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Abstract

One of the challenges in aging research is to understand the brain mech-

anisms that underlie cognitive development in older adults. Such ag-

ing processes are investigated in longitudinal studies, where the within-

individual changes over time are observed. However, several method-

ological issues exist in longitudinal analyses. One of them is loss of

participants to follow-up, which occurs when individuals drop out from

the study. Such dropout should be taken into account for valid con-

clusions from longitudinal investigations, and this is the focus of this

thesis. The developed methods are used to explore brain aging and its

relation to cognition within the Betula longitudinal study of aging.

Papers I and II consider the association between changes in brain

structure and cognition. In the first paper, regression analysis is used to

establish the statistical significance of brain-cognition associations while

accounting for dropout. Paper II develops interval estimators directly

for an association as measured by partial correlation, when some data

are missing. The estimators of Paper II may be used in longitudinal as

well as cross-sectional studies and are not limited to brain imaging.

Papers III and IV study functional brain connectivity, which is the

statistical dependency between the functions of distinct brain regions.

Typically, only brain regions with associations stronger than a prede-

fined threshold are considered connected. However, the threshold is

often arbitrarily set and does not reflect the individual differences in

the overall connectivity patterns. Paper III proposes a mixture model

for brain connectivity without explicit thresholding of associations and

suggests an alternative connectivity measure. Paper IV extends the

mixture modeling of Paper III to a longitudinal setting with dropout

and investigates the impact of ignoring the dropout mechanism on the

quality of the inferences made on longitudinal connectivity changes.

Keywords: missing data, nonignorable dropout, sensitivity anal-

ysis, uncertainty intervals, pattern-mixture models, aging, cognition,

MRI, brain structure, resting-state functional connectivity.
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Sammanfattning

En stor utmaning inom forskning om åldrande är att först̊a vilka mekanis-

mer i hjärnan som ligger bakom kognitiv förändring. Longitudinella

studier, där man följer deltagarna över tid och mäter deras individuella

förändringar, är viktiga i sammanhanget. Tyvärr uppst̊ar ofta prob-

lem relaterade till det longitudinella upplägget som kräver metodolo-

gisk eftertanke. Exempelvis drabbas de flesta longitudinella studier av

bortfall, allts̊a att man inte kan följa alla individer under hela studieti-

den. Detta bör beaktas när slutsatser dras ifr̊an den aktuella studien,

annars riskerar man att resultaten inte är representativa för den un-

dersökta populationen. Avhandlingens huvudfokus är att utveckla och

tillämpa metoder vars syfte är att undvika snedvridning av resultaten

fr̊an longitudinella studier med bortfall. Tillämpning av metoderna sker

p̊a BETULA-studien, en longitudinell studie av åldrande.

Artikel I och II betraktar samband mellan förändringar i hjärnans

struktur samt kognition, för olika kognitiva m̊att, med hänsyn tagen till

bortfall. Artikel II behandlar teoretiska resultat för hantering av bortfall

när partiell korrelation används. Speciellt betraktas intervallestimation

av den partiella korrelationen. Estimatorerna är allmängiltiga och kan

appliceras överallt där delar av data saknas, inte bara longitudinella

studier.

Artikel III samt IV undersöker hjärnans funktionella konnektivitet -

de statistiska sambanden mellan aktiviteten i olika par av hjärnomr̊aden.

Normalt definieras ett tröskelvärde för sambandsm̊attet, och alla region-

par vars värde p̊a sambandsm̊attet överstiger tröskelvärdet betraktas

som sammanlänkade. Ett problem är att tröskelvärdet väljs godtyck-

ligt utan hänsyn till individuell variation i s̊aväl styrka som övergri-

pande mönster i konnektivitet. Artikel III utvecklar en metod som inte

kräver bestämning av tröskelvärden samt tar hänsyn till individuell vari-

ation. Metoden är applicerbar p̊a tvärsnittsstudier. Artikel IV utökar

metoderna fr̊an artikel III till att omfatta ocks̊a longitudinella studier

med bortfall, och utreder hur slutsatser om konnektivitet p̊averkas av

att inte beakta bortfallet.
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1 Introduction

Age-related changes in cognitive performance have been linked to brain

changes (Cabeza et al., 2017, Geerligs et al., 2014, Salami et al., 2014,

Salami et al., 2016). The strength of these links varies between different

characteristics of the brain and cognitive domains (Damoiseaux, 2017).

