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In this paper, we consider a sorting scheme for potentially spurious scattering resonant 
pairs in one- and two-dimensional electromagnetic problems and in three-dimensional 
acoustic problems. The novel sorting scheme is based on a Lippmann-Schwinger type 
of volume integral equation and can, therefore, be applied to structures with graded 
materials as well as to configurations including piece-wise constant material properties. 
For TM/TE polarized electromagnetic waves and for acoustic waves, we compute first 
approximations of scattering resonances with finite elements. Then, we apply the novel 
sorting scheme to the computed eigenpairs and use it to mark potentially spurious 
solutions in electromagnetic and acoustic scattering resonances computations at a low 
computational cost. Several test cases with Drude-Lorentz dielectric resonators as well as 
with graded material properties are considered.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The most common approach to approximate scattering resonances is to truncate the domain with a perfectly matched 
layer (PML) and discretize the differential equations with a finite element (FE) method. This results in approximations of the 
true resonances but in practice also a large number of solutions that are unrelated to the true resonances. One approach 
to lessen the problem with nonphysical solutions in FE computations and decrease the number of spurious solutions is to 
design an appropriate hp-refinement strategy [1]. However, for large problems spurious eigenvalues remain a major problem 
in resonance computations [2] and in quasimodal expansions [3,4].

The identification of spurious pairs from resonance computations with PML has been attempted using a sensitivity ap-
proach [5,6,2]. The approach is based on the observation that spurious eigenvalues are sensitive to parameter perturbations, 
while well-converged resonances are not. However, it has been observed that this approach is able to identify approxima-
tions to true resonances only in small regions of the complex plane and only if the FE space is large. Additionally, the 
method is for a fixed discretization expensive as it requires the computation of all eigenpairs in a spectral window several 
times, from where re-meshing and re-assembling of the FE must be performed.
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The origin of nonphysical eigenvalues in scattering resonance computations is spectral instability, which is common for 
non-normal operators [7,8]. Spectral instability is known to be less problematic with volume integral equations compared 
with formulations based on differential operators. Therefore, we proposed in [9] to use a Lippmann-Schwinger (LS) type of 
integral equation for marking potentially spurious solutions in a one-dimensional setting. However, the direct application of 
the ideas presented in [9] to higher dimensions turns out to be more challenging and computationally demanding.

In this paper, we develop a scheme for marking potentially spurious solutions in higher dimensions when the com-
putational domain is truncated by a PML or a Dirichlet-to-Neumann (DtN) map. We show that the developed scheme is 
computationally cheap and provides valuable information on the location of potentially spurious eigenvalues. For example, 
this information is useful in quasimodal expansions of the field and when adaptive finite element methods are employed.

In the new sorting strategy, a particular approximation of a Lippmann-Schwinger based residual is computed for each 
eigenpair. The sorting strategy is computationally efficient since (i) the computation re-uses the pre-computed FE environ-
ment (ii) the testing has low memory requirements, and (iii) the algorithm is fully parallelizable. The method is successfully 
applied to metal-dielectric nanostructures in R2, where the metal is modeled by a sum of Drude-Lorentz terms, and to an 
acoustic benchmark problem in R3. Several additional benchmarks confirm the efficiency of the proposed sorting scheme 
in Rd with d = 1, 2, 3.

2. Electromagnetic and acoustic scattering resonances

Assume that ε(x, ω) = ε(x1, x2, ω) is independent of x3 and consider electromagnetic waves propagating in the (x1, x2)-
plane. The x3-independent electromagnetic field (E, H) is then decomposed into transverse electric (TE) polarized waves 
(E1, E2, 0, 0, 0, H3) and transverse magnetic (TM) polarized waves (0, 0, E3, H1, H2, 0) [10]. This decomposition reduces 
Maxwell’s equations to one scalar equation for H3 and one scalar equation for E3. The TM-polarized waves and the TE-
polarized waves satisfy formally

−�E3 − ω2εE3 = 0 and − ∇ · ( 1
ε ∇H3

) − ω2 H3 = 0, (1)

respectively. For the scattering resonance problems, E3 and H3 are assumed to be locally L2-integrable functions that satisfy 
an outgoing condition [11,12].

Let the physical domain �a ⊂ Rd be an open ball of radius a with boundary �a , and let �r := supp (ε − 1) ⊂ �a

be the bounded domain defining the resonators. Hence, we assume that the relative permittivity ε for x ∈ Rd \ �r is 
one. Furthermore, let �r := ∪N

i=1�i denote the union of disjoint resonators �1, �2, ..., �N as shown in Fig. 1. A scattering 
resonance was in [5] formally defined as a complex number ω for which the Lippmann-Schwinger equation

T (ω)u := u − K (ω)u = 0 (2)

has a non-zero solution u.
The integral operator K in (2) is for TM/TE waves given by

TM : K (ω)u(x) := ω2
∫
�r

�(x, y) (ε(y) − 1) u(y)dy

TE : K (ω)u(x) := ∇ · ∫
�r

�(x, y)
(

1
ε(y)

− 1
)

∇u(y)dy
, �(x, y) :=

{ i
2ω eiω|x−y|, d = 1

i
4 H (1)

0 (ω|x − y|), d = 2.
(3)

Here, �(x, y) is known as the outgoing Green function in free space for the Helmholtz equation [11,12]. Notice that while 
we are interested in x ∈ �a , the integration in (2) is only performed over �r , since the integration over the air region 
�0 := �a \ �r is zero.

The scattering resonance problem (2) is a highly non-linear eigenvalue problem, where the matrices after discretization 
are large and full. It is possible to accurately solve the non-linear eigenvalue problem T (ω)u = 0 in R using a standard lap-
top; see e.g. [13,9]. However, accurate computations of eigenpairs of (2) in higher dimensions would require huge computer 
resources; See [14] and the discussion in Section 7.3.

Acoustic scattering resonances in R3

Sound-soft materials are characterized by the speed of sound c(x) and we assume that acoustic resonators are defined 
by �r := supp (c−2 − 1) ⊂ �a . Then, the acoustic pressure u satisfies formally the Helmholtz equation

−�u − ω2

c(x)2
u = 0, (4)

where the outgoing condition can be expressed as u satisfying an expansion in spherical harmonics outside the open ball 
�a [15]. Moreover, (ω, u) is a scattering resonance pair if (2) holds with

K (ω)u(x) := ω2
∫

�(x, y)

(
1

c(y)2
− 1

)
u(y)dy, �(x, y) = eiω|x−y|

4π |x − y| . (5)
�r

2
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Note that the acoustic problem in Rd , d = 1, 2, 3 is analogous to TM-polarized electromagnetic waves with ε = 1/c2.

