
Differ Equ Dyn Syst (January 2022) 30(1):131–159 
https://doi.org/10.1007/s12591-018-0422-x 

ORIGINAL  RESEARCH 

Estimates of Size of Cycle in a Predator-Prey System 

Niklas L. P. Lundström1 · Gunnar Söderbacka2 

Published online: 3 May 2018 
© The Author(s) 2018 

Abstract We consider a Rosenzweig–MacArthur predator-prey system which incorporates 
logistic growth of the prey in the absence of predators and aHolling type II functional response 
for interaction between predators and preys. We assume that parameters take values in a range 
which guarantees that all solutions tend to a unique limit cycle and prove estimates for the 
maximal and minimal predator and prey population densities of this cycle. Our estimates are 
simple functions of the model parameters and hold for cases when the cycle exhibits small 
predator and prey abundances and large amplitudes. The proof consists of constructions of 
several Lyapunov-type functions and derivation of a large number of non-trivial estimates 
which are of independent interest. 

Keywords Locating limit cycle · Locating attractor · Size of limit cycle · Lyapunov 
function · Lyapunov stability 

Mathematics Subject Classifcation Primary 34D23 · 34C05 

Introduction and Main Results 

The dynamical relationship between predators and preys, most simply described by 
Lotka–Volterra type ordinary differential equations, has been investigated widely in 
recent years. One well known mathematical model describing this relationship is the 
Rosenzweig–MacArthur extension of the classical Lotka–Volterra model, see e.g. [7,17, 
21,23,25,26], in which various interaction rates between the populations have nonlinear 
dependence on the prey density according to 

B Niklas L. P. Lundström 
niklas.lundstrom@umu.se 

Gunnar Söderbacka 
gsoderba@abo.f 

1 Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden 

2 Åbo Akademi, 20500 Turku, Finland 

123 

http://crossmark.crossref.org/dialog/?doi=10.1007/s12591-018-0422-x&domain=pdf
mailto:gsoderba@abo.fi
mailto:niklas.lundstrom@umu.se
https://doi.org/10.1007/s12591-018-0422-x


132 Differ Equ Dyn Syst (January 2022) 30(1):131–159 

� � 
dS  S qXS  = r S  1 − − ,
dt  K H + S 
d X  pX S  = − dX. (1.1)
dt  H + S 

Here, S = S (t) and X = X (t) denotes the population densities of prey and predator, 
respectively, and r, K , q, H, p and d are positive parameters. The biological meanings of the 
parameters are the following: r is the intrinsic growth rate of the prey; K is the prey carrying 
capacity; q is the maximal consumption rate of predators; H is the amount of prey needed 
to achieve one-half of q; d is the per capita death rate of predators; and p is the effciency 
with which predators convert consumed prey into new predators. 

In this paper, we prove analytical estimates of the size of a limit cycle in the following 
version of system (1.1): 

ds  = (h (s)− x) s,
dτ 
dx  = (s − λ) x, where h (s) = (1 − s) (s + a) (1.2) 
dτ 

and s = s (τ ) and x = x (τ ) denote the prey and predator, respectively. We will focus on 
the dynamics of system (1.2) when the parameters a and λ take on small values, namely, we 
assume 

a < 0.1 and  λ <  0.1. (1.3) 

In order to describe the simple relation between the above Rosenzweig–MacArthur system 
in (1.2) and the more standard version given in (1.1), we observe that by introducing the scaled 
time τ , the state variables s = s (τ ) and x = x (τ ) and the parameters a, b and λ according 
to � 

r K  S qX H p − d dH  
τ = dt, s = , x = , a = , b = and λ = ,

H + S (t) K rK K r r K  
(1.4) 

the standard system in (1.1) transforms to system (1.2) when  b = 1. 
Rosenzweig–MacArthur systems incorporate logistic growth of the prey in the absence 

of predators and a Holling type II functional response (Michaelis-Menten kinetics) for inter-
action between predators and preys. A literature survey shows that the model has been 
widely used in real life ecological applications, see e.g. [5,17–20], including the spatiotem-
poral dynamics of an aquatic community of phytoplankton and zooplankton [22] as well as  
dynamics of microbial competition [1,8,24]. 

From a mathematical point of view, the dynamics of systems of type (1.1) and  (1.2) has  
been frequently studied, see e.g. [2–4,6,9,11–15] and the references therein. In particular, 
system (1.2) always has a unique positive equilibrium at (x, s) = ((1 − λ) (λ+ a) , λ) 
which attracts the whole positive space when 2λ + a > 1. At 2λ+ a = 1 there is a Hopf 
bifurcation in which the equilibrium loses stability and a stable limit cycle, surrounding the 
equilibrium, is created. In particular, for 2λ + a < 1 the equilibrium is a source and the 
cycle attracts the whole positive space (except the source) [2]. 

Our main results are analytical estimates of the size of this unique limit cycle when a and 
λ are small. Namely, we assume (1.3) and prove that in such cases the amplitude of the cycle 
becomes large and x and s become very small during a portion of the cycle, see Theorem 1 
below. Biologically, this means that the modeled population exhibits very small predator 
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Fig. 1 a, b The limit cycle of system (1.2) for  a = λ = 0.2 (red, dotted) and for a = 0.1 and  λ = 0.05 (black, 
solid). c The function κ1 for a = 0.1, 0.08, 0.06, 0.04, 0.02 and a = 0.001 (steepest curve). d The functions 
κ2 (blue, dashed) and κ3 (black, solid) for a = 0.1, 0.08, 0.06, 0.04, 0.02 and a = 0.001 (lowest curve) 

and prey abundances during a portion of the cycle, indicating that the population suffers a 
relatively high risk of going extinct because of random perturbations, see Fig. 1a, b. From 
(1.4) it is clear that an increase the carrying capacity K (when other parameters are fxed) 
implies a decrease in both parameters a and λ. Thus, if K is large enough then assumption 
(1.3) will be satisfed. Our results therefore show that the population becomes small, and 
hence vulnerable, when the carrying capacity K becomes large. This result is in line with the 
paradox of enrichment [17]. Indeed, Rosenzweig argues that enrichment of the environment 
(larger carrying capacity K ) leads to destabilization. 

The above observations underscore the importance of understanding the dynamics of 
systems of type (1.2) under assumption (1.3). To further motivate our analytical estimates, we 
mention that it is nontrivial to obtain accurate numerical results by integrating the Eqs. (1.2) 
using standard numerical methods when a and λ are small, see section on numerical results 
in the end of the paper. 

A nice and interesting study close to ours is [10] in which Hsu and Shi give estimates of 
the period of the cycle, and estimates of parts of this period when population is very small, 
large, increasing and decreasing. When death rate of predators tends to zero (which implies 
λ → 0), they show that the limit cycle behaves similar to a nonlinear relaxation oscillator. 
When both λ and a tend to zero, they show that the prey (s) exhibits slow time scales when 
s ≈ 0  as well as when  s ≈ 1. Hsu and Shi also show, without imposing restrictions on 
parameter values, that the prey is of order O(λ/b) (in our notations) and the predator is of 
order O(a) for a time scale of O(b/λ). 
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Before stating our main results, let us note that the above Rosenzweig–MacArthur systems 
are very simplifed models of reality and therefore usually not directly applicable in biology 
without modifcations. For example, it is clear from our main results that in model (1.2) 
predator and prey populations can decrease to unacceptable low abundances and still survive. 
However, even though our estimates are proved for such simple models, we believe that they 
are “good” in the sense of being useful when investigating dynamics also in more complex 
and realistic systems, such as, e.g., systems modeling the interactions of several predators 
and one prey, or seasonally dependent systems, see e.g. [1,4,16]. 

Our main results are summarized in the following theorem. 

Theorem 1 Let xmax and smax be the maximal x- and s-values and let xmin and smin be the 
minimal x- and s-values in the unique limit cycle of system (1.2) under assumption (1.3). 
Then the predator satisfies 

� � � �xmax xmax1 < xmax < 1.6 and exp − < xmin < exp − , 
a aκ1 

and the prey satisfies 
� � � � 

xmax xmax0.9 < smax < 1 and exp − < smin < exp − , 
λκ2 λκ3 

where 
� �−2 λ1 + e a −2 λ 

1 < κ1 = < 1.32 1 + e ,
1 − 2.1λ− 0.31a a 

1 1 
1 > κ2 = > 0.75 and 1 < κ3 = < 1.64. 

1 + λ (1 − ln (λ)) 1 − 0.3λ− a (1.3 − ln (a)) 

From the expressions for κ1, κ2 and κ3 in Theorem 1 we conclude that 

λ 
κ1 � 1 if  a → 0 and  → 0, 

a 
κ2 � 1 if  λ → 0, 

κ3 � 1 if  a → 0 and  λ → 0. 

These limiting properties of κ1, κ2 and κ3, which we illustrate in Fig. 1c, d, clarify that 
Theorem 1 yields the following remark. 

Remark 1 Let xmax and smax be the maximal x- and  s-values and let xmin and smin be the 
minimal x- and  s-values in the unique limit cycle of system (1.2) under assumption (1.3). If 
both a and λ are small, then the estimate a � �xmax 

xmin ≈ exp − 
a 

is “good” for the minimal predator abundance of the unique limit cycle. Similarly, if both a 
and λ are small, then the estimate � �xmax 

smin ≈ exp − 
λ 

is “good” for the minimal prey abundance of the unique limit cycle. 
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In the last section of the paper we give some numerical results illustrating the precision of 
the estimates stated in Remark 1, see  Figs.  9 and 10. 

Before discussing the outline of the proof of Theorem 1, we state its analogue for the more 
standard version of the Rosenzweig–MacArthur system given in (1.1) as a corollary. In this 
setting, assumption (1.3) takes the form 

H dH  p − d 
< 0.1, < 0.1 and  = 1. (1.5)

K rK  r 

The biological meaning of the frst two inequalities is that the half-saturation constant for 
predators (H ) is assumed small compared to the carrying capacity of the prey (K ), and that 
the death rate of predators (d) is assumed small compared to the growth rate of the prey (r ) 
times K/H . The third assumption in (1.5) says that the growth rate of the prey (r ) equals 
the difference between the effciency of the predators (p) and the death rate of predators (d). 
Theorem 1 immediately implies the following result. 

Corollary 1 Let Xmax and Smax be the maximal predator and prey densities and let Xmin 

and Smin be the minimal predator and prey densities of the unique limit cycle in system (1.1) 
under assumption (1.5). Then the predator satisfies � � � � 

qXmax q Xmax q Xmin q Xmax1 < < 1.6 and exp − < < exp − ,
r K  r H rK  r Hκ1 

and the prey satisfies � � � � 
Smax q Xmax Smin q Xmax0.9 < < 1 and exp − < < exp − ,
K dHκ2 K dHκ3 

where κ1, κ2 and κ3 are given by Theorem 1 with a = H and λ = dH  
K r K . � � 

r K  − qXmaxMoreover, if H and d are small, then the estimate Xmin ≈ exp is good K r q r H  

for the minimal predator density, and if H and dH  are small, then the estimate Smin ≈ � � K r K  

− qXmaxK exp dH  is good for the minimal prey density. 

The proof of Theorem 1 consists of constructions of several Lyapunov-type functions 
and derivation of a large number of non-trivial estimates. We believe that these methods and 
constructions have values also beyond this paper as they present methods and ideas that, 
potentially, can be useful for proving analogous results for dynamics in similar systems as 
well as in more complex systems. 

The proof is constructed in a way such that Theorem 1 is a direct consequence of four 
statements, namely Statements 1–4, which we prove in the following section. In addition to 
the estimates in Theorem 1 it is also possible to fnd, from these statements and lemmas, a 
positively invariant region trapping the unique limit cycle inside. In fact, the limit cycle will 
be inside an outer boundary consisting of the part of a trajectory T̂ with initial condition 
x (0) = 1.6, s = λ and the part of s = λ between (1.6, λ) and the next intersection with 
s = λ when x > h (λ). It will also be outside an inner boundary consisting of the part 
of a trajectory Ť with initial condition x (0) = 1, s = λ and the part of s = λ between 
(1, λ) and the next intersection with s = λ when x > h (λ). Estimates for these boundaries 
can be found from given statements and lemmas, even if we do not write them explicitly 
here. We also point out that better but more complicated estimates than those summarized 
in Theorem 1 follow from lemmas which are used for the proofs of Statements 1–4 and 
Theorem 1. 
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Fig. 2 Notations of the four Regions 1-4, the points P1-P8 on a trajectory T (blue, solid), and the isoclines 
x = h(s) and s = λ (red, dotted) of system (1.2) 

The following section is devoted to the proof of Theorem 1, while we end the paper by 
giving a section on numerical results. 

Proof of Theorem 1 

To outline the proof of Theorem 1 we frst observe that the coordinate axes are invariant, 
and hence the region x, s > 0 is also invariant. Therefore, we consider solutions only for 
positive s and x . Moreover, system (1.2) has isoclines at x = h (s) and s = λ, which lead 
us to split the proof by introducing the following four regions: 

Region 1, where x > h (s) , s > λ and x is growing and s decreasing. 
Region 2, where x > h (s) , s < λ and both x and s decrease. 
Region 3, where x < h (s) , s < λ and x decreases and s grows. 
Region 4, where x < h (s) , s > λ and both x and s increase. 

Any trajectory starting in Region 1 will enter Region 2 from where it will enter Region 3 
and then Region 4 and fnally Region 1 again, and the behaviour repeats infnitely. Figure 2 
illustrates the four regions together with isoclines and points which will be used in the proof 
of Theorem 1. Behaviour and estimates for trajectories in different regions are examined in 
different subsections. The main results in Regions 1–4 will be concluded in Statements 1–4. 

Estimates in Region 1 

We begin this section by proving a lemma which gives a bounded region into which all 
trajectories will enter after suffcient time and which will be used in several places in the 
proof of Theorem 1. 
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Fig. 3 Geometry in the proof of Lemma 1 

Lemma 1 Consider the function 

α (1 − s) λ+ 1 
Vg (s) = where α = 2 − λ+ a and β = . 

1 + β (1 − s) a − 2λ+ 3 

All solutions of system (1.2) under condition (1.3) with positive initial values will enter into 
the region determined by the inequalities x < Vg (s), x  > 0, s  > 0 and remain there. 

Proof of Lemma 1 Let U = x − α (1 − s). Differentiation with respect to time and using 
(1.2) yield 

2U � = − (1 − s) (s + λ) α +  (λs − s − as − λ) < 0 

for    0when  x = α (1 − s)+ . Thus all trajectories will enter the region x < α (1 − s) 
and remain there, see Fig. 3. Let also 

V = (1 + β (1 − s)) x − α (1 − s) , 

and notice that ∂V , ∂V > 0 since  0  < β < 1 < α and, after suffcient time, s < 1 and  
∂x ∂s 

x < α. Calculating the derivative of V with respect to time we get 

α (1 − s)3 S 
V � = −  

(4 − λ s − s + a − λ)2 

at x = Vg , where  

S = (λ+ 1) (a − 3 λ+ 2) s + λ (a − λ+ 4)2 . 

Because S > 0 for  a, λ < 0.1 we get  V � ≤ 0 for  0  < s ≤ 1 and  V � = 0 only for s = 1. 
Because β >  0 we  have  Vg < α (1 − s) and since h (s) < Vg (s) for 0 < s < 1 all  
trajectories entering x < α (1 − s) also enter region x < Vg , where they remain because 
of the sign of V � . 
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Fig. 4 Geometry in the proof of Lemma 2 

The maximal x-value for a trajectory is attendedwhen it escapes fromRegion1 toRegion2.  
In this section we will give estimates for maximal x-value, when trajectory starts on boundary 
of Region 1. 

Statement 1 Any trajectory starting on the isocline x = h (s) , s > λ has a maximum x0 
before it enters Region 2 and x0 < 1.6. Moreover, if the trajectory starts from a point where 
s > 0.9, then  x0 > 1. 

We formulate the last part of the statement as a lemma with an own proof. 

Lemma 2 Any trajectory starting on the isocline x = h (s) , s > 0.9 has a maximum x0 
before it enters Region 2 and x0 > 1. 

Proof of Lemma 2 In Region 1 the x-value on the trajectory is growing while the s-value is 
decreasing, and x � is smallest for greatest λ and s� is smallest for smallest a. This implies 
that in Region 1, for any a, λ ∈ [0, 0.1), the  x-value for a trajectory of system (1.2) is always  
growing stronger than the x-value for a trajectory of the system obtained for a = 0 and  
λ = 0.1, since | dx  | will then be smallest. By this fact we are able to construct a bound for ds  
the minimal value of x0 by using system (1.2) with a = 0 and  λ = 0.1 fxed.  

We defne the continuous function f by   
2 ⎪ 0.513 + 1.33s − 2s 0.7 < s ≤ 0.9 ⎪ ⎨ 21.045 − 0.13s − s 0.5 < s ≤ 0.7

f (s) = 2 ⎪ 1.08 − 0.2s − s 0.3 < s ≤ 0.5 ⎪ ⎩ 20.975 + 0.45s − 2s 0.1 ≤ s ≤ 0.3 

and consider the function Y defned by Y (x, s) = x − f (s). The derivative of Y with respect 
to time, considering system (1.2) with a = 0, λ = 0.1 and substituting x = f (s), is a  
fourth order polynomial on each piece of defnition. By standard techniques it can be shown 
that this derivative is positive on each piece. Thus, x grows faster than f (s) on the curve 
x = f (s). 
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Moreover, for s = 0.9 we get  f (s) = 0.09, meaning that the point ( f (s) , s) = 
(0.09, 0.9) is on the isocline x = h (s) because h (0.9) = 0.09, see Fig. 4. We conclude 
that trajectories intersect the pieces of x = f (s) transversally going from the region defned 
by x < f (s) to region where x > f (s). The isocline of any system (1.2) under condition 
(1.3) is above the isocline for the system we considered, meaning x is greater and also 
trajectories cannot intersect x = f (s) before s < 0.1. Moreover f (0.1) = 1. Thus any 
trajectory for any a, λ  ∈ [0, 0.1) under our conditions that start on the isocline x = h (s), 
s > 0.9, will at s = 0.1 have an  x-value greater than 1 and consequently this holds also at 
s = λ. Therefore, x0 > 1 and the proof of Lemma 2 is complete. 

Proof of Statement 1 We frst recall the notations from Lemma 1 and also the fact that the 
maximum of a trajectory taken for s = λ before it enters Region 2 is less than Vg (λ), and  

(λ− 1) (a − 2 λ+ 3) α 
Vg (λ) = −  . 

a − λ2 − 2 λ+ 4 

For a, λ  ∈ (0, 0.1], the derivative of Vg (λ) with respect to a is 

(1 − λ) a2 − 2 λ2 a − 4 λ a + 8 a + 3 λ3 − λ2 − 15 λ+ 14 
> 0, 

a − λ2 − 2 λ+ 4 2 

and derivative of Vg (λ) with respect to λ is 

a3 + λ2 a2 − 8 λ a2 + 10 a2 + 20 λ2 a − 52 λ a + 35 a − 2 λ4 − 8 λ3 + 55 λ2 − 84 λ+ 40 − < 0. 
a − λ2 − 2 λ+ 4 2 

Thus, Vg (λ) is less than its value for a = 0.1 and  λ = 0, which is less than 1.588. Since 
the estimate from below follows from Lemma 2, the proof of Statement 1 is complete. 

Estimates in Region 2 and Region 3 

We consider a trajectory T of system (1.2) under condition (1.3) with initial condition x (0) = 
x0, s (0) = λ, where  1  < x0 < 1.6. We suppose c1 and c2 are such that 0 < c2 < c1 < 
λ. If  T intersects s = c2λ before escaping Region 2 we denote the point of frst intersection 
with s = c1λ by P1 = (x1, c1λ) and the point of frst intersection with s = c2λ by P2 = 
(x2, c2λ). We denote the next intersection with the isocline x = h (s) by P3 = (x3, s3), 
where x3 = h (s3). The second intersection with s = c2λ we denote by P4 = (x4, c2λ) 
and the second intersection with s = c1λ by P5 = (x5, c1λ). The next intersection with 
s = λ we denote by P6 = (x6, λ). The lowest s-value of the trajectory before it escapes to 
Region 4 will be at P3 and the lowest x-value at P6. The notations are illustrated in Fig. 2, 
where there are added also points used in Region 4. We point out that trajectory T is normally 
not a cycle, even though such case is illustrated in Fig. 2. 

The main results in this section are given in Statements 2 and 3 which give main estimates 
in Regions 2 and 3. Statement 2 gives a lower and upper bound for minimal x-value and 
Statement 3 gives a lower and upper bound for minimal s-value of the part of the trajectory 
in Regions 2 and 3. Lemma 3 gives a better upper estimate for lowest x-value which is 
needed also in for the estimates in Region 4. These estimates will also serve as upper and 
lower estimates for the unique cycle of system (1.2) under condition (1.3). In the proofs of 
Statement 2 and Lemma 3 we assume c1 = e−2 , c2 = e−4. 

We here give these three main results of this section. 
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−Lemma 3 Trajectory T intersects s = e 4λ before escaping Region 2 and for x6 we have 
the estimate 

−2A− θ(x̃2) 
x6 < 1.015 e a+e−4λ (2.1) 

where 
−21 − e λ 

x̃2 = x0 − 3.8 λ, θ (x̃2) = x̃2 − a + e−4λ ln (x̃2) , A = . 
a + e−2λ 

More general estimates than in Lemma 3 and Statement 2 are given in Lemmas 4 and 5. 
These are formulated for general choices of parameters c1 and c2, which are fxed in proofs 
of Lemma 3 and Statement 2. 

Statement 2 For the intersection of trajectory T with the isocline s = λ at P6 = (x6, s6) 
the following estimates are valid for the x-value. 

x0 − x0 
e− a < x6 < e aκ1 , (2.2) 

where � �−2 λ 
a −2 λ1 + e 

1 < κ1 < < 1.32 1 + e . (2.3)
1 − 2.1λ − 0.31a a 

From Statement 2 it follows that for small λ and a the estimate e− x
a 
0 
is good for the minimal a 

x-value on trajectory T . 

Statement 3 For the intersection of trajectory T with the isocline x = h (s) at P3 = 
(x3, s3) the following estimates are valid for the s-value. 

− x0 − x0 
λκ2 λκ3 ,e < s3 < e (2.4) 

where 

1 
1 > κ2 > > 0.75,

1 + λ (1 − ln (λ)) 

and 

1 
1 < κ3 < < 1.64. 

1 − 0.3λ − a (1.3 − ln (a)) 

From Statement 3 we see that for small λ, a the estimate e− x 
λ 
0 
is good for the minimal s-value 

on T . 
The proof of Statement 2 is following from Lemma 3 and Statement 1 and a short 

Lemma 14. The proofs of Lemmas 3–5 are built on Lemmas 6–9. Lemmas 6–7 give estimates 
for trajectory from start to P2 (c2λ <  s < λ  in Region 2). Lemma 8 gives estimate of the 
behaviour between P2 and P4 (s < c2λ) and Lemma 9 for the behaviour between P4 and P5 
(c2λ <  s < c1λ in Region 3). Lemmas 6–9 use more new lemmas about which we inform 
later. The section ends with the proof of Statement 3. 

Before we start with the proofs of the Statements and Lemma 3 we introduce Lemmas 4 
and 5. Lemma 5 can be seen as corollary from Lemma 4. The proof of Lemma 3 is very 
similar to proof of Lemma 4. We wish to formulate the most general upper estimate for x6 
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in Lemma 4. We fnd such an estimate in the case T intersects s = c2λ before escaping 
Region 2 using auxiliary estimates for x1, x2, x4 and x5. For the estimate we need some 
notations and assumptions. 

We introduce the following notations � � �� 
c2

C1 = (1 − c1 + ln (c1)) λ, C2 = c1 − c2 + ln λ, (2.5) 
c1 

and notice that C1, C2 < 0. Moreover, we let 

H0 = a + λ, H1 = a + c1λ, H2 = a + c2λ. (2.6) 

Next, we assume that �√ �2 
C1 > − x0 − H0 , (2.7) 

and defned the function Q1 by 

Q1 (x) = x2 − (H0 + C1 + x0) x + H0x0. (2.8) 

+ √ 
If (2.7) is satisfed, then Q1 has a unique root x in the interval . Similarly, we 1 H0x0, x0 
assume that �� �2 

+C2 > − x1 − H1 , (2.9) 

and defne the function Q2 by 

+ +Q2 (x) = x2 − H1 + C2 + x x + H1x1 . (2.10) 1 

+Again, if (2.9) is satisfed we note that then Q2 has a unique root x2 in the interval � � � 
+ +H1x1 , x . We also introduce a function θ and a number C̃ by1 

+θ (x) = x − H2 ln (x) , C̃ = θ x . (2.11)2 

We make one more assumption 

C̃ 

k = H2 e H2 > 4. (2.12) 

Also the following notations are needed 

1 c2 (1 − c1) λ 
ẑ = √ , M = and A = . (2.13)

k2 − 4k c1 H1 

With these assumptions and notations we can formulate an upper estimate for x6. 

Lemma 4 Suppose assumptions (2.7), (2.9) and (2.12) are satisfied. Then the trajectory T 
intersects s = c2λ before escaping Region 2 and for x6 we have the estimate 

˜− 
x6 < 1 + ẑ M Ae H

C 
2 . 

