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1 | INTRODUCTION

An edge precoloring (or partial edge coloring) of a graph G is a proper edge coloring of some
subset E’ C E(G); a t-edge precoloring is such a coloring with ¢ colors. An edge t-precoloring ¢
is extendable if there is a proper t-edge coloring f such that f(e) = ¢(e) for any edge e that is
colored under ¢; f is called an extension of ¢.

In general, the problem of extending a given edge precoloring is an A/P-complete problem,
already for three-regular bipartite graphs [7]. One of the earlier references explicitly discussing
the problem of extending a partial edge coloring is [15]; there a simple necessary condition for
the existence of an extension is given and the authors find a class of graphs where this condition
is also sufficient. More recently the question of extending a precoloring where the precolored
edges form a matching has gathered interest. In [5] a number of positive results and conjectures
are given. In particular it is conjectured that for every graph G, if ¢ is an edge precoloring of a
matching M in G using A(G) + 1 colors, and any two edges in M are at distance at least 2 from
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each other, then ¢ can be extended to a proper (A(G) + 1)-edge coloring of G; this was first
conjectured in [1], but then with distance 3 instead. Here, as usual, A(G) denotes the maximum
degree of a graph G, and by the distance between two edges e and e’ we mean the number of
edges in a shortest path between an endpoint of e and an endpoint of e’; a distance-t matching is
a matching where any two edges are at distance at least t from each other. A distance-2
matching is also called an induced matching.

Note that the conjecture on distance-2 matchings in [5] is sharp both with respect to the
distance between precolored edges, and in the sense that A(G) + 1 can in general not be
replaced by A(G) (for Class 1 graphs), even if any two precolored edges are at arbitrarily large
distance from each other [5]. In [5], it is proved that this conjecture holds for, for example,
bipartite multigraphs and subcubic multigraphs, and in [10] it is proved that a version of the
conjecture with the distance condition increased to 9 holds for general graphs.

However, for one specific family of graphs, the balanced complete bipartite graphs K, ,, the
edge precoloring extension problem was studied far earlier than in the above-mentioned references.
Here the extension problem corresponds to asking whether a partial Latin square can be completed
to a Latin square. In this form the problem appeared already in 1960, when Evans [6] stated his
now classic conjecture that for every positive integer n, if n — 1 edges in K}, , have been (properly)
colored, then the partial coloring can be extended to a proper n-edge coloring of K, ,. This
conjecture was solved for large n by Haggkvist [14] and later for all n by Smetaniuk [17], and
independently by Andersen and Hilton [2]. Moreover, Andersen and Hilton [2] characterized
which n X n partial Latin squares with exactly n nonempty cells are completable.

In this paper we consider the edge precoloring extension problem for the family of hy-
percubes. Although matching extendability and subgraph containment problems have been
studied extensively for hypercubes (see, eg, [8,11,18,19] and references therein), the edge pre-
coloring extension problem for hypercubes seems to be a hitherto quite unexplored line of
research. As in the setting of completing partial Latin squares (and unlike the papers [5,10]) we
consider only proper edge colorings of hypercubes Qg using exactly A(Qy) colors.

We prove that every edge precoloring of the d-dimensional hypercube Q; with at mostd — 1
precolored edges is extendable to a d-edge coloring of Qg, thereby establishing an analogue of
the positive resolution of Evans' conjecture. Moreover, similarly to [2] we also characterize
which proper precolorings with exactly d precolored edges are not extendable to proper d-edge
colorings of Q4. We also consider the cases when the precolored edges form an induced
matching, or one or two hypercubes of smaller dimension. The paper is concluded by a con-
jecture and some examples and remarks on edge precoloring extension of general d-regular
bipartite graphs.

2 | PRELIMINARIES

Unless otherwise stated all (partial) edge colorings (or just colorings) in this paper are proper.
Moreover, all proper d-edge colorings use colors 1, ..., d unless otherwise stated. If ¢ is an edge
precoloring of G, and an edge e is colored under ¢, then we say that e is ¢-precolored.

If ¢ is a (partial) proper t-edge coloring of G and 1 < a, b < ¢, then a path or cycle in G is
called (a, b)-colored under ¢ if its edges are colored by colors a and b alternately.

In the above definitions, we often leave out the explicit reference to a coloring ¢, if the
coloring is clear from the context.
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Havel and Moravek [13] (see also [12]) proved a criterion for a graph G to be a subgraph of a
hypercube:

Proposition 2.1. A graph G is a subgraph of Q, if and only if there is a proper d-edge
coloring of G with integers {1, ..., d} such that

(i) in every path of G there is some color that appears an odd number of times;
(ii) in every cycle of G no color appears an odd number of times.

A dimensional matching M of Qq is a perfect matching of Q; such that Q; — M is isomorphic
to two copies of Q4_;; evidently there are precisely d dimensional matchings in Q4. We shall
need the following easy lemma.

Lemma 2.2. Letd > 2 be an integer. There are d different dimensional matchings in Qg;
indeed Qg4 decomposes into d such perfect matchings.

The proof is left to the reader.

Intuitively, the colors in the proper edge coloring in Proposition 2.1 correspond to dimen-
sional matchings in Qg (as pointed out in [12]). In particular, Proposition 2.1 holds if we take
the dimensional matchings as the colors. Furthermore we have the following.

Lemma 2.3. The subgraph induced by r dimensional matchings in Qq is isomorphic to a
disjoint union of r-dimensional hypercubes.

This simple observation shall be used quite frequently below.

We shall also need some standard definitions on list edge coloring. Given a graph G, assign
to each edge e of G a set L(e) of colors. Such an assignment £ is called a list assignment for G
and the sets £(e) are referred to as lists or color lists. If all lists have equal size k, then L is called
a k-list assignment. Usually, we seek a proper edge coloring ¢ of G, such that ¢ (e) € L(e) for all
e € E(G). If such a coloring ¢ exists, then G is L-colorable and ¢ is called an L-coloring. Denote
by x'1(G) the minimum integer ¢ such that G is £-colorable whenever £ is a ¢-list assignment. A
fundamental result in list edge coloring theory is the following theorem by Galvin [9]. As usual,
x'(G) denotes the chromatic index of a multigraph G.

Theorem 2.4. For any bipartite multigraph G, x'1.(G) = x'(G).

3 | EXTENDING EDGE PRECOLORINGS OF HYPERCUBES

We begin this section by giving a short proof of the following theorem, thereby establishing an
analogue for hypercubes to the positive solution of the Evans' conjecture.

Theorem 3.1. Letd > 2 be a positive integer. If ¢ is an edge precoloring of at most d — 1
edges of the hypercube Qg , then ¢ can be extended to a proper d-edge coloring of Q.

Proof. The proof is by induction on d. For d = 2, the statement is straightforward.
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Suppose that d > 2 and that the theorem holds for Q;_;. Let ¢ be an edge precoloring
of at most d — 1 edges of Q4. By Lemma 2.2, Q4 has d perfect matchings M such that
Qg — M is the disjoint union of two copies of Q;_;. Since at most d — 1 edges of Qg  are
precolored, there is such a perfect matching M satisfying that no edge of M is precolored.
Let H; and H, be the components of Q; — M. We distinguish between two different cases.

Case 1. H; has at least 1 and at most d — 2 precolored edges.

Without loss of generality we assume that the precoloring of Q4 uses colors 1, ..., d — 1.
Since H, contains at most d — 2 precolored edges, there is, by the induction hypothesis, a
proper (d — 1)-edge coloring ¢, of H; which is an extension of the restriction of ¢ to H;.
Similarly, there is a proper (d — 1)-edge coloring ¢, of H, which is an extension of the
restriction of ¢ to H,. By coloring the edges of M with color d, we obtain a proper d-edge
coloring of Q.

Case 2. H; has exactly d — 1 precolored edges.

Without loss of generality we assume that at least one edge in Q, is precolored with
color 1. Define a new edge precoloring ¢’ of Q; by removing color 1 from any precolored
edge of Qg that is colored 1. By the induction hypothesis, there is a proper (d — 1)-edge
coloring ¢, of H; using colors 2, 3, ..., d which is an extension of ¢’. From ¢, we define a
new proper edge coloring ¢; of H; by setting ¢, (¢) = 1 for every edge e with ¢ (e) = 1, and
retaining the color of every other edge of H;. Then ¢, is an extension of ¢ on the graph Hj.

Let ¢, be an edge coloring of H, obtained by coloring every edge of H, with the color of
the corresponding edge of H; under gol.l Now, for any vertex v of Hj, if color ¢ does not
appear on an edge incident to v,1 <t < d, then color ¢ does not appear on any edge
incident to the corresponding vertex of H,. Thus we may extend ¢, and ¢, to a proper
edge coloring ¥ of Qg by, for any edge e of M, coloring e with the color in {1, 2, ..., d} not
appearing on any edge incident to one of its endpoints. Clearly, 3 is an extension of ¢.

By symmetry, it suffices to consider the two different cases above. Hence, the theorem
follows. O

Ryser [16] proved a necessary and sufficient condition for an n X n partial Latin square where all
nonempty cells lie in a completely filled X s subrectangle to be completable. In particular, his result
implies that any n X n partial Latin square, where all nonempty cells lie within an |n/2| X |n/2|
subrectangle, is completable. We note the following analogue for hypercubes:

Proposition 3.2. If¢ is a proper d-edge coloring of Q, C Qg, then ¢ can be extended to a
proper edge coloring of Q.

We provide a brief sketch of the proof.

'Here, and in the following, two edges of H; and H, are corresponding if their endpoints are joined by two edges of M.
Similarly, two vertices are corresponding if they are joined by an edge of M.
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Proof. (Sketch). Evidently, Q, is a component of the subgraph of Q; induced by exactly
r dimensional matchings in Q. It suffices to prove that if Q,4; is a hypercube of dimension
r + 1 which is contained in Qy4, and which contains Q,, then there is a proper d-edge coloring
of Qg that agrees with ¢. However, such a graph Q,;; consists of two copies of Q, and a
dimensional matching joining corresponding vertices of the two copies of Q,. We may thus
obtain a proper d-edge coloring of Q,,; as in the proof of the preceding theorem. O

If we do not insist that all edges in a subgraph of Q4 isomorphic to Q, have to be precolored,
then we have the following.

Corollary 3.3. Ifr < d/2, then any partial proper edge coloring of Q, C Qg with colors
1, ..., d can be extended to a proper d-edge coloring of Q.

Proof. It suffices to prove that there is a proper d-edge coloring of Q, that agrees with the
given partial edge coloring ¢ of Q,; invoking Proposition 3.2 then yields the desired result.
Since r < d/2, such a proper d-edge coloring can be obtained by greedily coloring the
uncolored edges of Q. O

Note that the bound on r is sharp, since there is a partial proper edge coloring of Qg />4 with
colors 1, ..., d that cannot be extended to a proper d-edge coloring of Q4: Let uv be an edge of
Qq/2+1 and color the edges incident with u and distinct from uv by colors 1, ..., d/2, respectively;
color the edges incident with v and distinct from uv by colors d/2 + 1, ..., d, respectively. The
resulting partial edge coloring can clearly not be extended to a proper d-edge coloring of Q.

Our next result establishes an analogue for hypercubes of the characterization of Browning
et al [3] of when a partial Latin square, the nonempty cells of which constitute two Latin
subsquares, is completable.

Theorem 3.4. Let Qi and Oy, be two hypercubes of dimensions k; and k, respectively,
contained in a d-dimensional hypercube Qq, and let f be a proper edge coloring of Qy, U Oy,
such that the restriction of f to Qi (Oy,) is a proper edge coloring using k; (k) colors A, (A;)
from {1, ..., d}. Then the coloring f is extendable to a proper d-edge coloring of Qg unless Q,
and Oy, are disjoint, a vertex of Qy, is adjacent to a vertex of O, and d < |A U A,|.

We shall need the following easy lemma; the proof is left to the reader.

Lemma 3.5. Let Qy, and O, be hypercubes contained in a hypercube Q4 of larger dimension.
If Qi, N Oy, # @, then the intersection Q, N Oy, is a hypercube of a smaller dimension.

Proof of Theorem 3.4. Let f, (f,) denote the restriction of the coloring f to Qy, (Oy,). Let
M Dbe the set of dimensional matchings in Qg, and denote by M; and M, the set of
dimensional matchings that Qy, and Oy, occupies, respectively. Assume that Qi and Ok,
together contain edges from k-dimensional matchings, put M, = M; U M,, and let Qy
be the set of subhypercubes of Q; induced by all the dimensional matchings in M.

Let H, and H, be the components of Oy that contains Qy, and Oy,, respectively. Suppose
first that Qy, and Oy, are disjoint subgraphs of Q. This implies that H; and H, are disjoint.

By Proposition 3.2, there is a proper edge coloring g of H; which agrees with f; and
uses exactly k colors from {1, ..., d}, and a proper edge coloring g, of H, which agrees with
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f, and uses exactly k colors from {1, ..., d} (possibly distinct from the ones used in the
coloring of H;). Additionally, we choose these edge colorings so that g; uses as many
colors from A;_; as possible.

Note that if the coloring g or g, uses some color not in 4; U A, then |4 U 4| <k,
and both g and g, use all colors in Ay U A4, and k — | A; U A,| additional colors from
{1, .., d}. Clearly, we may then assume that g and g, use the same additional colors
from {1, ..., d}\ (4 U 4,).