2.1. Alternative formulations

Understanding the resonance behavior of structures in unbounded domains is important and many different approaches 
have been proposed. Graded material properties are increasingly popular in applications [16] and we will therefore not 
consider boundary integral equations. However, boundary integral equation based methods are a good alternative for cases 
with piecewise constant coefficients and not too complicated geometries [17]. The most popular method to compute res-
onances in Rd , d > 1 is the finite element method with a perfectly matched layer (PML). In recent years, finite element 
methods based on Hardy space infinite elements (HIF) [18] and DtN maps [19] have also been proposed as strong alterna-
tives to compute resonances in higher dimensions. For the DtN map, recent developments in computational linear algebra 
are a key to the high performance of the method [20,21]. Discretization with FE of the PML and HIF formulations results
in sparse matrices, and a formulation in terms of a DtN results in sparse matrices except a small dense block correspond-
ing to the DtN map. Moreover, the PML and HIF formulations result in a linear generalized eigenvalue problem if ε is 
ω-independent and in the general case the non-linearity in ω is completely determined by ε(x, ω). Hence, the PML and 
HIF formulations seem to have the most attractive properties of the considered methods. However, it is very important 
to also take into account the so called spectral instability. Then, the picture changes completely, as discussed in the next 
section.

2.2. Spectral instability and pseudospectra

Let A denote an unbounded closed linear operator in a Hilbert space with domain dom A, spectrum σ(A), and resolvent 
set ρ(A). Then A exhibits high spectral instability if for a very small δ > 0 there exist many ω2 ∈C and u ∈ dom A such that

‖(A − ω2)u‖ ≤ δ‖u‖ (6)

even though ω2 is not close to σ(A) [22]. This is closely related to the pseudospectrum σδ(A) which is defined as the union 
of σ(A) and all ω2 in the resolvent set ρ(A) for which it exists an u ∈ dom A such that (6) holds. The generalization of 
those results to an operator function T is straightforward and we will in some of the numerical computations rely on the 
following alternative characterization of the pseudospectrum:

σδ(T ) = σ(T ) ∪ {ω ∈ ρ(T ) : ‖T −1(ω)‖ > δ−1}.
It is well known that PML and HIF based methods encounter high spectral instability [18,9]. Methods based on a DtN map 
encounter medium spectral instability [19,9] and integral equation based methods encounter low spectral instability [9]. 
Hence, the LS equation is in our setting the preferred method in terms of spectral stability. This will be further discussed in 
the paper.

2.3. Domain and material properties

In optics, the material properties of non-magnetic metals are characterized by the complex relative permittivity function 
ε , which changes rapidly at optical frequencies ω. The most common accurate material model is then the Drude-Lorentz 
model

εmetal(ω) := ε∞ +
N p∑
j=0

f jω
2
p

ω2
j − ω2 − iωγ j

, (7)

where ε∞ ≥ 1 and f j , ωp, ω j , γ j are non-negative [10]. Hence, the Maxwell eigenvalue and scattering resonance problems 
in ω are nonlinear for metal-dielectric nanostructures. Assume that the domain of the resonators can be written in the form 
�r := ∪N

i=1�i and let χ�m denote the characteristic function of the subset �m . For material properties that are piecewise 
constant in �a , we assume a permittivity function in the form

ε(x,ω) :=
Nr∑

m=0

εm(ω)χ�m (x), x ∈ �a, ω ∈ D, (8)

where the dependencies on ω ∈ D ⊂ C in εm for m = 0, 1, . . . are of Drude-Lorentz type (7). In addition, we will consider 
graded material properties, meaning that ε is a continuous function in x. In linear acoustics, the speed of sound c is assumed 
to be independent of the frequency.
3
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3. DtN and PML based methods

In the next sections, we will describe two common approaches to compute scattering resonances and the restriction of 
resonance modes to a compact subset of Rd . In the following, we use the notation

−∇ · (ρ∇u) − ω2ηu = 0, (9)

where u := E3, ρ := 1, η := ε for the TM-case and u := H3, ρ := 1/ε, η := 1 for the TE-case.
We define for u, v ∈ H1(�a) the forms

a(ω)[u, v] :=
∫
�a

ρ∇u · ∇v dx, b(ω)[u, v] :=
∫
�a

ηuv dx, (10)

where in (10), ρ and η are functions of ω ∈ D. Let Z denote the set of values ω that are zeros or poles of ε and set 
D :=C \Z .

3.1. DtN based methods

Scattering resonances ω and quasi-normal modes u restricted to �a can be determined from a problem that utilizes 
a Dirichlet-to-Neumann (DtN) map operator denoted G(ω) [23,24,19]. Below we present variational formulations for Rd , 
d = 1, 2. Formally, (ω, u) is a scattering resonance pair if (9) holds in �a and

∂u

∂n
= G(ω)u on � := ∂�a, (11)

where ∂u/∂n is the normal derivative.
In one space dimension the scattering resonance problem restricted to �a := (−a, a) is formally: Find a non-zero u and 

a complex ω such that equation (9) is satisfied, and the DtN-map (11) at x = ±a is u′(−a) = −iω u(−a) and u′(a) = iω u(a). 
Define for u, v ∈ H1(�a) and ω ∈D ⊂C the forms a, b as in (10), and g1(ω)[u, v] := iω(u(a)v(a) + u(−a)v(−a)).

The nonlinear eigenvalue problem reads: Find u ∈ H1(�a)\{0} and ω ∈D satisfying

q1(ω)[u, v] := a(ω)[u, v] − ω2b(ω)[u, v] − g1(ω)[u, v] = 0, (12)

for all v ∈ H1(�a). Note that (12) is a quadratic eigenvalue problem if ε is independent of ω and a rational eigenvalue 
problem for Drude-Lorentz type of materials (7).

In the case d = 2, we present a DtN formulation in polar coordinates (r, θ). Let H (1)
ν (z) denote the Hankel function of 

first kind, then the DtN operator (11) on the circle �a has the explicit form

G(ω)u := 1

2π

∞∑
ν=−∞

ω
H (1)′

ν (ωa)

H (1)
ν (ωa)

eiνθ

2π∫
0

u(a, θ ′) e−iνθ ′
dθ ′ (13)

and G(ω) : H1/2(�a) → H−1/2(�a) is bounded [23].
The resonance problem restricted to �a is formally to find non-trivial solutions (ω, u) such that (9) and (11) with (13)

holds. The theory presented in [23] can with minor changes be used in the present case to derive properties of a variational 
formulation of the problem.