+ + + ∗ ∗From the defnition of x and x2 , we obtain, for i = 1, 2, that x > x where x is1 i i i +the value of xi for a = 0.1, λ  = 0.1 and  x0 = 1. This will give us a new estimate as a 
corollary which we call Lemma 5. To formulate the lemma we need the notation 

H∗ H∗ 
0 1D∗ = 1 − , D∗ = 1 − ,1 ∗ 2 ∗ x x1 2 
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where Hi 
∗ are the values of Hi , i = 0, 1, when a = λ = 0.1, that is, H∗ = 0.2 and  0 

H∗ = (1 + c1) · 0.1. With these notations we can formulate next lemma. 

Lemma 5 Suppose assumptions (2.7), (2.9) and (2.12) are satisfied. Then the trajectory T 
intersects s = c2λ before escaping Region 2 and for x6 we have the estimate 

− θ(x̃2) 
x6 < 1 + ẑ M Ae H2 , 

where 

C1 C2 
x̃2 = x0 + + . 

D∗ D∗ 
1 2 

Because Ci , i = 1, 2 depend only on λ, D∗ only on λ and c1, x̃2 does not depend oni −2 −4a, only on λ, c1 and x0. If we choose c1 = e , c2 = e we  are able to prove  that  
assumptions (2.7), (2.9) and  (2.12) are satisfed and get Lemma 3. 

Lemma 4 is  based on Lemmas  6, 8 and 9. We now give these lemmas and also Lemma 7 
needed for Lemma 3. Lemma 7 can be seen as a corollary of Lemma 6. 

Lemma 6 Suppose assumptions (2.7) and (2.9) are satisfied. Then the trajectory T intersects 
s = ci λ, i = 1, 2, before escaping Region 2 at points P1 = (x1, c1λ) and P2 = (x2, c2λ), 
where 

C1 C1 C2 
x1 > x0 + and x2 > x0 + + . (2.14)

1 − H0 1 − H0 1 − H1 + + +x x x1 1 2 

∗ +Moreover, if xi are the values for xi , i  = 1, 2, when a  = λ = 0.1 and x0 = 1, then the 
+ ∗inequalities in (2.14) remain valid for all a, λ  <  0.1 if xi are replaced by xi . 

Using Lemma 6 for special values of ci after calculating some quantities we get a corollary. 

−4Lemma 7 Suppose that c1 = e−2 and c2 = e . Then the trajectory T intersects s = c2λ 
before escaping Region 2 at point P2 = (x2, c2λ), where  

x2 > x0 − 3.8λ. 

Lemma 8 Let T ∗ be a trajectory of system (1.2) under conditions (1.3) with initial conditions 
x (0) = u, s (0) = λ ∗ < λ,  u > 2.5H∗ and H∗ = a+λ ∗ > h (λ ∗ ). Then the trajectory 
T ∗ next time intersects s = λ ∗ at a point P = (v, λ ∗ ) where 

˜ 
v <  1 + ẑ e−

θ( 
H
u ∗) , 

and where 

1 H∗ u 
θ̃ (u) = u − H∗ ln (u) , ẑ = and k̃ = e H∗ . 

k̃2 − 4k̃ u 

Lemma 9 Let T ∗ be a trajectory of system (1.2) under conditions (1.3) with initial conditions 
x (0) = u, s (0) = c2λ, u < h (c2λ). The trajectory T ∗ next time intersects s = c1λ at 
a point Pv = (v, c1λ) where 

v <  uMA . 
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We now proceed to prove these lemmas. We start with Lemmas 6 and 7. The proof of 
Lemma 6 is  based on Lemmas  10 and 11 which we give here, before the proofs of Lemma 8 
and 9. We consider a trajectory T2 of system (1.2) under conditions (1.3) with initial condition 

∗ ∗ ∗ ∗ ∗ x (0) = u > h c1λ , s (0) = c1λ, 0 < c ≤ 1. Let c2 be a number less than c1. We  1 
introduce the quantities C and H and the function R by � � ��∗ � �c x∗ ∗ 2 ∗C = c1 − c2 + ln λ, H = a + c1λ, R (x) = x − u − H ln .∗ c u1 

∗We are interested in whether T2 intersects s = c2λ before escaping Region 2. We are also 
interested in a lower estimate for the x-value of such an intersection. Lemma 10 gives an 
answer to these questions and Lemma 11 gives a more explicit estimate. 

Lemma 10 If the equation R (x) = C has a solution x = x̄ ,  H  < x̄ < u, then the 
∗ ∗trajectory T2 intersects s = c2λ before escaping Region 2 at a point P̃ = x̃, c2λ , where  

x̃ > x.¯ 
Suppose H, C and u satisfy the following assumptions 

�√ √ �2 
0 < H < 0.2, H < u, − u − H < C < 0, (2.15) 

and defne � � 

R̃ (x) = 1 − 
H 

(x − u) . 
x � � 

Then Q (x) = R̃ (x) − C x = x2 − (H + C + u) x + Hu  = 0 has a unique root �√ � 
x+ ∈ Hu, u and the following holds. 

Lemma 11 If (2.15) is satisfied, then equation R (x) = x for  C has exactly one solution ¯ 
x > H and 

C 
x̄ > x+ = u + . (2.16)

1 − H 
x+ √ 

Further if H < Hm and xm is the root of Q between Hu and u for H = Hm and u = 1, 
then 

C 
x̄ > u + . (2.17)

1 − Hm 
xm 

∗Proof of Lemma 10 We notice that the equation R (x) = C is equivalent to U x, c2λ = 
∗U u, c1λ , where  

U (x, s) = x − H ln (x) + s − λ ln (s) . (2.18) 

Because the equation has a solution x̄ , H < x̄ < u, and  U is increasing in x and decreasing 
∗in s in Region 2 as long as H < x , the equation U (x, s) = U u, c1λ has a unique 

∗ ∗ ∗solution x (s) for any s between c2λ and c1λ and x (s) is increasing in s and x c2λ = x̄ 
∗and x c1λ = u, see  Fig.  5. 

Derivation with respect to time gives U � (x, s) = (h (s) − H) (s − λ) > 0  in Region 2.  
Thus, because U (x, s) increases in x , the trajectory T2 will remain in the region defned 

∗by x > x (s) until it intersects s = c2λ at P̃ with x̃ > x̄ . On trajectory part U (x, s) > 
∗U (x (s) , s) = U u, c1λ . 
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Fig. 5 Geometry in the proof of Lemma 10 

Proof of Lemma 11 We now use the auxiliary function R̃ (x) = 1 − H (x − u). From  x 

ln x > 1 (x − u) it follows that R (x) < R̃ (x) for x < u. Equation R̃ (x) = C u x ��√ 
has a unique solution x+ in Hu, u when (2.15) is satisfed. (R̃ has a global minimum �√ � �2�√ √ 
R̃ Hu  = −  u − H and R̃ (u) = 0). Because R̃ (x) = C is equivalent with 

Q (x) = 0, x+ is also the greatest root of Q. Equation R (x) = C has a unique solution x̄ 
in (H, u) such that x+ < x̄ < u, because R (u) = 0 and  R (x+) < R̃ (x+) = C and R 
is growing for x > H . Now we notice that Q (x) = 0 is equivalent to 

C 
x = u + ,

1 − H 
x 

from which we get (2.16). 
To prove the second inequality we note that the function Q is increasing in H for x < u 

and decreasing in u for x > H , from which we conclude that x+ is decreasing in H and 
Hincreasing in u and, therefore, Hm > which implies (2.17). Thus, both inequalities of xm x+ 

the lemma are proved and the proof is complete. 

We can now prove Lemma 6. 

∗ ∗Proof of Lemma 6 From Lemmas 10 and 11 with c1 = 1, c2 = c1, C = C1, H = 
H0, u = x0 it follows that the trajectory T intersects s = c1λ before escaping Region 2, 
and that for this intersection the frst inequality in Lemma 6 holds. Using Lemmas 10 and 11 

∗ ∗ once again, this time with c1 = c1, c2 = c2, C = C2, H = H1, u = x1, we conclude 
that T also intersects s = c2λ before escaping Region 2, and that for this intersection the 
second inequality in Lemma 6 holds. Indeed, to see that we can apply Lemma 11 here we 

+ √ 
observe that u = x1 > x1 > H0x0 > a + λ >  H1. Finally, we notice that H0 and + ∗H1 take their maximal values for a = λ = 0.1. Thus, the possibility to replace xi by xi 
follows from inequality (2.17). 

− −Proof of Lemma 7 We intend to use Lemma 6. Let  c1 = e 2 and c2 = e 4. Using  (2.5) 
and (2.6) we fnd  C1 > −1.135λ, C2 > −1.883λ, H0 < 0.2 and  H1 < 0.1136. Equation 

∗ + ∗(2.8) with x0 = 1 yields x > 0.851 and (2.10) with x1 = 0.851 yields x2 > 0.620. 1 
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Using these estimates we obtain D1 = 1 − H ∗0 > 0.764, D2 = 1 − H ∗1 > 0.816 and x x1 2 
C1 + C2 > −3.8λ. Now, we note that the above estimates imply assumptions (2.7) and  D1 D2 
(2.9), and Lemma 7 now follows by an application of Lemma 6. 