Case 1. There is an edge e between a vertex of H; and a vertex of H,.

We prove that the coloring f can be extended to a d-edge coloring of Qy
ifd —|A UA| > 0.

Let M be the dimensional matching that contains e. Consider the set of subhypercubes
Qi1 induced by the set of dimensional matchings My U {M}. Since e is adjacent to both
vertices of H; and H, we have that H; and H, are subgraphs of the same component H
in Q1.

Now, if| A4; U A;| < k, then g and g, use the same k colors from {1, ..., d}. Moreover,
d > k + 1, because M ¢ M. This implies that there is a color ¢ € {1, ..., d} which is not
used in the coloring g, or g,. By coloring all the edges of the dimensional matching M
with one endpoint in H; and one endpoint in H, by color ¢, we obtain a proper edge
coloring of H; by Proposition 3.2 this edge coloring can be extended to a proper d-edge
coloring of Qq. Clearly, this coloring is an extension of f.

If, on the other hand, | 4; U A;| > k, then g and g, use only colors from 4; U A,, and
sinced > | A; U Ay |, there is a color ¢ € {1, ..., d} which is not used in the coloring g, or g,;
as in the preceding paragraph, we conclude that f is extendable.

Case 2. There is no pair of adjacent vertices where one is in H; and the other in H,.

Consider the graph Q; by Lemma 2.3, Qj consists of disjoint k-dimensional
hypercubes. We define a new graph G where every component H; in Qy is represented
by a vertex ug;, and where ug, and ug, i # j, are adjacent if there is an edge joining a
vertex of H; with a vertex of H;. It is easy to see that G is a regular bipartite graph with
degree d — k.

We define a list assignment £ for G by for every edge e = uy,uy of G and every color
c € {1, ..., d} including ¢ in L(e) if

« ¢ does not appear in the coloring of H; ifi =1 or j = 1.
+ ¢ does not appear in the coloring of H, ifi = 2 or j = 2.

Since H; and H, do not contain pairs of adjacent vertices, |£(e)| > d — k for all edges
e € E(G). Thus, by Theorem 2.4, there is a proper edge coloring of G with support in the
lists. By coloring all edges going between H; and H; by the color of the edge e = uy,ugy,
and coloring every uncolored subhypercube H; in Q) by k colors which does not appear
on the edges incident with uy, in G, we obtain a proper d-edge coloring of Q4 that is an
extension of f.

Let us now consider the case when Qy, and Oy, are not disjoint. If Qi, and Oy, intersect
in only one vertex, then Q and Oy, occupy different dimensional matchings and
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A N A, = @. Hence, fori = 1, 2, by Lemma 2.3 and Konig's edge coloring theorem, there
is a proper edge coloring g; with colors only from A; of the subgraph of Q; induced by the
matchings in M; which agrees with f. Similarly, the subgraph of Qg induced by M\ M;
is (d — k)-regular; so if d > k, then there is, by Konig's edge coloring theorem, a proper
(d — k)-edge coloring of this graph using colors only from the set {1, ..., d}\ (4 U A).
This coloring, along with g and g,, yields a proper d-edge coloring of Qy that is an
extension of f.

Suppose now that Qi N O, contains at least one edge; by Lemma 3.5, this intersection
is an r-dimensional hypercube D, (r > 1). Also, H; = H,.

We shall prove that there is a proper edge coloring of H; that agrees with f and uses at
most d colors; the result then follows by invoking Proposition 3.2. If D, = Oy, (or
D, = Qy,), then obviously f is extendable, so we assume that this is not the case.
Thus k, — r > 1.

Let us consider the restriction f. of the coloring f to D,. Since Qi, and Oy, are both
regular bipartite graphs, and the restrictions of f to Qi and Oy, are both proper edge
colorings using a minimum number of colors, the coloring f. is a proper edge coloring
using exactly r colors; that is, |4 N A, | = 7.

Consider the subgraph Qi of Q; induced by all dimensional matchings in M;.
Consider a subhypercube Q,é1 of dimension k; in Qy, that lies in H;, and such that the
vertices of Qi and Q;, are adjacent via a subset M; of edges lying in a dimensional
matching. Note that some edges of M; and Q;, are in Oy,. Let S; = E(Qy) N E(Oy,),
T, = My N E(O,). By coloring the edges of E(Qy )\S: by the colors of the corresponding
edges in Qi and coloring all the edges of M;\ T; by a fixed color ¢ € A;\A; (such a color
exists since k; — r > 1), we obtain an edge coloring of the subhypercube Qy,;; containing
Qi, and Qy, . This edge coloring is proper, since all common colors of 4; and A, appear in
the coloring of D, and are therefore not used in the coloring of E(Qy )\S;. Moreover,
O, N Qi+1 is an (r + 1)-dimensional hypercube D,,; containing D,, and if u is an
arbitrary vertex of D,,;, then the set of colors incident with u in Qg1 — E(Dry1) is
disjoint from A,.

If b, —r=1, then we are done; the constructed edge coloring of H; can by
Proposition 3.2 be extended to a proper d-edge coloring of Qg.

Suppose now that k; — r > 2. Let Ay 4 be the set of colors in A, that has not been used
in the coloring of Qy.4+1 — E(Dy41); since the coloring of Qi1 — E(Dy41) is a proper
(ky + 1)-edge coloring in which k colors are in A;, we have |Ag 1=k —r—12>1.
Consider a subhypercube Qy, ,; of H that occupy the same dimensional matchings as the
subhypercube Q,+1, and such that the vertices of Q41 and Qy, ,; are adjacent via a subset
M, of edges lying in a dimensional matching. Note that some edges of M, and Qy ,, are in
Ok, Let S, = E(Qg41) N E(Oy,), T, = M, N E(Oy,). By coloring the edges of E(Qy 1)\ S>
by the colors of corresponding edges in Q4 and coloring all the edges of M,\T; by a
fixed color ¢ € Ay4+1, we obtain a proper edge coloring of the subhypercube Q4
containing Q4+, and Qi ;, and where Oy, N Q4> is an (r + 2)-dimensional hypercube
D,, containing D,,;. Moreover, if u is an arbitrary vertex of D,,,, then the set of colors
incident with u in Q1> — E (Dy42) is disjoint from A,.

Now, if k, — r = 2, then we are done; otherwise, we continue the above process until
we get a proper edge coloring of H;, which can then be extended to a proper edge coloring
of Q4 by Proposition 3.2. O
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Next, we consider the case when all precolored edges lie in a matching. We would like to
propose the following:

Conjecture 3.6. If ¢ is an edge precoloring of Qg where all precolored edges lie in an
induced matching, then ¢ is extendable to a proper d-edge coloring.

In [4], we proved that this conjecture is true under the stronger assumption that every
precolored edge is of distance at least 3 from any other precolored edge. Moreover, by results in
[18], Conjecture 3.6 is true in the case when all precolored edges have the same color.

Here we prove that the conjecture is true when all precolored edges lie in at most two
distinct dimensional matchings.

Proposition 3.7. If the precolored edges of Qg form an induced matching all edges of
which lie in two dimensional matchings, then the precoloring is extendable.

Proof. Let M; and M, be the two dimensional matchings of Q4 containing all precolored
edges. Denote this precoloring by ¢. By Lemma 2.3, Q; — M; U M, is isomorphic to four
copies Hy, ..., Hy of the (d — 2)-dimensional hypercube. Moreover, the graph Q4 [M; U M]
induced by M; U M, is a disjoint union of two-dimensional hypercubes, and every vertex
of H; is adjacent to precisely two edges from Qy[M; U M].

Since the precolored edges form an induced matching, at most one edge of each
component of Q;[M; U M,] is precolored. From the precoloring ¢ of Q4[M; U M,] we
define an edge precoloring ¢’ of Q;[M; U M,] that satisfies the following:

« @' agrees with ¢ on any edge that is colored under ¢;
« for each component of Q4 [M; U M,], exactly two edges in this component are colored
under ¢'; moreover, these two edges are nonadjacent and have the same color under ¢’.

Trivially, there is such a precoloring ¢’; so to prove the theorem, it suffices to prove
that there is a proper d-edge coloring f of H; such that for every edge e of Hj, there is no
adjacent edge e’ in Qz[M; U M,] such that f(e) = ¢’(¢’). This follows from the
observation that given such a coloring f of H;, we may color the edges of H,, H;, and
H, correspondingly, and thereafter color the uncolored edges of Q;[M; U M,] by for each
edge using the unique color not appearing at any of its endpoints.

To construct such a coloring of the edges of H; we define a list assignment L for H; by
for every edge e € E (H,) setting

L(e) ={1,..,d}\{¢'(e'): ¢’ isadjacenttoe}.

Since every edge of H; is adjacent to two ¢’-precolored edges, |L(e)| > d — 2 for every
edge e € E (H;). Hence, by Theorem 2.4, there is an L-coloring of H;. O

Note that the condition on the matching being induced is the best possible in terms of size of
a precolored subset of a dimensional matching that is extendable to a proper d-edge coloring of
Qg. To see this, color all 24-2 edges of a maximal induced matching M; contained in a di-
mensional matching M with color 1. Note that any extension of this precoloring uses color 1 on
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all edges of M, because M, is a maximal induced matching of M. So by coloring one edge of
M\M, by color 2, we obtain a nonextendable edge precoloring.

Next, we shall establish an analogue for hypercubes of the characterization by Andersen and
Hilton [2] of which n X n partial Latin squares with exactly n nonempty cells are completable.
We shall prove that a proper precoloring of at most d edges in Qy is always extendable unless the
precoloring ¢ satisfies any of the following conditions:

(C1) There is an uncolored edge uv in Qg such that u is incident with edges of k < d distinct
colors and v is incident to d — k edges colored with d — k other distinct colors (so uv is
adjacent to edges of d distinct colors).

(C2) There is a vertex u and a color ¢ such that u is incident with at least one colored edge, u is
not incident with any edge of color ¢, and every uncolored edge incident with u is adjacent
to another edge colored c.

(C3) There is a vertex u and a color ¢ such that every edge incident with u is uncolored and
every edge incident with u is adjacent to another edge colored c.

(C4) d = 3 and the three precolored edges use three different colors and form a subset of a
dimensional matching.

For i =1, 2, 3,4, we denote by C; the set of all colorings of Qg, d > 1, satisfying the corre-
sponding condition above, and we set C = UC;. Let us briefly verify that if ¢ is a precoloring of
Qg with exactly d precolored edges and ¢ € C, then ¢ is not extendable.

Suppose first that the precoloring ¢ satisfies condition (C1). Since the edge uv is adjacent to
edges of d distinct colors, there is no proper d-edge coloring of Q4 that agrees with ¢. If ¢, on the
other hand, satisfies condition (C2), then since u has degree d, any extension of ¢ satisfies that
the color ¢ must appear on one of the uncolored edges incident with u. However, such a d-edge
coloring cannot be proper since this implies that there is a vertex that is incident with two edges
colored c.

Suppose now that ¢ satisfies condition (C3). If f is an extension of ¢, then since u has degree
d, at least one edge incident with u is colored c. However, such a d-edge coloring is not proper,
so @ is not extendable. That ¢ is not extendable if it satisfies condition (C4) is a straightforward
verification and is left to the reader.

Theorem 3.8. If ¢ is a proper d-edge precoloring of Qg with exactly d precolored edges
and ¢ & C, then ¢ is extendable to a proper d-edge coloring of Qg.

The proof of this theorem is rather lengthy so we devote Section 4 to this proof.

4 | PROOF OF THEOREM 3.8

The proof of Theorem 3.8 proceeds by induction. It is easily seen that the theorem holds when
d € {1, 2}; let us consider the case when d = 3.

Let ¢ be a precoloring of Q; and let us first assume that all precolored edges have the same
color. If all three precolored edges lie in distinct dimensional matchings, then ¢ € Cs, and if all
three edges lie in the same dimensional matching, then we may color all the edges in this
dimensional matching by the same color, and then obtain an extension of ¢ by Konig's edge
coloring theorem. Moreover, in the case when exactly two of the precolored edges are in the
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same dimensional matching, then these two edges must be at distance 1 from each other, and so
there is a perfect matching containing all precolored edges; hence, ¢ is extendable.

Suppose now that two colors appear on the precolored edges. Let e;, e,, e3 be the precolored
edges of Q; and assume that two edges from {e;, e,, e3}, say e; and e,, have the same color and e;
has another color under ¢. If e; and e, lie in the same dimensional matching, then ¢ is
extendable provided that there is a perfect matching of Q; containing e; and e,, but not e;. If e;
and e, lie on a common 4-cycle, then there is certainly such a matching; if e; and e, do not lie on
a common 4-cycle, then this holds unless ¢ € C,.

Let us now assume that e; and e, lie in different dimensional matchings. By symmetry, we
may assume that e; is any fixed edge of Qz, which then yields four different choices for the edge
e,, because every edge of Qs is adjacent to exactly four other edges. In fact, again by symmetry, it
suffices to consider the two different cases when e, is in different dimensional matchings
(distinct from the one containing e;). It is straightforward to verify that in both cases, the edges
e; and e, are contained in a perfect matching not containing e; unless ¢ € C,. Hence, if ¢ & C,
then ¢ is extendable.