Variational formulation: Let S denote the union of the set of zeros of H (1)
ν (ωa), ν ∈Z, and Gνmax (ω) denote the oper-

ator (11) truncated after |ν| = νmax. The eigenvalues of the truncated version of (9)-(11) are determined by the following 
variational problem: Find u ∈ H1(�a) \ {0} and ω ∈D :=C \ {Z ∪R− ∪ S} such that for all v ∈ H1(�a)

q2(ω)[u, v] := a(ω)[u, v] − ω2b(ω)[u, v] − g2(ω)[u, v] = 0, (14)

where the forms a, b are defined as in (10), and

g2(ω)[u, v] := (Gνmax(ω)u, v)�a =
νmax∑

ν=−νmax

ωa
H (1)′

ν (ωa)

H (1)
ν (ωa)

ûν
¯̂vν, ϕ̂ν = 1√

2π

2π∫
0

ϕ(a, θ) e−iνθdθ. (15)
4
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Fig. 1. Left) Arbitrary configuration of resonators. Right) PML stretching function. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

3.2. PML based methods

In the previous section, a DtN-map was used to reduce the exterior Helmholtz problem to a bounded domain. In this 
section, we consider an alternative approach based on a complex coordinate stretching (the PML method), which results 
in a linear eigenvalue problem for non dispersive material coefficients [25]. The method consists on attaching to �a a 
buffer layer of thickness �, where outgoing solutions decay rapidly. The buffer domain is referred to as �PML and the full 
computational domain � := �a ∪ �PML is enlarged as shown in the Fig. 1.

Let � > 0 and 0 < a < b < r� , with r� = b + �. The action of the PML is defined through the stretching function

σ̃ (r) :=
⎧⎨
⎩

0, if r < a
P (r), if a ≤ r ≤ b
σ0, if r > b

, (16)

with r = |x|. The polynomial P is required to be increasing in [a, b], and σ̃ (r) to be sufficiently smooth C2(0, r�). For this, 
we introduce the fifth order polynomial satisfying: P (a) = P ′(a) = P ′′(a) = P ′(b) = P ′′(b) = 0 and P (b) = σ0, and the PML 
strength functions have the resulting profile shown in Fig. 1. The corresponding PML formulation employs the transformation

d

dx̃
= 1

α̃(x)

d

dx
, with α̃(x) = 1 + iσ̃ (x). (17)

For FE computations with d = 1, we restrict the domain to �� := (−r�, r�) and choose as in [25] homogeneous Dirichlet 
boundary conditions. Formally, the finite PML problem is then: Find the eigenpairs (ω, u) such that

− d

dx

(
ρ

α̃

du

dx

)
− ω2ηα̃ u = 0, x ∈ ��, u(r�) = 0 and u(−r�) = 0. (18)

Let �PML = (−r�, −a) ∪ (a, r�) and denote by a, b the forms in (10). As variational formulation of (18), we consider: Find 
u ∈ H1

0(��) \ {0} and ω ∈D :=C \Z such that for all v ∈ H1
0(��)

t1(ω)[u, v] := a(ω)[u, v] − ω2b(ω)[u, v] + t̂1(ω)[u, v] = 0, (19)

where t̂1(ω)[u, v] = ( 1
α̃

u′, v ′)�PML − ω2(α̃u, v)�PML .
Approximation of resonances using a radial PML was analyzed in [25] and we will here only consider the PML problem 

truncated to the ball � ⊂ Rd . The used complex stretching functions are, as in one-dimension, of the form (16). Let Z
denote the set of values ω that are zeros or poles of ε and let � := �a ∪ �PML denote a partition into the PML-region and 
the part of the domain �a containing the resonators.

In the sequel we need the following definitions

α̃(r) := 1 + iσ̃ (r), r̃(r) := (1 + iσ̃ )r = α̃(r) r,

σ (r) := σ̃ (r) + r
∂σ̃

∂r
, α(r) := ∂ r̃

∂r
= 1 + iσ(r),

(20)

with the properties σ(r) = ∂(rσ̃ )/∂r and α(r) = α̃(r) = 1 + iσ0 for r > b.
5
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It is clear that the PML coefficients are designed such that for r ≤ a, we obtain σ̃ (r) = 0 and α(r) = 1, which is the same 
as r̃ = r. Hence, the PML operator restricted to r ≤ a corresponds to the original operator in problem (9), where there is no 
PML effect.

Variational formulation: The eigenvalues of (9) are then determined by the following variational problem: Find u ∈
H1

0(�) \ {0} and ω ∈D :=C \Z such that for all v ∈ H1
0(�)

td(ω)[u, v] := a(ω)[u, v] − ω2b(ω)[u, v] + t̂d(ω)[u, v] = 0, (21)

where t̂d(ω)[u, v] := (A∇u, ∇v)�PML − ω2(Bu, v)�PML , and the forms a, b are defined as in (10).
As an example for d = 2, direct transformation of (21) from polar to Cartesian coordinates results in

A =

⎛
⎜⎜⎝

α̃
α cos2 θ + α

α̃
sin2 θ

(
α̃
α − α

α̃

)
sin θ cos θ(

α̃
α − α

α̃

)
sin θ cos θ α̃

α sin2 θ + α
α̃

cos2 θ

⎞
⎟⎟⎠ , B := αα̃. (22)

Note that even though A, and B are defined in �, their action takes place only in �PML .

4. Discretization of the Lippmann-Schwinger equation

In this section we present a collocation method for the discretization of the LS equation (2), which is the base for the 
numerical sorting algorithm in Section 6 and will be used to compute resonances in one-dimension. The so-called Galerkin-
Nyström method is used for the discretization of linear Fredholm integral equations of the second kind. In [26], this method 
is referred to as case (A) of the Galerkin methods, and convergence for the problem with sources is also discussed. The 
Galerkin-Nyström method was in [5, Sec. 3.2] used for resonance computations for d = 2.

