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significantly lowered in the PD group versus the CD group 
at 6 months and the LPL activity (P < 0.05) remained signifi-
cantly lowered in the PD group compared to the CD group 
at 24 months.
Conclusions  Compared to the CD, the PD led to a more 
pronounced reduction of lipogenesis-promoting factors in 
SAT among postmenopausal women with overweight. This 
could have mediated the favorable metabolic effects of the 
PD on triglyceride levels and insulin sensitivity.

Keywords  Lipoprotein lipase · Obesity · Postmenopausal 
women · Diet · Fat metabolism

Introduction

Obesity, particularly abdominal obesity, is a major cause 
of morbidity and mortality. Among women, the prevalence 
of abdominal adiposity increases after menopause and is 
associated with an increased risk for metabolic disease [1].

Adipose tissue stores energy as triacylglycerols (TGs) in 
lipid droplets formed through lipogenesis, and fatty acids 
(FAs) are released from these stored TGs via lipolysis. 
Both processes are reportedly elevated in insulin-resistant 
individuals with obesity compared to insulin-sensitive indi-
viduals with obesity [2]. The cycle of lipid synthesis and 
degradation is required for the formation of diacylglycerols 
(DAGs) and free fatty acids (FFAs), which acts as regulatory 
ligands of nuclear receptors [3]. Elevated formation of FFAs 
and DAGs due to increased lipolysis in adipose tissue, may 
contribute to impaired intracellular insulin signaling, i.e., 
insulin resistance [2].

TGs in adipose tissue primarily originate from FAs 
released from TG-rich lipoproteins following lipoprotein 
lipase (LPL)-mediated intravascular lipolysis [4]. LPL is 

Abstract 
Purpose  We studied effects of diet-induced postmenopau-
sal weight loss on gene expression and activity of proteins 
involved in lipogenesis and lipolysis in adipose tissue.
Methods  Fifty-eight postmenopausal women with over-
weight (BMI 32.5 ± 5.5) were randomized to eat an ad libi-
tum Paleolithic-type diet (PD) aiming for a high intake of 
protein and unsaturated fatty acids or a prudent control diet 
(CD) for 24 months. Anthropometry, plasma adipokines, 
gene expression of proteins involved in fat metabolism in 
subcutaneous adipose tissue (SAT) and lipoprotein lipase 
(LPL) activity and mass in SAT were measured at baseline 
and after 6 months. LPL mass and activity were also meas-
ured after 24 months.
Results  The PD led to improved insulin sensitiv-
ity (P < 0.01) and decreased circulating triglycerides 
(P < 0.001), lipogenesis-related factors, including LPL 
mRNA (P < 0.05), mass (P < 0.01), and activity (P < 0.001); 
as well as gene expressions of CD36 (P < 0.05), fatty acid 
synthase, FAS (P < 0.001) and diglyceride acyltransferase 2, 
DGAT2 (P < 0.001). The LPL activity (P < 0.05) and gene 
expression of DGAT2 (P < 0.05) and FAS (P < 0.05) were 
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thus considered a gatekeeper enzyme to play an impor-
tant role in the initiation and development of obesity [4]. 
Released FAs can enter adipocytes via either passive diffu-
sion or through diffusion facilitated by the major transport 
protein CD36 [2].

Within a fat cell, FAs undergo a series of enzymatic 
reactions leading to their storage as TGs in lipid droplets. 
The final and likely rate-limiting step in TGs synthesis is 
catalyzed by diglyceride acyltransferase 2 (DGAT2) [5]. 
Fatty acid synthase (FAS) is an important factor in de novo 
lipogenesis in adipocytes, and is elevated in cases of obe-
sity and in type 2 diabetes [6]. In cases of obesity, basal 
lipolysis may be elevated by increased production of pro-
inflammatory factors such as TNF-α, increasing transcrip-
tion of the rate-limiting enzyme adipose triglyceride lipase 
(ATGL) [7]. Moreover, lipolysis is controlled by a number 
of lipid droplet-associated proteins that influence droplet 
formation and stability [5]. In particular, perilipin1 is a 
key factor that protects TGs from hydrolysis by ATGL [7].

White adipose tissue is not only an energy-storage 
organ, but also an endocrine organ secreting a variety of 
adipokines, acting in locally or systemically ways. Adi-
pokines, including leptin, adipsin and adiponectin, have 
endocrine effects on insulin sensitivity; and leptin also 
affects energy homeostasis. The secretions of these adi-
pokines are affected by fat storage but the effect of macro-
nutrient content in the diet is not well studied.

A recent study comparing before and after menopause 
demonstrated that postmenopausal women showed an 
increased tendency to store TGs in subcutaneous adipose 
tissue (SAT), associated with increased lipogenesis [8]. 
Thus, further studies regarding the putative reversibility 
of altered fat metabolism among postmenopausal women 
with overweight are of major interest.

We previously made a diet intervention with a 5-week 
ad libitum Paleolithic type diet (PD), characterized by a 
moderately increased intake of protein and high contents of 
monounsaturated fatty acids (MUFAs) and polyunsaturated 
fatty acids (PUFAs). This diet profoundly decreased abdomi-
nal obesity, blood lipid levels, and increased hepatic insulin 
sensitivity among postmenopausal women with obesity [9]. 
More recently we made a study on postmenopausal women 
with obesity, which revealed that a PD had sustained effects 
on circulating TG levels [10]. Moreover, a PD has also been 
reported to improve glucose sensitivity, lipid profiles, and 
blood pressure among healthy sedentary humans without 
concomitant weight loss [11].

Our hypothesis was that a diet-induced weight loss would 
affect the levels of adipokines, lipogenesis and lipolysis in 
postmenopausal women with obesity. We tested in this sec-
ondary analysis whether a PD with a high intake of unsatu-
rated fat and a low intake of carbohydrates would have more 
pronounced beneficial effects on adipokines and key proteins 

in fat metabolism than a conventional prudent diet with a 
high carbohydrate content (CD).

Methods

Subjects and clinical protocol

A CONSORT flow diagram and additional details regarding 
inclusion criteria, dietary instructions, and procedures for 
anthropometry and dual-energy X-ray absorptiometry are 
described in a previous paper by Mellberg et al. [10].

Briefly, 70 postmenopausal women (age 60.5 ± 5.6 years) 
with overweight or obesity (BMI, 27–41 kg/m2) and nor-
mal fasting plasma glucose levels were randomized to an 
ad libitum Paleolithic-type diet (PD) or a prudent control 
diet (CD). Only women that had experienced at least 12 con-
secutive months without menstruation were included in the 
study. The CD followed the Nordic Nutrition Recommen-
dations aimed to include 15 energy percent (E%) protein, 
55 E% carbohydrates and 30 E% fat. The CD was based on 
high-fiber products, meat, fish, vegetables, fruits and low-fat 
dairy products. The PD aimed to include 30 E% protein, 30 
E% carbohydrates, and 40 E% fat, with recommendations 
for a high intake of MUFAs and PUFAs, and a relatively 
low intake of carbohydrate. The PD was based on lean meat, 
fish, eggs, vegetables, fruits, berries, and nuts. Additional fat 
sources included avocado and rapeseed and olive oil used 
in food preparation and dressings. The PD excluded dairy 
products, cereals, added salt, and refined fats and sugar.

Throughout the entire intervention period, each group 
participated in a total of 12 group sessions led by dieticians. 
The group sessions gave information on the intervention 
diets and how to cook using recipes. They also included 
group discussions and information regarding dietary impacts 
on health and behavioral changes. During the first 6 months 
of the intervention, eight group sessions were held, followed 
by one group session every 3 months until the end of the 
intervention.

The present secondary analysis on fat metabolism 
included 58 women that had abdominal fat biopsies taken at 
baseline and after 6 months of dietary intervention. Dietary 
intake was assessed using 4-day (3 week days and 1 week-
end day) estimated self-reported food records collected at 
baseline and monthly for 6 months. The reported food intake 
was converted to the estimates of energy and nutrient intake 
using the nutritional analysis package Dietist XP (version 
3.0, Kost och Näringsdata AB, Bromma, Sweden) based on 
the food composition database of the Swedish National Food 
Administration (2008-03-06) [10].

Physical activity was measured using the Actiheart® 
monitor during a 7-day period, at baseline and at 6 months, 
concurrently with the self-reported food records. The study 
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participants gave written informed consent, and the study 
was approved by the Regional Ethical Review Board at 
Umeå University. This trial was registered at clinicaltrials.
gov as NCT00692536.

