741 | 0.115
k|-075 k, |-0.947 [ 0.116 || k, |-0.758 | 0.137
m | 0.75 ||, | 0.6320.178 || 71, | 0.759 | 0.201
k] 075 %, [-0.087 | 0.040 || &, | 0.771 | 0.068
m | -0.75 || 7, | -0.809 | 0.046 || 7i,, | -0.725 | 0.072
k| 075 E | 0.081[0.048 || &, | 0.754 | 0.082
m | 0.75 || ¥, | 0.375 | 0.079 || i, | 0.772 | 0.111

estimates when the fertility intensities are very large. Large, in this study, means
the cases when (k,m) = (0.75,—0.75) and (k,m) = (0.75,0.75). Of course, it is
not possible to compare IAcp with k&, or m, with m,,. They are different estimates
within two different model formulations. However, if we use the transformation
that was suggested in Arnqvist [2], it is possible to compare the intensity estimate
0,,a =1,...,6, within the two models. In Table 3, we can see that the normal
approximation of the waiting model still outperforms the Poisson model for larger
intensities. This means that the estimation of the intensity is closer to the true
intensity when the normal approximation of the waiting model is used. So, again
it can be stressed that the parameter estimates within the Poisson model/Coale
Trussel model are not reliable for very productive populations. In summary, we
can say that the normal approximation of the waiting model beats the Poisson
model when we want to estimate the intensity 6,, even if the estimation is a little
biased.

10



Table 3: This table gives the mean and the standard deviation of the intensity
estimates from the two different models. First, in the third column is the true
intensity used in the simulation (TI) given, next, columns four and five, give
the mean and standard deviation from the intensity estimation using the Poisson
model (PM), and the last two columns give the results from the estimation when
using the normal approzimated model (NAWM). The number of replicated popu-
lations is 10000 and (k,m) are the parameters in the intensity specification used
in the simulation of the data.

11 PM NAWM

Parameters | Interval 0 é; st.dev. 0, st.dev.
k m 20-24 | 0.460 | 0.442 0.043 || 0.463 0.043
0.00 0.00 | 25-29 | 0.431 | 0.425 0.029 | 0.431 0.029
30-34 | 0.395 | 0.407 0.021 | 0.393 0.020
34-39 |0.322|0.332 0.023 || 0.320 0.020
40-44 | 0.167 | 0.158 0.014 | 0.166 0.015
45-49 | 0.024 | 0.021 0.002 | 0.024 0.003
k m 20-24 | 0.217 | 0.205 0.022 || 0.219 0.024
-0.75 -0.75| 25-29 |[0.251 | 0.244 0.020 || 0.252 0.021
30-34 |0.308 | 0.318 0.019 | 0.308 0.017
35-39 | 0.332 | 0.354 0.023 || 0.331 0.020
40-44 | 0.228 | 0.220 0.020 | 0.227 0.020
45-49 | 0.040 | 0.032 0.003 | 0.040 0.004
k m 20-24 | 0.217 | 0.220 0.031 | 0.217 0.030
-0.75 0.75 | 25-29 | 0.165 | 0.164 0.016 | 0.164 0.016
30-34 |(0.113 |0.112 0.010 || 0.112 0.010
35-39 | 0.070 | 0.070 0.009 | 0.069 0.009
40-44 | 0.027 | 0.028 0.005 | 0.027 0.005
45-49 | 0.003 | 0.003 0.001 | 0.003 0.001
k m 20-24 | 0.974 | 0.732 0.050 | 0.997 0.068
0.75 -0.75| 25-29 | 1.125|0.984 0.055 | 1.142 0.059
30-34 |[1.379 | 1.645 0.073 | 1.386 0.049
35-39 |[1.489 | 2.195 0.141 | 1.483 0.055
40-44 |1.021 [ 0.929 0.060 | 1.008 0.054
45-49 | 0.178 | 0.093 0.004 | 0.175 0.012
k m 20-24 | 0974 | 1.002 0.096 | 0.981 0.080
0.75 0.75 | 25-29 |0.740 | 0.729 0.042 | 0.740 0.044
30-34 | 0.507 | 0.501 0.025 | 0.502 0.024
35-39 | 0.312 | 0.310 0.022 | 0.307 0.021
40-44 | 0.122 | 0.120 0.011 | 0.120 0.012
45-49 | 0.015 | 0.014 0.001 | 0.014 0.002
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4 Bias correction of the parameter estimates

For the very extreme cases with high fertility intensities it is apperent that the
parameter estimates start to become biased; this happens in both in the situation
with the waiting model using individual data, and in the case where we used
the normal approximation of the waiting model, and had the summerized data
according to Table 1. However, if the model we are assuming is the correct one,
by using bootstrap it is possible to bias correct the estimates. Below is a way to
do that in the normal approximated waiting model.