Let {ϕ j}N
j=1 be piecewise polynomial functions with the property ϕ j(xi) = δ ji , {xi}N

i=1 ∈ �a . From the representation 
uh = ∑N

j ξ jϕ j , and with the use of (2) we obtain the nonlinear eigenvalue problem: Find ξ ∈CN and ωh ∈C such that

T h(ωh)ξ = (I − K (ωh))ξ = 0, with

TM : Kij(ω) := ω2
∫
�r

�(xi, y) (ε(y) − 1)ϕ j(y)dy,

TE : Kij(ω) := ∇ · ∫
�r

�(xi, y)
(

1
ε(y)

− 1
)

∇ϕ j(y)dy.

(23)

The Nyström method consists in choosing NL S collocation points xi as the nodes of a high order quadrature rule. The 
resulting nonlinear matrix eigenvalue problem (23) is solved by using a contour integration based method [27–29]. The 
resulting system matrices have dimensions comparable to FE matrices: NL S × NL S , with NL S ≤ ch−d . However, the matrices 
are dense (O(N2

L S ) storage), non-symmetric, and the elements of T (ω) are transcendental functions of ω. The consequences 
in a NEP solution strategy are that the matrix T (ωm) from (23) must be re-assembled for each new iteration ωm+1 =
ωm + δω, which is computationally expensive, especially for problems of dimension d > 1.

Remark 1. The LS equation (2) uses information of the exact solution of the problem at every discretization node xi , through 
its fundamental solution �(x, y). From where a numerical scheme based on (23) is flexible in the way that it can be posed in 
the smallest domain �r , as well as in larger domains � ⊃ �r , without taking any special treatment for boundary conditions.

5. FE discretization of the DtN and PML based formulations

In this section we briefly discuss the details involved in the discretization and approximation of the resonances corre-
sponding to the discretization of the formulations given in (9) and (2).

Let the domain � ⊂ Rd be covered with a regular and quasi uniform finite element mesh T (�) consisting of elements 
{K j}NK

j=1. The mesh is designed such that the permittivity function ε is continuous in each K j . Let h j be the length of the 
largest diagonal of the non-curved primitive K j and denote by h the maximum mesh size h := max j h j .

Let Pp denote the space of polynomials on Rd of degree ≤ p in each space coordinate and define the N dimensional 
finite element space

Sh(�) := {u ∈ H1(�a) : u|K j
∈ Pp(K j) for K j ∈ T }. (24)

The computations of discrete resonance pairs (ωh, uh) are for d = 2, 3 performed in the approximated domain �h using 
curvilinear elements [30]. The meshes used are shape regular in the sense of [31, Sec. 4.3], and consist of quadrilateral/brick 
elements with curvilinear edges/surfaces that deviate slightly from their non-curved primitives.
6
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Let {ϕ1, . . . , ϕN } be a basis of Sh(�). Then uh ∈ Sh(�), and the entries in the finite element matrices are of the form

uh =
N∑

j=1

ξ j ϕ j, Aij = (ρ∇ϕ j,∇ϕi)�a , Mij = (ηϕ j,ϕi)�a . (25)

The matrix eigenvalue problem is then: Find the eigenpairs (ω, ξ) ∈D ×CN \ {0} such that

F (ω) ξ :=
(

A − ω2M + Q
)

(ω) ξ = 0, (26)

where the corresponding matrix valued function is

Q ij(ω) :=
{ −gd(ω)[ϕ j,ϕi], DtN and d = 1,2

t̂d(ω)[ϕ j,ϕi], PML and d = 1,2,3.
(27)

In the case where ε(ω, x) is given as piecewise smooth function of space, we write (26) as

F (ω) ξ :=
(

Nr∑
m=0

{ρm(ω) Ãm − ω2ηm(ω)M̃m} + Q (ω)

)
ξ = 0, (28)

with matrices Ãm
i j = (∇ϕ j, ∇ϕi)�m , M̃m

ij = (ϕ j, ϕi)�m , m = 0, 1, . . . , Nr .

Remark 2. Truncation of the DtN: Let �z� be the smallest integer greater than or equal to z. We use the rule νmax =
�a ωM� according to the results in [19], where from the considered spectral window, ωM is the largest real part allowed for 
computations of eigenvalues.

Remark 3. Truncation of the PML: The PML is set up following the discussions in [25,9], which accounts for large enough 
� and σ0 such that the search region is feasible. Additionally, we use the space Sh

0(�) := {u ∈ Sh(�) : u = 0 for x ∈ ∂�} for 
computations with the PML formulation.

Additionally, all discretization methods presented in this work use the same FE space over �a . This is, all formulations 
(LS, DtN, PML) use the FE triangulation T (�a), which is the restriction of T (�) to �a . In this way we ensure that the 
approximation properties in �a domain are the same for all formulations.

Definition 4. Pseudospectra: Let σδ(F h) be the set of all z ∈ C such that smin F h(z) < δ, where smin F h(z) denotes the 
smallest singular value of F h(z).

5.1. Discretization and further computational details

All numerical experiments have been carried out using the finite element library deal.II [32] with Gauss-Lobatto 
shape functions [33, Sec. 1.2.3]. For fast assembly and computations with complex numbers the package PETSc [34] is used.

The approximation of resonances based on the DtN formulation for d = 2 leads to the matrix problem in (26). The 
solution of this nonlinear eigenvalue problem (NEP) is based on the solution strategy presented by Araújo et al. [19], where 
we use a specialization of the Infinite Arnoldi method [35,21] called the tensor infinite Arnoldi method (TIAR).

For computations when the permittivity function is described by the rational model (7), we prefer to solve the corre-
sponding matrix NEP by the techniques presented by Araújo et al. [1], which is a specialization of the solver by Güttel et 
al. [36] implemented in the SLEPc library [37].

Computations of the pseudospectra provide insight into the behavior of the resolvent of the discretized operator function 
F h , allowing us to evaluate its spectral stability. For the singular value [7, Def. 2.10] computations we used SLEPc [37].

The computational platform was provided by the High-Performance Computing Center North (HPC2N) at Umeå Univer-
sity, and all experiments were run on the distributed memory system Abisko. The jobs were run in serial on an exclusive 
node: during the process, no other jobs were running on the same node. Node specifications: four AMD Opteron 6238 
processors with a total of 48 cores per node.