Blood samples were obtained after overnight fasting at 
baseline and 6 months. Plasma glucose and lipid levels were 
analyzed using a Vitros 5.1FS automated chemistry analyzer 
(Vitros Slides; Ortho-Clinical Diagnostics, Johnson & John-
son, NJ, USA). FFAs were determined in serum following 
the ACS-ACOD method using a NEFA-HR kit (Wako, 
Neuss, Germany). Insulin sensitivity was calculated apply-
ing the homeostasis model assessment for insulin resistance 
(HOMA-IR) [12]. SAT was obtained by needle aspiration 
under local anesthesia (Xylocaine 10 mg/mL; Astra Zeneca, 
Södertälje, Sweden), as previously described [13].

RNA extraction and real‑time RT‑PCR

Total RNA was extracted from SAT biopsies using the 
RNeasy® Lipid Tissue Mini kit and the RNA reversed tran-
scribed using TaqMan® reverse transcription reagents as 
previously described [14]. Relative quantification real-time 
PCR was performed using an ABI Prism® 7000 Sequence 
Detection System (Applied Biosystems, Foster City, CA) 
with Universal PCR Master Mix 2X (Roche Molecular Sys-
tems) and TaqMan gene expression assays (Applied Biosys-
tems) for DGAT2 (Hs01045913_m1), FAS (Hs01005622_
m1), LPL (Hs00173425_m1), ATGL (alias PNPLA2; 
Hs00386101_m1), Perilipin1 (alias PLIN; Hs00160173_
m1), CD36 (Hs01567185_m1) and LRP10 (Hs00204094_
m1). Reference genes were evaluated by comparing PPIA 
(Hs999999904_m1) and LRP10 within the full study cohort 
using the NormFinder algorithm, and calculated the %CV 
[15]. Accordingly, LRP10 appeared to be the most suitable 
gene. Accordingly, the expression levels of the target genes 
were normalized to LRP10. Due to the limited amounts of 
adipose tissue in the biopsies we could only analyze gene 
expression at baseline and after 6 months.

All samples from each subject were analyzed on the 
same plate in duplicate. To reduce interference from plate 
biases, subjects were paired and balanced according to diet, 
fat distribution, insulin sensitivity index, and blood pres-
sure parameters. Samples/subjects were balanced and paired 
using a space-filling design from a principle component 
analysis model calculated based on the subjects’ baseline 
characteristics [16].

LPL activity and mass measurements

LPL activity and mass were measured in SAT as previously 
described [17]. The presented data are the mean values of 
three determinations. For LPL activity, 1 mU corresponds 
to the release of 1 nmol fatty acids per min. Samples taken 

at baseline, at 6 months and 24 months from the same indi-
vidual were analyzed on the same day and in the same assay, 
to reduce inter-assay variability.

Analysis of adipokines in serum

Serum concentrations of leptin, adipsin, and adiponectin 
were determined using the Bio-Rad human diabetes kit (Her-
cules, CA, USA) following the manufacturer’s instructions, 
with the addition that all samples were centrifuged for 30 s at 
11,000×g to remove any debris. All samples were assayed in 
duplicate and analyzed using the Luminex 200 Labmap sys-
tem (Austin, TX, USA). Data were analyzed using Bio-Plex 
Manager software version 4.1.1 or 6.0 (Bio-Rad). Protein 
concentrations were interpolated from the appropriate stand-
ard curve. Mean %CV values were 4.0% for adiponectin, and 
7.8% for adipsin and leptin.

Statistical analysis

PCA/OPLS

We performed further sample comparison modeling using a 
multivariate data analysis strategy to elucidate intervention-
related effects on the whole fat metabolism profile. First, 
the data were inspected using principal components analysis 
(PCA) to detect potential outliers and clusters. Second, each 
individual’s sample collected after 6 months of interven-
tion was subtracted from its baseline sample and missing 
data excluded. At last, we applied a variant of orthogonal 
partial least squares analysis (OPLS) [18], OPLS-effect 
projections (OPLS-EP) [19]. OPLS-EP extracts metabolic 
profiles based on paired analyses of individual effects, i.e., 
the dietary intervention effect. Because each subject acted 
as her own control, this strategy minimizes the influence 
from confounding factors, such as inter-individual variation 
[19]. The multivariate models were validated by calculating 
P values based on ANOVA from the cross-validated scores 
(CV-ANOVA). To ensure proper cross-validation groups and 
reduce the chance of creating an over-fitted model, special 
consideration was taken to keep the same participants in the 
same group. The multivariate confidence intervals presented 
here were based on jack-knifing [20]. OPLS-EP analyses 
were performed during weight loss (0–6 months) and weight 
maintenance (6–24 months).