Assume that a probability distribution F has given us data x = (z1,Z2,...,2,).
Here z; is a path of realizations from our underlying model. Each realization
means a pregnancy or birth for the individual Nw (%) in her productive lifetime.
It is also assumed that the individuals are productive in the age interval [20,50]
years. Each realisation is given to us by random sampling, F—x. The parameter
of interest ¢» = t(F), is four dimensional ¢ = (k,m,a,3). Here (k,m) are the
parameters that specify the intensity @ that the population produces children, and
(v, B) are the parameters in the loglogistic distribution that specify the marriage
times. Let the estimator be 9 = s(x). Then, the bias can be defined to

by = biase(?,9) = Er[s(x)] - t(F),
and the definition of the bootstrap bias is
bg = Egls(x")] — t(F),

where F is substituted for F, and x* is for the bootstrap samples. In this case,
the bias; must be approximated, and this is done through Monte Carlo simu-
lation. By producing independent bootstrap samples x*!,...,x*2 the bootstrap
expectation Eg[s(x*)] is approximated by the average

B B
¥() = Y_4*(b)/B =) s(x*)/B.
b=1 b=1
Finally, the bootstrap estimate of bias, which is based on the B replicates, is

biasp = ¥"(-) — t(F).

This is saying that if we can reproduce the model under investigation by using
our estimated values 1), then the deviation, or bias, in the parameter estimates
will be mimicked again, but this time it is possible to estimate the deviation.

12



4.1 Numerical illustration

The most interesting situation where the bias is essential is when the populations
have extremely high fertility rates. To find out the bias, one bootstrap scheme
could be as following:

We do not have real data, so to illustrate this we start with the simulation of 10
populations in the same way as in the previous section 3.

e Use 9y = (ko,mo, 09, o) as start parameters.

Here (ko,mg), are for the intensity estimation and (o, o) are used in the loglo-
gistic distribution which specifies the marriage times. Simulate 10 populations
using %, with 100 individuals, giving

i Bi1 ... Bis
Ei1 ... E6
By ... Bsse
Exi ... Eg

Bio1 ... Bios
| | o1 --- Eios

and take out 50 marriage times. This number can be larger, but we assume that
a lot of work is involved in finding this by reading church books, and therefore,
we only try to find out a small number.

Estimate the parameters using the previous table and the 50 collected marriage
times. This gives us

-~

$ = (k,m, &, B).

Use 1,21 to generate B new generations, summerize them according to Table 1, and
generate B times 50 marriage times to estimate #. This gives

~xl

— (i,*l, ﬁl*l, &*l, Btl)

R T
]!)* _ (kaB,m*B’ Q“B,ﬁ*B).

13



Then estimate the bias for the different parameters according to

bias 5 (k) = —é—ik—k
1 B

be'a.s'ﬁ(ﬁfa) = E;ﬁ'z‘b — 1,
1 B

b‘ias';(&) == S at-a,

o
Il
e

" bias A(B) = -l—f:;é’b -y
'¢ Bl Bb:l .

These biased estimations can now be used to correct the original estimates. Ac-
tually, since we do not know anything of these new bias corrected estimators, one
can use double bootstrap see Hjort [8] page 99, to find out the performans of
them. This is not presented here, but preliminary investigations indicate no or
very small increase of the variance.

The bootstrap method is illustrated for the case when the intensity in the pop-
ulation is assumed to be given by (k = 0.75,m = —0.75). This means that the
mean number of births denoted E[B], for populations consisting of 100 individual
becomes according to Table 3, if it is assumed that the individuals have complete
exposure times in each interval.

Table 3: The table gives the fertility intensity and the mean number of births
in the five year intervals [20,24],(25,29],...,[44,49] for a population with 100
individuals with the parameters (k = 0.75,m = —0.75). It is assumed that the
individuals have complete exposure times in each interval.

9 [0.974 [ 1.125 | 1.379 | 1.489 [ 1.021 | 0.178
E[B] | 487 | 562 | 690 | 745 | 510 | 89

The start vector is
Yo = (k= 0.75,m = —0.75,« = —3.20, 8 = 8.90).