We have now proved Lemmas 6 and 7 and proceed to the proof of Lemma 8. Proof of 
∗Lemma 8 is  based on Lemmas  12 and 13, we now introduce. We consider a trajectory T 

∗of system (1.2) under conditions (1.3) with initial conditions x (0) = u, s (0) = λ < 
∗ ∗ ∗ λ, u > a + λ . Suppose P = (v, λ ) is the next intersection with s = λ . Let further 

θ (x) = x − H ln (x) . 

The following lemma which will also be used for Statement 3, gives estimates for v. 

Lemma 12 Let x̂ be the solution to θ (x) = θ (u) , x < H = a +λ ∗ and x̌ the solution to 
∗ θ (x) = θ (u) , x < H = a. Then for the next intersection of trajectory T ∗ with s = λ 

∗ at P = (v, λ ), it holds that x̌ < v <  x.ˆ 
Next lemma gives estimate for the equation in previous lemma. 

Lemma 13 Suppose that C is a number such that C > θ (H) and suppose 

k = HeC/H > 4, 0 < H < 0.2. 

Then the equation 

θ (x) = C, x < H, (2.19) 

has a unique solution x̄ such that 

−C/H −C/He < x̄ < 1 + ẑ e , 

√ 1where ẑ = . 
k2−4k 

Proof of Lemma 12 The trajectory T ∗ escapes from Region 2 at a minimal s to Region 3, 
∗where s grows and after some time T ∗ intersects s = λ ∗ at P = (v, λ ), see  Fig.  6. 

As in the proof of Lemma 10 we will make use of the function U defned in (2.18) to  
∗construct barriers for the trajectory T . We note that  U is decreasing in s, increasing in x for 

∗ x > H and decreasing in x for x < H . Moreover, θ (x) = U (x, λ  ). 
We frst prove the upper bound v <  x̂ . Let  H = a+λ ∗ and let s̄ (x) be the level curve to U 

such that U (x, s̄ (x)) = θ (u). The  curve  s̄ (x)will have a minimum at x = H = a+λ ∗ and 
∗intersect λ ∗ at x = x̂ and also at x = u. Observe that, since h (s) < h (λ ) < λ  ∗ + a = 

H , the derivative of U with respect to time is positive: U � = (h (s)− H) (s − λ) > 0. 
∗Therefore, the trajectory T ∗ must stay below the curve s̄ (x). On trajectory T we have 

U (x, s) > U (x, s̄ (x)) = θ (u) = θ x̂ . Hence, recalling that U is decreasing in x for 
x < H , we have  v <  x̂ and the upper bound follows. 

The proof of the lower bound x̌ < v  is similar. Let H = a and let s (x) be the level 
curve to U such that U x, s (x) = θ (u). In this case, the derivative of U with respect to 

∗time is negative, and thus the trajectory T ∗ must stay above the curve s (x). On trajectory T 
we have U (x, s) < U x, s (x) = θ (u) = θ x̌ , and it follows also that x̌ < v. 

Proof of Lemma 13 It is clear that Eq. (2.19) must have a solution because θ (H) < C 
and θ (x) → ∞ for x → 0+. The solution is unique because θ is decreasing for x < H . 

−C/H −C/HMoreover, since e < H and C < θ  e , a solution  x̄ of θ (x) = C must satisfy 
−C/Hx̄ > e , which proves the frst inequality in Lemma 13. 
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Fig. 6 Geometry in the proof of Lemma 12 

−C/H ¯ ¯Substitution of x = (1 + z) e into θ (x) gives θ (z) + C where θ (z) = 
−C/H ¯(1 + z) e − H ln (1 + z). Thus Eq. (2.19) is equivalent to θ (z) = 0. Let z̄ be 

the z-value corresponding to the solution x̄ (x̄ = (1 + z̄) e−C/H ). For z = 0 we  get  
θ (x) = x + C > C , so clearly z̄ > 0. We wish to fnd an upper estimate for z̄. From  

z ¯ −C/H − Hz  e ˜ln (1 + z) > it follows that θ (z) < (1 + z) e = −C/H 
θ (z), where  1+z 1+z 1+z 

θ̃ (z) = (1 + z)2 − kz, k = H eC/H . The function θ̃ (z) has two roots because k > 4. We 
denote the smallest one by z̃. Clearly z̃ < k−2 , and  1  + z̃ < k/2 < k which is equivalent 2 −C/H ˜to x̃ = (1 + z̃) e < H . Because θ̄ (z̃) < θ (z̃) = 0 and  θ̄ is decreasing in (0, z̃) 
we must have z̄ < z̃. Using the assumption k > 4 and the mean value theorem, we get an 
estimate for z̃: � � � 

k − 2 4 k − 2 4 1 
z̃ = 1 − 1 − < · · � 

2 (k − 2)2 2 (k − 2)2 42 1 − 
(k−2)2 

1 = √ = ẑ. 
k2 − 4k 

Now we conclude 0 < z̄ < ẑ and thereby e−C/H < x̄ < 1 + ẑ e−C/H and the lemma 
is proved. 

We are now ready with the proofs of Lemma 12 and 13 and can use them for proving 
Lemma 8. 

Proof of Lemma 8 The result follows from Lemmas 12 and 13 by taking H = H∗ and 
C = θ̃ (u). We observe that we will have k̃ > 4 because u > 2.5H∗ . 

Now only Lemma 9 is left to be proved in order to give the proofs of Lemmas 3–5. 

Proof of Lemma 9 The part of the trajectory between Pu = (u, c2λ) and Pv is in Region 3, �where s > 0 > x � and moreover s < c1λ. There we get the following inequalities 
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dx  max x � (c1 − 1) λx (c1 − 1) λx 
< = < . 

ds  max s� (h (c1λ)− x) s (a + c1λ) s 

Integrating and using u < c2λ we get � � v 1 c1λ (c1 − 1) λ 1 
dx  < · ds, 

u x c2λ a + c1λ s 

1and, by using the notation in (2.13) we have ln  (v) − ln (u) < −A ln M− from which 
Lemma 9 follows. 

We have now fnished the proofs of all auxiliary results needed for Lemmas 3-5 and we 
will now continue by proving these lemmas. 

Proof of Lemma 4 From Lemma 6 follows that the trajectory T intersects s = c2λ before 
+escaping Region 2 at a point P2 = (x2, c2λ)where x2 > x2 . From Lemma 7 it follows that 

+x > x0 −3.8λ >  0.6, and, therefore, we can apply Lemma 8 with H∗ = H2 = a +c2λ.2 ∗In particular, from Lemma 8 with H∗ = H2 and λ = c2λ it follows that the trajectory 
+with initial condition x (0) = x2 , s (0) = c2λ = λ ∗ next time intersects s = c2λ at a 

+ 
−

point P̃4 = (x̃4, c2λ) where x̃4 < 1 + ẑ e 
θ( 
H
x2
2 

) 
. Thus trajectory T intersects s = c2λ 

at a point P4 = (x4, c2λ), where  x4 < x̃4. From Lemma 9 follows that a trajectory 
with initial condition x (0) = x̃4, s (0) = c2λ next time intersects s = c1λ at a point 
P̃5 = (x̃5, c1λ), where  x̃5 < x̃4 MA . Thus trajectory T intersects s = c1λ next time at a 
point P5 = (x5, c1λ), where  x5 < x̃5. Finally, because at P6 = (x6, λ) (next intersection 
of T with s = λ), x6 < x5 we get 

+
θ(x2 )− 

x6 < x5 < x̃5 < x̃4 M
A < 1 + ẑ M Ae H2 

The proof of Lemma 4 is complete. 

Proof of Lemma 5 The proof is analogous to the proof of Lemma 4. We only use  Lemma  6 
+ ∗ so that we replace x by x2 and modify it by taking as H0 and H1 the values they get for 2 

a = λ = 0.1. 

Proof of Lemma 3 The proof is analogous to proof of Lemma 4, we only use Lemma 7 
instead of Lemma 6. In particular, from Lemma 7 it follows that the trajectory T intersects 

− −s = e 4λ before escaping Region 2 at a point P2 = x2, e 4λ , where  

x2 > x̃2 = x0 − 3.8λ. 