Generalized estimating equations

General estimating equations (GEE) and linear regression 
analyses were performed using IBM SPSS Statistics for 
Mac, Version 22.0 (IBM Corp., Armonk, NY, USA). Data 
describing the anthropometrical and biochemical parameters 
are presented as mean ± SD. The sample size was estimated 
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using power analysis based on changes in fat mass in a pilot 
study of postmenopausal women on a PD. It was estimated 
that 30 participants were needed in each group to achieve 
P < 0.05 with 80% power. The effects of diet over time were 
analyzed using separate multiple regression models, each 
including diet group, time, and the group-by-time interaction 
as predictors. Regression parameters were estimated using 
GEE, a method that tolerates some degree of between-group 
variance. An exchangeable correlation structure was used 
to model the dependence between repeated measurements 
within participants. Prior to analysis, dependent variables 
with a skewed distribution were transformed using natural 
logarithms. Outcome is presented as P values for the included 
factors and estimated marginal means, with corresponding 
95% confidence intervals for each diet at each time-point. P 
value of < 0.05 was considered statistically significant.

Linear regression analysis

Univariate linear regression analyses were used to identify 
and characterize the relationship between a dependent vari-
able and an independent variable. Outcome was presented 
using P values for the included factor and the coefficient of 
correlation R.

Results

A previous publication describes the results regarding 
anthropometry and metabolic functions, including circu-
lating lipid levels and insulin sensitivity in all 70 partici-
pants [10]. This secondary analysis presents lipogenesis and 
lipolysis in adipose tissue in the 58 women with fat biopsies 
during the first 6 months of the study period. LPL mass and 
activity were analyzed at 24 months. Gene expression was 
not analyzed due to lack of fat tissue.

OPLS

The OPLS analysis included the following variables: Fat 
distribution, blood lipids, insulin sensitivity, gene expres-
sion and activity levels of key proteins involved in lipogen-
esis and lipolysis, and adipokines (Fig. 1), at 6 months. We 
obtained a significant OPLS model only for the PD group 
(Fig. 1). However, an additional analysis including both 
groups in the same OPLS model revealed identical patterns 
of the included variables for both diets as for the PD group 
alone (data not shown). This suggests that the PD group 
response on the included variables is more pronounced as 
compared to the CD group and that no new information is 
to be found when including both groups in the same model.

Sagittal abdominal diameter, android fat mass, and plasma 
TG levels decreased significantly, with android fat mass 

showing the most pronounced reduction. Insulin resistance 
(estimated by the HOMA-IR index) decreased significantly, 
with concomitant reductions of adipsin and leptin. With 
regards to lipogenesis and lipolysis, LPL activity showed the 
most pronounced reduction, followed by FAS, DGAT2, and 
LPL mass. We also detected a reduced expression of the ATGL 
gene, a key factor in intracellular lipolysis.

Generalized estimating equations

Anthropometric data

After 6 months of the intervention the PD group showed 
significantly larger reductions in body weight and sagittal 
abdominal diameter compared to the CD group (Table 1).
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post intervention 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

** 

** 

** 

* 

Decreases  
post intervention 

Adiponectin 

Perilipin 

CD36 

LPL 

FFA 

ATGL 

LPL mass 

DGAT2 

FAS 

HOMA-IR 

Waist-hip ratio 

Leptin 

TG 

LPL activity 

Adipsin 

Sagittal abdominal diameter 

Android fat 

w*[1] 
0.2   0.1 - 0.1 0 - 0.2 - 0.4       - 0.5 - 0.3 

Fig. 1   A multivariate model of individual differences in postmeno-
pausal women with overweight comparing samplings at baseline to 
those after 6 months of an ad libitum Paleolithic type diet (PD) inter-
vention. Variables with negative axis values (multivariate OPLS load-
ings, w* [1]) are decreased after the intervention and vice versa for 
those with positive axis values. The shown confidence intervals are 
multivariate confidence interval, based on jack-knifing using a 95% 
confidence level. Bars labeled with stars are significantly altered after 
the intervention by means of two-sided paired t-tests, i.e. *P < 0.05, 
**P < 0.01, ***P  < 0.001. ATGL adipose triglyceride lipase, DGAT2 
diglyceride acyltransferase 2, FFAs free fatty acids, FAS fatty acid 
synthase, LPL lipoprotein lipase; TGs triacylglycerols
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Reported energy intake