This gave 10 populations with 100 individuals. In this case, the populations are
merged together into one big population with 1000 individuals and summerized
according to Table 1. The estimation of 1o gave

¢ = (k = 0.84,7m = —0.65,& = —3.21, § = 7.90),

14



where (&, ﬂ) are estimated by taking a random sample of 50 marriage times from
the merged population. %) will be used as the starting value of the bootstrap
simulation. Now B = 999 bootstrap replicates were made and the results are
given in Table 4. The mean value of the bootstrap estimates are now used to
estimate the bias that the model gives.

Table 4: Summary statistics of the bootstrap estimates of the parameter vector

P .
parameter || 1st.quant. | median | 2nd.quant. | mean | st.dev.
k 0.921 0.936 0.950 0.935 | 0.021
™ —0.576 | —0.562 | —0.547 | —0.562 | 0.021
& —3.229 | —3.211| -3.191 | —3.209 | 0.029
A 7.430 8.014 8.713 8.112 | 0.968
. ) ]. B 7 xb o
bias (k) = B E k** — k = 0.935 — 0.838 = 0.097
1 B
bias () = = bz m*® — m = —0.562 — (—0.649) = 0.087
=1
1 B
bias;(4) = & Y & —a=-3.209 — (—3.210) = 0.001
b=1
~ 1 B.. i
biasy(B) = = > B —b=28.112 — 7.904 = 0.208

.
Il

1

This suggests the need to bias adjust the parameter vector " according to
k = 0.838 — 0.097 = 0.741

= —0.649 — 0.087 = 0.736
& = —3.21 — (—0.001) = —3.20
B = 7.904 — 0.208 = 7.696

In this case, we see that we improve our estimates by using the bias correction
for three of the parameters but not for 3. If we look at the standard deviation
estimate of 8 in Table 4, it can be seen that it is very large compared to the
others.

This method can be performed for the different parameter values of (k,m) but

the gain will not be so much in the other parameter settings, (see Table 1 and
Figure 3).
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Table 5: Estimation of the parameter vector ¥ with ¥ which is not bias cor-
rected and 1p which is bias corrected.

k m a B
P, || 0.75 | —0.75 | —3.20 | 8.90
P [ 0.84 | —065| —3.21 | 7.90
¢ | 0.74 | —0.74 | —3.20 | 7.70

5 Summary

In this report, the normal approximated waiting model which was derived in Arn-
qvist [2] is modified. Here, it allows the summerized fertility data according to
Table 1 to consist of both censored and left truncated observations. It is further
stressed again that the normal approximated waiting model better describes fer-
tility intensity 6, expressed in the same way as Coale-Trussells specification of
fertility intensity, than the Coale-Trussell model or Poisson model.

It can be seen that for extreme populations with very high fertility intensity the
parameter estimations becomes biased. This is the case for both models, nor-
mal approximated waiting model and Poisson model. However, for the Poisson
model the bias is severe for the extreme populations, while in the normal ap-
proximated waiting model the bias is more moderate. Further, in this report
a bootstrap method is suggested to bias correct the parameter estimates in the
normal approximated waiting model.

It is shown that by using a better approximation of the variance it is possible
to minimize this bias. But to use this better approximation, the derivatives of
the new approximation of the variance with respect to (k,m) are needed. This
has not been done and this suggests further research. Also ,of course, it will be
interesting to apply the model to real data from the UN fertility services.
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6 Appendix

In section 3, we could see that the estimation of the parameters (k,m), that
specifies the intensity #, became somewhat biased for the very extreme intensities.
This bias is mainly because of the approximation of the variance. The problem
is that in the normal approximation of the waiting model, we use the asymptotic
normal approximation of the mean and the variance, see (3) and (4), and this
variance approximation causes the bias in the parameter estimates in the model
derivation (6). This is due to the fact that the exposure times are not five years
for all of the individuals. Actually, the variance approximation (4) was not correct
when all of the individuals where assumed to be exposed five years, but when the
exposure times become shorter the approximation becomes worse.

So, this suggests a finer approximation of the variance. One such approximation
can be found in a textbook of renewal theory, [6]. It can be derived in the following
way. Let
%(t) = E[Nw(t)(Nw(t) + 1)],
then
Var[Nw(t)] = $(t) — E[Nw(t)] — (E[Nw(?)])".
Now we can write

o0

P(t) = Y b(b+1)P(Nw(t) =b)
b=0

= > b(b+ 1){Ks(t) — Kpsa(t)},

b=0

where Kj(t) equals the cumulative distribution of Sy = W+z1+. ..+ W+z;. Here,
as before, W is the waiting time after pregnancy and z; is the active exposure
time which is expontially distributed with intensity 6. Let ks(z) denote the p.d.f.
of Sy, then the Laplace transform of 1(¢) becomes

P(s) = B+ D) — B ()

b=0

2, 1
= ;Zbkb(s).
b=1

For an ordinary renewal process, ki (s) = {f*(s)}’, but for the equilibrium renewal
process, which is the case here, we have that &} (s) = {f*(s)}*"H{(1—f*(s))/m1 s}
SO

2
s?my {1 — f*(s)}

¥(s) = (7)
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By expanding (7) near s = 0, we can find the asymptotic result, since first

1 4smitma o (m%+’m2 m3)]+o(1).