6. Numerical sorting of potentially spurious solutions

In this section we derive a discrete indicator from equation (2) that allows us to identify potentially spurious solutions 
once we have computed FE solutions (ωh

m, uh
m) to (26) or to (28). The identification of potentially spurious solutions is im-

portant since adaptive FE and quasimodal expansions in practice will fail if spurious solutions are included in the expansion 
or influence the mesh-refinement. The idea of sorting potentially spurious solutions is in the spirit of the standard residual 
error estimator and marking strategy used in adaptive finite element methods [38]. Adaptive FE can be applied when the 
7
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coarsest mesh is sufficiently fine. However, the pre-asymptotic regime is very large in resonance computations, in particular 
for cases with large air regions in the computational domain. A goal of the paper is therefore to supplement the information 
given by the PDE based residual estimator with information from an integral equation. The sorting scheme is based on a 
computationally cheap approximation of the condition ‖χa T (ω)χau‖ < δ.

Let {ϕ j} be a basis for Sh(�a). Then, the discrete LS equation (23) is written in the form

T (ω)uh = uh − K (ω)uh, uh :=
N∑

j=1

ξ jϕ j, with ‖uh‖L2(�a)
= 1.

Definition 5. Pseudospectrum indicator: The computed eigenvalue ωh belongs, for given δ > 0, to the δ-pseudospectrum
σδ(T h) if the pair (ωh, uh) satisfies ‖T h(ωh)uh‖�a < δ. Then, for a given domain � ⊇ �r , we define the pseudospectrum 
indicator as

δh(�) := ‖T h(ωh)uh‖�a . (29)

Particularly, we want to be able to measure whether the computed eigenpair (ωh, uh) is converging to a physical pair. 
Naturally, non convergent pairs exhibit large δh values. Additionally, we can identify and remove certain spurious eigenpairs 
in the PML based formulation by considering the following definition.

Definition 6. PML added eigenpairs: The use of the coordinate stretching technique in formulations (19), (21) introduces 
new eigenpairs to problem (9). These new eigenvalues accumulate close to the critical line of the modified PML problem [9], 
and the corresponding eigenfunctions vm exhibit oscillations in �PML , but decay in the physical region �a . Then, by using 
the normalization ‖vm‖L2(�) = 1, the PML critical eigenvalues exhibit

0 <
‖vm‖2

L2(�a)

|�a| <
‖vm‖2

L2(�PML)

|�PML| ,

which can be successfully used as a filtering criterion for removing PML added eigenpairs.

A similar idea was in [2] used to study photoacoustic resonators.

6.1. On spurious solutions in R

In [9] we introduced a sorting strategy based on Definition 5 but performing computations only inside �r . As suggested 
by (29), computations can be also performed in �0, and it is natural to ask whether or not the sorting scheme performs 
worse if air is included in the evaluation. Then, we numerically test the solutions to the LS formulation by enlarging the 
computational domain to include air. If the LS operator function would exhibit undesired spurious eigenvalues, this would 
render the method unreliable for detection of spurious pairs.

The following problem has been considered by several authors including [13,25]. Define for n1 �= 1 the piecewise constant 
functions

ρ := 1, η := n2, and n (x) =
{

n1 if |x| ≤ 1
1 if |x| > 1

. (30)

The corresponding exact resonances of (9) for TM polarization and d = 1, are given by

e4in1ω = μ2, ωm = πm − iLog(μ)

2n1
, μ = n1 + 1

n1 − 1
, m = 0,1,2, ... (31)

We start by discussing the stability of the spectrum of the DtN, PML and LS formulations. Namely, the discretization (23)
inherits the property described in Remark 1, from where it is expected that the spectrum of the LS formulation would not 
be sensitive to perturbations of �a = (−a, a) in the sense discussed in Section 2.2. For verification, we propose a similar 
experiment to the one presented in [9, Figs. 4.1, 5.2, 5.5], but now we allow larger domains �a ⊇ �r in the computation of 
the Slab problem (30).

The FE approximations to eigenvalues and the pseudospectrum of the problem are for n1 = 2, a = 1, 2, 3 obtained using 
the tools introduced in Section 5. We keep track of the number of eigenvalues in a fixed region of the complex plane, and 
the location of eigenvalues that remain for all perturbations.

As it can be seen in Fig. 2, the number of eigenvalues for a coarse mesh with the LS formulation remained constant 
for a = 1, 2, 3. This means that no spurious eigenvalues are added due to the inclusion of air. Furthermore, from the plots 
we see that the computed eigenvalues remain unperturbed when increasing a, which shows that the eigenvalues are not 
sensitive to perturbations of the domain.
8
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Fig. 2. Pseudospectrum for the TM Slab problem with coarse mesh: We illustrate for discretizations with fixed p, h, � the effect of including air regions 
for the DtN, PML and LS formulations. Pseudospectra computations are performed in 1000 × 500 points. For reference, we mark with crosses (×) exact 
eigenvalues.

In the same figure we follow the last discussion but for computations using the DtN and PML formulations. It is observed 
that by increasing a, there is an increase of the number of computed eigenvalues in a fixed region of the complex plane. 
Additionally, it can be seen that the location of eigenvalues is slightly modified when perturbing a. These observations lead 
us to conclude that eigenvalues from the DtN and PML formulations are very sensitive to perturbations of the domain. The 
same observations hold for computations with finner discretizations.

Before the next discussion, we briefly introduce quadrature rules for d = 1, but postpone specific details until Section 7.3. 
In the one dimensional case, the integration of f ∈ C2m(K ), m ∈N over an element K is approximated by formulas of the 
form 

∫
K f (x) dx = ∑m

i=1 wi f (xi) + E , where wi are quadrature weights, xi quadrature nodes, and E is the remainder [39, 
Ch. 8]. By employing m-point quadrature rules with large enough m we can ensure that the remainder |E| is smaller than 
the FE discretization error. Finally, we gather the quadrature points defined over �0 and �r , in the sets X0, Xr respectively. 
Let X0 := ∪i{x j ∈ Ki |Ki ⊂ �0}m

j=1, Xr := ∪i{x j ∈ Ki |Ki ⊂ �r}m
j=1, and Xa :=X0 ∪Xr .

In the discretization of the LS formulation (23), we encounter the situation xi, y ∈ Kl ⊂ �r , where the evaluation of 
the kernel �(xi, y) becomes problematic at the evaluation point y = xi . In one-dimensional problems (d = 1), the kernel 
�(x, y) is continuous, but has a jump in the derivative at points x = y. In the troublesome element Kl := (xl, xl+1), we can 
always split the integration interval Kl → (xl, x j) ∪ (x j, xl+1) and perform two separate quadrature integrations. Then, by 
using Gauss-type of quadratures, it is possible to avoid the evaluation of �(x j , x j) [9].