The reported energy intake decreased similarly in both 
groups, while physical activity levels remained stable 
(Table 2). The reported intake of protein increased signifi-
cantly more in the PD group compared to the CD group, 
but did not reach the target level of 30 E%. The PD group 

also reported a significantly higher intake of unsaturated FAs 
and cholesterol than the CD group (Table 2). Compared to 
baseline, the PD group reported a significantly decreased 
intake of carbohydrates, which was significantly lower than 
that reported by the CD group (Table 2). The intake ratio 
of fiber-to-carbohydrate increased in both groups and was 
more pronounced in the PD group compared to the CD 

Table 1   Changes of anthropometric data, serum lipids and adipokines in postmenopausal women with overweight at baseline and after 
6 months of an intervention with an ad libitum Paleolithic-type diet (PD) or prudent control diet (CD)

Data are shown as mean ± SD. n = 23–25 for the CD group; n = 32–33 for the PD group. Different n within a group is due to missing samples 
and different n between groups is due to a higher dropout rate in the CD group. Regression parameters were estimated by generalized estimat-
ing equations
FFAs free fatty acids, HDL-C high-density lipoproteins cholesterol, LDL-C low-density lipoprotein cholesterol, TGs triacylglycerols

PD Changes 0–6 months CD Changes 0–6 months Model effect
Diet by time

Baseline 6 months P Baseline 6 months P P

Age (years) 60 ± 5.5 62 ± 5.7
Weight (kg) 87 ± 10 − 7.8 ± 4.5 <0.001 87 ± 9.6 − 3.9 ± 4.6 < 0.001 < 0.05
Sagittal abdominal diameter (cm) 22 ± 2.1 − 4.3 ± 3.3 <0.001 22 ± 2.1 − 0.03 ± 1.9 < 0.001 < 0.001
Waist/hip 0.93 ± 0.07 − 0.05 ± 0.07 <0.001 0.94 ± 0.06 − 2.4 ± 0.04 < 0.001 NS
Serum FFAs (mmol/L) 0.49 ± 0.20 − 0.06 ± 0.19 NS 0.52 ± 0.17 − 0.06 ± 0.14 < 0.05 NS
Serum TGs (mmol/L) 1.2 ± 0.53 − 0.39 ± 0.41 <0.001 1.3 ± 0.55 − 0.11 ± 0.38 NS < 0.001
Cholesterol in serum (mmol/L) 5.9 ± 0.81 − 0.66 ± 0.74 < 0.001 5.6 ± 1.2 − 0.38 ± 0.82 0.035 NS
LDL-C (mmol/L) 3.9 ± 0.76 − 0.43 ± 0.58 < 0.001 3.7 ± 1.1 − 0.30 ± 0.63 0.037 NS
HDL-C (mmol/L) 1.5 ± 0.36 − 0.07 ± 0.30 NS 1.3 ± 0.24 − 0.04 ± 0.20 NS NS
HOMA-IR 1.8 ± 1.1 − 0.32 ± 1.3 < 0.01 2.2 ± 1.0 − 0.08 ± 1.3 NS NS
Adiponectin (mg/L) 38 ± 13 − 3.7 ± 7.0 NS 37 ± 12 − 5.6 ± 8.1 < 0.05 NS
Leptin (ng/L) 12 ± 5.0 − 4.3 ± 5.1 < 0.001 11 ± 4.4 − 2.7 ± 2.7 < 0.001 NS
Adipsin (ng/L) 340 ± 110 − 100 ± 76 < 0.001 330 ± 120 − 110 ± 106 < 0.001 NS

Table 2   Changes of nutrient intake and physical activity in postmenopausal women with overweight at baseline and at 6 months of an interven-
tion with an ad libitum Paleolithic-type diet (PD) or prudent control diet (CD)

Data are presented as mean ± SD. n = 23–25 for the CD group; n = 32–33 for the PD group. Different n within a group is due to missing samples 
and different n between groups is due to a higher dropout rate in the CD group. The regression parameters were estimated by generalized esti-
mating equations
MUFAs monounsaturated fatty acids, PAEE physical activity energy expenditure, PUFAs polyunsaturated fatty acids, SFAs saturated fatty acids