The conclusions also vary across studies (Kaup et al., 2011). Therefore,

there is still much to be learned about cognitive and brain aging as well

as their connection.

In aging research where within-individual change is of interest, longi-

tudinal studies should be preferred over the cross-sectional ones (Diggle

et al., 1994, Rönnlund et al., 2005, Schaie and Hofer, 2001). How-

ever, in nearly all longitudinal studies some participants drop out due

to, for example, unwillingness to continue, relocation, health issues or

death. Statistical analyses that ignore the reasons for missing data may

cause severe bias in conclusions about aging (Josefsson, 2013). There-

fore, dropout is one of the main methodological issues in longitudinal

studies.

This thesis aims to provide methodology for studying brain aging

when some data are missing due to dropout. The methods developed

are applied to the longitudinal Betula project (Nilsson et al., 1997) that

has unique information on aging trajectories of length up to 25 years.

Related to the diversity of brain-cognition relations, Paper I studies

the association between various brain structural changes and decline of

cognitive function. The dropout is taken into account by using interval

estimation for regression coefficients (Genbäck et al., 2015). This ap-

proach allows statements about the significance of association between

the brain and cognitive changes, but does not provide estimates of this

association measured by partial correlation. Therefore, Paper II de-

velops interval estimators for partial correlation when some data are

missing.

Additionally to brain structure, aging may also be explored in terms

of brain function and, in particular, statistical dependencies between

the functions of distinct brain regions. When studying such connectiv-

ity, correlation is often chosen as a dependency measure. Pairs of regions

with correlation stronger than some threshold are defined as connected,

while other pairs are defined as non-connected (Rubinov and Sporns,

2010). Paper III adds to this field by proposing a Bayesian model for
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functional brain connectivity that allows for inference without such ex-

plicit thresholding. The paper also suggests an alternative measure of

brain connectivity.

Longitudinal studies of brain connectivity are still scarce (Damoi-

seaux, 2017). Paper IV contributes to this area of research by developing

a model for longitudinal brain connectivity data with dropout. Simula-

tion study investigates the impact of ignoring the dropout mechanism

on the quality of inferences about connectivity changes during aging.

To our knowledge, this is the first work which concerns nonignorable

dropout in brain connectivity analyses.

This thesis is organized as follows. The Betula project is presented

in Section 2. Section 3 outlines brain imaging techniques and brain

connectivity analyses. Statistical methods for analysis of longitudinal

data are discussed in Section 4. Section 5 presents methods for statistical

analysis when some data are missing. A brief overview of Bayesian

methods is given in Section 6. The papers are summarized in Section 7,

followed by concluding remarks in Section 8.

2 The Betula project

The Betula project (Nilsson et al., 1997, Nilsson et al., 2004) is a lon-

gitudinal study of aging. The project aims to investigate memory and

health changes during adulthood and old age as well as to explore de-

mentia risk factors.

Participants are randomly selected from a population register in

Ume̊a, Sweden. In total, approximately 4500 individuals have partici-

pated in at least some part of the study.

At present, six waves of data collection have been conducted since

1988 with approximately 5 years between the waves (Table 1). The

subjects of Sample 1 entered the study at the first wave (T1) and have

been followed since then. Sample 1 included 1000 participants with 100

subjects in each of 10 age groups (35, 40, 45, ..., 80 years old at T1).

Five additional samples were recruited over time.

At each test wave, participants underwent an extensive health ex-

amination, filled in a questionnaire about socioeconomic factors, and

underwent cognitive assessments. Additionally, a subsample of 376 in-

dividuals from Samples 1, 3, and 6 were scanned with structural and

2



Table 1: Testing occasions and subsamples of Betula study

T1 T2 T3 T4 T5 T6
1988-90 1993-95 1998-00 2003-05 2008-10 2013-14

Sample 1 X X X X X X
Sample 2 X X
Sample 3 X X X X X
Sample 4 X
Sample 5 X
Sample 6 X X

Crosses represent data collection for a specific subsample. The letter T
stands for the time point.

functional magnetic resonance imaging (MRI) at the fifth wave. Out of

376 initially scanned participants, 231 were also scanned at the sixth

wave.