In Fig. 3 we show convergence of various quantities of interest for the development of the sorting strategy to be pre-
sented in Section 7.3.3. The plots are computed for the slab problem (30) with p = 2 and featuring five levels of mesh 
9
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Fig. 3. Convergence of various quantities of interest for the development of the sorting strategy presented in Section 7.3.3. The plots are computed for the 
slab problem described in Section 6.1 for a = 3, p = 2 and featuring five levels of mesh refinement ref = 1, 2, . . . , 6. Horizontally, we show results for the 
eigenpairs corresponding to m = 1, 5, 10 from equation (31). In black solid line we show |(ωm − ωh)/ωm| where ωh corresponds to the closest computed 
eigenvalue to ωm , and uh its corresponding computed eigenfunction. In blue solid line we show the pseudospectrum indicator δh(�a), and in dashed lines 
we show minx∈Xa |T h(ωh)uh(x)| and maxx∈Xa |T h(ωh)uh(x)|. In red circles we locate the values maxx∈X0 |T h(ωh)uh(x)|.

refinement ref = 1, 2, . . . , 6. Horizontally, we show results for the eigenpairs corresponding to m = 1, 5, 10 from equation 
(31). In black solid line we show |(ωm − ωh)/ωm| where ωh corresponds to the closest computed eigenvalue to ωm , and uh

its corresponding computed eigenfunction. In blue solid line we show the pseudospectrum indicator δh(�a), and in dashed 
lines we show minx∈Xa |T h(ωh)uh(x)| and maxx∈Xa |T h(ωh)uh(x)|. Finally, in red circles we add maxx∈X0 |T h(ωh)uh(x)|.

From the figure it is evident that as the mesh is refined, there is convergence of the eigenvalue error |(ωm −
ωh)/ωm|, and residuals minx∈Xa |T h(ωh)uh(x)| and maxx∈Xa |T h(ωh)uh(x)|. Additionally, the asymptotic rate of conver-
gence of minx∈Xa |T h(ωh)uh(x)| and maxx∈Xa |T h(ωh)uh(x)| is the same as the asymptotic rate of convergence of |(ωm −
ωh)/ωm| and the residuals are around two orders of magnitude higher than the eigenvalue error. Moreover, the values 
minx∈Xa |T h(ωh)uh(x)| and maxx∈Xa |T h(ωh)uh(x)| are tight bounds for δh(�a). Finally, the value maxx∈X0 |T h(ωh)uh(x)|
coincides with maxx∈Xa |T h(ωh)uh(x)| for the one-dimensional case.

The fact that the residuals minx∈Xa |T h(ωh)uh(x)| and maxx∈Xa |T h(ωh)uh(x)| exhibit the same asymptotic rate of con-
vergence of the eigenvalue error, can be used as an indication of the eigenvalue convergence for problems where an exact 
solution is not available.

7. On spurious solutions in Rd

From the discussion in Sec. 6.1, and from Fig. 3 it is evident that maxx∈Xa |T h(ωh)uh(x)| can be used to mark potentially 
spurious scattering resonance pairs. The proposed sorting strategy for higher dimensions is based on this observation. In 
the following subsections, we discuss computational details and computational costs before the new sorting indicator is 
introduced in formula (40). For convenience of the reader we provide a summary of the used numerical techniques.

7.1. Evaluation of integrals and numerical quadratures

In this subsection, we introduce notation that is central for the new sorting scheme and briefly revise numerical integra-
tion by Gauss-Legendre quadratures [39, Ch. 8], [33, Ch. 4]. Consider a physical element K and let K := (−1, 1)d denote the 
master element. Functions defined over a possibly curved physical element K are mapped to act over K, where integration 
is approximated by employing numerical quadratures. Let XK : Rd → Rd , be the mapping that transforms coordinates as 
K = XK (K). For integrals, the mapping is enforced by the Jacobian’s determinant J = det(D XK ) [40, Sec. 3.3], [33, Sec. 3.4], 
in the following way∫

K

f (x)dx =
∫
K

f ◦ XK (y) J (y)dy. (32)

In the case where K is a line, quadrilateral or a brick element, the explicit expression for XK is a known linear transfor-
mation. When K has curved edges, then XK can be described by the so-called theory of Transfinite Interpolation (TI) [41]. 
Computational details corresponding to the use of TI for FE can be found in [42] and [33, Sec. 3.2]. For FE error estimation 
on curved elements the reader is referred to [40, Sec. 3.3] and [43, Sec. 6.7].

In the one dimensional case, integration over the master element K is approximated by formulas of the form ∫
K f (x) dx = ∑m

i=1 wi f (xi) + E , with wi the quadrature weights and xi the quadrature nodes. The coefficients wi are 
all positive [39, Sec. 8.4]. The so-called quadrature error or remainder is denoted E , and under the assumption that 
f ∈ C2m(K), m ∈N , then the m-point Gauss quadrature’s remainder satisfies |E| ≤ c| f (2m)(ξ)| for ξ ∈K and c > 0.

In Rd , d > 1, it is possible to derive similar quadrature formulas for the integration of functions that are in C2m(K). The 
resulting formulas are the so-called composite Gauss quadratures [33, Sec. 4.2.1], which can be constructed in our case by 
10
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Table 1
Memory consumption estimation for matrices in (26), and (23) for d = 1, 2, 3.

d p m NK N S
z N D

z W S (bytes) W D (bytes)

1 2 10 101 9.0 × 101 4.0 × 102 1.4 × 103 6.4 × 103

2 2 10 102 8.1 × 103 1.6 × 105 1.3 × 105 2.6 × 106

3 2 10 103 7.3 × 105 6.4 × 107 1.2 × 107 1.0 × 109

1 2 102 102 9.0 × 102 4.0 × 104 1.4 × 104 6.4 × 105

2 2 102 104 8.1 × 105 1.6 × 109 1.3 × 107 2.5 × 1010

3 2 102 106 7.3 × 108 6.4 × 1013 1.2 × 1010 1.0 × 1015

1 2 103 103 9.0 × 103 4.0 × 106 1.4 × 105 6.4 × 107

2 2 103 106 8.1 × 107 1.6 × 1013 1.3 × 109 2.6 × 1014

3 2 103 109 7.3 × 1011 6.4 × 1019 1.2 × 1013 1.0 × 1021

using tensor products of one dimensional quadrature rules. Particularly, when a physical element K is allowed to be curved, 
we approximate integration with the formula