PD CD Model effect 
diet by time

Baseline Change 0–6 months P Baseline Change 0–6 months P P

Energy intake (MJ/d) 8.4 ± 1.5 − 1.5 ± 1.5 < 0.001 8.7 ± 1.6 − 1.9 ± 1.5 < 0.001 NS
PAEE (MJ/d) 3.2 ± 0.82 − 0.10 ± 0.82 NS 3.3 ± 1.1 − 0.08 ± 0.90 NS NS
Carbohydrate intake (E%) 46 ± 4.1 − 17.0 ± 5.7 < 0.001 46 ± 4.5 − 1.5 ± 5.9 NS < 0.001
Mono- and disaccharide intake (E%) 18 ± 5.7 0.73 ± 5.2 NS 20 ± 6.7 − 1.2 ± 7.3 NS NS
Fiber intake (g)/carbohydrate intake (g) 0.11 ± 0.02 0.09 ± 0.03 < 0.001 0.10 ± 0.02 0.03 ± 0.03 < 0.001 < 0.001
Fat intake (E%) 34 ± 3.6 10 ± 6.7 < 0.001 34 ± 3.8 − 2.5 ± 4.8 < 0.01 < 0.001
SFAs intake (E%) 13 ± 2.1 − 3.0 ± 3.2 < 0.001 13 ± 2.0 1.8 ± 2.5 < 0.001 NS
MUFAs intake (E%) 13 ± 1.9 7.9 ± 4.0 < 0.001 13 ± 2.1 − 1.3 ± 2.4 < 0.01 < 0.001
PUFAs intake (E%) 5.5 ± 1.3 4.2 ± 3.0 < 0.001 5.4 ± 1.1 0.21 ± 1.8 NS < 0.001
Cholesterol intake (E%) 0.13 ± 0.03 0.29 ± 0.56 < 0.001 0.15 ± 0.04 0.01 ± 0.06 NS < 0.001
Protein intake (E%) 17 ± 1.9 6.3 ± 2.9 < 0.001 17 ± 2.5 1.9 ± 2.7 < 0.001 < 0.001
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group (Table 2). The reported intake of monosaccharides 
and disaccharides remained stable over time in both groups.

Circulating lipids and HOMA‑IR

Serum TGs decreased significantly more in the PD group 
compared to the CD group (Table 1). Total serum choles-
terol levels and LDL-cholesterol (LDL-C) decreased in 
both groups, without differences between groups (Table 1). 
The levels of HDL cholesterol and FFA remained stable in 
both groups (Table 1). The HOMA-IR index decreased sig-
nificantly in the PD group, without significant difference 
between diet groups (Table 1).

Lipogenesis‑ and lipolysis promoting factors

The gene expressions of LPL and CD36 were significantly 
decreased in the PD group, but no between-group differences 
were found (Figs. 2a, 3a). Expressions of DGAT2 and FAS 
decreased significantly more in the PD group compared to 
the CD group (P < 0.05 for both; Fig. 3b, c). The expression 
of ATGL decreased significantly in both groups, with no dif-
ferences between groups (Fig. 4a). Perilipin1 mRNA levels 
were unchanged in both diet groups during the intervention 
(Fig. 4b).

LPL mass, and activity levels decreased significantly in 
the PD group after 6 and 24 months, and there were sig-
nificant differences in changes of LPL activity between 
the diet groups at both 6 and 24 months (P < 0.05 for both; 
Fig. 2b, c). Significant associations were found between the 
changed LPL activity and LPL mass at 24 months using 
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estimated using generalized estimating equations. Difference from 
baseline: *P < 0.05, **P < 0.01, ***P < 0.001; difference in change 
between groups (diet × time effect) #P < 0.05
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Fig. 3   Relative expressions of CD36 (a), DGAT2 (b) and FAS (c), 
that encode proteins involved in lipogenesis in postmenopausal 
women with overweight after a 6-month intervention with an ad libi-
tum Paleolithic-type diet (PD) or prudent control diet (CD) compared 
with at baseline. Data are presented as mean ± SD. n = 23–25 for the 
CD group; n = 32–33 for the PD group. Within-group differences in n 

were due to missing samples and between-group differences in n were 
due to a higher dropout rate in the CD group. The regression param-
eters were estimated using generalized estimating  equations. Differ-
ences from baseline: *P < 0.05, **P < 0.01, ***P < 0.001; difference 
in change between groups (diet x time effect) #P < 0.05. DGAT2 
diglyceride acyltransferase 2, FAS fatty acid synthase
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linear regression analyses for both the PD group (R = 0.73, 
P = 0.001) and the CD group (R = 0.61, P = 0.019).

Adipokines in serum

Serum levels of leptin and adipsin decreased in both groups 
with no significant differences between groups (Table 1). 
Adiponectin levels decreased in the CD group, without dif-
ferences between groups (Table 1).

Linear regression analysis

Using linear regression analyses, we tested possible associa-
tions between the main outcomes related to adipose tissue fat 
metabolism (i.e., LPL, DGAT2, FAS, CD36 and ATGL gene 
expressions; LPL mass and activity) and sagittal abdomi-
nal diameter, diet intake (i.e., carbohydrates and PUFAs) or 
HOMA-IR/insulin.

In the PD group, a significant association at 24 
months was found between changes in sagittal abdomi-
nal diameter and LPL activity (R = 0.47, P < 0.05) and at 
6 months between sagittal abdominal diameter and gen 
expression of DGAT2 (R = 0.48, P < 0.001), FAS (R = 0.48, 
P < 0.05), CD36 (R = 0.25, P < 0.05), LPL mass (R = 0.36, 
P < 0.05) and LPL activity (R = 0.58, P < 0.001). There 
were also significant associations between reported intake 
of carbohydrate and gene expression of DGAT2 (R = 0.38, 
P < 0.01), FAS (R = 0.27, P < 0.05), CD36 (R = 0.25, 
P < 0.05) and for LPL mass (R = 0.33, P < 0.05) and LPL 
activity (R = 0.44, P < 0.01) at 6 months in the PD group. 
Furthermore, significant associations at 6 months were 
found in the PD group between reported intake of PUFA 
and gene expression of DGAT2 (R = 0.42, P < 0.001), 
FAS (R = 0.34, P < 0.01), and for LPL activity (R = 0.34, 
P < 0.05). Significant associations between LPL mass and 

HOMA-IR (R = 0.38, P < 0.05) and circulating insulin levels 
(R = 0.42, P < 0.05) were found at 6 months in the PD group. 
No significant associations were found in the CD group.

Discussion

Previous studies have shown that an ad libitum PD with a 
high content of MUFA and PUFA, a relatively low intake 
of carbohydrate, and a high fiber-to-carbohydrate ratio can 
have major positive effects on metabolic balance, includ-
ing increased glucose tolerance and decreased serum TGs 
[9, 10, 21, 22]. Our findings suggest that these beneficial 
effects of the PD can be partly mediated by decreased levels 
of lipogenesis-promoting factors in SAT. The OPLS analy-
sis revealed that the most pronounced effects were on fat 
distribution factors, circulating TG levels, and adipose LPL 
activity within the PD group during the first 6 months of 
intervention.

The greatly reduced LPL activity in SAT  in the PD group 
was paralleled by a decreased LPL mass. The trend was simi-
lar in the CD group, but less pronounced compared to the PD 
group. Earlier studies of the impact of weight loss on LPL 
activity in SAT show discordant results [23, 24]. In support 
of our present data, prior studies have shown reduced adi-
pose tissue LPL activity after surgically induced weight loss 
in individuals with morbidly obesity [25–27]. Additionally, 
a study of postmenopausal women with overweight or obe-
sity after a 6-month hypocaloric dietary intervention dem-
onstrated that decreased LPL activity was associated with 
reductions in abdominal adiposity, total cholesterol, LDLs 
and TGs [28]. Accordingly, the PD group in the present 
study showed a more pronounced decrease in LPL activity, 
associated with greater reductions of abdominal adiposity 
compared to the CD group. The association between changes 
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Fig. 4   Relative expressions of ATGL (a) and PLIN (b), that encode 
proteins involved in lipolysis in postmenopausal women with over-
weight after a 6-month intervention with an ad libitum Paleolithic-
type diet (PD) or prudent control diet (CD) compared with at base-
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of LPL activity and sagittal abdominal diameter in the PD 
group was verified by both the linear regression analysis and 
multivariate analysis via OPLS. LPL in adipose tissue is 
predominantly regulated at the post-translational level by 
nutritional factors, such as fasting, glucose and insulin [4, 
29, 30]. Insulin has effects also at the level of LPL gene tran-
scription [31]. The significant decrease in LPL protein mass 
may be a consequence of the lower intake of carbohydrate 
and circulating insulin, which were significantly associated 
to LPL mass in the PD group at 6 months.

The PD group also showed a significantly decreased 
expression of CD36, which could reduce FA uptake and 
utilization [32]. The expression of CD36 is upregulated by 
insulin, and the expression in adipose tissue is also upregu-
lated in obesity and in type 2 diabetes patients [33]. Genetic 
studies have revealed that variations within the CD36 locus 
are associated with metabolic dysfunction through effects on 
whole-body adiposity [34]. From a metabolic perspective, 
partial CD36 deficiency is associated with a beneficial phe-
notype, such that the CD36 reduction in the PD group was 
associated with decreased abdominal adiposity at 6 months 
in the PD group [35]. Furthermore, the expression of the 
important lipogenic enzyme DGAT2 decreased significantly 
more in the PD group compared to the CD group. Gene 
expression of DGAT2 is downregulated in adipocytes by 
weight reduction in humans and is regulated by nutritional 
factors such as glucose and PUFAs [36–38]. Carbohydrate 
and PUFA intake were associated with DGAT2 gene expres-
sion in the PD group at 6 months and may explain the more 
pronounced decreased DGAT2 expression found in this study 
group.

