This is the published version of a paper presented at *EGU General Assembly 2018, Vienna, Austria, April 8-13, 2018*.

Citation for the original published paper:

N.B. When citing this work, cite the original published paper.

Permanent link to this version:

http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-145982
Measurements of carbon isotope contents of plant organic matter provide important information in diverse fields such as plant breeding, ecology, biogeochemistry and paleoclimatology. They are currently based on 13C/12C ratios of whole metabolites, but we show here that intramolecular ratios provide higher resolution information about long-term metabolic dynamics, and their environmental controls.

Definitions: Measurements were expressed in terms of intramolecular 13C discrimination, Δ_i, where i denotes individual C positions in tree-ring glucose (Fig. 1, solid line). In this notation a positive value denotes discrimination against 13C. Triose phosphate cycling (TPC) in tree-ring cells confounds leaf-level 13C signals by redistributing C between C-1 and C-6, C-2 and C-5, and C-3 and C-4. We described the process mechanistically, and used the model to remove the TPC effect from Δ_i, yielding TPC-free intramolecular 13C discrimination, Δ_i'. (See figure 1, dashed line).

Question 1: Is there intramolecular 13C variation in tree-ring glucose?

There are well-established differences in 13C abundances among intramolecular C positions in various metabolites, including glucose27. These differences are introduced by enzymatic reactions1. They are not predictable based on current theory, and it is apparent from significant positional deviations between modelled and measured 13C pattern of plant hexoses from different tissues8. We show here that intramolecular 13C patterns have important implications for biogeochemical applications, and are therefore important to measure.

Answer: Tree-ring glucose exhibits a pronounced non-random 13C pattern (Fig. 1). This is corroborated by measurements on 11 additional species, 6 angiosperm and 5 gymnosperm trees9. Detected intramolecular 13C differences exceed 10‰ (solid line). Thus, they are an order of magnitude larger than intra-annual 13C variations of atmospheric CO$_2$. Moreover, their magnitude is similar to 13C differences reported for distinct plant metabolites10, and to the whole C range reported for bulk plant materials, including C3 and C4 plants11.

Implications: Wood cellulose (composed of glucose units) is one of the largest C pools, contributing to soil organic matter. Its turnover strongly impacts on the global C cycle. Isotopes are powerful tools for analysing soil C turnover. However, their use requires information about the isotopic composition of soil substrates, and their accuracy will benefit from the consideration of large intramolecular differences (Fig. 1). For instance, soil cellulose documentation and discrimination against soil conditions and plant activities (e.g. fractionation of plant and weathering) are important aspects of soil C turnover.

Question 2: Is the signal of Diffusion-Rubisco - DR - fractionation detectable at all C positions of tree-ring glucose?

DR fractionation refers to 13C fractionation by CO$_2$ diffusion from ambient air into plant chloroplasts and Rubisco-mediated CO$_2$ fixation (Farquhar mode)12. Rubisco adds a single carbon from CO$_2$ to ribulose-1,5-bisphosphate. Therefore, DR fractionation cannot cause intramolecular 13C variation, i.e. it is not position-specific. If DR fractionation was the only temporary variable fractionation process in plants, its signal strength should be equal at all positional time series of 13C discrimination, Δ. We tested this by analysing the linear relationships between Δ and air vapour pressure deficit (VPD), which we found to be the predominant control of DR fractionation at our site13.

Answer: We found that VPD signal strengths vary among Δ_i (Fig. 2). The largest deviations from uniformity were detected in Δ_2 and Δ_3. While the slope of the $\Delta_{i=2}/\text{VPD}$ regression is significantly steeper than the slope of the $\Delta_{i=3}/\text{VPD}$ regression (ANOVA: p=0.02, n=2311), the slope of the $\Delta_{i=2}/\text{VPD}$ regression is not significantly different from zero (p=0.64). Thus, the VPD signal is stronger in Δ_2 than in Δ_3, and undetectable in Δ_1.

Implications: The DR signal is retained in tree-ring glucose, to a position-specific manner. This suggests that PR fractionations influence Δ_i, and have had varying effects on the 35-year long tree-ring series.

Question 3: Does tree-ring glucose record information about downstream metabolic processes?

Post Rubisco - PR - fractionation denotes 13C fractionation by enzymes acting downstream of Rubisco. This type of fractionation is known to occur at individual C positions within metabolites2, i.e. it is position-specific. PR fractionation occurs at metabolic branch points3. Theory predicts that the linear relationships between Δ and VPD air vapour pressure deficit (VPD), which we found to be the predominant control of DR fractionation at our site13.

Answer: We screened for position-specific signals by hierarchical cluster analysis of Δ_i, and found four clusters: Δ_i' and Δ_i'', and Δ_i and Δ_i are uncorrelated (r=0.08, p=0.68, and r=0.11, p=0.71, respectively), the signals of the respective clusters are independent of each other. Multiple signals may require multiple fractionation mechanisms; thus, besides the DR mechanism other fractionation mechanisms, i.e. PR mechanisms must be active.

Implications: Intramolecular 13C abundances of tree-ring glucose contain information about the dynamics of both primary C fixation and the downstream carbohydrate metabolism, thereby, many of the fractionations are clearly not negligible (Fig. 3). This may explain why the sensitivity of whole-molecule Δ values in tree rings to ecophysiological parameters is highly variable14, and why coefficients of determination (R²) obtained by modelling Δ rarely exceed 50%. While the mechanisms behind observed PR fractionation signals require further attention, intramolecular 13C ratios clearly offer more information than whole-molecule ratios. This will likely facilitate retrospective assessment of ecophysiological and environmental traits unrelated to the diffusion-Rubisco mechanism.

Material and Methods: We pooled dated tree-ring samples - 19 Pinus nigra trees, 2 cores each - from a dry site in the Vienna region, Austria. Accordingly, our data reflect properties of the tree species at the site rather than properties of individual trees. Then, we extracted the pooled glucose moieties by hydrolysis of wood, and measured intramolecular 13C abundances by Nuclear Magnetic Resonance Spectroscopy on a suitable glucose derivative according to published procedures15. Additionally, we measured 13C values by IRMS on the same derivatives. Then, isotopic balance calculation gave time series of annually-resolved 13C/12C ratios for each individual C position of glucose extending from 1611 to 1995.

References: