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Abstract

We consider the problem of extending partial edge

colorings of hypercubes. In particular, we obtain an

analogue of the positive solution to the famous Evans'

conjecture on completing partial Latin squares by

proving that every proper partial edge coloring of at

most d − 1 edges of the d‐dimensional hypercube Qd

can be extended to a proper d‐edge coloring of Qd.

Additionally, we characterize which partial edge

colorings of Qd with precisely d precolored edges are

extendable to proper d‐edge colorings of Qd.
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1 | INTRODUCTION

An edge precoloring (or partial edge coloring) of a graph G is a proper edge coloring of some
subset E E G′ ( )⊆ ; a t‐edge precoloring is such a coloring with t colors. An edge t‐precoloring φ
is extendable if there is a proper t‐edge coloring f such that f e φ e( ) = ( ) for any edge e that is
colored under φ; f is called an extension of φ.

In general, the problem of extending a given edge precoloring is an  ‐complete problem,
already for three‐regular bipartite graphs [7]. One of the earlier references explicitly discussing
the problem of extending a partial edge coloring is [15]; there a simple necessary condition for
the existence of an extension is given and the authors find a class of graphs where this condition
is also sufficient. More recently the question of extending a precoloring where the precolored
edges form a matching has gathered interest. In [5] a number of positive results and conjectures
are given. In particular it is conjectured that for every graph G, if φ is an edge precoloring of a
matching M inG using GΔ( ) + 1 colors, and any two edges in M are at distance at least 2 from
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each other, then φ can be extended to a proper G(Δ( ) + 1)‐edge coloring of G; this was first
conjectured in [1], but then with distance 3 instead. Here, as usual, GΔ( ) denotes the maximum
degree of a graph G, and by the distance between two edges e and e′ we mean the number of
edges in a shortest path between an endpoint of e and an endpoint of e′; a distance‐t matching is
a matching where any two edges are at distance at least t from each other. A distance‐2
matching is also called an induced matching.

Note that the conjecture on distance‐2 matchings in [5] is sharp both with respect to the
distance between precolored edges, and in the sense that GΔ( ) + 1 can in general not be
replaced by GΔ( ) (for Class 1 graphs), even if any two precolored edges are at arbitrarily large
distance from each other [5]. In [5], it is proved that this conjecture holds for, for example,
bipartite multigraphs and subcubic multigraphs, and in [10] it is proved that a version of the
conjecture with the distance condition increased to 9 holds for general graphs.

However, for one specific family of graphs, the balanced complete bipartite graphs Kn n, , the
edge precoloring extension problem was studied far earlier than in the above‐mentioned references.
Here the extension problem corresponds to asking whether a partial Latin square can be completed
to a Latin square. In this form the problem appeared already in 1960, when Evans [6] stated his
now classic conjecture that for every positive integer n, if n − 1 edges in Kn n, have been (properly)
colored, then the partial coloring can be extended to a proper n‐edge coloring of Kn n, . This
conjecture was solved for large n by Häggkvist [14] and later for all n by Smetaniuk [17], and
independently by Andersen and Hilton [2]. Moreover, Andersen and Hilton [2] characterized
which n n× partial Latin squares with exactly n nonempty cells are completable.

In this paper we consider the edge precoloring extension problem for the family of hy-
percubes. Although matching extendability and subgraph containment problems have been
studied extensively for hypercubes (see, eg, [8,11,18,19] and references therein), the edge pre-
coloring extension problem for hypercubes seems to be a hitherto quite unexplored line of
research. As in the setting of completing partial Latin squares (and unlike the papers [5,10]) we
consider only proper edge colorings of hypercubes Qd using exactly QΔ( )d colors.

We prove that every edge precoloring of the d‐dimensional hypercubeQd with at most d − 1

precolored edges is extendable to a d‐edge coloring of Qd, thereby establishing an analogue of
the positive resolution of Evans' conjecture. Moreover, similarly to [2] we also characterize
which proper precolorings with exactly d precolored edges are not extendable to proper d‐edge
colorings of Qd. We also consider the cases when the precolored edges form an induced
matching, or one or two hypercubes of smaller dimension. The paper is concluded by a con-
jecture and some examples and remarks on edge precoloring extension of general d‐regular
bipartite graphs.

2 | PRELIMINARIES

Unless otherwise stated all (partial) edge colorings (or just colorings) in this paper are proper.
Moreover, all proper d‐edge colorings use colors d1, …, unless otherwise stated. If φ is an edge
precoloring of G, and an edge e is colored under φ, then we say that e is φ‐precolored.

If φ is a (partial) proper t‐edge coloring of G and a b t1 ,≤ ≤ , then a path or cycle in G is
called a b( , )‐colored under φ if its edges are colored by colors a and b alternately.

In the above definitions, we often leave out the explicit reference to a coloring φ, if the
coloring is clear from the context.
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Havel and Moravek [13] (see also [12]) proved a criterion for a graphG to be a subgraph of a
hypercube:

Proposition 2.1. A graph G is a subgraph of Qd if and only if there is a proper d‐edge
coloring of G with integers d{1, …, } such that

(i) in every path of G there is some color that appears an odd number of times;
(ii) in every cycle of G no color appears an odd number of times.

A dimensional matching M ofQd is a perfect matching ofQd such thatQ M−d is isomorphic
to two copies of Qd−1; evidently there are precisely d dimensional matchings in Qd. We shall
need the following easy lemma.

Lemma 2.2. Let d 2≥ be an integer. There are d different dimensional matchings in Qd;
indeed Qd decomposes into d such perfect matchings.

The proof is left to the reader.
Intuitively, the colors in the proper edge coloring in Proposition 2.1 correspond to dimen-

sional matchings in Qd (as pointed out in [12]). In particular, Proposition 2.1 holds if we take
the dimensional matchings as the colors. Furthermore we have the following.

Lemma 2.3. The subgraph induced by r dimensional matchings in Qd is isomorphic to a
disjoint union of r‐dimensional hypercubes.

This simple observation shall be used quite frequently below.

We shall also need some standard definitions on list edge coloring. Given a graph G, assign
to each edge e of G a set e( ) of colors. Such an assignment  is called a list assignment for G
and the sets e( ) are referred to as lists or color lists. If all lists have equal size k, then  is called
a k‐list assignment. Usually, we seek a proper edge coloring φ ofG, such that φ e e( ) ( )∈ for all
e E G( )∈ . If such a coloring φ exists, thenG is ‐colorable and φ is called an ‐coloring. Denote
by χ G′ ( )L the minimum integer t such thatG is‐colorable whenever is a t‐list assignment. A
fundamental result in list edge coloring theory is the following theorem by Galvin [9]. As usual,
χ G′( ) denotes the chromatic index of a multigraph G.

Theorem 2.4. For any bipartite multigraph G χ G χ G, ′ ( ) = ′( )L .

3 | EXTENDING EDGE PRECOLORINGS OF HYPERCUBES

We begin this section by giving a short proof of the following theorem, thereby establishing an
analogue for hypercubes to the positive solution of the Evans' conjecture.

Theorem 3.1. Let d 2≥ be a positive integer. If φ is an edge precoloring of at most d − 1

edges of the hypercube Qd, then φ can be extended to a proper d‐edge coloring of Qd.

Proof. The proof is by induction on d. For d = 2, the statement is straightforward.
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Suppose that d > 2 and that the theorem holds for Qd−1. Let φ be an edge precoloring
of at most d − 1 edges of Qd. By Lemma 2.2, Qd has d perfect matchings M such that
Q M−d is the disjoint union of two copies of Qd−1. Since at most d − 1 edges of Qd are
precolored, there is such a perfect matching M̂ satisfying that no edge of M̂ is precolored.
Let H1 and H2 be the components ofQ M− ˆ

d . We distinguish between two different cases.

Case 1. H1 has at least 1 and at most d − 2 precolored edges.

Without loss of generality we assume that the precoloring ofQd uses colors d1, …, − 1.
Since H1 contains at most d − 2 precolored edges, there is, by the induction hypothesis, a
proper d( − 1)‐edge coloring φ1 of H1 which is an extension of the restriction of φ to H1.
Similarly, there is a proper d( − 1)‐edge coloring φ2 of H2 which is an extension of the
restriction of φ to H2. By coloring the edges of M̂ with color d, we obtain a proper d‐edge
coloring of Qd.

Case 2. H1 has exactly d − 1 precolored edges.

Without loss of generality we assume that at least one edge in Qd is precolored with
color 1. Define a new edge precoloring φ′ of Qd by removing color 1 from any precolored
edge of Qd that is colored 1. By the induction hypothesis, there is a proper d( − 1)‐edge
coloring φ ′1 of H1 using colors d2, 3, …, which is an extension of φ′. From φ ′1 we define a
new proper edge coloring φ1 of H1 by setting φ e( ) = 11 for every edge e with φ e( ) = 1, and
retaining the color of every other edge of H1. Then φ1 is an extension of φ on the graph H1.

Let φ2 be an edge coloring of H2 obtained by coloring every edge of H2 with the color of
the corresponding edge of H1 under φ1.

1 Now, for any vertex v of H1, if color t does not
appear on an edge incident to v t d, 1 ≤ ≤ , then color t does not appear on any edge
incident to the corresponding vertex of H2. Thus we may extend φ1 and φ2 to a proper
edge coloring ψ of Qd by, for any edge e of M̂ , coloring e with the color in d{1, 2, …, } not
appearing on any edge incident to one of its endpoints. Clearly, ψ is an extension of φ.

By symmetry, it suffices to consider the two different cases above. Hence, the theorem
follows. □

Ryser [16] proved a necessary and sufficient condition for an n n× partial Latin square where all
nonempty cells lie in a completely filled r s× subrectangle to be completable. In particular, his result
implies that any n n× partial Latin square, where all nonempty cells lie within an n n2 × 2⌊ ∕ ⌋ ⌊ ∕ ⌋

subrectangle, is completable. We note the following analogue for hypercubes:

Proposition 3.2. If φ is a proper d‐edge coloring of Q Qr d⊆ , then φ can be extended to a
proper edge coloring of Qd.

We provide a brief sketch of the proof.

1Here, and in the following, two edges of H1 and H2 are corresponding if their endpoints are joined by two edges of M .
Similarly, two vertices are corresponding if they are joined by an edge of M .
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Proof. (Sketch). Evidently, Qr is a component of the subgraph of Qd induced by exactly
r dimensional matchings in Qd. It suffices to prove that if Qr+1 is a hypercube of dimension
r + 1 which is contained inQd, and which containsQr , then there is a proper d‐edge coloring
of Qd that agrees with φ. However, such a graph Qr+1 consists of two copies of Qr and a
dimensional matching joining corresponding vertices of the two copies of Qr . We may thus
obtain a proper d‐edge coloring of Qr+1 as in the proof of the preceding theorem. □

If we do not insist that all edges in a subgraph ofQd isomorphic toQr have to be precolored,
then we have the following.

Corollary 3.3. If r d 2≤ ∕ , then any partial proper edge coloring of Q Qr d⊆ with colors
d1, …, can be extended to a proper d‐edge coloring of Qd.

Proof. It suffices to prove that there is a proper d‐edge coloring ofQr that agrees with the
given partial edge coloring φ ofQr ; invoking Proposition 3.2 then yields the desired result.
Since r d 2≤ ∕ , such a proper d‐edge coloring can be obtained by greedily coloring the
uncolored edges of Qr . □

Note that the bound on r is sharp, since there is a partial proper edge coloring ofQd 2+1∕ with
colors d1, …, that cannot be extended to a proper d‐edge coloring of Qd: Let uv be an edge of
Qd 2+1∕ and color the edges incident with u and distinct from uv by colors d1, …, 2∕ , respectively;
color the edges incident with v and distinct from uv by colors d d2 + 1, …,∕ , respectively. The
resulting partial edge coloring can clearly not be extended to a proper d‐edge coloring of Qd.

Our next result establishes an analogue for hypercubes of the characterization of Browning
et al [3] of when a partial Latin square, the nonempty cells of which constitute two Latin
subsquares, is completable.

Theorem 3.4. Let Qk1
and Ok2

be two hypercubes of dimensions k1 and k2, respectively,
contained in a d‐dimensional hypercubeQd, and let f be a proper edge coloring ofQ Ok k1 2

∪

such that the restriction of f to Q O( )k k1 2
is a proper edge coloring using k k( )1 2 colors A A( )1 2

from d{1, …, }. Then the coloring f is extendable to a proper d‐edge coloring ofQd unlessQk1

and Ok2
are disjoint, a vertex of Qk1

is adjacent to a vertex of Ok2
, and d A A1 2≤ ∣ ∪ ∣.

We shall need the following easy lemma; the proof is left to the reader.

Lemma 3.5. LetQk1
andOk2

be hypercubes contained in a hypercubeQd of larger dimension.
If Q Ok k1 2

∩ ≠ ∅, then the intersection Q Ok k1 2
∩ is a hypercube of a smaller dimension.

Proof of Theorem 3.4. Let f1 ( f2) denote the restriction of the coloring f to Qk1
(Ok2

). Let
 be the set of dimensional matchings in Qd, and denote by 1 and 2 the set of
dimensional matchings that Qk1

and Ok2
occupies, respectively. Assume that Qk1

and Ok2

together contain edges from k‐dimensional matchings, put =k 1 2  ∪ , and let k
be the set of subhypercubes of Qd induced by all the dimensional matchings in k .

Let H1 and H2 be the components of k that containsQk1
andOk2

, respectively. Suppose
first thatQk1

andOk2
are disjoint subgraphs ofQd. This implies that H1 and H2 are disjoint.

By Proposition 3.2, there is a proper edge coloring g1 of H1 which agrees with f1 and
uses exactly k colors from d{1, …, }, and a proper edge coloring g2 of H2 which agrees with
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f2 and uses exactly k colors from d{1, …, } (possibly distinct from the ones used in the
coloring of H1). Additionally, we choose these edge colorings so that gi uses as many
colors from A i3− as possible.

Note that if the coloring g1 or g2 uses some color not in A A1 2∪ , then A A k<1 2∣ ∪ ∣ ,
and both g1 and g2 use all colors in A A1 2∪ and k A A− 1 2∣ ∪ ∣ additional colors from

d{1, …, }. Clearly, we may then assume that g1 and g2 use the same additional colors
from d A A{1, …, } ( )1 2⧹ ∪ .

Case 1. There is an edge e between a vertex of H1 and a vertex of H2.

We prove that the coloring f can be extended to a d‐edge coloring of Qd

if d A A− > 01 2∣ ∪ ∣ .
Let M be the dimensional matching that contains e. Consider the set of subhypercubes

k+1 induced by the set of dimensional matchings M{ }k ∪ . Since e is adjacent to both
vertices of H1 and H2 we have that H1 and H2 are subgraphs of the same component H
in k+1 .

Now, if A A k<1 2∣ ∪ ∣ , then g1 and g2 use the same k colors from d{1, …, }. Moreover,
d k + 1≥ , because M k∉ . This implies that there is a color c d{1, …, }∈ which is not
used in the coloring g1 or g2. By coloring all the edges of the dimensional matching M
with one endpoint in H1 and one endpoint in H2 by color c, we obtain a proper edge
coloring of H ; by Proposition 3.2 this edge coloring can be extended to a proper d‐edge
coloring of Qd. Clearly, this coloring is an extension of f .

If, on the other hand, A A k1 2∣ ∪ ∣ ≥ , then g1 and g2 use only colors from A A1 2∪ , and
since d A A> 1 2∣ ∪ ∣, there is a color c d{1, …, }∈ which is not used in the coloring g1 or g2;
as in the preceding paragraph, we conclude that f is extendable.

Case 2. There is no pair of adjacent vertices where one is in H1 and the other in H2.

Consider the graph k ; by Lemma 2.3, k consists of disjoint k‐dimensional
hypercubes. We define a new graph G where every component Hi in k is represented
by a vertex uHi

, and where uHi
and u i j,Hj

≠ , are adjacent if there is an edge joining a
vertex of Hi with a vertex of Hj. It is easy to see that G is a regular bipartite graph with
degree d k− .

We define a list assignment  for G by for every edge e u u= H Hi j
of G and every color

c d{1, …, }∈ including c in e( ) if

• c does not appear in the coloring of H1 if i = 1 or j = 1.
• c does not appear in the coloring of H2 if i = 2 or j = 2.

Since H1 and H2 do not contain pairs of adjacent vertices, e d k( ) − ≥ for all edges
e E G( )∈ . Thus, by Theorem 2.4, there is a proper edge coloring of G with support in the
lists. By coloring all edges going between Hi and Hj by the color of the edge e u u= H Hi j

,
and coloring every uncolored subhypercube Hi in k by k colors which does not appear
on the edges incident with uHi

in G, we obtain a proper d‐edge coloring of Qd that is an
extension of f .

Let us now consider the case whenQk1
andOk2

are not disjoint. IfQk1
andOk2

intersect
in only one vertex, then Qk1

and Ok2
occupy different dimensional matchings and
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A A =1 2∩ ∅. Hence, for i = 1, 2, by Lemma 2.3 and König's edge coloring theorem, there
is a proper edge coloring gi with colors only from Ai of the subgraph ofQd induced by the
matchings in i which agrees with fi. Similarly, the subgraph of Qd induced by k ⧹
is d k( − )‐regular; so if d k> , then there is, by König's edge coloring theorem, a proper
d k( − )‐edge coloring of this graph using colors only from the set d A A{1, …, } ( )1 2⧹ ∪ .
This coloring, along with g1 and g2, yields a proper d‐edge coloring of Qd that is an
extension of f .

Suppose now thatQ Ok k1 2
∩ contains at least one edge; by Lemma 3.5, this intersection

is an r‐dimensional hypercube Dr (r 1≥ ). Also, H H=1 2.
We shall prove that there is a proper edge coloring of H1 that agrees with f and uses at

most d colors; the result then follows by invoking Proposition 3.2. If D O=r k2
(or

D Q=r k1
), then obviously f is extendable, so we assume that this is not the case.

Thus k r− 12 ≥ .
Let us consider the restriction fr of the coloring f to Dr. Since Qk1

and Ok2
are both

regular bipartite graphs, and the restrictions of f to Qk1
and Ok2

are both proper edge
colorings using a minimum number of colors, the coloring fr is a proper edge coloring
using exactly r colors; that is, A A r=1 2∣ ∩ ∣ .

Consider the subgraph k1
 of Qd induced by all dimensional matchings in 1 .

Consider a subhypercube Q ′k1
of dimension k1 in k1

 that lies in H1, and such that the
vertices of Qk1

and Q ′k1
are adjacent via a subset M1 of edges lying in a dimensional

matching. Note that some edges of M1 and Q ′k1
are in Ok2

. Let S E Q E O= ( ) ( )′k k1 1 2
∩ ,

T M E O= ( )k1 1 2
∩ . By coloring the edges of E Q S( )′k 11

⧹ by the colors of the corresponding
edges in Qk1

and coloring all the edges of M T1 1⧹ by a fixed color c A A2 1∈ ⧹ (such a color
exists since k r− 12 ≥ ), we obtain an edge coloring of the subhypercube Qk +11

containing
Qk1

and Q ′k1
. This edge coloring is proper, since all common colors of A1 and A2 appear in

the coloring of Dr and are therefore not used in the coloring of E Q S( )′k 11
⧹ . Moreover,

O Qk k +12 1
∩ is an r( + 1)‐dimensional hypercube Dr+1 containing Dr , and if u is an

arbitrary vertex of Dr+1, then the set of colors incident with u in Q E D− ( )k r+1 +11
is

disjoint from A2.
If k r− = 12 , then we are done; the constructed edge coloring of H1 can by

Proposition 3.2 be extended to a proper d‐edge coloring of Qd.
Suppose now that k r− 22 ≥ . Let Ak +11

be the set of colors in A2 that has not been used
in the coloring of Q E D− ( )k r+1 +11

; since the coloring of Q E D− ( )k r+1 +11
is a proper

k( + 1)1 ‐edge coloring in which k1 colors are in A1, we have A k r= − − 1 1k +1 21
∣ ∣ ≥ .

Consider a subhypercube Q ′k +11
of H1 that occupy the same dimensional matchings as the

subhypercubeQk +11
, and such that the vertices ofQk +11

andQ ′k +11
are adjacent via a subset

M2 of edges lying in a dimensional matching. Note that some edges of M2 andQ ′k +11
are in

Ok2
. Let S E Q E O T M E O= ( ) ( ), = ( )′k k k2 +1 2 21 2 2

∩ ∩ . By coloring the edges of E Q S( )′k +1 21
⧹

by the colors of corresponding edges in Qk +11
and coloring all the edges of M T2 2⧹ by a

fixed color c Ak +11
∈ , we obtain a proper edge coloring of the subhypercube Qk +21

containing Qk +11
and Q ′k +11

, and where O Qk k +22 1
∩ is an r( + 2)‐dimensional hypercube

Dr+2 containing Dr+1. Moreover, if u is an arbitrary vertex of Dr+2, then the set of colors
incident with u in Q E D− ( )k r+2 +21

is disjoint from A2.
Now, if k r− = 22 , then we are done; otherwise, we continue the above process until

we get a proper edge coloring of H1, which can then be extended to a proper edge coloring
of Qd by Proposition 3.2. □
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Next, we consider the case when all precolored edges lie in a matching. We would like to
propose the following:

Conjecture 3.6. If φ is an edge precoloring of Qd where all precolored edges lie in an
induced matching, then φ is extendable to a proper d‐edge coloring.

In [4], we proved that this conjecture is true under the stronger assumption that every
precolored edge is of distance at least 3 from any other precolored edge. Moreover, by results in
[18], Conjecture 3.6 is true in the case when all precolored edges have the same color.

Here we prove that the conjecture is true when all precolored edges lie in at most two
distinct dimensional matchings.

Proposition 3.7. If the precolored edges of Qd form an induced matching all edges of
which lie in two dimensional matchings, then the precoloring is extendable.

Proof. Let M1 and M2 be the two dimensional matchings of Qd containing all precolored
edges. Denote this precoloring by φ. By Lemma 2.3, Q M M−d 1 2∪ is isomorphic to four
copies H H, …,1 4 of the d( − 2)‐dimensional hypercube. Moreover, the graphQ M M[ ]d 1 2∪

induced by M M1 2∪ is a disjoint union of two‐dimensional hypercubes, and every vertex
of Hi is adjacent to precisely two edges from Q M M[ ]d 1 2∪ .

Since the precolored edges form an induced matching, at most one edge of each
component of Q M M[ ]d 1 2∪ is precolored. From the precoloring φ of Q M M[ ]d 1 2∪ we
define an edge precoloring φ′ of Q M M[ ]d 1 2∪ that satisfies the following:

• φ′ agrees with φ on any edge that is colored under φ;
• for each component of Q M M[ ]d 1 2∪ , exactly two edges in this component are colored
under φ′; moreover, these two edges are nonadjacent and have the same color under φ′.

Trivially, there is such a precoloring φ′; so to prove the theorem, it suffices to prove
that there is a proper d‐edge coloring f of H1 such that for every edge e of H1, there is no
adjacent edge e′ in Q M M[ ]d 1 2∪ such that f e φ e( ) = ′( ′). This follows from the
observation that given such a coloring f of H1, we may color the edges of H H,2 3, and
H4 correspondingly, and thereafter color the uncolored edges of Q M M[ ]d 1 2∪ by for each
edge using the unique color not appearing at any of its endpoints.

To construct such a coloring of the edges of H1 we define a list assignment L for H1 by
for every edge e E H( )1∈ setting

L e d φ e e e( ) = {1, …, } { ′( ′) : ′ is adjacent to }.⧹

Since every edge of H1 is adjacent to two φ′‐precolored edges, L e d( ) − 2≥ for every
edge e E H( )1∈ . Hence, by Theorem 2.4, there is an L‐coloring of H1. □

Note that the condition on the matching being induced is the best possible in terms of size of
a precolored subset of a dimensional matching that is extendable to a proper d‐edge coloring of
Qd. To see this, color all 2d−2 edges of a maximal induced matching M1 contained in a di-
mensional matching M with color 1. Note that any extension of this precoloring uses color 1 on
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all edges of M , because M1 is a maximal induced matching of M . So by coloring one edge of
M M1⧹ by color 2, we obtain a nonextendable edge precoloring.

Next, we shall establish an analogue for hypercubes of the characterization by Andersen and
Hilton [2] of which n n× partial Latin squares with exactly n nonempty cells are completable.
We shall prove that a proper precoloring of at most d edges inQd is always extendable unless the
precoloring φ satisfies any of the following conditions:

(C1) There is an uncolored edge uv in Qd such that u is incident with edges of k d≤ distinct
colors and v is incident to d k− edges colored with d k− other distinct colors (so uv is
adjacent to edges of d distinct colors).

(C2) There is a vertex u and a color c such that u is incident with at least one colored edge, u is
not incident with any edge of color c, and every uncolored edge incident with u is adjacent
to another edge colored c.

(C3) There is a vertex u and a color c such that every edge incident with u is uncolored and
every edge incident with u is adjacent to another edge colored c.

(C4) d = 3 and the three precolored edges use three different colors and form a subset of a
dimensional matching.

For i = 1, 2, 3, 4, we denote by i the set of all colorings of Q d, 1d ≥ , satisfying the corre-
sponding condition above, and we set = i ∪ . Let us briefly verify that if φ is a precoloring of
Qd with exactly d precolored edges and φ ∈ , then φ is not extendable.

Suppose first that the precoloring φ satisfies condition (C1). Since the edge uv is adjacent to
edges of d distinct colors, there is no proper d‐edge coloring ofQd that agrees with φ. If φ, on the
other hand, satisfies condition (C2), then since u has degree d, any extension of φ satisfies that
the color c must appear on one of the uncolored edges incident with u. However, such a d‐edge
coloring cannot be proper since this implies that there is a vertex that is incident with two edges
colored c.

Suppose now that φ satisfies condition (C3). If f is an extension of φ, then since u has degree
d, at least one edge incident with u is colored c. However, such a d‐edge coloring is not proper,
so φ is not extendable. That φ is not extendable if it satisfies condition (C4) is a straightforward
verification and is left to the reader.

Theorem 3.8. If φ is a proper d‐edge precoloring of Qd with exactly d precolored edges
and φ ∉ , then φ is extendable to a proper d‐edge coloring of Qd.

The proof of this theorem is rather lengthy so we devote Section 4 to this proof.

4 | PROOF OF THEOREM 3.8

The proof of Theorem 3.8 proceeds by induction. It is easily seen that the theorem holds when
d {1, 2}∈ ; let us consider the case when d = 3.

Let φ be a precoloring of Q3 and let us first assume that all precolored edges have the same
color. If all three precolored edges lie in distinct dimensional matchings, then φ 3∈ , and if all
three edges lie in the same dimensional matching, then we may color all the edges in this
dimensional matching by the same color, and then obtain an extension of φ by König's edge
coloring theorem. Moreover, in the case when exactly two of the precolored edges are in the
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same dimensional matching, then these two edges must be at distance 1 from each other, and so
there is a perfect matching containing all precolored edges; hence, φ is extendable.

Suppose now that two colors appear on the precolored edges. Let e e e, ,1 2 3 be the precolored
edges ofQ3 and assume that two edges from e e e{ , , }1 2 3 , say e1 and e2, have the same color and e3

has another color under φ. If e1 and e2 lie in the same dimensional matching, then φ is
extendable provided that there is a perfect matching of Q3 containing e1 and e2, but not e3. If e1

and e2 lie on a common 4‐cycle, then there is certainly such a matching; if e1 and e2 do not lie on
a common 4‐cycle, then this holds unless φ 2∈ .

Let us now assume that e1 and e2 lie in different dimensional matchings. By symmetry, we
may assume that e1 is any fixed edge ofQ3, which then yields four different choices for the edge
e2, because every edge ofQ3 is adjacent to exactly four other edges. In fact, again by symmetry, it
suffices to consider the two different cases when e2 is in different dimensional matchings
(distinct from the one containing e1). It is straightforward to verify that in both cases, the edges
e1 and e2 are contained in a perfect matching not containing e3 unless φ 2∈ . Hence, if φ ∉ ,
then φ is extendable.

Finally, let us consider the case when three distinct colors appear on edges under φ. If all
three precolored edges e e e, ,1 2 3 lie in distinct dimensional matchings, then φ trivially is ex-
tendable. Moreover, since φ ∉ , all three precolored edges do not lie in the same dimensional
matching. Hence, it suffices to consider the case when exactly two of the precolored edges lie in
the same dimensional matching. We assume φ e i( ) =i .

Suppose, without loss of generality, that e1 and e2 lie in the same dimensional matching. We
first consider the case when e1 and e2 lie on a common 4‐cycle. Since φ ∉ , either e3 is adjacent
to both e1 and e2, or not adjacent to any of these edges. In both cases, φ is extendable by coloring
all edges in the dimensional matching containing e3 by color 3. If, on the other hand, e1 and e2

do not lie on a common 4‐cycle, then we may extend φ by coloring all edges of the dimensional
matching containing e3 by color 3. This completes the base step of our inductive proof of
Theorem 3.8.

Let us now assume that the theorem holds for any hypercube of dimension less than d, and
consider a precoloring φ of Qd. The induction step of the proof of Theorem 3.8 is done by
proving a series of lemmas. We shall also need two preparatory lemmas.

Lemma 4.1. Let Qd−1 be the d( − 1)‐dimensional hypercube, where d − 1 3≥ . Suppose
that d − 1 edges are precolored with color 1 inQd−1, and that there is a vertex u not incident
with any precolored edge, but every neighbor of u is incident with an edge colored 1. Let e1 be
an uncolored edge which is not incident with u, but adjacent to at least one precolored edge.
Unless d − 1 = 3 and one end x of e1 is incident with three uncolored edges all of which are
adjacent to precolored edges, then there is a cycle C v v v v= … k1 2 2 1 in Qd−1 of even length
with the following properties:

(i) v v e=1 2 1 and u V C( )∉ ,
(ii) none of the edges in v v v v v v{ , , …, }k k1 2 3 4 2 −1 2 is precolored,
(iii) if any vertex in v v{ , …, }k1 2 is incident with a precolored edge, then this edge lies on C.

Proof. Let M M, …, d1 −1 be the d − 1 dimensional matchings in Qd−1 and let
e wx M=1 1∈ . Let e vw M=2 2∈ be a precolored edge adjacent to e1.

We first consider the case when e1 is adjacent to two precolored edges. If the other
precolored edge e3 adjacent to e1 is in M2, then v is adjacent to an endpoint of e3 via an
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edge from M1, so there is trivially a 4‐cycle satisfying (i)–(iii). So we assume that e M3 3∈ .
Moreover, since Qd−1 has no odd cycles, we may without loss of generality assume that v
and x are both adjacent to u. Since any 4‐cycle has edges from exactly two‐dimensional
matchings (which, eg, follows from Proposition 2.1(ii)), this implies that uv M1∈

and ux M2∈ .
Consider the subgraph of Qd−1 induced by the edges in M M M1 2 3∪ ∪ ; by Lemma 2.3,

this is a disjoint union of three‐dimensional hypercubes. Let F be the component of this
subgraph containing e e,1 2, and e3. Since any precolored edge is adjacent to an edge
incident with u, it follows that the edge of M3 incident with u is adjacent to some
precolored edge e′ that lies in M1 or in Mj for some j 4≥ . Moreover, e e, ′3 , and e2 are the
only precolored edges incident with vertices of F . If e M′ 1∈ , then there is a 6‐cycle in F

containing e e e e, , , ′1 2 3 that satisfies (i) to (iii); if e M′ 1∉ , then there is a 6‐cycle in F

containing e e e, ,1 2 3, but no vertex incident with e′, which satisfies (i)–(iii).
Suppose now that e wx=1 is adjacent to precisely one precolored edge e vw=2 . Since

every precolored edge is adjacent to an edge incident with u, either v or w is adjacent to u.
Let us first assume that w is adjacent to u. Since x is not incident to any precolored edge,
and all precolored edges are adjacent to edges incident with u, the unique vertex
a w x v{ , , }∉ in the component of the subgraph Q M M[ ]d 1 2∪ containing e1 is not incident
with a precolored edge. Thus, there is a 4‐cycle vwxav whose edges lie in M M1 2∪ and
which satisfies (i)–(iii).

Let us now consider the case when v is adjacent to u. Then we may assume that
e uv=3 is in some dimensional matching distinct from M1 and M2, since uv M1∈ implies
that x is adjacent to u and thus x is incident with some precolored edge, contradicting our
assumption. We assume e M3 3∈ . As above we consider the subgraph of Qd−1 induced by
the edges in M M M1 2 3∪ ∪ . Let F be the component of this induced subgraph containing
e e,1 2, and e3. Straightforward case analysis shows that there is a 4‐ or 6‐cycle satisfying
(i)–(iii) unless every edge incident with x in F is adjacent to a precolored edge of F . It
remains to prove that if d − 1 4≥ , and every edge incident with x in F is adjacent to a
precolored edge of F , then there is a cycle C satisfying (i)–(iii). Consider the subgraph of
Qd−1 induced by M M M M1 2 3 4∪ ∪ ∪ . Let K be the component of this induced subgraph
containing F . Since all precolored edges are adjacent to edges incident with u, K contains
at most one precolored edge not in F . Using these facts, it is straightforward that K has a
cycle containing all three precolored edges of F and satisfying (i)–(iii). □

Lemma 4.2. Let φ1 be an edge precoloring of d − 1 edges of Qd−1 such that there is a
vertex u incident with an edge e′ precolored 2, and where every other edge incident with u is
not precolored but adjacent to an edge precolored 1. Let e1 be some edge precolored 1 inQd−1.
There is a partial proper edge coloring f1 ofQd−1 with colors 1 and 2 satisfying the following:

(i) Any vertex of Qd−1 is incident with at least one edge that is colored under f1.
(ii) The coloring f1 agrees with φ1 on any edge that is colored under φ1.
(iii) e1 is contained in a cycle that is (1, 2)‐colored under f1, and which does not contain e′.

Proof. Note that the condition of the lemma implies that e1 is no incident with u, but an
end of e1 is adjacent to u. Let M M M, ,1 2 3 be three dimensional matchings in Qd−1 that
contain e e, ′1 and an edge adjacent to both e′ and e1.
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The spanning subgraph of Qd−1 induced by M M M1 2 3∪ ∪ is a disjoint union of copies
of Q3; let F be the component containing e1 and e′.

If e1 and e′ lie in distinct dimensional matchings, then it is easy to see that there is a
4‐cycle C1 in F containing e1 and no other precolored edge, and that satisfies that no
vertex of C1 is incident to a precolored edge that is not in C1. We color the edges of C1 by
colors 1 and 2 alternately such that the coloring agrees with φ1. Additionally we retain
the color of any precolored edges of F , and we possibly color one additional edge in F by
color 2 so that every vertex of F is incident with a colored edge. Denote the obtained
coloring of F by h1.

Now, since every precolored edge has one endpoint adjacent to u, any component T of
Q M M M[ ]d−1 1 2 3∪ ∪ distinct from F contains at most one precolored edge. Hence, there
is a perfect matchingMT ofT that does not contain any precolored edge. We extend h1 to a
coloring of Qd−1 satisfying (i) to (iii) by retaining the color of any φ1‐precolored edge not
in F , and for every componentT ofQ M M M[ ]d 1 2 3∪ ∪ distinct from F we color every edge
in MT by color 2.

Suppose now that e1 and e′ lie in the same dimensional matching, M1 say. Then e1 and
e′ are contained in a 4‐cycle of F . Suppose that the edges of this cycle are in M M1 3∪ . If
M E F( )3 ∩ contains no φ1‐precolored edge, then e1 is contained in a 4‐cycle such that no
vertex of this cycle is incident with another φ‐precolored edge. On the other hand, if
M E F( )3 ∩ contains some precolored edge, then e1 is contained in a 6‐cycle C2 not
containing e′, but two other precolored edges colored 1. Moreover, no vertex of C2 is
incident to a precolored edge that is not inC2. Thus there is a proper edge coloring h2 ofC2

with colors 1 and 2 that agrees with φ1.
The coloring h2 can be extended to a partial proper edge coloring of Qd−1 satisfying

(i)–(iii) by proceeding as above. □

We now turn to the induction step of the proof of Theorem 3.8. Henceforth, we shall always
assume that φ is a proper d‐edge precoloring of precisely d edges in Qd. Moreover, we assume
that M is a dimensional matching in Qd and that H1 and H2 are the components of Q M−d ; so
H1 and H2 are both isomorphic toQd−1. As in the proof of Theorem 3.1, two edges of H1 and H2

are corresponding if their endpoints are joined by two edges of M . Similarly, two vertices are
corresponding if they are joined by an edge of M .

In the proofs of the lemmas we shall generally distinguish between the cases when there is a
dimensional matching that contains no precolored edge, and when there is no such dimen-
sional matching.

Lemma 4.3. If all d precolored edges in Qd have the same color and φ 3∉ , then φ is
extendable.

Proof. Suppose that the color used by φ is 1. It follows from König's edge coloring
theorem that for proving the lemma, it suffices to show that there is a perfect matching in
Qd containing all edges precolored 1.

Case 1. Every dimensional matching contains a precolored edge.

The assumption implies that M contains precisely one edge u u1 2 colored 1,
where u V H( )i i∈ .
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Case 1.1. No precolored edges are in H2.

The conditions imply that d − 1 precolored edges are in H1. By coloring the edges of H2

corresponding to the precolored edges of H1 by color 1, coloring all edges of M that are
not adjacent to any colored edges by color 1, we obtain a partial coloring where the
precolored edges form a perfect matching of Qd; thus φ is extendable.

Case 1.2. Both H1 and H2 contain at most d − 3 precolored edges.

Suppose that there is a vertex x1 of H1 adjacent to u1 such that neither x1 nor the vertex
x2 of H2 corresponding to x1 is incident with a precolored edge. Consider the precoloring
of H1 obtained from the restriction of φ to H1 by in addition coloring x u1 1 with 1. By
Theorem 3.1, this precoloring is extendable to a proper d( − 1)‐edge coloring f1 of H1; and
similarly there is an extension f2 of the precoloring of H2 obtained from the restriction of
φ to H2 by in addition coloring u x2 2 by color 1; this is evident since the obtained
precolorings of H1 and H2, respectively, both contain at most d − 2 precolored edges. We
now define a perfect matching containing all φ‐precolored edges of Qd by removing u x1 1

and u x2 2 from the union of all edges colored 1 under f1 or f2, and adding the edges u u1 2

and x x1 2. We conclude that φ is extendable.
Now suppose that for each neighbor x1 of u1 either x1 or the corresponding vertex

x2 of H2 is incident with a precolored edge. Since Qd is d‐regular and contains altogether
d precolored edges, this implies that all precolored edges have one end which is
adjacent to either u1 or u2. Now, since Qd contains d precolored edges, M contains
one precolored edge, and both H1 and H2 contain at most d − 3 precolored edges,
d d d( − 3) + ( − 3) + 1 ≥ , and so d 5≥ . Thus u1 is adjacent to at least two vertices
incident with precolored edges in H1, and u2 is adjacent to two vertices of H2 incident with
precolored edges.

We shall need the following claim.

Claim 4.4. There is a dimensional matching Mj and a precolored edge vv M′ j∈ such
that not every other precolored edge has one end adjacent to either v or v′.

Proof. Recall that Proposition 2.1 holds if we take the dimensional matchings of Qd as
the colors in the proposition. Let M M, …, d1 be the dimensional matchings in Qd, where
M M=1 . Without loss of generality, we assume that there are precolored edges
e a b M=j j j j∈ and e a b M=k k k k∈ , such that bj and u1 are adjacent and u b Mj1 2∈ , and
bk and u1 are adjacent and u b Mk1 3∈ . If no endpoint of ej is adjacent to an endpoint of ek,
then we are done, so suppose, without loss of generality, that aj and bk are adjacent. By
Proposition 2.1(ii), this means that a b Mj j 3∈ and a b Mj k 2∈ . Now, H2 contains at least
one precolored edge ab, where either a or b is adjacent to u2 via an edge from a
dimensional matching that is distinct from M2 and M3, because otherwise, as for H1, it
would follow that at least one precolored edge of H2 would be inM2 orM3; a contradiction
to the assumption that all precolored edges are in distinct dimensional matchings. Thus,
without loss of generality, we assume that u a M2 4∈ . Moreover, since all precolored edges
lie in distinct dimensional matchings ab M M1 3∉ ∪ . Hence, all edges on the path
a b u u aj j 1 2 are in different dimensional matchings. Again using Proposition 2.1(ii), it thus
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follows that no endpoint of ab is adjacent to an endpoint of a bj j. We conclude that there is
a dimensional matching Mj and a precolored edge vv M′ j∈ such that not every other
precolored edge has one end adjacent to either v or v′. □

Let Mj be a dimensional matching as in the preceding claim. Then the graph Q M−d j,
consists of two copies J1 and J2 of Qd−1. Moreover, if both J1 and J2 contain at most d − 3

precolored edges, then we may proceed as above for obtaining an extension of φ.
Moreover, if d − 1 precolored edges lie in J1, then we proceed as in Case 1.1. We conclude
that it suffices to consider the case when d − 2 edges of H1 (or H2) are precolored.

Case 1.3. H1 contains d − 2 precolored edges and H2 contains one precolored edge.

Denote by v w2 2 the precolored edge of H2 and let v1 and w1 be the vertices of H1

corresponding to v2 and w2, respectively. If no precolored edge is incident with v1 or w1,
then we may color v w1 1 with color 1, and then color all edges of H2 corresponding to
precolored edges of H1 by color 1. The resulting coloring is extendable, since by coloring
any edge of M (including u u1 2), which is not adjacent to a colored edge, by color 1, the
precolored edges form a perfect matching of Qd, as required.

Thus, we may assume that some φ‐precolored edge in H1 is incident with v1 or w1, say
w1. Since there are d − 2 precolored edges in H1, the restriction of φ to H1 is extendable; in
particular, there is a perfect matching M* in H1 containing all precolored edges of H1.
Note that the edge of M* incident with u1 is not incident with w1. If u v M*1 1 ∉ , then let e′
be the edge of H2 corresponding to the edge of M* incident with u1. Then the precoloring
of H2 where e′ and v w2 2 are colored 1 is extendable, in particular there is perfect matching
M*2 in H2 containing both these edges. By removing the edge e′ from M*2 , removing the
corresponding edge from M* and including two edges from M , we obtain a perfect
matching in Qd containing all precolored edges of φ; hence, the coloring φ is
extendable. Thus, we may assume that u v M*1 1 ∈ , and, consequently, v1 is not incident
to any φ‐precolored edge. Moreover, if u1 is the only neighbor of v1 that is not incident with a
precolored edge of H1, then φ 3∈ , because all neighbors of v1 are incident with a precolored
edge in Qd. Thus, there is a neighbor y u1≠ of v1 in H1 that is not incident with any
precolored edge.

Consider the precoloring ψ of H1 obtained from the restriction of φ to H1 by also
coloring v y1 by color 1. If ψ is extendable to a proper d( − 1)‐edge coloring ψ′ of H1, then
in the matching of H1 containing all edges with color 1 under ψ′, u1 is matched to some
vertex distinct from v1, and, as before, this implies that φ is extendable. Thus it suffices to
consider the case when ψ is not extendable to a proper edge coloring of H1. Since there are
exactly d − 1 precolored edges under ψ, all of which have the same color, by the
induction hypothesis, there is some vertex a of H1 that is not incident with any
ψ‐precolored edge, but all neighbors of a are incident with ψ‐precolored edges. We shall
prove that this property also holds for the vertex u1 unless φ is extendable.

Claim 4.5. Every neighbor of u1 in H1 is incident with a ψ‐precolored edge unless φ is
extendable.

Proof. Assume to the contrary that u1 does not have this property. Then there is a
neighbor z v1≠ of u1 that is not incident to any φ‐precolored edge. Let α be the
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precoloring of H1 obtained from the restriction of φ to H1 by coloring the edge u z1 by color
1. As we have seen above, if any of the precolorings ψ or α of H1 is extendable (in H1) to a
proper d( − 1)‐edge coloring, then φ is extendable. (Because in both these extensions u1 is
matched to some other vertex than v1 in the matching induced by color 1.)

We conclude that since neither of α and ψ is extendable, there are vertices b1 and b2

such that under α every neighbor of b1 in H1 is incident with a precolored edge, and under
ψ every neighbor of b2 in H1 is incident with a precolored edge. Note that b b1 2≠ because
the vertices u v y z, , ,1 1 are all distinct and all vertices in H1 have degree d − 1 in H1. Since
d b− 1 3, 1≥ and b2 are both adjacent to endpoints of at least two distinct φ‐precolored
edges. Hence, the distance d b b( , )1 2 between b1 and b2 is at least 1 and at most 3. We
consider some different subcases.

Subcase A. d b b( , ) = 11 2 .

Since d b b( , ) = 11 2 and b1 and b2 are both adjacent to endpoints of at least two distinct
φ‐precolored edges e1 and e2 in H1, there are two 4‐cycles containing e1 and b b1 2, and e2

and b b1 2, respectively. However, this implies that e1 and e2 are in the same dimensional
matching; a contradiction to the assumption of Case 1. We conclude that the case
d b b( , ) = 11 2 is not possible.

Subcase B. d b b( , ) = 21 2 .

In this case, it follows that b1 and b2 have a common neighbor which is incident to an
edge which is precolored under φ. Then, since H1 is bipartite, b1 and b2 are adjacent to the
same end of every edge which is precolored under φ. If d − 1 = 3, then H1 contains two
φ‐precolored edges that lie in the same dimensional matching, because b1 and b2 lie on a
common 4‐cycle with edges from exactly two‐dimensional matchings; a contradiction to
the assumption of Case 1. If d − 1 4≥ , then H1 has at least 3 φ‐precolored edges, and thus
two adjacent edges of H1 lie on at least two distinct 4‐cycles; a contradiction because H1 is
isomorphic to Qd−1. We conclude that the case d b b( , ) = 21 2 is not possible.

Subcase C. d b b( , ) = 31 2 .

If d b b( , ) = 31 2 , then b1 and b2 are adjacent to distinct ends of an edge which is
precolored under φ. Since H1 is bipartite, this implies that b1 and b2 are adjacent to
distinct endpoints of every edge that is precolored under φ. If d − 1 = 3, then H1 contains
two φ‐precolored edges, and there is exactly one edge of H1 that we can color 1 so that b1

or b2 is adjacent to three vertices all of which are incident with an edge colored 1. This
contradicts that the vertices u v y z, , ,1 1 are all distinct.

Assume now that d − 1 4≥ . Then b1 and b2 are adjacent to distinct endpoints of at
least three φ‐precolored edges that lie in distinct dimensional matchings. In fact, we must
have d − 1 = 4. Indeed, recall that Proposition 2.1 holds if we take the colors to be the
dimensional matchings of Qd. It then follows from Proposition 2.1(ii) that two vertices in
a hypercube are endpoints of at most three distinct paths of length 3, where any two
central edges of the paths are in distinct dimensional matchings. Furthermore, since all
edges of these three distinct paths with endpoints b1 and b2 must lie in three distinct
dimensional matchings (which again follows from Proposition 2.1(ii)), these paths induce
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a hypercube F of dimension 3. Now, since in H u,1 1 is adjacent to at least two vertices that
are not incident with any φ‐precolored edges, u V F( )1 ∉ . Moreover, v b b{ , }1 1 2∉ , because
v1 has at least two neighbors that are not incident with any φ‐precolored edges of H1.
Now, since d − 1 = 4, and all φ‐precolored edges of H1 are in F , this implies that there is
a perfect matching of H1 containing all φ‐precolored edges of H1, and where u1 is matched
to some other vertex than v1; as before, this implies that φ is extendable. □

From the preceding claim, we conclude that we may assume that u1 is not incident to
any ψ‐precolored edge, but every neighbor of u1 is incident with a ψ‐precolored edge.

Now, since all φ‐precolored edges of H1 are also ψ‐precolored, both ends of v w1 1 are
incident with ψ‐precolored edges. Hence, by Lemma 4.1, there is a cycle C a a a a= … k1 2 2 1

of even length such that

(i) a v a w= , =1 1 2 1, and u V C( )1 ∉ ,
(ii) none of the edges in a a a a a a{ , , …, }k k1 2 3 4 2 −1 2 is ψ‐precolored in H1,
(iii) if any vertex in a a{ , …, }k1 2 is incident with a precolored edge, then this edge lies onC.

From the precoloring ψ of H1 we define another precoloring ψ1 of H1 by coloring all
uncolored edges in a a a a a a{ , , …, }k2 3 4 5 2 1 by color 1 and retaining the color of every other
edge. Next, we define a precoloring ψ2 of H2 by coloring all edges of H2 corresponding to
the edges in a a a a a a{ , , …, }k k1 2 3 4 2 −1 2 by color 1; furthermore, for any edge of H1 which is
ψ1‐precolored and does not lie on C, we color the corresponding edge of H2 by 1.

Note that a vertex of H2 is incident with a ψ2‐precolored edge if and only if the
corresponding vertex of H1 is incident with a ψ1‐precolored edge. Moreover, any edge in
Qd which is precolored under φ is also precolored under ψ1 or ψ2. Hence, we obtain an
extension of φ from ψ1 and ψ2 by coloring any edge of M which is not incident with a ψ1‐
precolored edge by color 1.

Case 2. There is a dimensional matching containing no precolored edge.

Without loss of generality, we assume that no edge of M is precolored.

Case 2.1. No precolored edges are in H2.

If all precolored edges lie in H1, then the precoloring is extendable, since by coloring
the edges of H2 corresponding to the precolored edges of H1 by color 1, and then coloring
the edges of M not adjacent to precolored edges by color 1, we obtain a monochromatic
perfect matching of Qd which contains all φ‐precolored edges of Qd.

Case 2.2. Both H1 and H2 contain at most d − 2 precolored edges.

If both H1 and H2 contain at most d − 2 precolored edges, then by Theorem 3.1, the
restriction ofφ toHi is extendable to d( − 1)‐edge coloring of H i, = 1, 2i ; thusφ is extendable.

Case 2.3. H1 contains d − 1 precolored edges and H2 contains one precolored edge.
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As in Case 1.3, we may assume that the edge v w1 1 of H1, corresponding to the
precolored edge v w2 2 of H2, is adjacent to at least one precolored edge of H1, since
otherwise φ is extendable.

Now, by the induction hypothesis, the restriction of φ to H1 is extendable (and thus there is
an extension of φ) unless there is a vertex u V H( )1∈ not incident to any precolored edge, and
satisfying that all neighbors of u in H1 are incident with precolored edges. Furthermore, if
v u=1 or w u=1 , then clearly φ 3∈ , so we assume that u v w{ , }1 1∉ .

If d − 1 = 3, and one end of v w1 1 is not incident to any precolored edge, but all
neighbors of v1 or w1 are incident with precolored edges, then φ 3∈ . Thus, since φ 3∉ ,
and v w1 1 is adjacent to at least one precolored edge, it follows from Lemma 4.1 that there
is a cycle C v v v v= … k1 2 2 1 of even length such that

(i) v w u V C= , ( )2 1 ∉ ,
(ii) none of the edges in v v v v v v{ , , …, }k k1 2 3 4 2 −1 2 is φ‐precolored in H1,
(iii) if any vertex in v v{ , …, }k1 2 is incident with a precolored edge, then this edge lies onC.

We may now finish the proof in this case by proceeding exactly as in Case 1.3 above,
using the cycle C to construct a precoloring of H2. □

Lemma 4.6. If only two distinct colors appear in the precoloring φ ofQd and φ ∉ , then
φ is extendable.

Proof. Without loss of generality we shall assume that colors 1 and 2 appear on edges
under φ.

Case 1. Every dimensional matching contains a precolored edge.

Without loss of generality, we assume that M contains an edge e u u=M 1 2 precolored 1
under φ, where u V H( )i i∈ .

Case 1.1. No precolored edges are in H2.

Suppose that color 1 does not appear in the restriction φ1 of φ to H1. If φ1 is extendable
to a proper edge coloring of H1 using colors d2, …, , then we obtain an extension of φ by
coloring H2 correspondingly, and then coloring all edges of M by color 1. So assume that
there is no such extension of φ1. By the induction hypothesis, there is a vertex u in H1 that
is not incident with any precolored edge, but all vertices in H1 adjacent to u are incident
with an edge precolored 2. If u is an endpoint of eM , then φ 2∈ ; so we assume that this is
not the case. Thus, either there is an edge e′ incident with u1 colored 2, or we can select e′
to be an arbitrary edge of H1 that is incident with u1 but not adjacent to any edge
precolored 2. In both cases, we define a precoloring φ ′1 of H1 by coloring e′ by color 1.
Then trivially there is a proper edge coloring f1 of H1 using colors d1, 3, …, that agrees
with φ ′1 . From f1, we define a proper edge coloring f ′

1 by recoloring all edges that are
precolored 2 under φ by color 2 and also recoloring e′ with color 2. This yields a coloring
of H1 that agrees with the restriction of φ to H1 and where color 1 does not appear at an
end of eM . Hence, we may color H2 correspondingly, and then color every edge of M by
the color in d{1, …, } missing at its endpoints to obtain an extension of φ.
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Suppose now that color 1 does appear on some edge of H1. By removing the color from
any edge of H1 that is precolored 1, we obtain a precoloring φ1 of H1. By Theorem 3.1,
there is a proper edge coloring of H1 using colors d2, …, that agrees with φ1. Now, by
recoloring any edge of H1 that is φ‐precolored 1 by color 1, thereafter coloring H2

correspondingly, and finally coloring all edges of M by the unique color missing at its
endpoints, we obtain an extension of φ.

Case 1.2. Both H1 and H2 contain at most d − 3 precolored edges.

The conditions imply that d 5≥ . If there is an edge e1 in H1 adjacent to eM , and such
that neither e1 nor the corresponding edge e2 of H2 is colored under φ, and neither of e1

and e2 is adjacent to an edge precolored 1 under φ distinct from eM , then we color e1 and e2

by color 1, and consider the precolorings of H1 and H2 obtained from the restriction of φ to
H1 and H2, respectively, along with coloring e1 and e2 by color 1. By Theorem 3.1, these
colorings are extendable to proper d( − 1)‐edge colorings f1 and f2 of H1 and H2,
respectively. Now, by recoloring e1 and e2 by color d and then coloring all edges of M by
the color missing at its endpoints we obtain the required extension of φ.

Now suppose that there are no edges e1 and e2 as described in the preceding paragraph.
SinceQ M−d contains exactly d − 1 precolored edges, and H1 and H2 are d( − 1)‐regular
bipartite graphs, this implies that any edge colored 2 under φ is adjacent to eM , and any
edge colored 1 under φ is adjacent to an edge e′ that is adjacent to eM . Thus either one or
two edges in Qd are colored 2 under φ.

Suppose first that there are (at least) two edges precolored 1 in H1 or H2, say H1. Let e ′1
and e ′2 be two such edges. Consider the subgraph J1 of Qd induced by all dimensional
matchings containing an edge precolored 1. Since there are at most two edges colored 2
under φ, the maximum degree of J1 is d − 1 or d − 2. Moreover, there is a proper edge
coloring of J Q E J= − ( )d2 1 using JΔ( )2 colors, and which agrees with the restriction of φ
to J2, because J2 is a collection of disjoint one‐ or two‐dimensional hypercubes, where
every component contains at most one precolored edge. Thus, φ is extendable if there is
an extension with JΔ( )1 colors of the restriction φ1 of φ to J1 (using distinct colors from the
extension of the restriction of φ to J2). Now, by the induction hypothesis, there is an
extension of φ1 if for no componentT of J1 the restriction of φ1 toT satisfies the condition
(C3) (with d − 1 or d − 2 in place of d). If there is such a component T of J1, then clearly
all precolored edges of J1 are inT and there is a vertex u ofT that is not incident with any
precolored edge, but any vertex adjacent to u inT is incident with a precolored edge. Thus
we may assume that e e,′ ′1 2, and eM are in the same component of J1, and one endpoint of
all these three edges is adjacent to u. Now, if u is adjacent to u2, then since T is bipartite,
this implies that eM and u u2 lie on 2 common 4‐cycles, which is not possible since T is
isomorphic to a hypercube. On the other hand, if u is adjacent to u1, then since T is
bipartite, by Proposition 2.1, this implies that e ′1 and e ′2 lie in the same dimensional
matching; a contradiction in both cases, so φ is extendable.

It remains to consider the case when only one edge in H1 and one edge in H2 is
precolored 1 under φ. Since at most two edges are precolored 2 under φ, this implies that
d = 5 and, consequently, there are exactly two edges colored 2 in Qd. Suppose that u v1 1

and u v2 2 are the edges colored 2 under φ, where u v E H( )i i i∈ . Let M2 be the dimensional
matching containing u v1 1, and let H′1 and H′2 be the components of Q M−d 2. Note that
u u1 2 and u v2 2 lie in the same component of Q M−d 2, H′1 say. Let u v′ ′2 2 be the edge of H2

′
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corresponding to u v2 2; then u v′ ′2 2 is not precolored under φ, because every dimensional
matching contains a single precolored edge. Consider the precoloring φ1 of Qd obtained
from the restriction of φ to H′1 by recoloring u v2 2 by color 3, and the precoloring φ2

obtained from the restriction of φ to H′2 by also coloring u v′ ′2 2 by color 3. Let us verify that
neither of φ1 and φ2 satisfies any of the conditions (C1) to (C3) (with 4 in place of d).
Indeed, H1

′ contains at most four precolored edges colored by exactly two distinct colors,
and, moreover, two precolored edges are adjacent; H′2 contains at most three precolored
edges. Thus, it follows from Theorem 3.1 and the induction hypothesis that there are
proper edge colorings f1 of H1

′ and f2 of H′2 using colors 1, 3, 4, 5 that agree with φ1 and φ2,
respectively. Now, by recoloring u v2 2 and u v′ ′2 2 by color 2 and coloring all edges of M2 by
the unique color missing at its endpoints, we obtain an extension of φ.

By symmetry, it remains to consider the case when H1 contains d − 2 precolored
edges, and H2 contains one precolored edge.

Case 1.3. H1 contains d − 2 precolored edges and H2 contains one precolored edge.

Suppose first that for every edge e1 in H1 that is adjacent to eM , either e1 or the
corresponding edge e2 of H2 is colored 2 under φ, or one of e1 and e2 is adjacent to an edge
colored 1 distinct from eM . If there are at least two edges precolored 1 in H1, then we
proceed as in the preceding case and consider the subgraphs J1 and J2 defined as above. So
suppose instead that there is only one edge precolored 1 in H1; then d = 4 and H1 contains
one edge precolored 1 and one edge precolored 2. If H2 contains an edge precolored 2,
then since all precolored edges lie in distinct dimensional matchings and all edges
precolored 2 are adjacent to eM , there is a perfect matching M* in Qd containing all
edges precolored 1 and no edge precolored 2. Since H1 and H2 both contain only one edge
precolored 2, this implies that φ is extendable. If H2 contains an edge precolored 1, then
one may proceed similarly; the details are omitted.

Let us now consider the case when there is an edge e E H( )1 1∈ adjacent to eM and
satisfying that neither e1 nor its corresponding edge e2 in H2 is precolored or adjacent to
an edge colored 1 in H1 and H2, respectively. If the precoloring φ1 obtained from the
restriction of φ to H1 by in addition coloring e1 by color 1 is extendable to a d( − 1)‐edge
coloring of H1, then there is a similar extension of H2 of the restriction of φ to H2 along
with coloring e2 by 1. By recoloring e1 and e2 by color d, it is easy to see that there is an
extension of φ. Thus we assume that φ1 is not extendable.

Suppose first that e1 is the only edge colored 1 in H1 under φ1. If the φ‐precolored edge
of H2 is colored 2, then H1 and H2 only contain φ‐precolored edges with color 2, and by
Theorem 3.1, for i = 1, 2, the restriction of φ to Hi is extendable to a proper edge coloring
of Hi using colors d2, …, ; thus φ is extendable by coloring all edges of M by color 1.
Hence, we may assume that H2 contains a φ‐precolored edge of color 1. Note that this
implies that the precolored edge e ′2 of H2 is not adjacent to eM . Moreover, the
corresponding edge e ′1 of H1 is not φ‐precolored, since all precolored edges lie in different
dimensional matchings. Now, since the restriction of φ to H1 consists of d − 2 precolored
edges with colors distinct from 1, Theorem 3.1 yields that there is an extension of H1 using
colors d2, …, . We color H2 correspondingly. Since eM and e ′2 are not adjacent, we now
obtain an extension of φ by recoloring e ′1 and e ′2 by color 1, and thereafter coloring all
edges of M by the color in d{1, …, } missing at its endpoints.
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Now assume that there are several edges φ1‐precolored 1 in H1. Since φ1 is not
extendable, only two colors are used in φ1, and there are at least two edges in H1

precolored 1 under φ1, there is some vertex v V H( )1∈ such that either

(a) v is not incident with any φ1‐precolored edge, but any edge incident to v is adjacent to
some edge φ1‐precolored 1, or

(b) v is incident with an edge φ1‐precolored 2 and all other edges incident with v are not
φ1‐precolored but adjacent to edges precolored 1.

Subcase A. (a) holds.

If (a) holds, then every φ‐precolored edge of H1 is colored 1 and thus the single
φ‐precolored edge in H2 is colored 2. Moreover, the restriction of φ to H1 is by
Theorem 3.1 extendable to a proper d( − 1)‐edge coloring; in particular there is a perfect
matching M*1 in H1 containing all edges precolored 1. Let e″1 be the edge of M*1 that is
incident with u1, and let e″2 be the corresponding edge of H2. Then there is a perfect
matching M*2 in H2 which does not contain the φ‐precolored edge of H2 if it is distinct
from e″2 . We now define a perfect matching M* of Qd by removing e″1 and e″2 from
M M* *1 2∪ and adding two edges from M with the same endpoints as e″1 and e″2 . Since M*

is a perfect matching containing all edges colored 1 under φ and no edges with color 2
under φ, and there is only one edge φ‐precolored 2 in Q φ,d is extendable.

Subcase B. (b) holds.

Suppose now that (b) holds. Then u v1 ≠ , because u1 is incident with an edge colored 1
under φ1. Suppose first that u1 is not adjacent to v. Then u1 and v have a common neighbor
x , because H1 is d( − 1)‐regular and contains exactly φ1‐precolored edges. Moreover, since
u1 and v are at distance 2 and H1 is a d( − 1)‐dimensional hypercube, u1 and v have
precisely two common neighbors. Now, since H1 is a d( − 1)‐regular bipartite graph and
(b) holds, this means that there are d − 3 edges of H1 incident with u1 that are neither φ1‐
precolored nor adjacent to a φ‐precolored edge of H1. Thus if d 5≥ , then there is an edge
e′ incident with u1 that is not precolored under φ1, and not adjacent to an edge of H1

precolored 1 under φ, and, moreover, the analogous statement holds for the
corresponding edge of H2. Now, since

• e1 and e′ are adjacent,
• there is exactly one edge φ‐precolored 2 in H1, and
• H1 contains at least two φ‐precolored edges of color 1 which lie in different dimensional
matchings,

it follows that the precoloring obtained from the restriction of φ to H1 by in addition
coloring e′ by color 1 is extendable to a d( − 1)‐edge coloring of H1, and, as above, we
obtain an extension of φ by constructing a coloring of H2 as in the preceding subcase.
Suppose now that d = 4. Then, since (b) holds, and all φ‐precolored edges are in different
dimensional matchings, there is a perfect matching M* in Qd containing all edges φ‐
precolored 1, but no edges precolored 2 under φ; thus φ is extendable, because H1 and H2

both contain at most one edge precolored 2 under φ.
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Now assume that u1 is adjacent to v. Note that u v1 is not colored 2, because e1 is
incident with u1 and colored 1 under φ1, and H1 is bipartite and d( − 1)‐regular, and
contains exactly d − 1 precolored edges under φ1. Let φ ′1 be the precoloring of H1 obtained
from the restriction of φ to H1 by coloring u v1 by color 1. Let v2 be the vertex of H2

corresponding to v. Note that no edge of H2 incident with u2 or v2 is precolored 1, because
in the former case this contradicts u u1 2 being φ‐precolored 1, and in the latter case φ 2∈ .
Let φ ′2 be the precoloring of H2 obtained from the restriction of φ to H2 by in addition
coloring (possibly recoloring) u v2 2 by color 1. Then φ ′1 and φ ′2 are extendable to proper
d( − 1)‐edge colorings; in particular for i = 1, 2, there is a perfect matching M*i in Hi

containing all φ′i ‐precolored edges with color 1. By removing u v1 and u v2 2 from M M* *1 2∪

and adding two edges from M instead we get a perfect matching M* of Qd that contains
all φ‐precolored edges with color 1, but no such edges with color 2. Now, since H1 and H2

each contains only one edge φ‐precolored 2, there is an extension of φ.

Case 2. There is a dimensional matching containing no precolored edge.

Without loss of generality, we assume that no edge of M is precolored.

Case 2.1. No precolored edges are in H2.

Without loss of generality we assume that there are more colors precolored 1 than 2.
Then by Theorem 3.1, the precoloring of H1 obtained from the restriction of φ to H1 by
removing color 1 from all edges e with φ e( ) = 1, is extendable to a proper edge coloring f
of H1 using colors d2, …, . By recoloring all the edges e with φ e( ) = 1 by color 1 we obtain,
from f , a d‐edge coloring f ′ of H1. Moreover, by coloring every edge of H2 by the color of
its corresponding edge in H1 under f ′, and then coloring every edge ofM with the color in

d{1, …, } missing at its endpoints, we obtain an extension of φ.

Case 2.2. Both H1 and H2 contain at most d − 2 precolored edges.

By Theorem 3.1, for i = 1, 2, there is a d( − 1)‐edge coloring fi of Hi that is an
extension of the restriction of φ to Hi. By taking f1 and f2 together and coloring every edge
of M by color d, we obtain an extension of φ.

Case 2.3. H1 contains d − 1 precolored edges and H2 contains one precolored edge.

Let e2 be the precolored edge of H2, and let e1 be the edge of H1 corresponding to e2. If
the restriction of φ to H1 is extendable to a d( − 1)‐edge coloring of H1, then it follows, as
above, that φ is extendable. So suppose that the restriction of φ to H1 is not extendable.
Then, since only two colors appear in the precoloring φ and d 4≥ , we may without loss of
generality assume that either

(a) there is a vertex u incident with an edge e′ precolored 2, and every edge in H1 incident
with u and distinct from e′ is not precolored but adjacent to an edge precolored 1, or

(b) there is a vertex u of H1 such that no edge incident with u is precolored, but every
vertex adjacent to u in H1 is incident with an edge precolored 1.
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Subcase A. (a) holds.

Suppose that (a) holds, and let e′ be the edge in H1 that is precolored 2. We shall
consider two different subcases.

Subcase A.1. φ e( ) = 12 .

If e1 is incident with u, then the conditions imply that φ 2∈ , so we assume that e1 is
not incident with u. If e′ is not adjacent to e1, then we define φ1 to be the precoloring
obtained from the restriction of φ to H1 by removing color 2 from e′. By Theorem 3.1, φ1 is
extendable to a proper edge coloring f1 of H1 using colors d1, 3, …, . Let φ2 be the
precoloring of H2 obtained from the restriction of φ to H2 by additionally coloring the edge
of H2 corresponding to e′ by color f e( ′)1 ; by Theorem 3.1, this precoloring is extendable to
a proper edge coloring using colors d1, 3, …, . Now, by recoloring e′ and the
corresponding edge of H2 by color 2 and thereafter coloring every edge of M by the
color missing at its endpoints, we obtain an extension of φ.

Let us now consider the case when e1 is adjacent to e′, but not incident to u. Then e1 is
not precolored under φ. If e1 is not adjacent to any edge precolored 1 in H1, then we
proceed as follows: Let φ1 be the precoloring of H1 obtained from the restriction of φ to H1

by removing color 1 from all edges φ‐precolored 1. Then φ1 is extendable to a proper edge
coloring using colors d2, …, . By coloring H2 correspondingly, and thereafter recoloring
all edges φ‐precolored 1 in H1 with color 1, recoloring e1 by color 1, and recoloring H2

correspondingly, we obtain an extension of φ by coloring every edge of M by the unique
color in d{1, …, } missing at its endpoints.

Finally, assume that e1 is adjacent to e′, not incident to u, but adjacent to some edge
precolored 1 in H1. From φ we define a new precoloring φ′ of Qd with d precolored edges
by removing the color 2 from e′ and coloring the edge of M incident with u by color 1.
Now, unless φ′ 3∈ , then by Lemma 4.3, φ′ is extendable; in particular there is a perfect
matching M* containing all edges φ‐precolored 1 but not the edge φ‐precolored 2. Since
Qd contains only one edge φ‐precolored 2, this implies that φ is extendable; hence, it
suffices to prove that φ′ 3∉ . Now, if φ′ 3∈ , then there is a vertex v that is not incident
with any edge φ′‐precolored 1, but all neighbors of v are incident with φ′‐precolored edges
of color 1. Since H1 contains d − 2 2≥ edges with color 1 under φ v V H′, ( )1∈ . Moreover,
since φ e′( ) = 12 and the end x of e1 that is not an end of e′ is incident with an edge that is
φ′‐precolored, it follows that v must be the common end of e1 and e′. However, since e′ is
colored 2 under φ, this implies that φ 2∈ , a contradiction.

Subcase A.2. φ e( ) = 22 .

If e e′ = 1, then we consider the precoloring φ1 of H1 obtained from φ by removing the
color from e′. This coloring is, by Theorem 3.1, extendable to a proper edge coloring f1 of
H1 using colors d1, 3, …, . Let f2 be the corresponding coloring of H1. An extension of φ
can now be obtained by recoloring e1 and e2 by color 2, and then coloring every edge of M
by the color not appearing at its endpoints.

If e1 is not adjacent to e′ and not precolored 1, then we proceed as in the preceding
paragraph, except that we color both e′ and e1, and their corresponding edges in H2, by
color 2 in the final step.
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Suppose now that e1 is adjacent to e′. Then e1 is not precolored under φ, because H1

contains exactly d − 1 precolored edges and (a) holds. Moreover, since d 4≥ , there is an
edge e E H( )3 1∈ precolored 1 that is not adjacent to e1. Define a precoloring φ1 of H1 from
φ by removing color 1 from e3 and recoloring all other edges of H1 precolored 1 under φ by
color 3. By Theorem 3.1, the precoloring φ1 is extendable to a proper edge coloring f1 of H1

using colors d2, 3, …, . Now, define a precoloring φ2 of H2 from the restriction of φ to H2

by for every edge e in H1 precolored 1 under φ, coloring the corresponding edge of H2 by
f e( )1 . The precoloring φ2 does not satisfy any of the conditions (C1) to (C4) (with d − 1 in
place of d), because it is not monochromatic, and all precolored edges have one end
which is at distance 1 from the vertex of H2 corresponding to u. Hence, by the induction
hypothesis, the coloring φ2 is extendable to a proper edge coloring f2 of H2 using colors

d2, 3, …, . From f1 and f2 we define an extension of φ by recoloring any edge of H1 that is
φ‐precolored 1 by color 1, recoloring every edge of H2 corresponding to such an edge by
color 1, and thereafter coloring every edge of M by the unique color not appearing at its
endpoints.

Finally, let us consider the case when e1 is precolored 1 under φ. Let φ1 be the
restriction of φ to H1. By Lemma 4.2, there is a partial proper edge coloring f1 of H1

satisfying the conditions (i)–(iii) of Lemma 4.2. Let E′ be the set of edges colored under f1.
The graph H E− ′1 has maximum degree d − 2 so the coloring f1 can be extended to a
proper d‐edge coloring f ′

1 of H1 by using König's edge coloring theorem. Let f ′2 be the
corresponding coloring of H2, except that we interchange colors on the (1, 2)‐colored
cycle containing e2. Note that for every vertex x of H1, the same colors appear at x under
f ′
1 and at the corresponding vertex of H2 under f ′2. Moreover, f ′1 and f ′

2 agrees with φ.
Hence, φ is extendable.

Subcase B. (b) holds.

Recall that if (b) holds, then there is a vertex u of H1 such that no edge incident with u
is φ‐precolored, but every vertex adjacent to u in H1 is incident with an edge precolored 1
under φ. Recall that e2 is the unique edge of H2 that is precolored, and e1 is the
corresponding edge of H1. Since two colors appear in φ φ e, ( ) = 22 . If e1 is not precolored,
then let f2 be an extension of the restriction of φ to H2 using colors d2, …, ; such an
extension exists by Theorem 3.1. Let f1 be the corresponding edge coloring of H1. From f1
and f2 we obtain an extension of φ by recoloring all edges precolored 1 under φ by color 1,
recoloring all corresponding edges of H2 by color 1, and thereafter coloring every edge of
M by the unique color in d{1, …, } not appearing at its endpoints.

Suppose now that e1 is precolored under φ; then φ e( ) = 11 . Since H1 contains at least
three φ‐precolored edges, there are at most two vertices v1 and v2 of H1 which are at
distance 1 from d − 1 vertices all of which are incident with edges precolored 1 (because
otherwise two vertices of distance 2 lie in at least two distinct 4‐cycles, which is not
possible since H1 is a d( − 1)‐dimensional hypercube). Now, since d − 1 3≥ , there is an
edge e′ in H2 that is adjacent to e2, and satisfies that the corresponding edge of H1 is not
incident with v1 or v2. This implies that the precoloring φ′ obtained from φ by coloring e′
by color 1 and removing color 2 from e2 is not in 3 ; so by Lemma 4.3, φ′ is extendable to a
proper d‐edge coloring f . Now, f e( ′) = 1; so f e( ) 12 ≠ , and since e2 is the only edge
colored 2 under φ, we obtain an extension of φ by permuting colors in f . □
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Lemma 4.7. If at least three and at most d − 1 colors appear on edges under φ, and
φ ∉ , then φ is extendable.

Proof. Without loss of generality we shall assume that colors 1, 2, and 3 appear on edges
under φ, and that color d does not appear under φ.

Case 1. Every dimensional matching contains a precolored edge.

Without loss of generality, we assume that M contains an edge eM precolored 1 under
φ, and first consider the case when all other precolored edges are in H1.

Case 1.1. No precolored edges are in H2.

Suppose first that color 1 does not appear in H1. If the restriction of φ to H1 is
extendable to a d( − 1)‐edge coloring of H1, then we may choose such an extension with
colors d2, …, , and thus φ is extendable. If, on the other hand, the restriction of φ to H1 is
not extendable, then, since at most d − 2 different colors appear in H φ,1 satisfies (C2) or
(C3) (with d − 1 in place of d). Hence, there is a vertex u such that all edges in H1 incident
with u are either precolored, or non‐precolored and adjacent to an edge of a fixed color,
say 2. Note that this implies that at least two edges in H2 are precolored 2. If u is an
endpoint of eM , then φ ∈ ; otherwise, assuming d > 4, there is either some edge e′

adjacent to eM that is not colored under φ and not adjacent to any edge precolored 2 under
φ, or an edge e′ adjacent to eM and colored 2. By removing the colors from all edges
precolored 2 under φ and coloring e′ by color 1, we obtain, from the restriction of φ to H1,
a precoloring that is extendable to a d( − 1)‐edge coloring of H1, because at least two
edges in H1 are colored 2 under φ. Let f1 be an extension of this precoloring using colors

d1, 3, …, . Now, by recoloring e′ by color 2, and also recoloring all (other) edges
precolored 2 under φ with color 2, we obtain a proper d‐edge coloring of H1. By coloring
H2 correspondingly and then coloring every edge of M with the color missing at its
endpoints, we obtain an extension of φ.

It remains to consider the case when d = 4. However, it is easy to see that if d = 4

(and thus H1 is isomorphic to Q3) there cannot be a vertex u as described above and such
that all precolored edges lie in different dimensional matchings.

Suppose now that color 1 appears in H1 under φ. By removing the color from all edges
precolored 1 under φ from the restriction of φ to H1, we obtain an edge precoloring of H1

that is extendable to a proper d( − 1)‐edge coloring of H1. Let f1 be an extension of this
precoloring using colors d2, …, . By recoloring all edges precolored 1 under φ by color 1,
we obtain an extension of φ as above.

Case 1.2. Both H1 and H2 contain at most d − 3 precolored edges.

If there is an edge e1 in H1 adjacent to eM , and such that neither e1 nor the
corresponding edge e2 of H2 is colored under φ, and neither of e1 and e2 is adjacent to an
edge precolored 1 under φ, then we consider the precolorings of H1 and H2 obtained from
the restriction of φ to Hi along with coloring e1 and e2 by color 1. By the induction
hypothesis, these colorings are extendable to d( − 1)‐edge colorings f1 and f2,
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respectively. Now, by recoloring e1 and e2 by color d and then coloring every edge of M by
the color missing at its endpoints we obtain the required extension of φ.

Now suppose that there are no edges e1 and e2 as described in the preceding paragraph.
Then any edge precolored by a color distinct from 1 under φ is adjacent to eM , and any
edge colored 1 under φ is adjacent to an edge e′ that is adjacent to eM .

Let J1 be the subgraph of Qd induced by all dimensional matchings containing edges
precolored 1 or 2, and let J Q E J= − ( )d2 1 . Suppose that J1 has maximum degree q. Note
that no componentT of J1 has the property that the restriction of φ toT satisfies condition
(C2) (with q in place of d), because an edge precolored 2 is adjacent to an edge precolored
1. Moreover, no component T of J2, with the restriction of φ to T , satisfies any of the
conditions (C1) to (C4) (with d q− in place of d), because if all precolored edges of J2 are
in T , then they are all incident to the same endpoint of eM . Thus, by the induction
hypothesis, the restriction φ1 of φ to J1 is extendable to a proper q‐edge coloring, and the
restriction φ2 of φ to J2 is extendable to a proper edge coloring with d q− colors.
Moreover, since φ1 and φ2 use distinct sets of colors, we may use distinct colors for the
extensions of J1 and J2, respectively; thus we conclude that φ is extendable.

Case 1.3. H1 contains d − 2 precolored edges and H2 contains one precolored edge.

If for every edge e1 in H1 adjacent to eM , either e1 or the corresponding edge e2 of H2 is
precolored under φ, or one of e1 and e2 is adjacent to an edge colored 1 distinct from eM ,
then we proceed exactly as in the preceding case and construct an extension of φ by
defining subgraphs J1 and J2 as above.

Thus we may assume that there is an edge e E H( )1 1∈ such that neither e1 nor its
corresponding edge e2 in H2 is precolored or adjacent to an edge colored 1 in H1 and H2,
respectively. If the precoloring φ1 obtained from the restriction of φ to H1 by in addition
coloring e1 by color 1 is extendable to a d( − 1)‐edge coloring of H1, then we can obtain an
extension of φ as follows: By Theorem 3.1, there is a similar extension of H2 of the
restriction of φ to H2 along with coloring e2 by 1. By recoloring e1 and e2 by color d, it is
easy to see that there is an extension of φ. Thus we assume that φ1 is not extendable.

Let e u u=M 1 2, and suppose first that there is only one edge precolored 1 under φ1. If
the φ‐precolored edge of H2 is not colored 1, then by the induction hypothesis, the
restriction of φ to Hi is extendable (i = 1, 2), to proper edge colorings using colors d2, …, ;
thus, φ is extendable. Hence, we may assume that color 1 appears in H2 under φ. Note
that this implies that the precolored edge e ′2 of H2 is not adjacent to eM . Moreover, the
corresponding edge e ′1 of H1 is not φ‐precolored, since all precolored edges lie in different
dimensional matchings. Now, since the restriction of φ to H1 consists of d − 2 precolored
edges with colors distinct from 1, Theorem 3.1 yields that there is an extension of H1 using
colors d2, …, . We color H2 correspondingly. Since eM and e ′2 are not adjacent, we now
obtain an extension of φ by recoloring e ′1 and e ′2 by color 1, and thereafter coloring all
edges of M by the color in d{1, …, } missing at its endpoints.

Suppose now that color 1 appears on several edges in H1 under φ1. Note that since at
least three colors, and at most d − 1 colors, are used by φ, this implies that d 5≥ . Since φ1

is not extendable and thus satisfies one of the conditions (C1) to (C4), and color 1 appears
on several edges under φ1, there is some vertex v V H( )1∈ such that every edge incident
with v is φ1‐precolored or adjacent to an edge precolored with 1.
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Since u1 is incident with an edge precolored 1 under φ u v,1 1 ≠ . If u1 is not adjacent to v,
then since d 5≥ , and any two adjacent edges in H1 are contained in exactly one 4‐cycle,
there is some edge e ′1 in H1 adjacent to eM such that neither e ′1 nor its corresponding edge e ′2
in H2 is precolored or adjacent to any edge precolored 1 under φ. Let us prove that the
precoloring φ″1 obtained from the restriction of φ to H1 by in addition coloring e ′1 by color 1 is
extendable to a d( − 1)‐edge coloring of H1. Indeed, if H1 contains only one edge that is φ‐
precolored 1, then v is incident with edges of at least two distinct colors, so φ1

″ does not
satisfy (C2) (with d in place of d − 1); if H1 contains at least two edges that are φ‐precolored
1, then since u1 and v have exactly two common neighbors and any two φ‐precolored edges
lie in distinct dimensional matchings, φ″1 does not satisfy (C2). Furthermore, the precoloring
of H2 obtained from the restriction of φ to H2 by also coloring e ′2 by color 1 is extendable. By
recoloring e ′1 and e ′2 by color d we obtain an extension of φ as before.

If, on the other hand, u1 is adjacent to v, then we may color u v1 and proceed as above
unless the edge e ′2 of H2 corresponding to u v1 is precolored or adjacent to an edge
precolored 1. If the latter holds, then φ ∈ . On the other hand, if e ′2 is φ‐precolored, then
let M′ be a dimensional matching in Qd containing a φ‐precolored edge incident with v

and colored by a color c that only occurs once under φ; such an edge exist since at least
three colors are used in φ. Then both components ofQ M− ′d satisfy that the restriction of
φ to this component is not in  ; thus, by the induction hypothesis, the restriction of φ to
Q M− ′d is extendable to a proper edge coloring of Q M− ′d using colors in d c{1, …, } { }⧹ .
We conclude that φ is extendable.

Case 2. There is a dimensional matching containing no precolored edge.

Without loss of generality we assume that no edge of M is precolored.
The case when all precolored edges are in H1, and the case when H1 and H2 both

contain at most d − 2 precolored edges can be dealt with exactly as in Case 2 of the proof
of Lemma 4.6. Hence, we assume that H1 contains exactly d − 1 precolored edges. We
shall assume that e2 is the precolored edge of H e,2 1 is the edge of H1 corresponding to e2,
and that there is no edge colored d under φ.

If the restriction of φ to H1 is extendable to a d( − 1)‐edge coloring of H1, then since
the same holds for the restriction of φ to H φ,2 is extendable to a d‐edge coloring ofQd; so
assume that the restriction of φ to H1 is not extendable. Since at least three distinct colors
appear under φ, this implies that

(a) d = 4, and there is a dimensional matching in H1 with three edges with three dif-
ferent colors; or

(b) there is an edge uv of H1 that is not precolored, but uv is adjacent to an edge colored i,
for i d= 1, …, − 1; or

(c) there is a vertex u incident to k precolored edges and every edge incident with u in H1,
which is not precolored, is adjacent to an edge precolored by some fixed color c1.

Subcase A. (a) holds.

Without loss of generality we assume that φ e( ) = 12 . If e1 is adjacent both to the edge
precolored 2 and to the edge precolored 3, then it is straightforward that φ is extendable
(because all precolored edges of H1 lie in the same dimensional matching). Otherwise, either
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the edge colored 2 or the edge colored 3 is not adjacent to e1, suppose, for example, that this
holds for the edge e ′1 colored 2. The precoloring obtained from the restriction of φ to H1 by
removing color 2 from e ′1 is extendable to a proper edge edge coloring f1 using colors 1, 3, 4,
and the precoloring obtained from the restriction of φ to H2 by in addition coloring the edge
e ′2, corresponding to e ′1, by the color f e( )′1 1 is extendable to a proper edge coloring f2 using
colors 1, 3, 4. Now, by recoloring e ′1 and e ′2 by color 2, and thereafter coloring all edges of M
by the color missing at its endpoints, we obtain an extension of φ.

Subcase B. (b) holds.

Without loss of generality, we assume that φ e( ) = 12 . If e1 is not precolored and not
adjacent to the edge e ′1 in H1 precolored 1, then we construct an extension of φ in the
following way: remove color 1 from all edges colored 1 under φ. The resulting precoloring
of H1 is, by Theorem 3.1, extendable to a proper edge coloring using colors d2, …, . By
coloring H2 correspondingly, then recoloring e e, ′2 1 and their corresponding edges in H1

and H2, respectively, by color 1, and thereafter coloring every edge of M by the color
missing at its endpoints, we obtain an extension of φ.

Suppose now that e1 is precolored or adjacent to e ′1. Let us first assume that there is
some precolored edge e″1 of H1 that is not adjacent to e1 and not colored 1. Suppose, for
instance, that φ e( ) = 2″1 . By removing the color 2 from e″1 , we obtain a precoloring of H1

that is extendable to a proper edge coloring f1 using colors d1, 3, 4, …, . Moreover, the
precoloring of H2 obtained from the restriction of φ to H2 by additionally coloring the edge
e″2 , corresponding to e″1 , by the color f e( )″1 1 is extendable to a proper edge coloring f2 using
colors d1, 3, 4, …, . By recoloring e″1 and e″2 by color 2, and thereafter coloring every edge
of M by the color missing at its endpoints, we obtain an extension of φ.

Suppose now that all φ‐precolored edges with colors distinct from 1 are adjacent to e1.
If e1 is precolored, then φ satisfies (C2) (with d − 1 in place of d), so we may assume that
e1 is not precolored; then e uv=1 . Moreover if u or v is incident with only one precolored
edge that is colored 1, then φ satisfies (C2), so we assume that either u or v is incident
with two edges precolored 1 and 2, respectively, under φ. Now, by removing color 2 from
the edge e φ′ ‐colored 2, we obtain a precoloring that is extendable to a proper edge
coloring f1 using colors d1, 3, …, . Moreover, the precoloring obtained from the restriction
of φ to H2 by in addition coloring the edge corresponding to e′ by the color f e( ′)1 is
extendable to a proper edge coloring f2 using colors d1, 3, …, . From f1 and f2 we obtain
an extension of φ by recoloring e′ and its corresponding copy in H2 by color 2, and
thereafter coloring every edge of M by the color missing at its endpoints.

Subcase C. (c) holds.

Let us first assume that at least three colors appear in the restriction of φ to H1. If e1 is
not incident with u, then there is an edge e e′ 1≠ in H1, such that φ e c e( ′) = , ′ is not
adjacent to e1 and e′ is the only edge in H1 with color c under φ. Suppose that φ e c( )2 ≠ .
Then by removing the color c from the restriction of φ to H1, we obtain a precoloring φ1

that is extendable to a proper edge coloring f1 of H1 using colors d c{1, …, } { }⧹ . (Note that
f e c( ′) =1 1.) Moreover, there is a similar extension f2 of the restriction of φ to H2, where
the edge of H2 corresponding to e′ is colored f e( ′)1 . Now, by recoloring e′ and its
corresponding copy in H2 by color c, we obtain an extension of φ as before.
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If φ e c( ) =2 and e1 is not precolored under φ, then we proceed similarly as in the
preceding paragraph, except that after constructing the coloring f1 of H1 as in the
preceding paragraph, we define f2 as the coloring of H2 corresponding to f1 and then color
e′ and e1, and the corresponding edges of H2, by color c. On the other hand, if φ e c( ) =2

and e1 is precolored under φ, then φ e c( ) =1 1 because e1 is not incident with u; now, since
at least three distinct colors are used by φ on edges in H1, we may clearly choose another
φ‐precolored edge incident with u as our edge e′, and then proceed as in the preceding
paragraph.

Now assume that e1 is incident with u. If φ e c( ) =2 1, then φ ∈ , so we assume that
φ e c( )2 1≠ . If there is a color c φ e( )2≠ appearing on precisely one edge e e′ 1≠ of H1, then
we consider the restriction of φ to H1 where color c is removed, and proceed as before;
otherwise, since at least three colors appear in H1 under φ, it follows that e1 is not adjacent
to any edge precolored c1 under φ. Thus by removing color c1 from any edge in H1

precolored by color c1 under φ, we obtain a precoloring that is extendable to a proper edge
coloring of H1 using colors d c{1, …, } { }1⧹ . Moreover, there is a similar extension f2 of the
restriction of φ to H2, where for any edge e′2 corresponding to an edge e ′1 of H1 with
φ e c( ) =′1 1, we have f e f e( ) = ( )′ ′2 2 1 1 . From f1 and f2 we may construct an extension of φ by
recoloring any such pair of edges by color c1. Let us now consider the case when only
two colors appear in the restriction of φ to H1. Since at least three colors appear on edges
under φ, it follows that φ e( )2 does not appear in H1 under φ. Without loss of generality we
assume that φ e( ) = 22 , color 3 appears on exactly one edge e′ in H1, and color 1 is the third
color used by φ. If e e′ 1≠ , then we consider the precoloring of H1 obtained from the
restriction of φ to H1 by removing color 3. There is an extension of this precoloring of H1

using colors d{1, …, } {3}⧹ such that φ e( ′) = 1. Let e ′2 be the edge of H2 corresponding to e′.
Then the precoloring obtained from the restriction of φ to H2 by additionally coloring e ′2 by
color 1 is extendable to a coloring using colors d{1, …, } {3}⧹ . Now, by recoloring e′ and e ′2 by
color 3, we can construct an extension of φ.

If, on the other hand, e e′ = 1, then e1 is not adjacent to any edge colored 1. Let E′ be
the set of edges colored 1 under φ. If d > 4, then E′ 3≥ and we recolor all edges in E′ by
colors 2, 3, 4 so that at least one edge is colored i i, = 2, 3, 4. This yields a precoloring φ1

that, by the induction hypothesis, is extendable to a proper edge coloring f1 of H1 using
colors d2, …, , because the precolored edges form a matching which is colored by at least
three distinct colors. Next, consider the precoloring φ2 of H2 obtained from the restriction
of φ to H2 by setting φ e f e( ) = ( )′ ′2 2 1 1 for any edge e E H( )′2 2∈ corresponding to an edge
e E′′1 ∈ . The φ2‐precolored edges form a matching consisting of d − 1 edges, where edges
corresponding to E′ are colored by at least three distinct colors, so by the induction
hypothesis, there is an extension f2 of φ2, where f e f e( ) = ( )′ ′2 2 1 1 for any edge e E H( )′2 2∈

corresponding to an edge e E′′1 ∈ . We may now obtain an extension of φ as before.
It remains to consider the case d = 4. By symmetry of the hypercube, it suffices to

consider the two cases when all edges in H1 are in the same dimensional matching, and
the case when the two edges precolored 1 are in different dimensional matchings, one of
which is necessarily the same as the dimensional matching containing e′. In both cases it
is a straightforward exercise to check that there is an extension of φ where two edges in
H1, and their corresponding edges in H2, are the only edges colored 4; and, moreover,
these two edges of H1 (H2) lie in a dimensional matching with no precolored edges. □

Lemma 4.8. If all colors d1, …, appear under φ, and φ ∉ , then φ is extendable.
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Proof. Since all colors are present under φ, every color appears on precisely one edge.
Let us first note that if every dimensional matching contains at most one precolored edge,
then trivially φ is extendable. Thus, for the rest of the proof we assume that there is a
dimensional matching M that does not contain any precolored edge. Let H1 and H2 be the
components of Q M−d .

Case 1. No precolored edges are in H2.

If there is some edge e that is not precolored, and adjacent to all precolored edges in
H1, then φ ∈ . On the other hand, if there is a precolored edge e such that removing the
color from e yields a precoloring φ1 of H1 that is not in 1 (with d − 1 in place of d) or 4 ,
then the induction hypothesis yields that there is an extension f of φ1 using all colors
except the removed one. Suppose, for example, that the color from e under φ was
removed in φ1; then by recoloring e with φ e( ) and retaining the color of every other edge
in H1 under f , we obtain a proper d‐edge coloring of H1 that is an extension of φ; by
coloring H2 correspondingly and then coloring every edge of M by the color missing at its
endpoints, we obtain an extension of φ.

Now, suppose that e is a precolored edge of H1, and removing the color of e yields a
coloring φ1 that satisfies (C1). Let e′ be another φ‐precolored edge of H1 that is adjacent to
a minimum number of other φ‐precolored edges of H1. Then the precoloring obtained
from φ by removing the color from e′ does not satisfy (C4); suppose that it satisfies (C1).
Then either φ 1∈ , or there are non‐precolored edges uv ux E H, ( )1∈ satisfying that e′ is
incident with v e, is incident with x , and all other precolored edges are incident with u.
Now, since u is incident with at least two precolored edges (from different dimensional
matchings), by instead removing the color on a precolored edge incident with u, we
obtain a precoloring that does not satisfy (C1) or (C4). We conclude that if φ1 1∈ , then
either φ is extendable or φ satisfies (C1).

It remains to consider the case when φ1 satisfies (C4). Suppose, consequently, that
d = 4 and that removing the color from any precolored edge of H1 yields a precoloring
that satisfies (C4); then the precolored edges of H1 lie in a dimensional matching M′. It is
easily seen that since all precolored edges lie in M′, there is a proper 4‐edge coloring of H1

which agrees with φ. By coloring H2 correspondingly and thereafter coloring all edges of
M by the color in {1, 2, 3, 4} missing at its endpoints, we obtain an extension of φ.

Case 2. Both H1 and H2 contain at most d − 3 precolored edges.

Note that neither the restriction of φ to H1 nor to H2 satisfies any of the conditions (C1)
to (C4) (with d − 1 in place of d). Moreover, since H1 and H2 contain altogether d
precolored edges, d 6≥ , and thus both H1 and H2 contain at least three precolored edges.
We consider two different cases.

Case 2.1. There is some edge e in H1 (or H2) that is precolored and the corresponding
edge of H2 (H1) is not precolored.

Without loss of generality we assume that e1 is such an edge in H φ e, ( ) = 11 1 , and that
e2 is the edge of H2 corresponding to e1. Since both H1 and H2 contain precolored edges,
there is some color which appears in H2 but not in H1. Suppose first that some precolored
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edge of H2 is not adjacent to e2. Assume without loss of generality that such an edge is
precolored d in H2. Then we construct a new precoloring φ′ from φ by coloring e2 by color
d, and recoloring e1 by color d. The restrictions of φ′ to both H1 and H2 are, by the
induction hypothesis, extendable to proper edge colorings using colors d2, …, ,
respectively. Now by recoloring e1 and e2 by color 1 we obtain proper edge colorings f1
and f2 of H1 and H2, respectively, satisfying that the color in d{1, …, } not appearing at a
vertex v of H1 is also missing at the corresponding vertex of H2. Since for i f= 1, 2, i is an
extension of the restriction of φ to H φ,i is extendable.

Suppose now instead that every precolored edge of H2 is adjacent to e2. In fact, we may
assume that if e E H e( ),1∈ is precolored under φ and the corresponding edge e′ of H2 is
not precolored under φ, then e′ is adjacent to all precolored edges of H2; otherwise we
proceed as in the preceding paragraph. If all precolored edges of H2 are incident with a
common vertex, then since there are at least three precolored edges in H i, = 1, 2i , this
means that all precolored edges of H1 are incident with the corresponding vertex of H1;
and so, φ 1∈ . Assume now that e u v i= , = 1, 2i i i , and that both u2 and v2 are adjacent to
precolored edges; since H2 contains at least three precolored edges, e2 is the unique edge
with this property. Moreover, since any precolored edge of H1 satisfies that if the
corresponding edge of H2 is not precolored, then it is adjacent to all precolored edges of
H2, it follows that any precolored edge in H1 is incident with u1 or v1. This means that the
dimensional matching M1 in Qd containing e1, contains no other precolored edge. Hence,
since both u2 and v2 are incident with precolored edges, both components of Q M−d 1

contain at most d − 2 precolored edges using colors d2, …, . Thus, by Theorem 3.1, the
restriction of φ toQ M−d 1 is extendable to a proper edge coloring ofQ M−d 1 using colors

d2, …, . By coloring all edges of M1 by color 1, we obtain an extension of φ.

Case 2.2. Each precolored edge of H1 corresponds to a precolored edge of H2 and vice
versa.

The conditions imply that Hi contains exactly d 2∕ precolored edges.
Suppose first that d = 6, and let u u1 2 be a precolored edge of H1, and v v1 2 be the

corresponding edge of H2. Now, since H1 contains two additional precolored edges which
both correspond to precolored edges of H2, and u u1 2 is in four 4‐cycles in H1, there is a
4‐cycle u u u u u1 2 3 4 1 in H1 such that u u3 4 is not precolored and the dimensional matching
M2, containing u u2 3 and u u4 1, does not contain any precolored edge. Let H′1 and H′2 be
the components of Q M−d 2. Now, since all precolored edges lie on 4‐cycles whose non‐
precolored edges are inM , either both or none of the precolored edges of such a cycle is in
H′i . Hence, H′i contains an even number of precolored edges, and so, we may proceed as
in Case 1 or Case 3 of the proof of the lemma.

Now assume that d 8≥ . If all precolored edges in H1 are incident with one common
vertex, then φ ∈ , so we assume that this is not the case; thus, there are two precolored
edges in H1 (and thus H2) that are not adjacent. In H2 we assume that these edges are
colored d 2 + 1∕ and d, respectively. Let v v1 2 be the edge precolored d in H2 and let u u1 2 be
the corresponding edge of H1. Without loss of generality, we assume that φ u u d( ) = 21 2 ∕ .
Now, since there are exactly d 2∕ precolored edges in both H1 and H d, 82 ≥ , and each
edge in Hi is in d − 2 4‐cycles in Hi, there are 4‐cycles u u u u u1 2 3 4 1 and v v v v v1 2 3 4 1 in H1 and
H2, respectively, such that
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• u u1 2 and v v1 2 are the only precolored edges of these 4‐cycles,
• v v3 4 is not adjacent to an edge precolored d 2 + 1∕ .

We construct a precoloring φ1 of H1 from the restriction of φ to H1 by in addition
coloring u u1 4 and u u2 3 by color d 2 + 1∕ and by coloring u u3 4 by color d 2∕ . Similarly, we
define a precoloring φ2 of H2 from the restriction of φ to H2 by recoloring v v1 2 by d 2 + 1∕ ,
and in addition coloring v v3 4 by d 2 + 1∕ , and v v2 3 and v v1 4 by color d 2∕ . Note that the
obtained precolorings are proper. Now, since d d2 + 3 − 1∕ ≤ (because d 8≥ ) and none
of φ1 and φ2 satisfies any of the conditions (C1) to (C4) (with d − 1 in place of d), it
follows from Theorem 3.1 and the induction hypothesis that for i = 1, 2, there is a proper
edge coloring fi of Hi using colors d1, …, − 1 that is an extension of φi. Now by recoloring
all the edges u u u u v v v v, , ,2 3 1 4 1 2 3 4 by color d we obtain two proper edge colorings such that
by coloring every edge of M by the color in d{1, …, } missing at its endpoints, we obtain an
extension of φ.

Case 3. H1 contains d − 2 precolored edges and H2 contains 2 precolored edges.

We consider two different subcases.

Case 3.1. No precolored edge of H1 satisfies that the corresponding edge of H2 is non‐
precolored.

The conditions imply that d = 4. Without loss of generality we assume that H1 contains
two edges e1 and e ′1 precolored 1 and 2, respectively. Let e2 and e ′2 be the corresponding edges
of H2. By symmetry, it suffices to consider the following different cases:

(a) e1 and e ′1 are adjacent;
(b) e1 and e ′1 are not adjacent but lie on a common 4‐cycle;
(c) e1 and e ′1 are not adjacent and do not lie on a common 4‐cycle.

If (a) holds, then φ 4∈ . Suppose now that (b) holds. It suffices to prove that there are
perfect matchings M1 and M2 inQd, where Mi contains all edges precolored i and no other
precolored edges, and where M1 and M2 satisfy that the precolored edges ofQ M M−d 1 2∪

lie in different components. We construct M1 in the following way: include e1 and the
unique non‐precolored edge e3 of H1 that is in the same dimensional matching as e1 and
contained in a 4‐cycle with e1; from H2 we select the two edges corresponding to the two
opposite non‐precolored edges of the 4‐cycle containing e1 and e3; for the remaining edges
of M1 we choose four edges from M that are adjacent to none of the edges e1 and e3. We
now define M2 to consist of the edges from the unique perfect matching in H M−1 1

containing e ′1 and of the edges from a perfect matching of H2 with no precolored edges.
Suppose now that (c) holds. By symmetry, it suffices to consider the two cases when e1

and e ′1 are in the same dimensional matching and when they are not. If the former holds,
then we define the matchings M1 and M2 exactly as in the preceding paragraph, and it
follows that φ is extendable. If e1 and e ′1 are in different dimensional matchings, then we
select M1 as the union of the dimensional matching of H1 containing e1 and the unique
dimensional matching of H2 with no precolored edge. As before, we can then choose a
perfect matching M2 containing e ′1 and no other precolored edges; the details are omitted.
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Case 3.2. There is a precolored edge e u v=1 1 1 in H1 such that the corresponding edge of
H2 is not precolored.

Let e u v=2 2 2 be the edge in H2 corresponding to e1. If some precolored edge of H2 is
not adjacent to e2, then we may proceed as above: Assume without loss of generality that
such an edge is precolored d in H2, and that φ e( ) = 11 . Then we construct a new
precoloring φ′ from φ by coloring e2 by color d, and recoloring e1 by color d. H1 contains
d φ− 2 ′‐precolored edges, so the restriction of φ′ to H1 is extendable by Theorem 3.1. H2

contains three φ′‐precolored edges, so it is extendable unless d = 4 and the restriction φ2

of φ′ satisfies (C2) (with d − 1 in place of d). Assuming d > 4, we can choose these
extensions so that they use colors d2, …, , respectively, and we obtain an extension of φ by
recoloring e1 and e2 by color 1, and thereafter coloring the edges of M . If d = 4, and φ2

satisfies (C2), then e2 and the two φ‐precolored edges of H2 form a matching, and none of
the φ‐precolored edges in H2 is adjacent to e2. It follows that for at least one of these two
precolored edges, the corresponding edge in H1 is not precolored; denote this edge by e ′2
and assume φ e( ) = 4′2 . Now, by Theorem 3.1, the restriction of φ to H1 is extendable to a
proper edge coloring f1 using colors 1, 2, 3. Moreover, the precoloring of H2 obtained from
the restriction of φ by recoloring e ′2 by the color of the corresponding edge e ′1 of H1 under
f1 is, by Theorem 3.1, extendable to a proper edge coloring f2 using colors 1, 2, 3. By
recoloring e ′1 and e ′2 by color 4, and thereafter coloring the edges of M , we obtain an
extension of φ.

Let us now assume that both precolored edges of H2 are adjacent to e2. In fact, we may
assume that every precolored edge in H1 either corresponds to a precolored edge of H2 or
is adjacent to both precolored edges of H2. Now, if both precolored edges of H2 are
incident with a common vertex v, then this implies that φ ∈ ; so assume that u2 is
incident with one precolored edge and that v2 is incident with one precolored edge.
Clearly, this implies that at most four edges are precolored in H1, and thus d 6≤ .

So let us assume that d 6≤ and that e u v=1 1 1 is precolored 1. If the dimensional
matching M1 containing e1 contains no other precolored edges, then the restriction φ′ of φ
to Q M−d 1 is a precoloring of d − 1 edges using d − 1 colors. Furthermore, both
components of Q M−d 1 contain at most d − 2 precolored edges, so by Theorem 3.1, φ′ is
extendable to to a proper edge coloring of Q M−d 1 using colors d2, …, . By coloring all
edges of M1 by color 1, we obtain an extension of φ.

If M1 contains more than one precolored edge, then it contains exactly two precolored
edges, u v1 1 and z t1 1, where u v z t u1 1 1 1 1 is a 4‐cycle in H1. Let u v z t u2 2 2 2 2 be the corresponding
4‐cycle of H2, where u t2 2 and v z2 2 are precolored. We define H3 to be the three‐
dimensional hypercube containing vertices u v z t u v z t, , , , , , ,1 1 1 1 2 2 2 2; then all precolored
edges of Qd lie in H3. Since d 4≥ , there is a dimensional matching M3 in Qd which does
not contain any edge from H3. It follows that if H′1 and H′2 are the components ofQ M−d 3,
then either H′1 or H′2 contains all precolored edges ofQd; thus we may proceed as in Case 1
above when H1 contains exactly d precolored edges.

Case 4. H1 contains d − 1 precolored edges and H2 contains 1 precolored edge.

Without loss of generality we assume that the edge in H2 is precolored d. We first
consider the case when the restriction of φ to H1 is extendable (as a precoloring of Qd−1).
Suppose first that there is some precolored edge e1 in H1 such that the corresponding edge
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of H2 is not precolored or adjacent to the precolored edge of H2. Without loss of generality
we assume that φ e( ) = 11 . We define a new precoloring φ′ from φ by recoloring e1 by
color d and by coloring e2 by color d; this precoloring is proper, and, moreover, for
i = 1, 2, the restriction of φ′ to Hi is extendable to a proper edge coloring fi using colors

d2, …, . By recoloring e1 and e2 by color 1 and coloring every edge of M by the color in
d{1, …, } that is missing at its endpoints, we obtain an extension of φ.

Suppose now that every precolored edge of H1 either corresponds to a precolored edge of
H2, or that the corresponding edge of H2 is adjacent to a precolored edge of H2. Since the
restriction of φ to H1 is extendable, it follows that if e u v=1 1 1 is the edge of H1 corresponding
to the precolored edge e u v=2 2 2 of H2, then e1 is precolored under H1. Moreover, since
φ ∉ , there are at least two precolored edges of H1 incident with u1 and similarly for v1.
Suppose, for example, that φ e( ) = 11 and that color 2 does appear at v1 under φ, but not at
u1, and that color 3 appears at u1. We define a new precoloring φ′ of Qd by recoloring the
edge with color 3 under φ by color 2, and by coloring the corresponding edge of H2 by color
2. Then, by Theorem 3.1, the restriction of φ′ to H2 is extendable to a proper edge coloring
using colors d1, 2, 4, …, , and the restriction of φ′ to H1 does not satisfy (C1), (C3), or (C4)
(with d − 1 in place of d). Furthermore, since 2 is the only color that appears on two edges
under φ′, and these two edges are both adjacent to e1, φ′ does not satisfy (C2). Hence, by the
induction hypothesis, the restriction of φ′ to H1 is extendable to a proper edge coloring f1
using colors d1, 2, 4, …, . By recoloring the edges incident with u1 and u2 with color 2 by
color 3, we obtain proper edges colorings of H1 and H2, such that we may color any edge of
M by the color missing at its endpoints to obtain an extension of φ.

Let us now consider the case when the restriction of φ to H1 is not extendable. Then there
is some edge u v1 1 in H1 such that all precolored edges of H1 are incident with u1 or v1 and
u v1 1 is not precolored. Without loss of generality, we assume that the edge in H2 is
precolored d, there is some edge e1 precolored 3 incident withu1 such that the corresponding
edge e2 of H2 is not precolored, and there is an edge precolored 2 incident with v1. We define
a new precoloring φ′ from φ by recoloring e1 by color 2 and coloring e2 by color 2. We may
now finish the proof by proceeding exactly as in the preceding paragraph. □

This completes the proof of Theorem 3.8.

5 | CONCLUDING REMARKS

In this paper we have obtained analogues for hypercubes of some classic results on completing
partial Latin squares; in general we believe that the following might be true. Here, Gd denotes
the dth power of the Cartesian product of G with itself.

Conjecture 5.1. If n and d are positive integers, and φ is a proper edge precoloring of
K( )n n

d
, with at most nd − 1 precolored edges, then φ extends to a proper nd‐edge coloring

of K( )n n
d

, .

Note that this is a generalization of both Evans' conjecture and the results obtained in this
paper; Evans' conjecture is the case d = 1, and the results obtained in this paper resolve the
cases when n = 1 and 2; thus this conjecture is open whenever d 2≥ and n 3≥ .
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Given that a precoloring of at most d − 1 precolored edges of Qd or Kd d, is always extend-
able, we might ask how many precolored edges of a general d‐regular bipartite graph allow for
an extension. Trivially, any precoloring of at most one edge of a graph G can be extended to a
χ G′( )‐edge coloring of G. For larger sets of precolored edges, we have the following:

Proposition 5.2. For any d 2≥ , there is a d‐regular bipartite graph with a precoloring f
of only two edges, such that f cannot be extended to a proper d‐edge coloring.

Proof. Let r > 1 be a positive integer, and letG G, …, r1 be r copies of K e−d d, , that is, the
complete bipartite graph with d d+ vertices with exactly one edge removed. From
G G, …, r1 we form a d‐regular graph H by for i r= 1, …, joining a vertex in Gi of degree
d − 1 with a vertex inGi+1 of degree d − 1 by an edge so that all added edges have distinct
endpoints (indices taken modulo r). Let e1 and e2 be two distinct edges in H joining
vertices in distinct copies of K e−d d, . We color e1 with color 1, and e2 with color 2. Since
any perfect matching in H1 that contains e1 also contains e2, this precoloring cannot be
extended to a proper d‐edge coloring of H . □

Note that in the proof of Proposition 5.2, there is a similar precoloring with two edges
colored 1, which is not extendable to a proper d‐edge coloring of the full graph. Also, the
distance between the two precolored edges can be made arbitrarily large.

Furthermore, the examples given in the proof of Proposition 5.2 are 2‐connected. One may
construct examples of arbitrarily large connectivity by taking two copiesG1 andG2 of Kn n, −1 and
for each vertex v in G1 of degree n − 1 adding an edge between v and its copy in G2. The
resulting graph is n‐regular, n( − 1)‐connected, and the edge precoloring obtained by coloring
any two edges with one endpoint inG1 and one endpoint inG2 by color 1 is not extendable to a
proper d‐edge coloring of the full graph.
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