Both diet groups showed decreased expression of the 
lipogenic enzyme FAS. De novo lipogenesis through FAS 
in the liver is upregulated by glucose, fructose and insu-
lin, and are downregulated by a high-fat diet and possibly 
by PUFAs [6]. The expression of FAS in the adipose tissue 
was more strongly influenced in the PD group than in the 
CD group, possibly due to the reduced carbohydrate con-
tent and/or increased PUFA content in the PD, and/or by 
the decreased circulating insulin levels in the PD group [6]. 
This is supported by the association between intake of PUFA 
and carbohydrates to FAS expression at 6 months in the PD 
group. Notably, the regulatory responsiveness of FAS in adi-
pose tissue is less pronounced than in liver [6].

Both diet groups showed decreased expression of 
the ATGL gene, indicating reduced intracellular lipoly-
sis of stored TGs. This finding is consistent with earlier 
weight-loss studies in humans with obesity following a 
hypocaloric diet, suggesting that weight loss per se deter-
mines this reduction of gene expression [39, 40]. Activa-
tion and recruitment of lipases such as ATGL to the lipid 
droplet surface are regulated by perilipin 1 [41]. We did 
not find any changes in perilipin 1 gene expression. The 

explanation for this unaltered expression may be regula-
tion on the protein level by phosphorylation. Importantly, 
an overall reduction of basal lipolysis in adipose tissue 
may lower the risks of ectopic fat storage and reduced 
insulin sensitivity in other tissues, such as skeletal muscle 
[42].

The PD group showed an improved metabolic situation 
manifested by increased insulin sensitivity, as indicated 
by a decreased HOMA-IR index, and lower circulating 
leptin and adipsin levels. Leptin represses food intake and 
increases energy expenditure, and is elevated in women 
with a metabolic syndrome, likely due to leptin resistance 
or “hypothalamic leptin insufficiency” [43, 44]. Increased 
levels of adipsin are reported in postmenopausal women 
with obesity, and have been suggested to be important for 
the development of a metabolic syndrome in this patient 
group [43]. While earlier studies have reported stable or 
increased adiponectin levels during weight reduction in 
postmenopausal women [45, 46], the CD group in our 
present study showed a significant decrease in serum adi-
ponectin levels. The differences between groups may be 
due to different intake of FFAs that may affect PPARγ, an 
obligatory transcription factor for adiponectin. Notably, 
we analyzed total adiponectin levels in blood, while the 
high-molecular-weight form of adiponectin is considered 
the most etiologically important component with regards 
to metabolic effects [47].

Strengths and limitations

The strengths of this study include a relatively low total 
dropout rate and the relatively long intervention time. The 
higher dropout rate in the CD group, largely due to lack of 
motivation, may have influenced the between-group dif-
ferences in weight reduction and body composition. Since 
LPL activity and mass was expressed per g adipose tissue, 
and the fat cell size is expected to decrease on weight loss 
due to the reduced content of TG, we may have underes-
timated the reduction of LPL in adipose tissue. There was 
no energy restriction but the energy intake decreased in 
both groups equally at 6 months. A constant energy intake 
is preferable when evaluating the impact of the macronu-
trient change on metabolism. Finally, the present study 
participants were relatively healthy. Future interventions 
should include subjects with different degrees of meta-
bolic dysfunction, and also include measurements of fat 
cell size.



2885Eur J Nutr (2018) 57:2877–2886	

1 3

Conclusion

Our present results show that a PD, high in PUFAs and low 
in carbohydrates, has a more pronounced effect on adipose 
tissue lipid metabolism than a CD by reducing gene expres-
sion of DGAT2 and FAS at 6 months and decreasing LPL 
activity at 24 months despite similar weight loss. This is 
linked to improved insulin sensitivity at 6 months and a 
more pronounced reduction of circulating TGs, suggesting 
that a PD may be a promising tool to decrease cardiovascu-
lar risk in healthy postmenopausal women with overweight.
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