∗ ∗ −We now use Lemma 8 with H∗ = a + λ , λ = e 4λ and u = x̃2 to obtain x4 < x̃4 = 
x2) 

1 + ẑ e 
− 

a+ 

θ̃( 
e 

˜
−4λ . To estimate ẑ, we carefully observe that the largest ẑ is obtianed by setting 

a = λ = 0.1 and  x0 = 1. Indeed, we obtian ẑ < 0.015 and so 

θ̃(x̃2) −x4 < x̃4 = 1.015e 
− 

a+e 4λ . 

From Lemma 9 follows that a trajectory with initial condition x (0) = x̃4, s (0) = e−4λ 
− − −2Anext time intersects s = e 2λ at a point P̃5 = x̃5, e 2λ , where  x̃5 < x̃4 MA = x̃4e . 

− −Thus trajectory T intersects s = e 2λ next time at a point P5 = x5, e 2λ , where  x5 < x̃5. 
Finally, because at P6 = (x6, λ) we have x6 < x5, we get  

θ̃(x̃2)−2A −x6 < x5 < x̃5 < x̃4e < 1.015e 
−2A− 

a+e 4λ , 
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which proves Lemma 3. 

In order to prove Statement 2 we need one more lemma. The proof of it follows by using 
Lemma 13 with C = θ (u) and H = a, but it can also be proved shortly directly. 

Lemma 14 Equation θ (x) = θ (u) , u > 1, where  θ (x) = x − a ln (x) , a < 0.1, has 
a unique solution x in¯ (0, a) and x̄ > e− u

a = x̌ .  

Proof We frst note that θ is decreasing in (0, a) and that θ has its global minimum at a. 
−u/aMoreover, θ (u) = u−a ln (u) < u/a+e = θ x̌ . Therefore, θ (a) < θ (u) < θ  x̌ 

and thus there is a unique solution to θ (x) = θ (u) between x̌ and a. 

We have now fnished the proofs of all auxiliary lemmas and will proceed to the proofs of 
our main results for this section; Statements 2 and 3. 

Proof of Statement 2 Lemmas 12 and 14 together give the lower estimate in Statement 2 if 
∗ we use λ = λ and u = x0. 

To prove the upper bound we frst observe that from Statement 1 and Lemma 3 it follows 
that x0 − 3.8λ <  x̃2 < 1.6, where x̃2 is as defned in Lemma 3. Using this estimate we 
conclude, since ln(1.6) < 0.294, that 1.6 � � 

ln (x̃2)
θ (x̃2) = x̃2 1 − H2 > x̃2 (1 − 0.294H2) > (x0 − 3.8λ) (1 − 0.294H2) . 

x̃2 

From (2.1) in Lemma 3, using  that  H2 < H1, we get  

θ (x̃2)ln (x6) < −2A − + ln (1.015)
H2 

−2 (1 − c1) λ (x0 − 3.8λ) (1 − 0.294 H2)− H2 ln (1.015) 
< − 

H1 H2 

−2 (1 − c1) λ− (x0 − 3.8λ) (1 − 0.294 H2)+ (a + c2λ) ln (1.015) 
< ,

H1 

and hence, using that 1 < x0, 

−x0 + (3.8 − 2 (1 − c1)+ c2 ln (1.015)+ 0.294c2x0) λ+ (0.294x0 + ln (1.015)) a 
ln (x6) < 

H1 

−x0 (1 − 2.1λ− 0.31a) x0 
< < − . 

H1 1.32H1 

The above inequality gives the upper estimate in Statement 2 and the proof is complete. 

Proof of Statement 3 We denote by S2 the part of the trajectory T between the initial point 
(x0, λ) and P6 = (x6, λ). Let  U (x, s) = x − H ln (x)+ s − λ ln (s). We denote by  š the 
solution to 

U (x0, λ) = U (a, s) , H = a. (2.20) 

The function U , for  H = a, is decreasing in s (s ≤ λ), decreasing in x for x < a and 
increasing in x for x > a. Thus the solutions to U (x0, λ) = U (x, s), s ≤ λ, form a  
curve Š2 given by s = σ̌ (x) , x6 ≤ x ≤ x0, where  σ̌ has a minimum for x = a and is 
increasing for x > a and decreasing for x < a. Differentiating U with respect to time gives 
U � = (h (λ)− H) (s − λ) < 0 for  s < λ and U (x, s) < U x, σ̌ (x) and s > σ̌ (x) for 
(x, s) on trajectory T . 
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We denote by ŝ the solution to 

U (x0, λ) = U (a + λ, s) , H = a + λ. (2.21) 

Analogously we fnd that the solutions to U (x0, λ) = U (x, s), s ≤ λ form a curve Ŝ2 given 
by s = σ̂ (x) , x6 ≤ x ≤ x0, where  σ̂ has a minimum for x = a + λ and is increasing 
for x > a + λ and decreasing for x < a + λ. We now  get  U � > 0 for  s < λ  and hence 
U (x, s) > U x, ˆ and s < ˆ S2σ (x) σ (x) for (x, s) on trajectory T . We conclude that ˆ 
and Š2 together form a closed region and S2 is wholly inside this region. The s-values on 
Ŝ2 are greater than the corresponding s-values for T and the s-values on Š2 are less than the 
corresponding s-values for T , except at the coinciding endpoints of the curves S2, Š2 and Ŝ2. 

The minimum s-value on Š2 is š and it must be less than the minimal s-value on S2 and 
we get š < s3. Analogously we get ŝ > s3, where  ŝ is the minimum s-value on Ŝ2. We will 
now fnd an estimate for the solution š to Eq. (2.20). To do so we frst note that Eq. (2.20) is  
equivalent to 

s − λ ln (s) = x0 − a ln (x0) + ρ (λ) − ρ (a) = L , 

where ρ (x) = x (1 − ln (x)). Because −λ ln (s) < s − λ ln (s) and, since 1 < x0, 

L̂ = x0 + ρ (λ) − ρ (a) > L 

L̂ 
and since s − λ ln (s) decreases in s, we get  š > e− λ . Moreover, from ρ (a) > 0 and  
x0 > 1 it follows that L̂ < x0 + ρ (λ) < x0 (1 + ρ (λ)) and thus 

L̂ − x0 
s3 > š > e− λ > e λκ2 , 

where κ2 > 1 . This proves the lower estimate in Statement 3.1+λ(1−ln(λ)) 
To prove the upper estimate in Statement 3 we will now fnd an estimate for the solution 

ŝ to Eq. (2.21). To do so we frst note that this equation is equivalent to 

s − λ ln (s) = x0 − H ln (x0) + ρ (λ) − ρ (a + λ) = Ľ. (2.22) 

To estimate the solution of (2.22) we will make use of Lemma 13. In particular, Lemma 13 
with H = λ and C = Ľ gives 

ŝ < 1 + ẑ e−
L 
λ 
ˇ 

where ẑ = √ 
1 

. (2.23)
k2 − 4k 

Next, we fnd  a lower  estimate of  k. Using the inequality Ľ > 1 + ρ (λ) − ρ (a + λ) = L̃ , 
L L 

we see that k = λe λ 
ˇ 
> λe λ 

˜ = k̃. The derivative with respect to a of k̃ is of the same sign 
as the derivative of −ρ (a + λ) with respect to a which is negative. k̃ can also be written in 
form 

1 − a +(1+ a ) ln(a+λ) k̃ = e λ λ λ 

and the derivative of k̃ with respect to λ can be seen to be 

∂ k̃ k̃ = (λ + a − 1 − a ln (a + λ)) 
∂λ  λ2 

which again is negative for our values of a and λ. Thus, k̃ is greater than the value (> 324) 
√ 1it takes of a = λ = 0.1 and it follows that ẑ < < 0.004. Using this estimate and 

k̃2−4k̃ 
Ľ 

(2.23) we conclude that ŝ < 1.004e− λ . 
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For trajectory T we have x0 < 1.6 and therefore x0 − H ln (x0) > x0 (1 − 0.294 H). 
Moreover, ρ (a + λ) − ρ (λ) < ρ (a) and we obtain 

x0 (1 − 0.294 H) − ρ (a)
ln ŝ < − + ln (1.004) , 

λ 

and so 
x0ln ŝ < − (1 − 0.294 H − ρ (a) − λ ln (1.004))
λ 
x0 

< − (1 − 0.3 λ − a (1.3 − ln (a))) . 
λ 

− x0 
Thus s3 < ŝ < e λκ3 , where  κ3 is as in Statement 3, and the proof is complete. 