∫
K

f (y)dy =
∫
K

f ◦ XK (x) J (x)dx =
md∑
j=1

w j f (x j) + E(K), (33)

where w j = w j J (x j) and x j = XK (x j) corresponding to a composite Gauss quadrature with md weights and nodes w j, x j . 
Over a domain � ⊇ ∪i Ki defined as the union of several elements Ki , the integrand is required to be piecewise smooth 
f ∈ C2m(Ki), for i = 1, 2, . . . , Nelements. Then, we obtain∫

�

f (x)dx =
∑

i

∫
Ki

f (x)dx =
∑

i

∑
j

w j(Ki) f (x j(Ki)) + E(�), (34)

where for each element Ki , we have the quadrature pairs x j(Ki), w j(Ki), similarly as in expression (33). The polynomial 
spaces that we use for d = 2, 3 are based on the tensor product of one dimensional FE spaces [33, Sec. 2.2], [32]. Since we 
work with piecewise smooth coefficients, we make sure that the jumps of the integrand coincide with the possibly curved 
element edges ∂ Ki , such that f ∈ C2m(Ki). This, in order to guarantee convergence of quadrature error in each individual 
element and of the global numerical integration. Further details on Gaussian quadratures can be revised in [39, Ch. 8], and 
implementation details are provided in [33, Ch. 4].

In the discretization of the LS formulation (23), we encounter the problematic situation where the kernel �(xi, y) is 
required to be evaluated at y = xi . In the one-dimensional case (d = 1), this obstacle is easily overcome by splitting the 
integration interval and performing two separate integrations by using Gauss-type quadrature rules.

In higher dimensions (d = 2, 3) the kernel is weakly singular [44, Sec. 2.3], what makes the integration in (23) more 
demanding. This difficulty can be overcome by specializing the quadratures [45–47]. Usually, extra effort is spent in refining 
adaptively elements Kl containing the singularity. Then, a Nyström type of high order quadratures, combined with interpo-
lation in polar coordinates along with other techniques is used in order to keep |E(�r)| small to desired order. As expected, 
the challenge becomes more pronounced in higher dimension [46,47]. These techniques were successfully tested [46,47] for 
the solution of scattering problems with given source employing the LS formulation. However, our case is very different as 
we look for scattering resonances where the corresponding eigensolver is computationally more demanding than a linear 
solve.

7.2. Memory requirements

Let NK be the number of cells in a triangulation in space dimension d, p the polynomial degree of the basis functions 
in use, and w = 16 bytes are the memory required to store a complex number in double precision. Given the number of 
nonzero elements Nz in a matrix, the memory required to store it is W = Nz × w .

In the Galerkin method given in Section 4, matrices are dense with N D
z ≈ [NK × pd]2. In turn, the FE matrices from 

Section 5 are sparse, and each cell in the triangulation contributes with a block of size [(p + 1) × (p + 1)]d . Additionally, we 
have around (p + 1)d scattered connections with neighboring cells that we omit for simplicity. A simple estimation gives 
N S

z ≈ NK × (p + 1)2d . Furthermore, by assuming m the division in a one dimensional partition, it is reasonable to have 
NK = md , and m = 10, 102, 103 for a small, moderate and large problem respectively.

We list our simple estimations in Table 1 for p = 2, for both FE discretization methods in Section 5 and Galerkin method 
for volume integral equations in Section 4. As expected, discretization with FE results in manageable sparse matrices for 
current computer memory constraints. It is evident that the load becomes larger with higher space dimension and number 
of cells, from where matrices for d = 3 can be stored only for small and moderate problems. In the case of matrices from 
the Galerkin strategy in (23), we conclude that storage becomes computationally unfeasible in higher space dimensions, for 
moderate and large problems. Moreover, working with higher polynomial degree rules out even small problems.
11
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7.3. Computational details of the sorting scheme

In order to evaluate the sorting scheme, we are interested in computing the integrals from (23) as accurately as possible. 
The available FE machinery for computing integrals over �0 facilitates the numerical integration, which is done similarly as 
described in Section 7.1.

Due to the growth of most resonant modes, the point-wise residual |(T h(ωh)uh)(x j)| is expected to be larger for x j ∈ �0. 
Additionally, due to the unboundedness of �(x j , x j), the computation for x j ∈ �r of (23) and (29), requires considerable 
more effort compared to its evaluation for x j ∈ �0. The apparent reason for this is that for x j ∈ �r and d > 1, we have to 
numerically compute an integral with a weak singularity.

Below, we write explicitly the steps involved in computing δh(�a) from Definition 5. First, we split the integration into 
separate parts over �0, �r and use the composite quadrature rules (34) for evaluating the integrals. We need the following 
definitions:

Definition 7. Let K0 := {i : Ki ⊂ �0} and Kr := {i : Ki ⊂ �r} be index sets defined over �0 and �r , respectively. Define the 
sets X0 := ∪i∈K0 {x j ∈ Ki}md

j=1, Xr := ∪i∈Kr {x j ∈ Ki}md

j=1, and denote by I0, Ir the resulting extracted index sets from the new 
ordering. Additionally, let Xa := X0 ∪ Xr and Ia be its corresponding ordering. In this way we obtain the new quadrature 
rules ∫

�q

f (x)dx =
∑
j∈Iq

w j f (x j) + E(�q), with q = 0, r,a. (35)

From Definition 5, we have that δh(�) := ‖T h(ωh)uh‖�a , then

δh(�a)
2 = ∫

�0
|(T h(ωh)uh)(x)|2 dx + ∫

�r
|(T h(ωh)uh)(y)|2 dy

= ∑
k∈I0

wkα
2
k + ∑

l∈Ir
wlβ

2
l + E(�0) + E(�r),

(36)

where αk := |(T h(ωh)uh)(xk)|, βl := |(T h(ωh)uh)(yl)|, for xk ∈ �r, yl ∈ �0. From (23), evaluating T (ω)u involves an integra-
tion over �r , which we refer to as inner loop. Then, for each k in αk , and each l in βl we compute an inner loop additional 
to the explicit integration shown in (36).

Definition 8. For a given quadrature, we define the discrete pseudospectrum indicator as

δh
h(�a)

2 :=
∑
k∈I0

wk|(T h(ωh)uh)(xk)|2 +
∑
l∈Ir

wl|(T h(ωh)uh)(yl)|2. (37)

7.3.1. Computational costs
In this subsection, we estimate the computational cost for performing the operations involved in (37). Computationally, 

the errors in (36) require special treatment as discussed in Section 7.1. However, for simplicity of the estimations, we 
disregard additional costs from integration of weakly singular kernels in higher dimensions.