The Betula study was approved by the Regional Ethical Vetting

Board at Ume̊a University and written consent was obtained from all

participants.

3 Brain imaging

3.1 Imaging techniques

Techniques for imaging of brain structure and function include com-

puted tomography, positron emission tomography, electroencephalogra-

phy, magnetoencephalography, MRI, and functional MRI (fMRI), among

others. This thesis uses MRI data to study brain structure (Papers I

and II) and fMRI data to investigate brain function (Papers III and IV).

MRI utilizes differences in magnetic properties between gray mat-

ter, white matter, and cerebrospinal fluid to construct 3D images of the

brain anatomy. FMRI uses magnetic properties of blood to measure

brain function (Lazar, 2008). When a brain area is activated by stimuli

blood flow to this area increases in order to meet metabolic demands.

This results in change of blood oxygenation, which is captured by a

blood oxygenation-level-dependent signal (BOLD, Ogawa et al., 1992)

measured by fMRI. Brain function may be studied in response to ex-

ternal stimuli, such as some cognitive tasks, or during the resting state,

when a subject is at rest.
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3.2 Brain connectivity

Brain function is typically investigated in terms of an activation of spe-

cific regions or in terms of relations between activity of distinct brain

regions, which is called brain connectivity (Bowman, 2014).

The analysis of brain connectivity usually starts with the identifi-

cation of a set of brain regions of interest. This is followed by the

construction of the set of connections between these regions in terms

of association (functional connectivity) or causal relation between the

regions’ activities (effective connectivity, Friston, 2011, Smith, 2012).

Properties of the constructed network may then be investigated using,

for example, graph analysis (Bullmore and Sporns, 2009, Rubinov and

Sporns, 2010).

Regions may be defined as voxels (the smallest volume elements in

fMRI data), predefined nodes from a known parcellation of the brain

or spatial areas of interest obtained with data-driven clustering (e.g.,

independent component analysis). Each region is then assigned with its

time course using, for example, the mean of a BOLD signal from voxels

within the region.

The connections in functional connectivity are determined by quan-

tifying measures of statistical dependency between the nodes’ signal,

such as correlation, partial correlation, mutual information, etc. Ef-

fective connectivity, in turn, is analyzed in the literature using, among

others, Granger causality and dynamic causal models (Friston, 2011).

Weak and negative correlations of fMRI signals may represent spu-

rious connections due to subject motion (Power et al., 2012) or may be

artifacts of data preprocessing (Murphy and Fox, 2017). These links are

often discarded based on the absolute or proportional threshold (van den

Heuvel et al., 2017). As an alternative, mixture models for brain con-

nectivity have been proposed (Chen et al., 2016, Bielczyk et al., 2018).

The mixture components represent the distribution of a connectivity

measure for connected and non-connected brain regions. This idea was

developed further in this thesis by imposing a mixed-effect structure on

the distribution of connected component that allows simultaneous infer-

ences on the population and subject level without explicit thresholding.

We also suggest that the posterior probability of connection calculated

from the fitted model might be used as an alternative measure of con-

nectivity.
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4 Statistical analyses of longitudinal data

Age-related changes are investigated using cross-sectional or longitudi-

nal studies. In the cross-sectional approach, characteristics of interest

are measured for subjects of different age. Changes in the characteris-

tics are then inferred from the observed differences between age cohorts.

On the other hand, in longitudinal studies, individuals are followed over

time which enables direct analysis of within-individual change. This is

the fundamental advantage of longitudinal approach, since it allows to

separate aging effects from cohort effects. Such separation is impossible

in cross-sectional studies. As a result, the conclusions from the longi-

tudinal and cross-sectional approaches may differ (Diggle et al., 1994,

Section 1; and Nyberg et al., 2010, Rönnlund et al., 2005 for examples

from the Betula project) and, when a change over time is of interest,

longitudinal studies should be preferred. Indeed, this thesis provides an

example of differences between the two approaches: brain connectivity

strength is found to increase with age cross-sectionally (Paper III) while

longitudinal effects are negative (Paper IV).