Estimates in Region 4 

We again consider a trajectory T of system (1.2) under conditions (1.3) with initial condition 
x (0) = x0 > 1, s (0) = λ. We are interested in the behaviour of the trajectory in Region 4. 
The trajectory enters Region 4 at point P6 = (x6, λ). We are interested in the next intersection 
of the trajectory with s = s7 > 0.5 at point P7 = (x7, s7) (if it occurs before escaping 
Region 4) and of the next intersection with the isocline x = h (s) at P8 = (x8, s8), where  
x8 = h (s8). Lemma 3 from previous section gives an estimate for x6 and we are able to 
show that for such x6 the trajectory will intersect s = 0.8 before escaping Region 4 and the 
escaping occurs at P8, where  s8 > 0.9. 

The main result is Statement 4 which is based on the following two lemmas. 

Lemma 15 The trajectory T after intersecting s = λ next time always intersects s = 0.8 
at a point P7 = (x7, 0.8), where  x7 < 0.012, before escaping Region 4. 

Lemma 16 If trajectory T after intersecting s = λ next time intersects s = 0.8 at a point 
P7 = (x7, 0.8) where x7 < 0.012 then it intersects the isocline s� = 0 next time for an 
s-value greater than 0.9. 

From these lemmas follows 

Statement 4 Trajectory T after intersecting s = λ at P4 escapes from Region 4 at an 
s-value greater than 0.9. 

The trajectory in Region 4 is well estimated by x = x6 B for s < 0.8, where B is defned 
in (2.26). For s > 0.8 expression (2.35) gives a one-sided estimate for the trajectory while 
remaining in Region 4 and (2.36) gives an estimate for s8 substituting m = 0.8. 

The proof of Lemma 16 is at the end of the section. The proof of Lemma 15 is based on 
some lemmas we provide here. Lemma 15 uses Lemma 18 and Lemma 19. Lemma 18 gives 
us necessary conditions in form of inequalities for the trajectory to intersect s = s7 before 
escaping Region 4 and an estimate for x-value at intersection point P7. Lemma 19 tells us 
that we have to check the inequalities only for a, λ  = 0.1 to be sure they hold for all other 
parameters. Lemma 18 is based on Lemmas 17 and 3, where Lemma 17 gives estimates in 
Region 4 and Lemma 3 takes care of estimates for trajectory in Regions 2 and 3. Lemma 17 is 
based on Lemmas 20 and 21. Lemma 20 gives us estimates for trajectory in a part of Region 4 
and Lemma 21 tells us that we need to check these estimates only for s = λ and s = s7 in 
order to be sure the trajectory will stay in the region. 

Wenow give Lemmas 17–19. Lemma 19 canbeproveddirectly, but the proof ofLemma 17, 
which is needed for proving Lemma 18, needs more lemmas and is given later. 
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Lemma 17 Suppose 0 < k < 1 and s7  0.5. If  

� � 1 
1 k 

x6 K7 < (1 − k) h (s7) (2.24) 
a + λ 

� � 1 
λ k 
s7where K7 = e s 

1
7 −
+a and x6 < (1 − k) h (λ), then the trajectory T intersects s = s7s7 

before escaping Region 4 and at the intersection P7 = (x7, s7) the estimate 

� � 1 
1 k 

x7 < x6 K7 
a + λ 

is satisfied. 

Lemma 3 gives estimate for x6 and thus from Lemmas 3 and 17 we get a new statement. 
For this we introduce the function η (a, λ) to fnd out whether inequality (2.24) holds. 

� � 1 
θ( ˜1 k −2A− x2) 

η (a, λ) = K7 1.015 e H2 
a + λ 

(Notations from Lemma 3 are used here). 

Lemma 18 Suppose 0 < k < 1 and s7  0.5. If  

η (a, λ) < (1 − k) h (s7) (2.25) 

and x6 < (1 − k) h (λ), then the trajectory T intersects s = s7 before escaping Region 4 
and at the intersection P7 = (x7, s7) the estimate x7 < η (a, λ) holds. 

Proof The statement follows directly from Lemmas 17 and 3. 

The following Lemma tells us that to prove that (2.25) holds for all a, λ  ∈ [0, 0.1), 
it is enough to prove the inequality for a = λ = 0.1 fxed in the left hand side, i.e., 
η (0.1, 0.1) < (1 − k) h (s7). 

Lemma 19 The derivatives of η (a, λ) with respect to a and λ are positive if k  0.9. 

Proof Calculations give ∂η  = ξλη (a, λ), where  ∂λ  � � 
1 1 ∂A 1 1 x̃2c2 

ξλ = − − 2 + 3.8 − + 
s7 k (a + λ) ∂λ  H2 x̃2 H2

2 

and 

∂A (1 − c1) a 0.9a 0.9 = < < . 
∂λ  H1

2 H1
2 H1 

For ξλ we get the estimate 

1 1.8 3.8 3.8 3 3.8 3.8 0.8 3.8 
ξλ > − − + − > − + − > − > 0,

k (a + λ) H1 H2 0.6 H2 H2 0.6 H2 0.6 

because H2 < 0.11. Thus, since η (a, λ) > 0 we conclude that η (a, λ) is increasing in λ. 
Calculations also give ∂η  = ξaη (a, λ), where  ∂a 

1 1 (1 − c1) λ x̃2 
ξa = − + 2 + . 

H2 H2k (s7 + a) k (a + λ) 1 2 
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For ξa we get the estimate � � 
1 x̃2 1 0.6 1 0.6 1 

ξa > − + > − + = − > 0. 
k (a + λ) H2

2 k H2 H2
2 H2 H2 k 

Thus, η (a, λ) is increasing also in a and the proof of the Lemma 19 is complete. 

We now proceed to the proof of Lemma 17, which follows from Lemmas 20 and 21. These  
lemmas we formulate now. For the statements we need the following notations: 

B = E1 E2 E3 E4, (2.26) 

where � ��k2 �k2s + a λ 
E1 = , E2 = , (2.27) 

s a + λ � ��k3 �k3(s + a) (1 − λ) 1 
E3 = , E4 = , (2.28)

1 − s a + λ 

λ 1 − λ 
k2 = and k3 = . 

a 1 + a 

Lemma 20 Suppose that x6 < (1 − k) h (λ). Then as long as the trajectory stays in the 
region determined by x < (1 − k) h (s) the following estimates are valid: 

1 
x < x6 B k (2.29) 

and, when s   0.5, 

� � 1 � � 1 
1 k λ s + a k 

x < x6 K where K = e s · . (2.30) 
a + λ 1 − s 

1
Lemma 21 Suppose x6 < (1 − k) h (λ) and x6 (B7) k < (1 − k) h (s7), where  B7 is the 
value B takes for s = s7   0.5. Then the trajectory T intersects x = (1 − k) h (s) next 
time after P6 for s > s7 and is inside the region determined by x < (1 − k) h (s) before it 
intersects s = s7. 

Proof of Lemma 20 When x < (1 − k) h (s) we have s� > kh (s) s > 0 and  x � > 0. 
Thus we get the inequality 

dx  (s − λ) s 
< . 

ds  kh  (s) s 

Integrating gives 

� � 1 
F (s) k (y + a)k1 

x < x6 where F (y) = (2.31)
F (λ) yk2 (1 − y)k3 

and where k1 = a+λ . But  a(a+1) 
� � ��k1 �k2 �k3F (s) s + a λ 1 − λ = 

F (λ) λ+ a s 1 − s 
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and because k1 = k2 + k3 we get � � � ��k2 �k2 �k3 �k3F (s) s + a λ (1 − λ) (s + a) 1 = . 
F (λ) s λ + a 1 − s λ + a 

F(s)Choosing B = = E1 E2 E3 E4 we get estimate (2.29).F(λ) 
To prove (2.30) we note that for Ei , i = 1, 2, 3, 4 we get the following estimates 

� � λ � � s 
1 s 

λ 1a 

E1 = 1 + s < e s , E2 = � �k2 < 1 
a 1 + 1 k2 � �k3s + a s + a 1 

k3 < 1, E3 < < , E4 < . 
1 − s 1 − s λ + a 

All these estimates together give (2.30). 

Proof of Lemma 21 We frst claim that the assumptions in the lemma implies 

1 
B (s) k 1 − k 

< for all s ∈ [λ, s7]. (2.32) 
h (s) x6 

Next, assume, by way of contradiction, that the trajectory T intersects the curve x = 
1 

(1 − k) h (s) for some s ∈ [λ, s7]. Using claim (2.32) we then obtain x6 B (s) k < x for 
1 

the point of intersection. But from (2.29) in Lemma 20 it follows that x < x6 B (s) k as 
long as T stays in the region defned by x < (1 − k) h (s). Using continuity this leads to a 
contradiction. Hence, we conclude that the trajectory T intersects x = (1 − k) h (s) next 
time, after P6, for  s > s7 and T is inside the region determined by x < (1 − k) h (s) before 
it intersects s = s7. 