Finally, let us consider the case when three distinct colors appear on edges under ¢. If all
three precolored edges ej, e,, e; lie in distinct dimensional matchings, then ¢ trivially is ex-
tendable. Moreover, since ¢ & C, all three precolored edges do not lie in the same dimensional
matching. Hence, it suffices to consider the case when exactly two of the precolored edges lie in
the same dimensional matching. We assume ¢(e;) = i.

Suppose, without loss of generality, that e; and e, lie in the same dimensional matching. We
first consider the case when e; and e, lie on a common 4-cycle. Since ¢ & C, either e; is adjacent
to both e; and e,, or not adjacent to any of these edges. In both cases, ¢ is extendable by coloring
all edges in the dimensional matching containing e; by color 3. If, on the other hand, e; and e,
do not lie on a common 4-cycle, then we may extend ¢ by coloring all edges of the dimensional
matching containing e; by color 3. This completes the base step of our inductive proof of
Theorem 3.8.

Let us now assume that the theorem holds for any hypercube of dimension less than d, and
consider a precoloring ¢ of Q. The induction step of the proof of Theorem 3.8 is done by
proving a series of lemmas. We shall also need two preparatory lemmas.

Lemma 4.1. Let Qq_; be the (d — 1)-dimensional hypercube, where d — 1 > 3. Suppose
that d — 1 edges are precolored with color 1 in Q4_,, and that there is a vertex u not incident
with any precolored edge, but every neighbor of u is incident with an edge colored 1. Let e, be
an uncolored edge which is not incident with u, but adjacent to at least one precolored edge.
Unlessd — 1 = 3 and one end x of e, is incident with three uncolored edges all of which are
adjacent to precolored edges, then there is a cycle C = v1v, ... vy vy in Q41 of even length
with the following properties:

(i) viva=e;andu & V(C),
(ii) none of the edges in {v1v;, V3Vy, ..., Vok_1Vax} is precolored,
(iii) if any vertex in {vy, ..., vax} is incident with a precolored edge, then this edge lies on C.

Proof. Let M, ..., Myj_; be the d — 1 dimensional matchings in Quz—; and let
e; = wx € M;. Let e; = vw € M, be a precolored edge adjacent to e;.

We first consider the case when e; is adjacent to two precolored edges. If the other
precolored edge e; adjacent to e; is in Ms, then v is adjacent to an endpoint of e; via an
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edge from Mj, so there is trivially a 4-cycle satisfying (i)-(iii). So we assume that e; € Ms.
Moreover, since Qg—; has no odd cycles, we may without loss of generality assume that v
and x are both adjacent to u. Since any 4-cycle has edges from exactly two-dimensional
matchings (which, eg, follows from Proposition 2.1(ii)), this implies that uv € M
and ux € M,.

Consider the subgraph of Q4_; induced by the edges in M; U M, U Ms; by Lemma 2.3,
this is a disjoint union of three-dimensional hypercubes. Let F be the component of this
subgraph containing ej, e;, and e;. Since any precolored edge is adjacent to an edge
incident with u, it follows that the edge of M; incident with u is adjacent to some
precolored edge e’ that lies in M, or in M; for some j > 4. Moreover, es, €', and e, are the
only precolored edges incident with vertices of F. If e’ € M, then there is a 6-cycle in F
containing e, e,, €3, ¢’ that satisfies (i) to (iii); if e’ € M, then there is a 6-cycle in F
containing e, e,, €3, but no vertex incident with e’, which satisfies (i)-(iii).

Suppose now that e; = wx is adjacent to precisely one precolored edge e, = vw. Since
every precolored edge is adjacent to an edge incident with u, either v or w is adjacent to u.
Let us first assume that w is adjacent to u. Since x is not incident to any precolored edge,
and all precolored edges are adjacent to edges incident with u, the unique vertex
a & {w, x, v} in the component of the subgraph Q, [M; U M,] containing e; is not incident
with a precolored edge. Thus, there is a 4-cycle vwxav whose edges lie in M; U M, and
which satisfies (i)-(iii).

Let us now consider the case when v is adjacent to u. Then we may assume that
es = uv is in some dimensional matching distinct from M; and M,, since uv € M; implies
that x is adjacent to u and thus x is incident with some precolored edge, contradicting our
assumption. We assume e; € M;. As above we consider the subgraph of Q4_; induced by
the edges in M; U M, U M;. Let F be the component of this induced subgraph containing
e1, €, and e;. Straightforward case analysis shows that there is a 4- or 6-cycle satisfying
(i)-(iii) unless every edge incident with x in F is adjacent to a precolored edge of F. It
remains to prove that if d — 1 > 4, and every edge incident with x in F is adjacent to a
precolored edge of F, then there is a cycle C satisfying (i)-(iii). Consider the subgraph of
Q-1 induced by M; U M, U M; U My. Let K be the component of this induced subgraph
containing F. Since all precolored edges are adjacent to edges incident with u, K contains
at most one precolored edge not in F. Using these facts, it is straightforward that K has a
cycle containing all three precolored edges of F and satisfying (i)-(iii). O

Lemma 4.2. Let ¢, be an edge precoloring of d — 1 edges of Qq_1 such that there is a
vertex u incident with an edge e’ precolored 2, and where every other edge incident with u is
not precolored but adjacent to an edge precolored 1. Let e; be some edge precolored 1 in Qg_;.
There is a partial proper edge coloring f; of Qq_1 with colors 1 and 2 satisfying the following:

(i) Any vertex of Qq_; is incident with at least one edge that is colored under f,.
(ii) The coloring f; agrees with ¢, on any edge that is colored under ¢,.
(iii) ey is contained in a cycle that is (1, 2)-colored under f;, and which does not contain e’.

Proof. Note that the condition of the lemma implies that e; is no incident with u, but an
end of e; is adjacent to u. Let Mj, M,, M; be three dimensional matchings in Qg—; that
contain e;, ¢’ and an edge adjacent to both e’ and e;.
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The spanning subgraph of Q4_; induced by M; U M, U M; is a disjoint union of copies
of Q;; let F be the component containing e; and e’.

If e; and ¢’ lie in distinct dimensional matchings, then it is easy to see that there is a
4-cycle C; in F containing e; and no other precolored edge, and that satisfies that no
vertex of C; is incident to a precolored edge that is not in C;. We color the edges of C; by
colors 1 and 2 alternately such that the coloring agrees with ¢,. Additionally we retain
the color of any precolored edges of F, and we possibly color one additional edge in F by
color 2 so that every vertex of F is incident with a colored edge. Denote the obtained
coloring of F by h;.

Now, since every precolored edge has one endpoint adjacent to u, any component T of
Q4-1[M; U M, U Ms] distinct from F contains at most one precolored edge. Hence, there
is a perfect matching Mr of T that does not contain any precolored edge. We extend h; to a
coloring of Qg satisfying (i) to (iii) by retaining the color of any ¢;-precolored edge not
in F, and for every component T of Q4 [M; U M, U M;] distinct from F we color every edge
in My by color 2.

Suppose now that e; and e’ lie in the same dimensional matching, M; say. Then e; and
e’ are contained in a 4-cycle of F. Suppose that the edges of this cycle are in M; U Ms. If
M; n E (F) contains no ¢,-precolored edge, then e, is contained in a 4-cycle such that no
vertex of this cycle is incident with another ¢-precolored edge. On the other hand, if
M; n E(F) contains some precolored edge, then e; is contained in a 6-cycle C, not
containing e’, but two other precolored edges colored 1. Moreover, no vertex of C, is
incident to a precolored edge that is not in C,. Thus there is a proper edge coloring h, of C,
with colors 1 and 2 that agrees with ¢,.

The coloring h, can be extended to a partial proper edge coloring of Q;_; satisfying
(i)-(iii) by proceeding as above. O

We now turn to the induction step of the proof of Theorem 3.8. Henceforth, we shall always
assume that ¢ is a proper d-edge precoloring of precisely d edges in Q4. Moreover, we assume
that M is a dimensional matching in Q; and that H; and H, are the components of Q; — M; so
H, and H, are both isomorphic to Q4_;. As in the proof of Theorem 3.1, two edges of H; and H,
are corresponding if their endpoints are joined by two edges of M. Similarly, two vertices are
corresponding if they are joined by an edge of M.

In the proofs of the lemmas we shall generally distinguish between the cases when there is a
dimensional matching that contains no precolored edge, and when there is no such dimen-
sional matching.

Lemma 4.3. If all d precolored edges in Qg have the same color and ¢ & Cs, then ¢ is
extendable.

Proof. Suppose that the color used by ¢ is 1. It follows from Konig's edge coloring
theorem that for proving the lemma, it suffices to show that there is a perfect matching in
Qq containing all edges precolored 1.

Case 1. Every dimensional matching contains a precolored edge.

The assumption implies that M contains precisely one edge uu, colored 1,
where u; € V (H;).
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Case 1.1. No precolored edges are in H,.

The conditions imply that d — 1 precolored edges are in H;. By coloring the edges of H,
corresponding to the precolored edges of H; by color 1, coloring all edges of M that are
not adjacent to any colored edges by color 1, we obtain a partial coloring where the
precolored edges form a perfect matching of Qy; thus ¢ is extendable.

Case 1.2. Both H; and H, contain at most d — 3 precolored edges.

Suppose that there is a vertex x; of H; adjacent to u; such that neither x; nor the vertex
X, of H, corresponding to x; is incident with a precolored edge. Consider the precoloring
of H; obtained from the restriction of ¢ to H; by in addition coloring x;u; with 1. By
Theorem 3.1, this precoloring is extendable to a proper (d — 1)-edge coloring f; of H;; and
similarly there is an extension f, of the precoloring of H, obtained from the restriction of
@ to H, by in addition coloring u,x% by color 1; this is evident since the obtained
precolorings of H; and H,, respectively, both contain at most d — 2 precolored edges. We
now define a perfect matching containing all ¢-precolored edges of Q4 by removing u;x
and u,X, from the union of all edges colored 1 under f; or f,, and adding the edges u; u,
and x;2. We conclude that ¢ is extendable.

Now suppose that for each neighbor x of u; either x; or the corresponding vertex
X of H, is incident with a precolored edge. Since Qg is d-regular and contains altogether
d precolored edges, this implies that all precolored edges have one end which is
adjacent to either u; or u,. Now, since Qg contains d precolored edges, M contains
one precolored edge, and both H; and H, contain at most d — 3 precolored edges,
(d-3)+(d—-3)+12>d, and so d > 5. Thus u; is adjacent to at least two vertices
incident with precolored edges in Hj, and u, is adjacent to two vertices of H, incident with
precolored edges.

We shall need the following claim.

Claim 4.4. There is a dimensional matching M; and a precolored edge v’ € M; such
that not every other precolored edge has one end adjacent to either v or v'.

Proof. Recall that Proposition 2.1 holds if we take the dimensional matchings of Qg as
the colors in the proposition. Let Mj, ..., My be the dimensional matchings in Qg4, where
M; = M. Without loss of generality, we assume that there are precolored edges
¢; = a;jb; € M; and e, = agby € My, such that b; and u, are adjacent and u;b; € M,, and
by and u, are adjacent and u; b,y € M. If no endpoint of ¢; is adjacent to an endpoint of ey,
then we are done, so suppose, without loss of generality, that a; and by are adjacent. By
Proposition 2.1(ii), this means that a;jb; € M; and a;b, € M,. Now, H, contains at least
one precolored edge ab, where either a or b is adjacent to u, via an edge from a
dimensional matching that is distinct from M, and M;, because otherwise, as for Hj, it
would follow that at least one precolored edge of H, would be in M, or M;; a contradiction
to the assumption that all precolored edges are in distinct dimensional matchings. Thus,
without loss of generality, we assume that u,a € M,. Moreover, since all precolored edges
lie in distinct dimensional matchings ab € M; U M;. Hence, all edges on the path
a;bju,ua are in different dimensional matchings. Again using Proposition 2.1(ii), it thus
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follows that no endpoint of ab is adjacent to an endpoint of a;b;. We conclude that there is
a dimensional matching M; and a precolored edge w’' € M; such that not every other
precolored edge has one end adjacent to either v or v'. O

Let M; be a dimensional matching as in the preceding claim. Then the graph Q; — M;
consists of two copies J; and J, of Q;_;. Moreover, if both J; and J, contain at mostd — 3
precolored edges, then we may proceed as above for obtaining an extension of ¢.
Moreover, if d — 1 precolored edges lie in Jj, then we proceed as in Case 1.1. We conclude
that it suffices to consider the case when d — 2 edges of H; (or H,) are precolored.

Case 1.3. H; contains d — 2 precolored edges and H, contains one precolored edge.

Denote by v,w, the precolored edge of H, and let v; and w; be the vertices of H;
corresponding to v, and w,, respectively. If no precolored edge is incident with v; or wy,
then we may color v;w; with color 1, and then color all edges of H, corresponding to
precolored edges of H; by color 1. The resulting coloring is extendable, since by coloring
any edge of M (including u; u), which is not adjacent to a colored edge, by color 1, the
precolored edges form a perfect matching of Qg, as required.