Statistical methods for longitudinal data include two-stage analysis

and modeling of individual responses (Diggle et al., 1994). In the two-

stage method, the repeated measures for each subject are first reduced

into a summary, which is then used in the second stage analyses. We

apply such an approach in Paper I, where the relation between changes

in brain structure and cognition is of interest. We define measures of

change for brain structure and cognition and proceed with the correla-

tion and regression analysis of these measures.

The individual responses are typically modeled using marginal, tran-

sition or random-effects models. All of these methods take into account

the correlation between the repeated measures. In the marginal analy-

sis, the mean and the covariance structure are modeled marginally as in

a cross-sectional approach (Fitzmaurice et al., 2012). Transition models

specify the covariance structure through the dependence of the current

response on past observations. Random-effects modeling assumes that

association between the repeated measures occurs due to variation of

regression coefficients across individuals. We apply the latter approach

in Paper IV.
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5 Missing data in longitudinal studies

Missing data occur, e.g., when scheduled measurements are not available

and is an inevitable feature of all longitudinal studies. This may happen

when participants do not come to a particular measurement occasion,

do not answer a questionnaire entirely, have unusable data quality or

cannot be contacted.

The data may also be missing when individuals drop out, that is,

stop participating in a study. In studies of aging in particular, subjects

might drop out due to health issues. When health is also related to the

outcome of interest, available data represents a biased sample from the

population. Analyses which are based only on the available data and

which ignore the dependency between the dropout and the outcome may

lead to erroneous inferences about the entire population.

For example, the individuals that remain longer in longitudinal aging

studies are believed to be healthier than dropouts (Chatfield et al., 2005,

Josefsson, 2013, Pudas et al., 2013). Complete cases analyses, which ex-

clude subjects with incomplete data, provide overoptimistic conclusions

on the population’s health. Therefore, it is crucial for the analysis to

take into account the mechanisms that led to the missing data.

5.1 Missing data mechanisms

Let Y = (Yij) denote a matrix of full data scheduled to be observed,

where Yij represents variable j for subject i. Let M = (Mij), where

Mij = 1 if intended measurement Yij is missing and 0 otherwise. A

missing data mechanism is the conditional distribution of missingness

indicators M given Y = y and indexed by a parameter φ (Little and

Rubin, 2002).

Let m̃ represent the observed value the missing data pattern, which

is the value of the missing indicator matrix M . The data Y may then

be partitioned based on m̃ into the observed part Y(1) = (Yij : m̃ij = 1)

and missing data Y(0) = (Yij : m̃ij = 0). Let ỹ(1) denote an observed

value of Y(1), and y(0) and y′(0) denote realizations of the random variable

Y(0).

In this thesis, we are mostly interested in distinction between sit-

uations where missingness depends on the value of the missing data

(missing not at random data mechanisms) or not (missing at random).

6



The missing data mechanism is called missing at random (MAR)

if the conditional probability of the observed pattern of missing data,

given the missing and observed data, is the same for all possible values of

the missing data and the parameter φ (Rubin, 1976, Mealli and Rubin,

2015):

P (M = m̃|Y(1) = ỹ(1),Y(0) = y(0),φ) =

P (M = m̃|Y(1) = ỹ(1),Y(0) = y′(0),φ)

for all φ,y(0) and y′(0).

The missing data mechanism is called missing not at random (MNAR)

when it depends on missing data for some value of the parameter φ :

P (M = m̃|Y(1) = ỹ(1),Y(0) = y(0),φ) 6=
P (M = m̃|Y(1) = ỹ(1),Y(0) = y′(0),φ)

for some φ, and some y(0) 6= y′(0).

When the missing data mechanism does not depend on the data at

all, it is called missing completely at random (MCAR):

P (M = m̃|Y = y,φ) = P (M = m̃|Y = y′,φ) for all φ,y and y′.

In case of dropout, the terminology can be simplified by using, for ex-

ample, one missing data indicator Mi = j if subject i drops out between

time points j − 1 and j.