4m? 6my s

. 2
¥(s) = s3m? 2my
Here m,, a = 1,2, 3, means the central moments of the distribution of the com-
plete exposure time between pregnancies . By taking an inversion of the Laplace
transform, using Tauberian theorem, we have that

2

t 1 :
b(t) = 2+t3‘—iﬁ”3+(—+ T m3)+o(1).

m3 6 2mi 3m}

Now, E[Nw(t)] = t/m; so we have that

Var|Nw(t)] = '::; 5 (l 4 mi o ) +o(1), 8)

2 6 2mi  3mi

where o(1) denotes a function of ¢ tending to 0 as ¢ — co. The moments can
easely be derived. If we denote the complete exposure time with S, we know that
S = W + z, where we had that z ~ ezp(@). Then,

F(S)=P(S<s)=PW+z<s)=1—¢eC" s>W,

and

f(s) = __aggs) = 600",

This gives us

00 1
E[S]=m; = j s0e W ds =W 4 -,
w

mo = jm(s —my)%0 e =W) g = =
w

62’
and finally
0 —0(s—W) ds = 2

ma = / (s— e s = e

If these moments are substituted into (9), then we have after simplifications, that
0t 1 1 2
Var[N e - - .

arlNw(t)]l ~ gy +(6+2(1+9W)4 3(1+9W)3) (9

The first fraction in (9) is the approximation that is used in (4). The correction,
therefore, is the part between the brackets. In Figure 4, we see the approximations
as functions of the intensity for 4 different interval lengths, ¢ = 1,2,3 and 4
years of exposure. The approximations are the asymptotic normal approximation
(4), the approximation using the third moment of the failure times (9) and the
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“true variance” derived from the waiting model Arngvist [1]. The formulae of
the true variance is based on the exact probabilities of the number of births.
It is a rather complicated form to be used in estimation of the true variance,
and therefore, it is advisible to have an approximation of it. We can also see
that (9) follows the true variance very well. This suggests using (9) instead of
(4) as the variance approximation. By inspection of Figure 4, it can clearly be
seen why we get bias in the estimation of the intensity. However, in this paper
it is suggested to use the bootstrap bias correction and not the formulae (9).

Exposure time = 4 years

Exposure time = 3 years
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Figure 4: The four pictures give the variance of the number of births as a func-
tion of the intensity for four different ezposure times 4,3,2,1 years. The bold
dashed line represents the variance as calculated from the waiting model derived
in Arnquist [1]. It is based on the ezact formulae for the probabilities of the num-
ber of births. The dotted line is for the asymptotic normal approzimated variance
(4) and the solid line is for the approzimation using higher moments (9).

19



References

[1] Arnqvist Per (1995). Aspects on the Coale-Trussell model. Statistical Re-
search Report, no 1, University of Umea.

[2] Arnqvist Per (1995). Approximation of the waiting model. Statistical Re-
search Report, no 2, University of Umea.

[3] Bengtsson T. (1989). Mortality and causes of death in Véstanfors parish,
Sweden, 1700-1900. In Brindstrém, A. and Tedebrand, L-G (editors): Soci-
ety, Health, and Population during the Demographic Transition. Umea.

[4] Brostrém Géran (1985). Practical aspects on the estimation of the parame-
ters in Coale$ model for marital fertility. Demography, 22, 625-631.

[5] Coale, A.J. & Trussell, T.J. (1974). Model fertility schedules: Variations in
the age structure of childbearing in human populations. Population Indez,
40, 185-258.

[6] Cox, D.R. (1970). Renewal theory, Chapman & Hall, London.
[7] Cox, D.R. & Isham, V. (1980). Point processes, Chapman & Hall, London.

[8] Hjorth, Urban J.S. Computer intensive statistical methods Chapman & Hall,
London.

[9] Trussell, T.J. (1985). Mm (Computer program), Princeton, NJ: Princeton
university office of population research.

[10] United Nations (1966). demographic yearbook 1965, New York: United Na-
tions, Department of Economics and Social Affairs.

20