Thus, we may assume that some ¢-precolored edge in H, is incident with v; or wy, say
wy. Since there are d — 2 precolored edges in Hj, the restriction of ¢ to H, is extendable; in
particular, there is a perfect matching M* in H; containing all precolored edges of H.
Note that the edge of M* incident with u; is not incident with wy. If uyv; € M*, then let ¢’
be the edge of H, corresponding to the edge of M* incident with u;. Then the precoloring
of H, where e’ and v,w, are colored 1 is extendable, in particular there is perfect matching
M5 in H, containing both these edges. By removing the edge ¢’ from M, removing the
corresponding edge from M* and including two edges from M, we obtain a perfect
matching in Qg containing all precolored edges of ¢; hence, the coloring ¢ is
extendable. Thus, we may assume that u;v; € M*, and, consequently, v, is not incident
to any ¢-precolored edge. Moreover, if u; is the only neighbor of v; that is not incident with a
precolored edge of Hj, then ¢ € C;, because all neighbors of v; are incident with a precolored
edge in Qy. Thus, there is a neighbor y # w; of v; in H; that is not incident with any
precolored edge.

Consider the precoloring ¥ of H; obtained from the restriction of ¢ to H; by also
coloring v,y by color 1. If ¢ is extendable to a proper (d — 1)-edge coloring 3’ of H;, then
in the matching of H; containing all edges with color 1 under ¥, u; is matched to some
vertex distinct from v, and, as before, this implies that ¢ is extendable. Thus it suffices to
consider the case when 7 is not extendable to a proper edge coloring of H;. Since there are
exactly d — 1 precolored edges under @, all of which have the same color, by the
induction hypothesis, there is some vertex a of H; that is not incident with any
p-precolored edge, but all neighbors of a are incident with -precolored edges. We shall
prove that this property also holds for the vertex u; unless ¢ is extendable.

Claim 4.5. Every neighbor of ; in H; is incident with a ¥-precolored edge unless ¢ is
extendable.

Proof. Assume to the contrary that u; does not have this property. Then there is a
neighbor z # v; of u; that is not incident to any ¢-precolored edge. Let a be the
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precoloring of H; obtained from the restriction of ¢ to H; by coloring the edge u; z by color
1. As we have seen above, if any of the precolorings ¥ or a of H; is extendable (in H;) to a
proper (d — 1)-edge coloring, then ¢ is extendable. (Because in both these extensions i is
matched to some other vertex than v; in the matching induced by color 1.)

We conclude that since neither of @ and ¢ is extendable, there are vertices b; and b,
such that under «a every neighbor of b; in H is incident with a precolored edge, and under
¥ every neighbor of b, in H, is incident with a precolored edge. Note that b; # b, because
the vertices uy, vy, y, z are all distinct and all vertices in H; have degree d — 1 in H;. Since
d — 1 > 3, b; and b, are both adjacent to endpoints of at least two distinct ¢-precolored
edges. Hence, the distance d(by, b,) between b; and b, is at least 1 and at most 3. We
consider some different subcases.

Subcase A. d(by, by) = 1.

Since d (b1, by) = 1 and b; and b, are both adjacent to endpoints of at least two distinct
@-precolored edges e; and e, in Hj, there are two 4-cycles containing e; and b1 b,, and e,
and b, b,, respectively. However, this implies that e; and e, are in the same dimensional
matching; a contradiction to the assumption of Case 1. We conclude that the case
d(by, b,) = 1 is not possible.

Subcase B. d(by, b,) = 2.

In this case, it follows that b; and b, have a common neighbor which is incident to an
edge which is precolored under ¢. Then, since H, is bipartite, b; and b, are adjacent to the
same end of every edge which is precolored under ¢. If d — 1 = 3, then H; contains two
@-precolored edges that lie in the same dimensional matching, because b; and b, lie on a
common 4-cycle with edges from exactly two-dimensional matchings; a contradiction to
the assumption of Case 1. If d — 1 > 4, then H, has at least 3 ¢-precolored edges, and thus
two adjacent edges of Hj lie on at least two distinct 4-cycles; a contradiction because H; is
isomorphic to Q4—;. We conclude that the case d(b;, b,) = 2 is not possible.

Subcase C. d(by, by) = 3.

If d(b1, by) = 3, then b; and b, are adjacent to distinct ends of an edge which is
precolored under ¢. Since H, is bipartite, this implies that b, and b, are adjacent to
distinct endpoints of every edge that is precolored under ¢. If d — 1 = 3, then H, contains
two g-precolored edges, and there is exactly one edge of H; that we can color 1 so that b,
or b, is adjacent to three vertices all of which are incident with an edge colored 1. This
contradicts that the vertices uy, v1,y, z are all distinct.

Assume now that d — 1 > 4. Then b; and b, are adjacent to distinct endpoints of at
least three ¢-precolored edges that lie in distinct dimensional matchings. In fact, we must
have d — 1 = 4. Indeed, recall that Proposition 2.1 holds if we take the colors to be the
dimensional matchings of Q. It then follows from Proposition 2.1(ii) that two vertices in
a hypercube are endpoints of at most three distinct paths of length 3, where any two
central edges of the paths are in distinct dimensional matchings. Furthermore, since all
edges of these three distinct paths with endpoints b; and b, must lie in three distinct
dimensional matchings (which again follows from Proposition 2.1(ii)), these paths induce
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a hypercube F of dimension 3. Now, since in Hj, i is adjacent to at least two vertices that
are not incident with any g-precolored edges, u; € V (F). Moreover, v; € {b;, by}, because
vy has at least two neighbors that are not incident with any g-precolored edges of H;.
Now, since d — 1 = 4, and all p-precolored edges of H; are in F, this implies that there is
a perfect matching of H, containing all g-precolored edges of H;, and where u; is matched
to some other vertex than vy; as before, this implies that ¢ is extendable. O

From the preceding claim, we conclude that we may assume that u; is not incident to
any i-precolored edge, but every neighbor of u; is incident with a i-precolored edge.

Now, since all ¢-precolored edges of H; are also i-precolored, both ends of v;w; are
incident with i-precolored edges. Hence, by Lemma 4.1, there is a cycle C = aa,...axc 1y
of even length such that

(i) @y = vy, @ =wy, and u; g V(C),
(ii) none of the edges in {a1a;, a3a4, ..., Gop—10} is P-precolored in Hj,
(iii) if any vertex in {aj, ..., ay} is incident with a precolored edge, then this edge lies on C.

From the precoloring 3 of H; we define another precoloring ¥, of H; by coloring all
uncolored edges in {a,a3, asas, ..., a1} by color 1 and retaining the color of every other
edge. Next, we define a precoloring ¥, of H, by coloring all edges of H, corresponding to
the edges in {1 a,, a3ay4, ..., Q-1 )} by color 1; furthermore, for any edge of H; which is
,-precolored and does not lie on C, we color the corresponding edge of H, by 1.

Note that a vertex of H, is incident with a i,-precolored edge if and only if the
corresponding vertex of Hj is incident with a i,-precolored edge. Moreover, any edge in
Qq which is precolored under ¢ is also precolored under %, or 3,. Hence, we obtain an
extension of ¢ from 1, and 1, by coloring any edge of M which is not incident with a ;-
precolored edge by color 1.

Case 2. There is a dimensional matching containing no precolored edge.

Without loss of generality, we assume that no edge of M is precolored.

Case 2.1. No precolored edges are in H,.

If all precolored edges lie in Hj, then the precoloring is extendable, since by coloring
the edges of H, corresponding to the precolored edges of H; by color 1, and then coloring
the edges of M not adjacent to precolored edges by color 1, we obtain a monochromatic
perfect matching of Q; which contains all ¢-precolored edges of Q.

Case 2.2. Both H; and H, contain at most d — 2 precolored edges.

If both H; and H, contain at most d — 2 precolored edges, then by Theorem 3.1, the
restriction of ¢ to H; is extendable to (d — 1)-edge coloring of H;, i = 1, 2; thus ¢ is extendable.

Case 2.3. H; contains d — 1 precolored edges and H, contains one precolored edge.
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As in Case 1.3, we may assume that the edge v;w; of Hj, corresponding to the
precolored edge v,w, of H,, is adjacent to at least one precolored edge of H,, since
otherwise ¢ is extendable.

Now, by the induction hypothesis, the restriction of ¢ to H; is extendable (and thus there is
an extension of ¢) unless there is a vertex u € V (H;) not incident to any precolored edge, and
satisfying that all neighbors of u in H; are incident with precolored edges. Furthermore, if
V1 = u or wy = u, then clearly ¢ € Cs, so we assume that u & {vy, wy}.

If d —1 =3, and one end of v;w; is not incident to any precolored edge, but all
neighbors of v; or w; are incident with precolored edges, then ¢ € Cs. Thus, since ¢ & Cs,
and vy w; is adjacent to at least one precolored edge, it follows from Lemma 4.1 that there
is a cycle C = vyv,...v5v; of even length such that

@) va=w,u & V(C),
(ii) none of the edges in {v1v,, V3, ..., Vok—1V2k} is p-precolored in Hj,
(iii) if any vertex in {vy, ..., v} is incident with a precolored edge, then this edge lies on C.

We may now finish the proof in this case by proceeding exactly as in Case 1.3 above,
using the cycle C to construct a precoloring of H,. [l

Lemma 4.6. If only two distinct colors appear in the precoloring ¢ of Qg and ¢ & C, then
@ is extendable.

Proof. Without loss of generality we shall assume that colors 1 and 2 appear on edges
under ¢.

Case 1. Every dimensional matching contains a precolored edge.

Without loss of generality, we assume that M contains an edge ey, = u;u, precolored 1
under ¢, where u; € V (H;).

Case 1.1. No precolored edges are in H.

Suppose that color 1 does not appear in the restriction ¢, of ¢ to H;. If ¢, is extendable
to a proper edge coloring of H; using colors 2, ..., d, then we obtain an extension of ¢ by
coloring H, correspondingly, and then coloring all edges of M by color 1. So assume that
there is no such extension of ¢,. By the induction hypothesis, there is a vertex u in H; that
is not incident with any precolored edge, but all vertices in H; adjacent to u are incident
with an edge precolored 2. If u is an endpoint of ey, then ¢ € C,; so we assume that this is
not the case. Thus, either there is an edge e’ incident with u; colored 2, or we can select e’
to be an arbitrary edge of H; that is incident with u; but not adjacent to any edge
precolored 2. In both cases, we define a precoloring ¢, of H; by coloring e’ by color 1.
Then trivially there is a proper edge coloring f; of H; using colors 1, 3, ..., d that agrees
with ¢/. From f;, we define a proper edge coloring f] by recoloring all edges that are
precolored 2 under ¢ by color 2 and also recoloring e’ with color 2. This yields a coloring
of H; that agrees with the restriction of ¢ to H; and where color 1 does not appear at an
end of ey,. Hence, we may color H, correspondingly, and then color every edge of M by
the color in {1, ..., d} missing at its endpoints to obtain an extension of ¢.
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Suppose now that color 1 does appear on some edge of H;. By removing the color from
any edge of H; that is precolored 1, we obtain a precoloring ¢, of H;. By Theorem 3.1,
there is a proper edge coloring of H; using colors 2, ..., d that agrees with ¢,. Now, by
recoloring any edge of H; that is ¢-precolored 1 by color 1, thereafter coloring H,
correspondingly, and finally coloring all edges of M by the unique color missing at its
endpoints, we obtain an extension of ¢.

Case 1.2. Both H; and H, contain at most d — 3 precolored edges.

The conditions imply that d > 5. If there is an edge e; in H; adjacent to ey, and such
that neither e; nor the corresponding edge e, of H, is colored under ¢, and neither of e;
and e, is adjacent to an edge precolored 1 under ¢ distinct from ey, then we color e; and e,
by color 1, and consider the precolorings of H; and H, obtained from the restriction of ¢ to
H, and H,, respectively, along with coloring e; and e, by color 1. By Theorem 3.1, these
colorings are extendable to proper (d — 1)-edge colorings f; and f, of H; and H,,
respectively. Now, by recoloring e; and e, by color d and then coloring all edges of M by
the color missing at its endpoints we obtain the required extension of ¢.

Now suppose that there are no edges e; and e, as described in the preceding paragraph.
Since Q4 — M contains exactly d — 1 precolored edges, and H; and H, are (d — 1)-regular
bipartite graphs, this implies that any edge colored 2 under ¢ is adjacent to ey, and any
edge colored 1 under ¢ is adjacent to an edge e’ that is adjacent to ey. Thus either one or
two edges in Qg are colored 2 under ¢.

Suppose first that there are (at least) two edges precolored 1 in H; or H,, say H;. Let e/
and e, be two such edges. Consider the subgraph J; of Qg induced by all dimensional
matchings containing an edge precolored 1. Since there are at most two edges colored 2
under ¢, the maximum degree of J; is d — 1 or d — 2. Moreover, there is a proper edge
coloring of J, = Q4 — E (J;) using A(J;) colors, and which agrees with the restriction of ¢
to J,, because J, is a collection of disjoint one- or two-dimensional hypercubes, where
every component contains at most one precolored edge. Thus, ¢ is extendable if there is
an extension with A(J;) colors of the restriction ¢, of ¢ to J; (using distinct colors from the
extension of the restriction of ¢ to J;). Now, by the induction hypothesis, there is an
extension of ¢, if for no component T of J; the restriction of ¢, to T satisfies the condition
(C3) (withd — 1 ord — 2 in place of d). If there is such a component T of J;, then clearly
all precolored edges of J; are in T and there is a vertex u of T that is not incident with any
precolored edge, but any vertex adjacent to # in T is incident with a precolored edge. Thus
we may assume that e/, e;, and ey are in the same component of J;, and one endpoint of
all these three edges is adjacent to u. Now, if u is adjacent to u,, then since T is bipartite,
this implies that ey, and u,u lie on 2 common 4-cycles, which is not possible since T is
isomorphic to a hypercube. On the other hand, if u is adjacent to u;, then since T is
bipartite, by Proposition 2.1, this implies that e; and e, lie in the same dimensional
matching; a contradiction in both cases, so ¢ is extendable.

It remains to consider the case when only one edge in H; and one edge in H, is
precolored 1 under ¢. Since at most two edges are precolored 2 under ¢, this implies that
d = 5 and, consequently, there are exactly two edges colored 2 in Q4. Suppose that u;v;
and u,v, are the edges colored 2 under ¢, where u;v; € E (H;). Let M, be the dimensional
matching containing u;v;, and let H} and H, be the components of Q; — M,. Note that
U, and w,v; lie in the same component of Q; — M,, H say. Let u,v, be the edge of H,
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corresponding to u,v,; then u,v, is not precolored under ¢, because every dimensional
matching contains a single precolored edge. Consider the precoloring ¢, of Q4 obtained
from the restriction of ¢ to H'; by recoloring u,v, by color 3, and the precoloring ¢,
obtained from the restriction of ¢ to H, by also coloring u,v, by color 3. Let us verify that
neither of ¢, and ¢, satisfies any of the conditions (C1) to (C3) (with 4 in place of d).
Indeed, H; contains at most four precolored edges colored by exactly two distinct colors,
and, moreover, two precolored edges are adjacent; H, contains at most three precolored
edges. Thus, it follows from Theorem 3.1 and the induction hypothesis that there are
proper edge colorings f, of H; and f, of H; using colors 1, 3, 4, 5 that agree with ¢, and ¢,,
respectively. Now, by recoloring u,v, and u,v, by color 2 and coloring all edges of M, by
the unique color missing at its endpoints, we obtain an extension of ¢.

By symmetry, it remains to consider the case when H; contains d — 2 precolored
edges, and H, contains one precolored edge.

Case 1.3. H; contains d — 2 precolored edges and H, contains one precolored edge.

Suppose first that for every edge e; in H; that is adjacent to ey, either e; or the
corresponding edge e, of H, is colored 2 under ¢, or one of e; and e, is adjacent to an edge
colored 1 distinct from ey,. If there are at least two edges precolored 1 in Hj, then we
proceed as in the preceding case and consider the subgraphs J; and J, defined as above. So
suppose instead that there is only one edge precolored 1 in Hi; then d = 4 and H; contains
one edge precolored 1 and one edge precolored 2. If H, contains an edge precolored 2,
then since all precolored edges lie in distinct dimensional matchings and all edges
precolored 2 are adjacent to ey, there is a perfect matching M* in Qg containing all
edges precolored 1 and no edge precolored 2. Since H, and H, both contain only one edge
precolored 2, this implies that ¢ is extendable. If H, contains an edge precolored 1, then
one may proceed similarly; the details are omitted.

Let us now consider the case when there is an edge e; € E(H;) adjacent to ey and
satisfying that neither e; nor its corresponding edge e, in H, is precolored or adjacent to
an edge colored 1 in H; and H,, respectively. If the precoloring ¢, obtained from the
restriction of ¢ to H; by in addition coloring e; by color 1 is extendable to a (d — 1)-edge
coloring of Hj, then there is a similar extension of H, of the restriction of ¢ to H, along
with coloring e, by 1. By recoloring e; and e, by color d, it is easy to see that there is an
extension of ¢. Thus we assume that ¢, is not extendable.

Suppose first that e, is the only edge colored 1 in H; under ¢,. If the p-precolored edge
of H, is colored 2, then H; and H, only contain ¢-precolored edges with color 2, and by
Theorem 3.1, fori = 1, 2, the restriction of ¢ to H; is extendable to a proper edge coloring
of H; using colors 2, ..., d; thus ¢ is extendable by coloring all edges of M by color 1.
Hence, we may assume that H, contains a ¢-precolored edge of color 1. Note that this
implies that the precolored edge e; of H, is not adjacent to ey. Moreover, the
corresponding edge e; of Hj is not p-precolored, since all precolored edges lie in different
dimensional matchings. Now, since the restriction of ¢ to H; consists of d — 2 precolored
edges with colors distinct from 1, Theorem 3.1 yields that there is an extension of H; using
colors 2, ..., d. We color H, correspondingly. Since ey, and e; are not adjacent, we now
obtain an extension of ¢ by recoloring e, and e, by color 1, and thereafter coloring all
edges of M by the color in {1, ..., d} missing at its endpoints.
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Now assume that there are several edges ¢,-precolored 1 in H;. Since ¢, is not
extendable, only two colors are used in ¢,, and there are at least two edges in H;
precolored 1 under ¢;, there is some vertex v € V (H;) such that either

(a) v is not incident with any ¢,-precolored edge, but any edge incident to v is adjacent to
some edge ¢,-precolored 1, or

(b) v is incident with an edge ¢,-precolored 2 and all other edges incident with v are not
¢,-precolored but adjacent to edges precolored 1.

Subcase A. (a) holds.

If (a) holds, then every ¢-precolored edge of Hj is colored 1 and thus the single
@-precolored edge in H, is colored 2. Moreover, the restriction of ¢ to H; is by
Theorem 3.1 extendable to a proper (d — 1)-edge coloring; in particular there is a perfect
matching M;* in H; containing all edges precolored 1. Let ¢/’ be the edge of M;" that is
incident with u;, and let e; be the corresponding edge of H,. Then there is a perfect
matching Mj* in H, which does not contain the g-precolored edge of H, if it is distinct
from e;. We now define a perfect matching M* of Q; by removing e and e; from
M U M5 and adding two edges from M with the same endpoints as e;’ and ej. Since M*
is a perfect matching containing all edges colored 1 under ¢ and no edges with color 2
under ¢, and there is only one edge ¢-precolored 2 in Qy, ¢ is extendable.

Subcase B. (b) holds.

Suppose now that (b) holds. Then u; # v, because y; is incident with an edge colored 1
under ¢,. Suppose first that u; is not adjacent to v. Then y; and v have a common neighbor
X, because H, is (d — 1)-regular and contains exactly ¢,-precolored edges. Moreover, since
u; and v are at distance 2 and H, is a (d — 1)-dimensional hypercube, u#; and v have
precisely two common neighbors. Now, since H, is a (d — 1)-regular bipartite graph and
(b) holds, this means that there are d — 3 edges of H; incident with u; that are neither ¢,-
precolored nor adjacent to a ¢-precolored edge of H;. Thus if d > 5, then there is an edge
e’ incident with u; that is not precolored under ¢,, and not adjacent to an edge of H;
precolored 1 under ¢, and, moreover, the analogous statement holds for the
corresponding edge of H,. Now, since

« ¢; and e’ are adjacent,

« there is exactly one edge ¢-precolored 2 in Hj, and

« Hj contains at least two ¢-precolored edges of color 1 which lie in different dimensional
matchings,

it follows that the precoloring obtained from the restriction of ¢ to H; by in addition
coloring e’ by color 1 is extendable to a (d — 1)-edge coloring of Hj, and, as above, we
obtain an extension of ¢ by constructing a coloring of H, as in the preceding subcase.
Suppose now that d = 4. Then, since (b) holds, and all g-precolored edges are in different
dimensional matchings, there is a perfect matching M* in Q; containing all edges ¢-
precolored 1, but no edges precolored 2 under ¢; thus ¢ is extendable, because H; and H,
both contain at most one edge precolored 2 under ¢.
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Now assume that u; is adjacent to v. Note that u;v is not colored 2, because e; is
incident with u; and colored 1 under ¢,, and H; is bipartite and (d — 1)-regular, and
contains exactly d — 1 precolored edges under ¢,. Let ¢, be the precoloring of H; obtained
from the restriction of ¢ to H; by coloring w;v by color 1. Let v, be the vertex of H,
corresponding to v. Note that no edge of H, incident with u, or v, is precolored 1, because
in the former case this contradicts u; u, being p-precolored 1, and in the latter case ¢ € C,.
Let ¢, be the precoloring of H, obtained from the restriction of ¢ to H, by in addition
coloring (possibly recoloring) u,v, by color 1. Then ¢, and ¢, are extendable to proper
(d — 1)-edge colorings; in particular for i = 1, 2, there is a perfect matching M;* in H;
containing all ¢-precolored edges with color 1. By removing u;v and u,v, from M;* U My
and adding two edges from M instead we get a perfect matching M* of Q4 that contains
all p-precolored edges with color 1, but no such edges with color 2. Now, since H; and H,
each contains only one edge @-precolored 2, there is an extension of ¢.

Case 2. There is a dimensional matching containing no precolored edge.
Without loss of generality, we assume that no edge of M is precolored.
Case 2.1. No precolored edges are in H.

Without loss of generality we assume that there are more colors precolored 1 than 2.
Then by Theorem 3.1, the precoloring of H; obtained from the restriction of ¢ to H; by
removing color 1 from all edges e with ¢ (e) = 1, is extendable to a proper edge coloring f
of H; using colors 2, ..., d. By recoloring all the edges e with ¢ (e) = 1 by color 1 we obtain,
from f, a d-edge coloring f’ of H;. Moreover, by coloring every edge of H, by the color of
its corresponding edge in H; under f’, and then coloring every edge of M with the color in
{1, ..., d} missing at its endpoints, we obtain an extension of ¢.

Case 2.2. Both H; and H, contain at most d — 2 precolored edges.

By Theorem 3.1, for i =1, 2, there is a (d — 1)-edge coloring f; of H; that is an
extension of the restriction of ¢ to H;. By taking f; and f, together and coloring every edge
of M by color d, we obtain an extension of ¢.

Case 2.3. H; contains d — 1 precolored edges and H, contains one precolored edge.

Let e, be the precolored edge of H,, and let e; be the edge of H; corresponding to e,. If
the restriction of ¢ to Hj is extendable to a (d — 1)-edge coloring of Hj, then it follows, as
above, that ¢ is extendable. So suppose that the restriction of ¢ to H; is not extendable.
Then, since only two colors appear in the precoloring ¢ and d > 4, we may without loss of
generality assume that either

(a) there is a vertex u incident with an edge e’ precolored 2, and every edge in H; incident
with u and distinct from e’ is not precolored but adjacent to an edge precolored 1, or

(b) there is a vertex u of H; such that no edge incident with u is precolored, but every
vertex adjacent to u in H; is incident with an edge precolored 1.
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Subcase A. (a) holds.

Suppose that (a) holds, and let e’ be the edge in H; that is precolored 2. We shall
consider two different subcases.

Subcase A.1. p(ey) = 1.

If e, is incident with u, then the conditions imply that ¢ € C,, so we assume that e; is
not incident with u. If ¢’ is not adjacent to e;, then we define ¢, to be the precoloring
obtained from the restriction of ¢ to H; by removing color 2 from e’. By Theorem 3.1, ¢, is
extendable to a proper edge coloring f; of H; using colors 1, 3, ..., d. Let ¢, be the
precoloring of H, obtained from the restriction of ¢ to H, by additionally coloring the edge
of H, corresponding to e’ by color f, (¢’); by Theorem 3.1, this precoloring is extendable to
a proper edge coloring using colors 1,3,.., d. Now, by recoloring e’ and the
corresponding edge of H, by color 2 and thereafter coloring every edge of M by the
color missing at its endpoints, we obtain an extension of ¢.

Let us now consider the case when e; is adjacent to e’, but not incident to u. Then e; is
not precolored under ¢. If e; is not adjacent to any edge precolored 1 in Hj, then we
proceed as follows: Let ¢, be the precoloring of H; obtained from the restriction of ¢ to H;
by removing color 1 from all edges ¢-precolored 1. Then ¢, is extendable to a proper edge
coloring using colors 2, ..., d. By coloring H, correspondingly, and thereafter recoloring
all edges ¢-precolored 1 in H; with color 1, recoloring e; by color 1, and recoloring H,
correspondingly, we obtain an extension of ¢ by coloring every edge of M by the unique
color in {1, ..., d} missing at its endpoints.

Finally, assume that e; is adjacent to e’, not incident to u, but adjacent to some edge
precolored 1 in H;. From ¢ we define a new precoloring ¢’ of Q; with d precolored edges
by removing the color 2 from e’ and coloring the edge of M incident with u by color 1.
Now, unless ¢’ € Cs, then by Lemma 4.3, ¢’ is extendable; in particular there is a perfect
matching M* containing all edges ¢-precolored 1 but not the edge ¢-precolored 2. Since
Qq contains only one edge g-precolored 2, this implies that ¢ is extendable; hence, it
suffices to prove that ¢’ & C;. Now, if ¢’ € Cs, then there is a vertex v that is not incident
with any edge ¢’-precolored 1, but all neighbors of v are incident with ¢’-precolored edges
of color 1. Since H,; containsd — 2 > 2 edges with color 1 under ¢’, v € V (H;). Moreover,
since ¢’(e;) = 1 and the end x of e; that is not an end of e’ is incident with an edge that is
@’-precolored, it follows that v must be the common end of e; and e’. However, since ¢’ is
colored 2 under ¢, this implies that ¢ € C,, a contradiction.

Subcase A.2. p(e;) = 2.

If e’ = e;, then we consider the precoloring ¢, of H; obtained from ¢ by removing the
color from e’. This coloring is, by Theorem 3.1, extendable to a proper edge coloring f; of
H, using colors 1, 3, ..., d. Let f, be the corresponding coloring of H;. An extension of ¢
can now be obtained by recoloring e; and e, by color 2, and then coloring every edge of M
by the color not appearing at its endpoints.

If e; is not adjacent to e’ and not precolored 1, then we proceed as in the preceding
paragraph, except that we color both e’ and e;, and their corresponding edges in H,, by
color 2 in the final step.
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Suppose now that e; is adjacent to e’. Then e; is not precolored under ¢, because H;
contains exactly d — 1 precolored edges and (a) holds. Moreover, since d > 4, there is an
edge e; € E (H;) precolored 1 that is not adjacent to e;. Define a precoloring ¢, of H; from
@ by removing color 1 from e; and recoloring all other edges of H; precolored 1 under ¢ by
color 3. By Theorem 3.1, the precoloring ¢, is extendable to a proper edge coloring f; of H
using colors 2, 3, ..., d. Now, define a precoloring ¢, of H, from the restriction of ¢ to H,
by for every edge e in H; precolored 1 under ¢, coloring the corresponding edge of H, by
£, (e). The precoloring ¢, does not satisfy any of the conditions (C1) to (C4) (withd — 1in
place of d), because it is not monochromatic, and all precolored edges have one end
which is at distance 1 from the vertex of H, corresponding to u. Hence, by the induction
hypothesis, the coloring ¢, is extendable to a proper edge coloring f, of H, using colors
2,3,.., d. From f; and f, we define an extension of ¢ by recoloring any edge of H, that is
@-precolored 1 by color 1, recoloring every edge of H, corresponding to such an edge by
color 1, and thereafter coloring every edge of M by the unique color not appearing at its
endpoints.

Finally, let us consider the case when e; is precolored 1 under ¢. Let ¢, be the
restriction of ¢ to H;. By Lemma 4.2, there is a partial proper edge coloring f; of H;
satisfying the conditions (i)(iii) of Lemma 4.2. Let E’ be the set of edges colored under f,.
The graph H; — E’ has maximum degree d — 2 so the coloring f, can be extended to a
proper d-edge coloring f; of H; by using Konig's edge coloring theorem. Let f, be the
corresponding coloring of H,, except that we interchange colors on the (1, 2)-colored
cycle containing e,. Note that for every vertex x of Hj, the same colors appear at x under
f{ and at the corresponding vertex of H, under f,. Moreover, f, and f, agrees with ¢.
Hence, ¢ is extendable.

Subcase B. (b) holds.

Recall that if (b) holds, then there is a vertex u of H; such that no edge incident with u
is p-precolored, but every vertex adjacent to u in H; is incident with an edge precolored 1
under ¢. Recall that e, is the unique edge of H, that is precolored, and e; is the
corresponding edge of H;. Since two colors appear in ¢, ¢(e;) = 2. If e; is not precolored,
then let f, be an extension of the restriction of ¢ to H, using colors 2, ..., d; such an
extension exists by Theorem 3.1. Let f; be the corresponding edge coloring of H;. From f|
and f, we obtain an extension of ¢ by recoloring all edges precolored 1 under ¢ by color 1,
recoloring all corresponding edges of H, by color 1, and thereafter coloring every edge of
M by the unique color in {1, ..., d} not appearing at its endpoints.

Suppose now that e; is precolored under ¢; then ¢(e;) = 1. Since H; contains at least
three g-precolored edges, there are at most two vertices v; and v, of H; which are at
distance 1 from d — 1 vertices all of which are incident with edges precolored 1 (because
otherwise two vertices of distance 2 lie in at least two distinct 4-cycles, which is not
possible since H; is a (d — 1)-dimensional hypercube). Now, since d — 1 > 3, there is an
edge ¢’ in H, that is adjacent to e,, and satisfies that the corresponding edge of H, is not
incident with vy or v,. This implies that the precoloring ¢’ obtained from ¢ by coloring e’
by color 1 and removing color 2 from e, is not in Cs; so by Lemma 4.3, ¢’ is extendable to a
proper d-edge coloring f. Now, f(e’) = 1; so f(e;) # 1, and since e, is the only edge
colored 2 under ¢, we obtain an extension of ¢ by permuting colors in f. O
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Lemma 4.7. If at least three and at most d — 1 colors appear on edges under ¢, and
@ & C, then @ is extendable.

Proof. Without loss of generality we shall assume that colors 1, 2, and 3 appear on edges
under ¢, and that color d does not appear under ¢.

Case 1. Every dimensional matching contains a precolored edge.

Without loss of generality, we assume that M contains an edge ey, precolored 1 under
@, and first consider the case when all other precolored edges are in H;.

Case 1.1. No precolored edges are in H.

Suppose first that color 1 does not appear in H,. If the restriction of ¢ to H; is
extendable to a (d — 1)-edge coloring of Hj, then we may choose such an extension with
colors 2, ..., d, and thus ¢ is extendable. If, on the other hand, the restriction of ¢ to H; is
not extendable, then, since at most d — 2 different colors appear in H, ¢ satisfies (C2) or
(C3) (with d — 1in place of d). Hence, there is a vertex u such that all edges in H; incident
with u are either precolored, or non-precolored and adjacent to an edge of a fixed color,
say 2. Note that this implies that at least two edges in H, are precolored 2. If u is an
endpoint of ey, then ¢ € C; otherwise, assuming d > 4, there is either some edge e’
adjacent to ey, that is not colored under ¢ and not adjacent to any edge precolored 2 under
@, or an edge e’ adjacent to ey and colored 2. By removing the colors from all edges
precolored 2 under ¢ and coloring e’ by color 1, we obtain, from the restriction of ¢ to Hj,
a precoloring that is extendable to a (d — 1)-edge coloring of Hj, because at least two
edges in H; are colored 2 under ¢. Let f; be an extension of this precoloring using colors
1,3, .., d. Now, by recoloring e’ by color 2, and also recoloring all (other) edges
precolored 2 under ¢ with color 2, we obtain a proper d-edge coloring of H;. By coloring
H, correspondingly and then coloring every edge of M with the color missing at its
endpoints, we obtain an extension of .

It remains to consider the case when d = 4. However, it is easy to see that if d = 4
(and thus H is isomorphic to Q;) there cannot be a vertex u as described above and such
that all precolored edges lie in different dimensional matchings.

Suppose now that color 1 appears in H; under ¢. By removing the color from all edges
precolored 1 under ¢ from the restriction of ¢ to H;, we obtain an edge precoloring of H;
that is extendable to a proper (d — 1)-edge coloring of H;. Let f, be an extension of this
precoloring using colors 2, ..., d. By recoloring all edges precolored 1 under ¢ by color 1,
we obtain an extension of ¢ as above.

Case 1.2. Both H; and H, contain at most d — 3 precolored edges.

If there is an edge e; in H; adjacent to ey, and such that neither e; nor the
corresponding edge e, of H, is colored under ¢, and neither of e; and e, is adjacent to an
edge precolored 1 under ¢, then we consider the precolorings of H; and H, obtained from
the restriction of ¢ to H; along with coloring e; and e, by color 1. By the induction
hypothesis, these colorings are extendable to (d — 1)-edge colorings f; and f,
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respectively. Now, by recoloring e; and e, by color d and then coloring every edge of M by
the color missing at its endpoints we obtain the required extension of ¢.

Now suppose that there are no edges e; and e, as described in the preceding paragraph.
Then any edge precolored by a color distinct from 1 under ¢ is adjacent to ey, and any
edge colored 1 under ¢ is adjacent to an edge e’ that is adjacent to ey,.

Let J; be the subgraph of Q; induced by all dimensional matchings containing edges
precolored 1 or 2, and let J, = Q4 — E (J;). Suppose that J; has maximum degree q. Note
that no component T of J; has the property that the restriction of ¢ to T satisfies condition
(C2) (with q in place of d), because an edge precolored 2 is adjacent to an edge precolored
1. Moreover, no component T of J,, with the restriction of ¢ to T, satisfies any of the
conditions (C1) to (C4) (with d — g in place of d), because if all precolored edges of J, are
in T, then they are all incident to the same endpoint of ey. Thus, by the induction
hypothesis, the restriction ¢, of ¢ to J; is extendable to a proper g-edge coloring, and the
restriction ¢, of ¢ to J, is extendable to a proper edge coloring with d — g colors.
Moreover, since ¢, and ¢, use distinct sets of colors, we may use distinct colors for the
extensions of J; and J,, respectively; thus we conclude that ¢ is extendable.

Case 1.3. H; contains d — 2 precolored edges and H, contains one precolored edge.

If for every edge e; in H; adjacent to ey, either e; or the corresponding edge e, of H; is
precolored under ¢, or one of e; and e, is adjacent to an edge colored 1 distinct from ey,
then we proceed exactly as in the preceding case and construct an extension of ¢ by
defining subgraphs J; and J, as above.

Thus we may assume that there is an edge e; € E (H;) such that neither e; nor its
corresponding edge e, in H, is precolored or adjacent to an edge colored 1 in H; and H,,
respectively. If the precoloring ¢, obtained from the restriction of ¢ to H; by in addition
coloring e; by color 1 is extendable to a (d — 1)-edge coloring of H;, then we can obtain an
extension of ¢ as follows: By Theorem 3.1, there is a similar extension of H, of the
restriction of ¢ to H, along with coloring e, by 1. By recoloring e; and e, by color d, it is
easy to see that there is an extension of ¢. Thus we assume that ¢, is not extendable.

Let ey = w3 U, and suppose first that there is only one edge precolored 1 under ¢,. If
the g-precolored edge of H, is not colored 1, then by the induction hypothesis, the
restriction of ¢ to H; is extendable (i = 1, 2), to proper edge colorings using colors 2, ..., d;
thus, ¢ is extendable. Hence, we may assume that color 1 appears in H, under ¢. Note
that this implies that the precolored edge e, of H, is not adjacent to ey;. Moreover, the
corresponding edge e/ of Hj is not ¢p-precolored, since all precolored edges lie in different
dimensional matchings. Now, since the restriction of ¢ to H; consists of d — 2 precolored
edges with colors distinct from 1, Theorem 3.1 yields that there is an extension of H; using
colors 2, ..., d. We color H, correspondingly. Since ey, and e, are not adjacent, we now
obtain an extension of ¢ by recoloring e; and e, by color 1, and thereafter coloring all
edges of M by the color in {1, ..., d} missing at its endpoints.

Suppose now that color 1 appears on several edges in H; under ¢;. Note that since at
least three colors, and at most d — 1 colors, are used by ¢, this implies thatd > 5. Since ¢,
is not extendable and thus satisfies one of the conditions (C1) to (C4), and color 1 appears
on several edges under ¢,, there is some vertex v € V (H;) such that every edge incident
with v is ¢,-precolored or adjacent to an edge precolored with 1.
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Since u; is incident with an edge precolored 1 under ¢, u; # v. If iy is not adjacent to v,
then since d > 5, and any two adjacent edges in H; are contained in exactly one 4-cycle,
there is some edge e; in H; adjacent to ey, such that neither e, nor its corresponding edge e,
in H, is precolored or adjacent to any edge precolored 1 under ¢. Let us prove that the
precoloring ¢,” obtained from the restriction of ¢ to H; by in addition coloring e/ by color 1 is
extendable to a (d — 1)-edge coloring of H;. Indeed, if H; contains only one edge that is ¢-
precolored 1, then v is incident with edges of at least two distinct colors, so cpl" does not
satisty (C2) (with d in place of d — 1); if H; contains at least two edges that are ¢-precolored
1, then since u; and v have exactly two common neighbors and any two ¢-precolored edges
lie in distinct dimensional matchings, ¢,” does not satisfy (C2). Furthermore, the precoloring
of H, obtained from the restriction of ¢ to H, by also coloring e, by color 1 is extendable. By
recoloring e, and e, by color d we obtain an extension of ¢ as before.

If, on the other hand, u; is adjacent to v, then we may color u;v and proceed as above
unless the edge e; of H, corresponding to u;v is precolored or adjacent to an edge
precolored 1. If the latter holds, then ¢ € C. On the other hand, if e, is ¢-precolored, then
let M’ be a dimensional matching in Q, containing a ¢-precolored edge incident with v
and colored by a color ¢ that only occurs once under ¢; such an edge exist since at least
three colors are used in ¢. Then both components of Q; — M’ satisfy that the restriction of
@ to this component is not in C; thus, by the induction hypothesis, the restriction of ¢ to
Qa4 — M’ is extendable to a proper edge coloring of Q; — M" using colors in {1, ..., d}\ {c}.
We conclude that ¢ is extendable.

Case 2. There is a dimensional matching containing no precolored edge.

Without loss of generality we assume that no edge of M is precolored.

The case when all precolored edges are in H;, and the case when H; and H, both
contain at most d — 2 precolored edges can be dealt with exactly as in Case 2 of the proof
of Lemma 4.6. Hence, we assume that H; contains exactly d — 1 precolored edges. We
shall assume that e, is the precolored edge of H,, e; is the edge of H; corresponding to e,,
and that there is no edge colored d under ¢.

If the restriction of ¢ to H, is extendable to a (d — 1)-edge coloring of Hj, then since
the same holds for the restriction of ¢ to H,, ¢ is extendable to a d-edge coloring of Qg ; so
assume that the restriction of ¢ to H; is not extendable. Since at least three distinct colors
appear under ¢, this implies that

(a) d = 4, and there is a dimensional matching in H; with three edges with three dif-
ferent colors; or

(b) there is an edge uv of H; that is not precolored, but uv is adjacent to an edge colored i,
fori=1,..,d—1;or

(c) there is a vertex u incident to k precolored edges and every edge incident with u in Hj,
which is not precolored, is adjacent to an edge precolored by some fixed color c;.

Subcase A. (a) holds.
Without loss of generality we assume that g(e,) = 1. If e; is adjacent both to the edge

precolored 2 and to the edge precolored 3, then it is straightforward that ¢ is extendable
(because all precolored edges of H, lie in the same dimensional matching). Otherwise, either
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the edge colored 2 or the edge colored 3 is not adjacent to e;, suppose, for example, that this
holds for the edge e; colored 2. The precoloring obtained from the restriction of ¢ to H; by
removing color 2 from e, is extendable to a proper edge edge coloring f; using colors 1, 3, 4,
and the precoloring obtained from the restriction of ¢ to H, by in addition coloring the edge
e,, corresponding to e;, by the color f, (e/) is extendable to a proper edge coloring f, using
colors 1, 3, 4. Now, by recoloring e, and e, by color 2, and thereafter coloring all edges of M
by the color missing at its endpoints, we obtain an extension of ¢.

Subcase B. (b) holds.

Without loss of generality, we assume that ¢(e,) = 1. If e; is not precolored and not
adjacent to the edge e/ in Hj precolored 1, then we construct an extension of ¢ in the
following way: remove color 1 from all edges colored 1 under ¢. The resulting precoloring
of H; is, by Theorem 3.1, extendable to a proper edge coloring using colors 2, ..., d. By
coloring H, correspondingly, then recoloring e,, e; and their corresponding edges in H;
and H,, respectively, by color 1, and thereafter coloring every edge of M by the color
missing at its endpoints, we obtain an extension of ¢.

Suppose now that e; is precolored or adjacent to e;. Let us first assume that there is
some precolored edge e;" of H; that is not adjacent to e; and not colored 1. Suppose, for
instance, that ¢ (e;) = 2. By removing the color 2 from e/’, we obtain a precoloring of H;
that is extendable to a proper edge coloring f; using colors 1, 3, 4, ..., d. Moreover, the
precoloring of H, obtained from the restriction of ¢ to H, by additionally coloring the edge
e, , corresponding to e;’, by the color f| (e;") is extendable to a proper edge coloring f, using
colors 1, 3, 4, ..., d. By recoloring e;" and ej by color 2, and thereafter coloring every edge
of M by the color missing at its endpoints, we obtain an extension of ¢.

Suppose now that all gp-precolored edges with colors distinct from 1 are adjacent to e;.
If e, is precolored, then g satisfies (C2) (with d — 1 in place of d), so we may assume that
e; is not precolored; then e; = uv. Moreover if u or v is incident with only one precolored
edge that is colored 1, then ¢ satisfies (C2), so we assume that either u or v is incident
with two edges precolored 1 and 2, respectively, under ¢. Now, by removing color 2 from
the edge e’ ¢p-colored 2, we obtain a precoloring that is extendable to a proper edge
coloring f, using colors 1, 3, ..., d. Moreover, the precoloring obtained from the restriction
of ¢ to H, by in addition coloring the edge corresponding to e’ by the color f(e’) is
extendable to a proper edge coloring f, using colors 1, 3, ..., d. From f, and f, we obtain
an extension of ¢ by recoloring e’ and its corresponding copy in H, by color 2, and
thereafter coloring every edge of M by the color missing at its endpoints.

Subcase C. (c) holds.

Let us first assume that at least three colors appear in the restriction of ¢ to H;. If e; is
not incident with u, then there is an edge e’ # e; in Hj, such that ¢(e’) = ¢, ¢’ is not
adjacent to e; and e’ is the only edge in H; with color ¢ under ¢. Suppose that ¢ (e,) # c.
Then by removing the color ¢ from the restriction of ¢ to H;, we obtain a precoloring ¢,
that is extendable to a proper edge coloring f, of H; using colors {1, ..., d}\ {c}. (Note that
fi(e’) = c¢;.) Moreover, there is a similar extension f, of the restriction of ¢ to H;, where
the edge of H, corresponding to e’ is colored f,(e’). Now, by recoloring e’ and its
corresponding copy in H, by color ¢, we obtain an extension of ¢ as before.
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If p(e;) = ¢ and e; is not precolored under ¢, then we proceed similarly as in the
preceding paragraph, except that after constructing the coloring f; of H; as in the
preceding paragraph, we define f, as the coloring of H, corresponding to f; and then color
e’ and e;, and the corresponding edges of H,, by color c. On the other hand, if ¢ (e;) = ¢
and e, is precolored under ¢, then ¢ (e;) = c; because e; is not incident with u; now, since
at least three distinct colors are used by ¢ on edges in H;, we may clearly choose another
@-precolored edge incident with u as our edge e’, and then proceed as in the preceding
paragraph.

Now assume that e; is incident with u. If p(e,) = ¢y, then ¢ € C, so we assume that
@ (ey) # c1. If there is a color ¢ # ¢ (e,) appearing on precisely one edge e’ # e; of Hy, then
we consider the restriction of ¢ to H; where color ¢ is removed, and proceed as before;
otherwise, since at least three colors appear in H; under ¢, it follows that e; is not adjacent
to any edge precolored c; under ¢. Thus by removing color ¢; from any edge in H
precolored by color c¢; under ¢, we obtain a precoloring that is extendable to a proper edge
coloring of H; using colors {1, ..., d}\ {ci}. Moreover, there is a similar extension f, of the
restriction of ¢ to H,, where for any edge e’, corresponding to an edge e, of H; with
@(e]) = c;, we have f, (e;) = f,(e{). From f, and f, we may construct an extension of ¢ by
recoloring any such pair of edges by color c;.  Let us now consider the case when only
two colors appear in the restriction of ¢ to H;. Since at least three colors appear on edges
under g, it follows that ¢ (e;) does not appear in H; under ¢. Without loss of generality we
assume that ¢ (e,) = 2, color 3 appears on exactly one edge e’ in Hj, and color 1 is the third
color used by ¢. If e’ # e;, then we consider the precoloring of H; obtained from the
restriction of ¢ to H; by removing color 3. There is an extension of this precoloring of H;
using colors {1, ..., d}\ {3} such that ¢ (e") = 1. Let e, be the edge of H, corresponding to e’.
Then the precoloring obtained from the restriction of ¢ to H, by additionally coloring e, by
color 1 is extendable to a coloring using colors {1, ..., d}\ {3}. Now, by recoloring ¢’ and e, by
color 3, we can construct an extension of ¢.

If, on the other hand, e’ = e, then e, is not adjacent to any edge colored 1. Let E’ be
the set of edges colored 1 under ¢. Ifd > 4, then |E’| > 3 and we recolor all edges in E’ by
colors 2, 3, 4 so that at least one edge is colored i, i = 2, 3, 4. This yields a precoloring ¢,
that, by the induction hypothesis, is extendable to a proper edge coloring f; of H; using
colors 2, ..., d, because the precolored edges form a matching which is colored by at least
three distinct colors. Next, consider the precoloring ¢, of H, obtained from the restriction
of ¢ to H, by setting ¢, (e;) = f; (e)) for any edge e, € E (H,) corresponding to an edge
e/ € E'. The g,-precolored edges form a matching consisting of d — 1 edges, where edges
corresponding to E’ are colored by at least three distinct colors, so by the induction
hypothesis, there is an extension f, of ¢,, where f,(e,) = f,(e)) for any edge e, € E (H,)
corresponding to an edge e; € E’. We may now obtain an extension of ¢ as before.

It remains to consider the case d = 4. By symmetry of the hypercube, it suffices to
consider the two cases when all edges in H, are in the same dimensional matching, and
the case when the two edges precolored 1 are in different dimensional matchings, one of
which is necessarily the same as the dimensional matching containing e’. In both cases it
is a straightforward exercise to check that there is an extension of ¢ where two edges in
H,, and their corresponding edges in H,, are the only edges colored 4; and, moreover,
these two edges of H; (H,) lie in a dimensional matching with no precolored edges. []

Lemma 4.8. If all colors 1, ..., d appear under ¢, and ¢ & C, then ¢ is extendable.
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Proof. Since all colors are present under ¢, every color appears on precisely one edge.
Let us first note that if every dimensional matching contains at most one precolored edge,
then trivially ¢ is extendable. Thus, for the rest of the proof we assume that there is a
dimensional matching M that does not contain any precolored edge. Let H; and H, be the
components of Q; — M.

Case 1. No precolored edges are in H,.

If there is some edge e that is not precolored, and adjacent to all precolored edges in
H,, then ¢ € C. On the other hand, if there is a precolored edge e such that removing the
color from e yields a precoloring ¢, of H, that is not in C; (with d — 1 in place of d) or C4,
then the induction hypothesis yields that there is an extension f of ¢, using all colors
except the removed one. Suppose, for example, that the color from e under ¢ was
removed in ¢;; then by recoloring e with ¢ (e) and retaining the color of every other edge
in H; under f, we obtain a proper d-edge coloring of H; that is an extension of ¢; by
coloring H, correspondingly and then coloring every edge of M by the color missing at its
endpoints, we obtain an extension of ¢.

Now, suppose that e is a precolored edge of H;, and removing the color of e yields a
coloring ¢, that satisfies (C1). Let e’ be another ¢-precolored edge of H; that is adjacent to
a minimum number of other ¢-precolored edges of H;. Then the precoloring obtained
from ¢ by removing the color from e’ does not satisfy (C4); suppose that it satisfies (C1).
Then either ¢ € Cy, or there are non-precolored edges uv, ux € E (H,) satisfying that e’ is
incident with v, e is incident with x, and all other precolored edges are incident with u.
Now, since u is incident with at least two precolored edges (from different dimensional
matchings), by instead removing the color on a precolored edge incident with u, we
obtain a precoloring that does not satisfy (C1) or (C4). We conclude that if ¢, € C;, then
either ¢ is extendable or ¢ satisfies (C1).

It remains to consider the case when ¢, satisfies (C4). Suppose, consequently, that
d = 4 and that removing the color from any precolored edge of H; yields a precoloring
that satisfies (C4); then the precolored edges of H; lie in a dimensional matching M’. It is
easily seen that since all precolored edges lie in M’, there is a proper 4-edge coloring of H;
which agrees with ¢. By coloring H, correspondingly and thereafter coloring all edges of
M by the color in {1, 2, 3, 4} missing at its endpoints, we obtain an extension of ¢.

Case 2. Both H; and H, contain at most d — 3 precolored edges.

Note that neither the restriction of ¢ to H; nor to H, satisfies any of the conditions (C1)
to (C4) (with d — 1 in place of d). Moreover, since H; and H, contain altogether d
precolored edges, d > 6, and thus both H; and H, contain at least three precolored edges.
We consider two different cases.

Case 2.1. There is some edge e in H; (or H,) that is precolored and the corresponding
edge of H, (H;) is not precolored.

Without loss of generality we assume that e is such an edge in Hy, ¢(e;) = 1, and that
e, is the edge of H, corresponding to e;. Since both H; and H, contain precolored edges,
there is some color which appears in H, but not in H;. Suppose first that some precolored
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edge of H, is not adjacent to e,. Assume without loss of generality that such an edge is
precolored d in H,. Then we construct a new precoloring ¢’ from ¢ by coloring e, by color
d, and recoloring e; by color d. The restrictions of ¢’ to both H; and H, are, by the
induction hypothesis, extendable to proper edge colorings using colors 2, ..., d,
respectively. Now by recoloring e; and e, by color 1 we obtain proper edge colorings f|
and f, of H; and H,, respectively, satisfying that the color in {1, ..., d} not appearing at a
vertex v of Hj is also missing at the corresponding vertex of H,. Since fori = 1, 2, f; is an
extension of the restriction of ¢ to H;, ¢ is extendable.

Suppose now instead that every precolored edge of H, is adjacent to e,. In fact, we may
assume that if e € E(H,), e is precolored under ¢ and the corresponding edge e’ of H; is
not precolored under ¢, then e’ is adjacent to all precolored edges of H,; otherwise we
proceed as in the preceding paragraph. If all precolored edges of H, are incident with a
common vertex, then since there are at least three precolored edges in H;, i = 1, 2, this
means that all precolored edges of H; are incident with the corresponding vertex of Hj;
and so, ¢ € C;. Assume now thate; = u;v;, i = 1, 2, and that both u, and v, are adjacent to
precolored edges; since H, contains at least three precolored edges, e, is the unique edge
with this property. Moreover, since any precolored edge of H; satisfies that if the
corresponding edge of H, is not precolored, then it is adjacent to all precolored edges of
H,, it follows that any precolored edge in H; is incident with u; or v;. This means that the
dimensional matching M; in Q, containing e;, contains no other precolored edge. Hence,
since both u, and v, are incident with precolored edges, both components of Q; — M;
contain at most d — 2 precolored edges using colors 2, ..., d. Thus, by Theorem 3.1, the
restriction of ¢ to Q4 — M; is extendable to a proper edge coloring of Q; — M, using colors
2, ..., d. By coloring all edges of M; by color 1, we obtain an extension of ¢.