For illustration, let us consider a case of two scheduled measurements.

The first measurement Y1 is observed, while Y2 may be missing due to

dropout. Such missingness is the focus of Paper IV. Here, only one

indicator variable is sufficient to represent missingness: M is equal to

one if the second observation is missing and zero otherwise. For example,

if the observed missing data pattern is M = 1, then Y(1) = Y1, Y(0) =

Y2 and ỹ(1) = ỹ1, the value of the observed data Y1. The dropout

mechanism is MAR when

P (M = 1|Y1 = ỹ1, Y2 = y2,φ) = P (M = 1|Y1 = ỹ1, Y2 = y′2,φ)

for all values of the parameter φ and missing data y2 and y′2.

The missing data mechanism is MNAR if

P (M = 1|Y1 = ỹ1, Y2 = y2,φ) 6= P (M = 1|Y1 = ỹ1, Y2 = y′2,φ)

for some φ, and some y2 6= y′2.
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Since their introduction by Rubin (1976), the definitions of missing

data mechanisms have not been used consistently. For example, some

authors separate response data and fully-observed covariates (Daniels

and Hogan, 2008, Fitzmaurice et al., 2012), while others consider re-

sponse and covariates together in one data vector (Little and Rubin,

2002, Diggle et al., 1994). Additionally, the definitions of MAR were

interpreted differently by researchers. Seaman et al. (2013) discusses

this issue and the validity of inferences under different missing data

mechanisms. Following the publication of Seaman et al. (2013), these

definitions were clarified in Mealli and Rubin (2015).

It is frequently said that likelihood methods that ignore the missing

data mechanism provide valid inferences when the data are MAR. How-

ever, the validity of any inferences, not only maximum likelihood, also

depends on the research question at hand. If in the illustration above,

for example, inferences about the population mean of Y1 are of interest,

then the sample mean Y 1 is an unbiased estimator even if the data are

MNAR for Y2. In contrast, when Y1 and Y2 are dependent, the sam-

ple mean Y 2 calculated over the observed values of Y2 may be a biased

estimator for the population mean of Y2 even if data are MAR.

5.2 Statistical methods for analysis with missing data

Strategies for handling incomplete data include complete cases analysis,

weighting methods, available cases analyses, imputation, and model-

based procedures (Little and Rubin, 2002).

Complete cases analysis (listwise deletion) uses only the data from

the subjects that have all data that is intended to be observed available

on all variables in the model of interest. It is a popular choice due to

its simplicity. It is also a default choice in standard statistical software.

When the missing mechanism is MCAR, the complete cases are just

a random sample from the original sample (Figure 1). As a result, un-

biased estimators based on the original sample remain unbiased when

applied to the reduced sample. Complete cases analysis may sometimes

be valid even in MAR or MNAR cases. For example, in a correctly

specified regression model where missingness only occurs on the predic-

tors and does not depend on the value of the response (Allison, 2001,

p. 7); and in case of MNAR data on the response in a logistic regres-

sion when missingness does not depend on the predictors (Prentice and

8



Pyke, 1979).

However, complete cases analyses generally provide biased estimates

when the MCAR assumption is not fulfilled. For example, when less

healthy people do not report their health, an average health based on

complete cases will overestimate the health of the population. See as

an illustration Figure 1, where sample mean of Y2 based on complete

cases is a biased estimator of the population mean of Y2 in the MAR

setting, and where the dependency between Y1 and Y2 for the full data

and complete cases are of opposite sign in the MNAR. Additionally,

estimates based on the complete cases have high variance when a large

amount of incomplete data is discarded.

-5 0 5
Y1

-5

0

5

Y
2

MCAR

-5 0 5
Y1

-5

0

5

Y
2

MAR

-5 0 5
Y1

-5

0

5

Y
2

MNAR

Figure 1: Examples of data with two scheduled measurements Y1 and Y2, miss-
ingness in Y2, and MCAR (Mi = 0 if the observation Y2i is observed and 1 other-
wise, with P (Mi = 0) = 0.5 regardless of Y1 and Y2), MAR (Mi = 0 if Y1i > 0
regardless of Y2), and MNAR (Mi = 0 if Y2iY1i < 0) dropout mechanisms.
Crosses represent the complete cases, dots represent the cases with missing Y2.
Missing data mechanism is specified in the title of each plot. The lines rep-
resent least-squares fit to the full data (dash-dotted line) and complete cases
(solid line).