To fnish the proof of Lemma 21 it remains to prove that claim (2.32) holds true. To do 
1 

so we observe that differentiating G (s) = F
h 
(
( 
s
s 
)
) 
k with respect to s, where  F (s) is given by 

(2.31), gives 

1 
F (s) k 

G � (s) G∗ (s) ,= 
k (1 − s)2 s (s + a)2 

where 

G∗ (s) = 2ks2 + (ak − k + 1) s − λ. 

We conclude that G (s) has a unique minimum between s = λ and s = 0.5, when a, λ  <  
0.1 and  0  < k < 1, because 

9λ (a + 2λ − 1) 9a − 20λ + 10 = G∗ (λ) < 0 < G∗ (0.5) = ,
10 20 

and G∗ is increasing in s. Thus, the maximal value of G in [λ, s7] is either G (λ) or G (s7). 
1 

G(s) B(s) kClaim (2.32) now follows since = and the assumptions in the lemma equals1 h(s)
F(λ) k 

1 1 
B (λ) k 1 − k B (s7) k 1 − k 

< and < . 
h (λ) x6 h (s7) x6 

The proof of Lemma 21 is complete. 
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We are now ready with proofs of Lemmas 20 and 21 and can use them for getting proofs 
of Lemmas 17 and 18. 

Proof of Lemma 17 The proof follows from Lemmas 20 and 21. Lemma 21 tells that the 
trajectory will be inside the region x < (1 − k) h (s) and then Lemma  20 gives us the  
necessary estimates. 

Finally, we are ready with all proofs of auxiliary results and can prove the main Lemmas 15 
and 16 from which Statement 4 follows. 

Proof of Lemma 15 We choose k = 0.9 and  s7 = 0.8 and calculate η (0.1, 0.1) < 
0.012 < (1 − k) h (s7) and then from Lemma 19 it follows that inequality (2.25) holds � � 1 
for all a, λ  ∈ [0, 0.1). Since  η (a, λ) < 0.012 it follows that x6 K7

1 k 
< 0.012 and a+λ 

because K7 > 1 we also get, using  k = 0.9, that x6 < 0.012 · (a + λ) < (1 − k) h (λ). 
Lemma 15 now follows by an application of Lemma 18. 

Proof of Lemma 16 We consider trajectories of system (1.2) in region  

Em,s7 = {(x, s) | 0 < x < m (1 − s) , s > s7}, 
where m ≤ s7. Observe that 

m (1 − s) ≤ s7 (1 − s) < s (1 − s) < (s + a) (1 − s) = h (s) . 

In Em,s7 we get the estimates 

ds  m (1 − s)− x 
s� > (m (1 − s)− x) s, x � < sx  and hence > . (2.33)

dx  x 

Let us consider a trajectory with initial condition x (0) = x7, s (0) = s7, where  x7 < 
m (1 − s7). Using  (2.33), we conclude that as long as this trajectory remains in Em,s7 , it will 
be in the subregion bounded by the trajectory of the linear system 

s� = m (1 − s)− x, x � = x, (2.34) 

with initial condition x (0) = x7, s (0) = s7 and the lines x = m (1 − s) and x = 0. 
Solving system (2.34) we fnd that the trajectory follows the curve 

� x7 �m x x7 
s = d + 1 − with d = s7 + − 1. (2.35) 

x 1 + m 1 + m 

The trajectory leaves Em,s7 when x = m (1 − s). (Observe that then s� = 0 for  (2.34)). 
Substituting x = m (1 − s) into (2.35) we get  

dxm m7 + 1 − s − (1 − s) = 0, 
mm (1 − s)m m + 1 

which is equivalent to 

1 m 

1 − s = 
(−d)m+ 

m 

1 x7 
m+1 

(1 + m)m 
1 
+1 . (2.36) 

m m+1 
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Fig. 7 The maximal x- and  s-values as functions of the parameters a and λ. a and c λ = 0.1 (green, 
dashed), λ = 0.05 (blue, dashdot), λ = 0.01 (red, dotted). b and d a = 0.1 (green, dashed), a = 0.05 
(blue, dashdot), a = 0.01 (red, dotted). Black solid lines show analytical estimates for xmax and smax from 
Theorem 1 

The above expression for 1 − s increases with x7, for  all  m  0, because � � �� 
∂ x7 x7 m−1 m−1−dxm = −  + m s7 + − 1 x = x (m (1 − s7) − x7) > 0.7 7 7∂x7 1 + m m + 1 

Thus, a lower boundary for the maximal s can be calculated from (2.36) for given (x7, s7) 
choosing m = s7. Calculations show that if s7 = 0.8 and  x7 < 0.012, then the maximal s 
is greater than 0.9379. We observe that system (2.34) is not depending on a or λ. Hence, the 
results are independent of these parameters. The proof of Lemma 16 is complete. 

Numerical Results 

Before comparing our analytical estimates to numerical simulations, let us mention that to 
achieve accurate numerics of system (1.2) under assumption (1.3) we recommend trans-
forming the equations (e.g. log transformations) to avoid variables taking on very small 
values. Imposing linear approximations near the unstable equilibria at (x, s) = (0, 0) and 
(x, s) = (0, 1) are also helpful. Indeed, using e.g. the MATLAB ode-solver ODE45 directly 
on system (1.2) may result in trajectories not satisfying Theorem 1, when  a ≤ 0.2 and  
λ ≤ 0.2a, unless tolerance settings are forced to minimum values. The true trajectory 
approaches much smaller population densities and also spend more time at these very low 
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Fig. 8 The minimal x- and  s-values as functions of the parameters a and λ (red, dotted): a and c λ = 0.1. 
b and d a = 0.1. Grey dashed curves show analytical estimates for xmin and smin given in Theorem 1 using 
κ1, κ2 and κ3, while black solid curves show estimates produced by using the bounds of κ1, κ2 and κ3 given 
in Theorem 1 

population abundances. Therefore, one has to be careful, since such misleading numerical 
results would give, e.g., a far to good picture of the populations chances to survive from any 
perturbation. 

In Fig. 7 the maximal predator and prey abundances, xmax and smax , are plotted for 
the unique limit cycle as functions of the parameters a and λ, together with the analytical 
estimates given in Theorem 1. We can observe that the maximal predator abundance xmax 

slightly decreases as a approaches zero, but increases as λ approaches zero, see Fig. 7a, b. 
Moreover, the maximal prey abundance smax stays very close to 1 as a approaches zero, as 
well as when λ approaches zero, see Fig. 7b, c. Our analytical results in Theorem 1 ensure 
that 1 < xmax < 1.6 and  0.9 < smax < 1 whenever a, λ  <  0.1. 

In Fig. 8 the minimal predator and prey abundances, xmin and smin , are plotted for the 
unique limit cycle. We observe that the minimal predator and prey abundances decrease as a 
approaches zero, aswell aswhen λ approaches zero. The analytical estimates for xmin and smin 

are produced by using the corresponding estimate for the maximal x-value, 1 < xmax < 1.6, 
given in Theorem 1. 

Suppose now that (xmax , λ), (h(smin), smin) and (xmin, λ) are points on the simulated 
limit cycle and let τs and τx be such that 

� � � � 
xmax xmax 

smin = exp − and xmin = exp − . 
τsλ τxa 
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(a) (b) 

Fig. 9 Level curves of a τs and b τx as functions of a and λ. Observe the nonlinear steps between curves for 
τx . The function τs is closest to one when a ≈ λ, while τx is closest to one when λ ≈ 0.01 
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(c) (d)
2 2 
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0.5 0.5 

Fig. 10 The functions τs and τx as functions of λ (red, dotted): a and c a = 0.1, b and d a = 0.05. Grey 
dashed curves show analytical estimates for τx and τs given by κ1, κ2 and κ3 in Theorem 1, while the black 
solid curves show analytical estimates produced by using the bounds of κ1, κ2 and κ3 given in Theorem 1 

We can thus say that τs and τx are measures of how good the approximations 

� � � �xmax xmax 
smin ≈ exp − and xmin ≈ exp − , 

λ a 
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stated in Remark 1, are. Figure  9 shows level curves of the functions τs and τx in the aλ-plane 
for a, λ  ∈ (0.01, 0.1). From Fig.  9a we can observe that the approximation for smin is good 
for a ≈ λ, while Fig. 9b shows that the approximation for xmin is good for λ ≈ 0.01. 

We end this section by plotting the functions τx and τs , for small values of a, as functions 
of λ in Fig. 10 together with the analytical estimates for τx and τs given by κ1, κ2 and κ3 in 
Theorem 1. As  λ and λ approaches zero, the lower estimate for τs approaches 1 (κ2 → 1)a 
while κ1 and κ3, giving upper estimates of τx and τs , stays a bit away from 1 for all λ. 
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