Case 2.2. Each precolored edge of H; corresponds to a precolored edge of H, and vice
versa.

The conditions imply that H; contains exactly d/2 precolored edges.

Suppose first that d = 6, and let uyu, be a precolored edge of Hj, and v;v, be the
corresponding edge of H,. Now, since H; contains two additional precolored edges which
both correspond to precolored edges of H,, and u;u, is in four 4-cycles in Hj, there is a
4-cycle uyupuzu uy in Hy such that uzuy is not precolored and the dimensional matching
M,, containing u,u; and u4y, does not contain any precolored edge. Let H'; and H', be
the components of Q; — M,. Now, since all precolored edges lie on 4-cycles whose non-
precolored edges are in M, either both or none of the precolored edges of such a cycle is in
H;. Hence, H; contains an even number of precolored edges, and so, we may proceed as
in Case 1 or Case 3 of the proof of the lemma.

Now assume that d > 8. If all precolored edges in H; are incident with one common
vertex, then ¢ € C, so we assume that this is not the case; thus, there are two precolored
edges in H; (and thus H,) that are not adjacent. In H, we assume that these edges are
colored d/2 + 1and d, respectively. Let v;v, be the edge precolored d in H, and let u; u; be
the corresponding edge of H;. Without loss of generality, we assume that ¢ (iyu,) = d/2.
Now, since there are exactly d/2 precolored edges in both H; and Hp, d > 8, and each
edge in H; isind — 2 4-cycles in H;, there are 4-cycles u up uzu4 1y and v1v,v314v; in Hy and
H,, respectively, such that
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» u Uy and vyv, are the only precolored edges of these 4-cycles,
V31, is not adjacent to an edge precolored d/2 + 1.

We construct a precoloring ¢, of H; from the restriction of ¢ to H; by in addition
coloring u;u4 and u,u; by color d/2 + 1 and by coloring u3u, by color d/2. Similarly, we
define a precoloring ¢, of H, from the restriction of ¢ to H, by recoloring v;v, by d/2 + 1,
and in addition coloring vsv, by d/2 + 1, and v,v; and v,y by color d/2. Note that the
obtained precolorings are proper. Now, since d/2 + 3 < d — 1 (because d > 8) and none
of ¢, and ¢, satisfies any of the conditions (C1) to (C4) (with d — 1 in place of d), it
follows from Theorem 3.1 and the induction hypothesis that for i = 1, 2, there is a proper
edge coloring f; of H; using colors 1, ..., d — 1 that is an extension of ¢,. Now by recoloring
all the edges u, u3, Uy U4, V1V,, V34 by color d we obtain two proper edge colorings such that
by coloring every edge of M by the color in {1, ..., d} missing at its endpoints, we obtain an
extension of ¢.

Case 3. H; contains d — 2 precolored edges and H, contains 2 precolored edges.
We consider two different subcases.

Case 3.1. No precolored edge of H; satisfies that the corresponding edge of H, is non-
precolored.

The conditions imply that d = 4. Without loss of generality we assume that H; contains
two edges e; and e; precolored 1 and 2, respectively. Let e, and e; be the corresponding edges
of H,. By symmetry, it suffices to consider the following different cases:

(a) e; and e, are adjacent;
(b) e; and e, are not adjacent but lie on a common 4-cycle;
(c) e; and e are not adjacent and do not lie on a common 4-cycle.

If (a) holds, then ¢ € C4. Suppose now that (b) holds. It suffices to prove that there are
perfect matchings M; and M, in Qg4, where M; contains all edges precolored i and no other
precolored edges, and where M; and M, satisfy that the precolored edges of Q; — M; U M,
lie in different components. We construct M in the following way: include e; and the
unique non-precolored edge e; of H; that is in the same dimensional matching as e; and
contained in a 4-cycle with e;; from H, we select the two edges corresponding to the two
opposite non-precolored edges of the 4-cycle containing e; and e;; for the remaining edges
of M; we choose four edges from M that are adjacent to none of the edges e; and e;. We
now define M, to consist of the edges from the unique perfect matching in H; — M,
containing e; and of the edges from a perfect matching of H, with no precolored edges.

Suppose now that (c) holds. By symmetry, it suffices to consider the two cases when e;
and e, are in the same dimensional matching and when they are not. If the former holds,
then we define the matchings M; and M, exactly as in the preceding paragraph, and it
follows that ¢ is extendable. If e; and e, are in different dimensional matchings, then we
select M; as the union of the dimensional matching of H; containing e; and the unique
dimensional matching of H, with no precolored edge. As before, we can then choose a
perfect matching M, containing e; and no other precolored edges; the details are omitted.
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Case 3.2. There is a precolored edge e; = u;v; in H; such that the corresponding edge of
H, is not precolored.

Let e; = u,v, be the edge in H, corresponding to e;. If some precolored edge of H, is
not adjacent to e,, then we may proceed as above: Assume without loss of generality that
such an edge is precolored d in H,, and that ¢(e;) = 1. Then we construct a new
precoloring ¢’ from ¢ by coloring e, by color d, and recoloring e; by color d. H; contains
d — 2 ¢’-precolored edges, so the restriction of ¢’ to H; is extendable by Theorem 3.1. H,
contains three ¢’-precolored edges, so it is extendable unless d = 4 and the restriction ¢,
of ¢’ satisfies (C2) (with d — 1 in place of d). Assuming d > 4, we can choose these
extensions so that they use colors 2, ..., d, respectively, and we obtain an extension of ¢ by
recoloring e; and e, by color 1, and thereafter coloring the edges of M. If d = 4, and ¢,
satisfies (C2), then e, and the two ¢-precolored edges of H, form a matching, and none of
the p-precolored edges in H, is adjacent to e,. It follows that for at least one of these two
precolored edges, the corresponding edge in Hj is not precolored; denote this edge by e,
and assume @ (e;) = 4. Now, by Theorem 3.1, the restriction of ¢ to Hj is extendable to a
proper edge coloring f; using colors1, 2, 3. Moreover, the precoloring of H, obtained from
the restriction of ¢ by recoloring e, by the color of the corresponding edge e; of H; under
f; is, by Theorem 3.1, extendable to a proper edge coloring f, using colors 1, 2, 3. By
recoloring e; and e, by color 4, and thereafter coloring the edges of M, we obtain an
extension of ¢.

Let us now assume that both precolored edges of H; are adjacent to e,. In fact, we may
assume that every precolored edge in H; either corresponds to a precolored edge of H, or
is adjacent to both precolored edges of H,. Now, if both precolored edges of H, are
incident with a common vertex v, then this implies that ¢ € C; so assume that u, is
incident with one precolored edge and that v, is incident with one precolored edge.
Clearly, this implies that at most four edges are precolored in Hj, and thus d < 6.

So let us assume that d < 6 and that e; = wv; is precolored 1. If the dimensional
matching M, containing e; contains no other precolored edges, then the restriction ¢’ of ¢
to Qg — M, is a precoloring of d — 1 edges using d — 1 colors. Furthermore, both
components of Q; — M; contain at most d — 2 precolored edges, so by Theorem 3.1, ¢’ is
extendable to to a proper edge coloring of Q4 — M; using colors 2, ..., d. By coloring all
edges of M; by color 1, we obtain an extension of ¢.

If M; contains more than one precolored edge, then it contains exactly two precolored
edges, u;v; and z3 4, where uy vy 71 4y is a 4-cycle in Hi. Let upv,2, 5 1, be the corresponding
4-cycle of H,, where wu,f, and v,z, are precolored. We define H; to be the three-
dimensional hypercube containing vertices u, vy, 21, &, Uz, V2, 22, &; then all precolored
edges of Qg lie in H;. Since d > 4, there is a dimensional matching M; in Q; which does
not contain any edge from H;. It follows that if H; and Hj are the components of Q; — Ms,
then either H) or H; contains all precolored edges of Qy; thus we may proceed as in Case 1
above when H; contains exactly d precolored edges.

Case 4. H; contains d — 1 precolored edges and H, contains 1 precolored edge.
Without loss of generality we assume that the edge in H, is precolored d. We first

consider the case when the restriction of ¢ to H; is extendable (as a precoloring of Qg_).
Suppose first that there is some precolored edge e; in H such that the corresponding edge
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of H, is not precolored or adjacent to the precolored edge of H,. Without loss of generality
we assume that p(e;) = 1. We define a new precoloring ¢’ from ¢ by recoloring e; by
color d and by coloring e, by color d; this precoloring is proper, and, moreover, for
i =1, 2, the restriction of ¢’ to H; is extendable to a proper edge coloring f; using colors
2, ..., d. By recoloring e; and e, by color 1 and coloring every edge of M by the color in
{1, ..., d} that is missing at its endpoints, we obtain an extension of ¢.

Suppose now that every precolored edge of H; either corresponds to a precolored edge of
H,, or that the corresponding edge of H, is adjacent to a precolored edge of H,. Since the
restriction of ¢ to Hj is extendable, it follows that if e; = u;v; is the edge of H; corresponding
to the precolored edge e, = u,v, of H,, then e; is precolored under H;. Moreover, since
@ & C, there are at least two precolored edges of H; incident with 1 and similarly for v;.
Suppose, for example, that ¢ (e;) = 1 and that color 2 does appear at v; under ¢, but not at
u;, and that color 3 appears at u;. We define a new precoloring ¢’ of Qg by recoloring the
edge with color 3 under ¢ by color 2, and by coloring the corresponding edge of H, by color
2. Then, by Theorem 3.1, the restriction of ¢’ to H, is extendable to a proper edge coloring
using colors 1, 2, 4, ..., d, and the restriction of ¢’ to H; does not satisfy (C1), (C3), or (C4)
(with d — 1 in place of d). Furthermore, since 2 is the only color that appears on two edges
under ¢’, and these two edges are both adjacent to e, ¢’ does not satisfy (C2). Hence, by the
induction hypothesis, the restriction of ¢’ to H, is extendable to a proper edge coloring f;
using colors 1, 2, 4, ..., d. By recoloring the edges incident with u; and u, with color 2 by
color 3, we obtain proper edges colorings of H; and H,, such that we may color any edge of
M by the color missing at its endpoints to obtain an extension of ¢.

Let us now consider the case when the restriction of ¢ to Hj is not extendable. Then there
is some edge u;v; in H; such that all precolored edges of H; are incident with u; or v; and
uv; is not precolored. Without loss of generality, we assume that the edge in H, is
precolored d, there is some edge e; precolored 3 incident with i such that the corresponding
edge e, of H, is not precolored, and there is an edge precolored 2 incident with v;. We define
a new precoloring ¢’ from ¢ by recoloring e; by color 2 and coloring e, by color 2. We may
now finish the proof by proceeding exactly as in the preceding paragraph. O

This completes the proof of Theorem 3.8.

5 | CONCLUDING REMARKS

In this paper we have obtained analogues for hypercubes of some classic results on completing
partial Latin squares; in general we believe that the following might be true. Here, G denotes
the dth power of the Cartesian product of G with itself.

Conjecture 5.1. If n and d are positive integers, and ¢ is a proper edge precoloring of
(Kp.n)¢ with at most nd — 1 precolored edges, then ¢ extends to a proper nd-edge coloring

of (Kin).

Note that this is a generalization of both Evans' conjecture and the results obtained in this
paper; Evans' conjecture is the case d = 1, and the results obtained in this paper resolve the
cases when n = 1 and 2; thus this conjecture is open whenever d > 2 and n > 3.
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Given that a precoloring of at most d — 1 precolored edges of Qg or K 4 is always extend-
able, we might ask how many precolored edges of a general d-regular bipartite graph allow for
an extension. Trivially, any precoloring of at most one edge of a graph G can be extended to a
X' (G)-edge coloring of G. For larger sets of precolored edges, we have the following:

Proposition 5.2. For anyd > 2, there is a d-regular bipartite graph with a precoloring f
of only two edges, such that f cannot be extended to a proper d-edge coloring.

Proof. Letr > 1be a positive integer, and let Gy, ..., G, be r copies of K4 4 — e, that is, the
complete bipartite graph with d + d vertices with exactly one edge removed. From
Gy, ..., G, we form a d-regular graph H by fori = 1, ..., r joining a vertex in G; of degree
d — 1 with a vertex in G;, of degree d — 1 by an edge so that all added edges have distinct
endpoints (indices taken modulo r). Let e; and e, be two distinct edges in H joining
vertices in distinct copies of Ky 4 — e. We color e; with color 1, and e, with color 2. Since
any perfect matching in H, that contains e; also contains e,, this precoloring cannot be
extended to a proper d-edge coloring of H. O

Note that in the proof of Proposition 5.2, there is a similar precoloring with two edges
colored 1, which is not extendable to a proper d-edge coloring of the full graph. Also, the
distance between the two precolored edges can be made arbitrarily large.

Furthermore, the examples given in the proof of Proposition 5.2 are 2-connected. One may
construct examples of arbitrarily large connectivity by taking two copies G; and G, of K}, ,_; and
for each vertex v in G; of degree n — 1 adding an edge between v and its copy in G,. The
resulting graph is n-regular, (n — 1)-connected, and the edge precoloring obtained by coloring
any two edges with one endpoint in G; and one endpoint in G, by color 1 is not extendable to a
proper d-edge coloring of the full graph.
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