One solution to the inefficiency of the complete cases analysis is to

consider available cases instead. This method uses all data available

for the calculation of a particular statistics of interest. For example,

suppose there are n1 observations for Y1 and n2 for Y2. The estimate

of the population mean of Y1 is then based on n1 observations while

the mean of Y2 is estimated from n2 data points. When MCAR is

true, available cases estimators might be less variable than the ones
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from complete cases analyses. The disadvantage of this method is that

estimates using different variables are calculated on samples of different

size which may result in final estimates outside of the acceptable range

(Little and Rubin, 2002).

Weighting techniques extend the survey sampling approach to esti-

mation (Cochran, 1977) by adjusting sampling weights to handle non-

response in the data.

Imputation-based procedures are used to avoid inefficiency from dis-

carding the observed data. Here, the missing values are filled in once or

possibly several times (Rubin, 2004, van Buuren, 2012). The resulting

complete datasets are further analyzed. The values to impute may be

observations from other subjects in the sample (hot-deck imputation),

available observations from the subject with missing data (last obser-

vation carried forward, baseline observation carried forward), sample

means (mean imputation) or estimated via regression techniques from

the observed data (regression imputation or stochastic imputation).

Model-based procedures specify a model of full data, indexed by

some parameter ω, P (Y = y,M = m|ω). When missing mechanism

is MAR and the parameter θ of the data distribution P (Y = y|θ)

is different from the parameter φ of the missing data mechanism (a

priori independent in Bayesian analysis), the missing data mechanism

is called ignorable. In such case, likelihood inferences for θ based on the

observed data distribution P (Y(1) = ỹ(1)|θ) are the same as those using

the full data model P (Y = y,M = m|ω) (Little and Rubin, 2002).

MAR is necessary (but not sufficient) for ignorability of the missing data

mechanism. Therefore, MNAR missing data mechanisms are sometimes

called nonignorable. Note that a mechanism may be nonignorable even

if it is MAR.

Under a MNAR data mechanism, all above-mentioned techniques for

analysis with missing data typically provide biased results since they ig-

nore the dependency of the missing data mechanism on unobserved data.

Two common ways to model MNAR data are selection and pattern-

mixture models (Little and Rubin, 2002, Diggle et al., 1994, Daniels

and Hogan, 2008). Selection models factor the joint distribution of Y

and M as

P (Y = y,M = m|ω) = P (Y = y|θ)P (M = m|Y = y,φ),

10



while pattern-mixture models use the factorization:

P (Y = y,M = m|ω) = P (Y = y|M = m,θ′)P (M = m|φ′).

A famous example of a selection model is the Heckman selection

model (Heckman, 1979). It is utilized with some changes in Papers I

and II in this thesis. Paper IV uses the pattern-mixture approach.

The missing data mechanism may be known, when, for example,

incomplete data is due to censoring at some known censoring point.

When the missing mechanism is unknown, the analysis relies on the as-

sumptions about the missing data mechanism. Association between M

and the observed data Y(1) may be used to provide evidence against

MCAR assumption (Little, 1988). However, the assumptions about

MAR and MNAR missing data mechanisms are untestable from the ob-

served data since their definitions include unavailable data Y(0). There-

fore, sensitivity of inferences to the specification of the full data model

P (Y = y,M = m|ω) should be investigated.

5.3 Sensitivity analysis using uncertainty regions

The full data model P (Y = y,M = m|ω) may involve some parameter

γ that is unidentified from the observed data. As a result, several full

data distributions, indexed by different values of γ, may correspond to

the same observed data distribution. The parameter γ is sometimes

called a sensitivity parameter (Daniels and Hogan, 2008).

Sensitivity analysis explores the variation of inferences about the

parameters of interest θ depending on the assumption that γ takes a

specific value. This can be done by evaluating estimators of θ for a

range of plausible values of γ. The range of the obtained estimates may

be used as a final estimate that represents a sensitivity of results to

missing data. When interval estimators are considered, the sensitivity

analysis may be performed by constructing uncertainty regions as a

union of the confidence intervals over plausible values of the sensitivity

parameter (Figure 2). The coverage of such uncertainty intervals is

at least as good as the coverage of the confidence interval constructed

under the true unknown value of the sensitivity parameter γ.

Vansteelandt et al. (2006) proposed to construct uncertainty regions

for an unidentified parameter by adding confidence limits to estimated
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Figure 2: Let γ index the full data distributions that correspond to the observed
data distribution and let [0, 1] be reasonable values of γ. Point estimates, θ̂, of
the parameter θ for γ ∈ [0, 1] are represented as a solid line. The union of 95%
confidence intervals (bounds represented as dashed lines) for θ over γ ∈ [0, 1]
is an uncertainty region (UR).

bounds of a range of parameter values that correspond to different full

data distributions compatible with the observed data law.

Genbäck et al. (2015) used uncertainty regions for estimation of re-

gression parameters. This approach is also used in Paper I in the thesis.

Lindmark et al. (2018) proposed the uncertainty regions for estimation

of direct and indirect effects in the presence of unobserved confounding.

Paper II of the thesis develops a theory for construction of the un-

certainty regions for partial correlation when data are missing not at

random.

6 Bayesian inference

Bayesian inference uses the model for the data and prior distributions for

the parameters in this model to provide posterior inferences on the pa-

rameters of the model. These priors reflect knowledge about the model

available before the data are observed, for example, from previous stud-

ies. The model is then used to update prior information and to get a

posterior distribution of the parameters.
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Given a prior distribution p(θ), the posterior distribution of θ is

p(θ|ỹ(1)) =
L(θ|ỹ(1))p(θ)∫
L(θ|ỹ(1))p(θ)dθ

,

where the likelihood L(θ|ỹ(1)) for a parameter θ is the joint probability

density (or mass for discrete random variables) function of the observed

data when regarded as a function of θ:

L(θ|ỹ(1)) = p(ỹ(1)|θ).

Typically, one is interested in evaluation of some function of the poste-

rior distribution, e.g., the expectation of some function f of the param-

eter θ:

Ef(θ|ỹ(1)) =

∫
f(θ)p(θ|ỹ(1))dθ.

Often, due to intractability of the high-dimensional integral in the de-

nominator in p(θ|ỹ(1)), a sample from the posterior distribution is ob-

tained without explicit evaluation of the denominator using techniques

such as Markov chain Monte Carlo (MCMC, Metropolis et al., 1953).

Markov Chain Monte Carlo evaluates the integral Ef(θ|ỹ(1)) using

the convergence:
n∑

i=1
f(θi)

n
→a.s. Ef(θ|ỹ(1)),

where θ1, . . . ,θn is generated as a Markov chain with stationary dis-

tribution p(θ|ỹ(1)). The convergence is ensured by the ergodic theorem

(Nummelin, 1984). Metropolis-Hastings, Metropolis, and Gibbs sampler

(Gilks et al., 1996) algorithms are commonly used to construct Markov

chains that satisfy the conditions of the ergodic theorem.

The rate of MCMC convergence is known to depend on the para-

meterization of the model and the choice of parameters’ batches for

the updates (Gilks et al., 1996). Thus, we found that in mixed-effects

modeling in Paper III, updating all fixed and random effects together

provided the quickest convergence compared to the update of each pa-

rameter separately, the update of fixed effects together but separately

from the random effects, which, in turn, were updated separately for

each individual or together.

When interval estimation is of interest, credible intervals, which are

analogues to confidence sets in frequentist statistics, may be constructed

using the quantiles of posterior distribution.
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7 Summary of papers

7.1 Paper I

The main purpose of Paper I, Longitudinal association between hip-

pocampus atrophy and episodic-memory decline, is to explore the as-

sociation between aging-related cognitive decline and brain changes in

gray matter volume, white matter integrity, and white matter hyper-

intensities volume. The cognition was measured longitudinally over 15

years while the brain changes were measured at two time points approx-

imately four years apart.

A two-stage analysis of the longitudinal data is used in the paper.

The paper examines change-change brain-cognition relation using par-

tial correlation while controlling for potential confounding factors of age

and hypertension. Complete cases analysis is followed by a sensitivity

analysis of results for data missing not at random. The sensitivity anal-

ysis uses the relation between partial correlation and a regression co-

efficient, and uncertainty intervals for a regression parameter proposed

by Genbäck et al. (2015). As predicted, atrophy in the hippocampus

was related to episodic-memory decline, and this association remained

significant when data missing not at random were accounted for. The

remaining brain-cognition change-change relations were weak and non-

significant.

7.2 Paper II

In Paper I, significance testing for partial correlation is performed using

the relationship between partial correlation and a regression coefficient.

However, the method does not provide estimates for the partial correla-

tion. In Paper II, entitled Inference for partial correlation when data are

missing not at random, we define interval estimators, called uncertainty

regions, for the partial correlations when data are missing not at ran-

dom. The performance of these estimators is illustrated via a simulation

study. For illustration, we construct uncertainty intervals for the partial

correlation between longitudinal changes in gray matter volume of the

hippocampus and episodic memory decline analyzed in Paper I. The

theoretical results of Paper II are general, not limited to brain imag-

ing studies, and may be used in longitudinal as well as cross-sectional

studies.
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7.3 Paper III

The third paper, A Hierarchical Bayesian Mixture Modeling Approach

for Analysis of Resting-State Functional Brain Connectivity: An Al-

ternative to Thresholding, develops a mixture model to study functional

resting-state brain connectivity. The mixture components represent con-

nected and non-connected brain regions. Methodologically, this paper

adds to the existing literature by imposing a mixed-effect structure on

the distribution of the connected component. This allows simultaneous

inferences on the population and subject levels.

For each pair of regions and subject, posterior probabilities of being

in the connected component can be computed. The paper suggests

the posterior probability as an alternative connectivity measure since

the posterior probabilities reflect connectivity of a brain region pair

in relation to overall connectivity pattern of an individual, which is

neglected in a traditional correlation analysis.

This paper proposes an approach for analysis of connectivity without

explicit thresholding. However, if the connectivity matrix has to be

thresholded for subsequent analysis, we show that absolute thresholding

based on posterior probabilities may be superior to the one based on the

correlation.

The introduced method is applied to study the relation of brain

connectivity to age and cognition using data from the Betula project.

This cross-sectional study indicates that older individuals might have

stronger connections on average and that the proportion of connections

varies considerably between individuals. The cognition was not strongly

related to the considered resting-state connectivity.

7.4 Paper IV

Paper IV, Bayesian mixture modeling for longitudinal fMRI connectivity

studies with dropout, extends the cross-sectional model of Paper III to

a longitudinal setting in the presence of nonignorable dropout. The

proposed method allows to take into account the uncertainty in the

dropout mechanism. The paper discovers differences in longitudinal

and cross-sectional estimates of brain changes based on complete cases

analyses. A simulation study in Paper IV shows that inferences might

be highly biased when dropout is ignored in the estimation procedure.
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8 Final remarks and further research

A subsample of Betula participants underwent MRI and cognitive as-

sessment approximately four years after the final Betula wave. This may

allow, additionally to the analysis of associations in Paper I, to study

causal relationships between brain structural and cognitive changes us-

ing, for example, graphical models (Pearl, 2009). It would be of interest

to investigate which brain structural changes cause cognitive changes

and if cognitive changes may also affect subsequent changes in brain

structure.

To make the interval estimators for partial correlation proposed in

Paper II more accessible, we are planning to implement them as part of

the publicly available R package, called ui, for sensitivity analysis using

uncertainty regions (Stat4Reg, 2019).

The simulation study of Paper IV investigates the effect of ignor-

ing the missing data mechanism on the inferences about longitudinal

functional brain connectivity. In order to provide simulation scenarios,

complete cases analysis of data from the Betula project was performed.

In the nearest future we plan to carry out an analysis of the Betula data

assuming a MNAR dropout mechanism.
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