We estimate the costs in terms of the evaluation of uh(x j) and �(xi, x j) in complex double precision, which combined 
account for the heaviest work load in each individual term of (37). The evaluation of these two operations accounts for a 
rough computational time tq ≈ 10−6s bench-marked on the processor Intel Core i7-3770, CPU: 3.40GHz.

For the estimation, assume that we have NK cells Ki ⊂ �a and choose a finite element space of degree p. Then, we have 
NK × (p +1)d terms in the outer loop and the inner loop requires Nr × (p +1)d terms, where Nr denotes the number of cells 
in �r . The estimate for the computational cost for ‖T h(ωh)uh‖2

�a
is about NK ×(p +1)d × Nr ×(p +1)d = NK × Nr ×(p +1)2d

evaluations of the kernel. Assume m as the size of a one dimensional partition, from where it is reasonable to have Nr = md , 
NK = (cm)d , for c > 1. Then, the cost is given by cd × (m × (p + 1))2d .

Aiming at getting a better intuition of the requirements of the computation, we can check estimations for the cost, inner 
time ti , total time t running on a single processor. We set c = 2 and for a small, moderate and large problem we use 
m = 10, 102, 103 respectively. In Table 2 we show the estimations for the computational costs and times required by (36).

The presented sorting scheme is fully parallelizable and the total time of execution can be reduced by a factor of ten 
by using additional cores. However, the conclusion of Table 2 is that the computational cost is extremely high for realistic 
computations. Basically, evaluating δh

h (�a) as in (37) results in sorting schemes that are far more expensive than the solution 
of the NEP (26).

7.3.2. Sorting strategy
A pseudospectrum strategy based on Definition 8, consists of the sorting of computed pairs (ωh

m, ξm), solution to (26), 
according to their respective indicator δh

h (�a). Moreover, the evaluation of the βl in (36) requires special treatment such 
as non-standard quadrature rules similar to the ones introduced in [45–47]. Additionally, as estimated in Section 7.3.1 and 
12
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Table 2
Cost and time estimation for computing (37) for d = 1, 2, 3.

d p m Nr cost ti(s) t(s)

1 2 101 101 1.8 × 103 9.0 × 10−5 1.8 × 10−3

2 2 101 102 3.2 × 106 8.1 × 10−3 3.2 × 100

3 2 101 103 5.8 × 109 7.3 × 10−1 5.8 × 103

1 2 102 102 1.8 × 105 9.0 × 10−4 1.8 × 10−1

2 2 102 104 3.2 × 1010 8.1 × 10−1 3.2 × 104

3 2 102 106 5.8 × 1015 7.3 × 102 5.8 × 109

1 2 103 103 1.8 × 107 9.0 × 10−2 1.8 × 102

2 2 103 106 3.2 × 1014 8.1 × 101 3.2 × 108

3 2 103 109 5.8 × 1021 7.3 × 105 5.8 × 1015

Table 2, the evaluation of δh
m(�a) := ‖um − K um‖L2(�a) in higher dimensions is prohibitively expensive since K um is a volume 

integral operator. With these issues in mind, our aim is to propose an approximated version of δh
h (�a) from Definition 8

such that we improve in performance compared to the results in Table 2, and we avoid the use of specialized quadrature 
schemes for the evaluation of singular kernels. Our goal is to reduce the complexity of the sorting scheme, such that the 
cost of the new strategy scales linearly with the cost of the computation of the inner loop.

In the remaining of the section, we present an alternative sorting strategy based on Definition 8 with computational cost 
that scales with the cost of evaluating the inner loop.

7.3.3. Sorting estimations
The orderings given in Definition 7 are used to group quadrature pairs over �0, �r and �a separately, where the 

quadrature weights w j are positive. The resulting pairs are written as {xk, wk} for index k ∈ Iq with q = 0 corresponding to 
quadrature pairs from �0, q = r from �r , and similarly for q = a from �a . Then, from Definition 8 we have

δh
h(�a)

2 ≤ max
j∈Ia

|(T h(ωh)uh)(x j)|2 · |�h
a |. (38)

In the estimate (38), we used the property |�h
q | = ∑

j∈Iq
w j .

We base our sorting strategy in the following definition. A function u ∈ C(�a) satisfies

min
x∈Xa

|u(x) − K hu(x)| · |�h
a |1/2 ≤ δh

h(�a) ≤ max
x∈Xa

|u(x) − K hu(x)| · |�h
a |1/2. (39)

Since both the FE approximations and the Nyström approximations converge as we increase the dimension of the discretiza-
tion, then we expect that the estimate (39) wraps around δh

h (�a) tighter for finer discretizations.

Definition 9. Sorting indicator: For a given eigenpair (ωh
m, vh

m) we define

δ̃m := max
x∈�a

|vh
m(x) − K h vh

m(x)|. (40)

Then, (39) suggests an alternative strategy as an approximation of the pseudospectrum indicator in Definition 5. Basically, 
the goal is to test points hoping that when the number of evaluations is large we have a good approximation to the upper 
bound (40). In order to make the most of each evaluation, we consider the following heuristic ordering of the evaluation 
points:

• We assume that |T h(ωh)uh(x)| is large at points x where |uh(x)| is large.
• Due to the rapid growth of eigenfunctions, we assume that non-convergent/spurious pairs exhibit maxy∈�r |u(y) −

K hu(y)| < maxx∈�0 |u(x) − K hu(x)|.
• We want to avoid large errors in the quadrature rules used. Then, it is convenient to evaluate residuals away from the 

singularities of the kernel �(x, y). These are located at points x = y.

The last reasons suggest that for identification of spurious pairs, it is convenient to compute first the residuals at points 
outside the resonator. This is, for the computation of (40), we should start by evaluating points in �0.

Definition 10. Sampling set: For given constants lm, c > 0 we define the sampling set

Xm := {x ∈ �0 : inf |x − y| > lm and |vm(x)| > c}. (41)

y∈�r

13
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Remark 11. The proposed strategy consists in evaluating the residual |(T h(ωh)uh)(x)| in points x ∈ Xm as suggested by (40), 
where the evaluation points are not clustered together. Additionally, we want to exclude points xl , such that |uh(xl)| ≈ 0, and 
we want to avoid integrating over cells with a singular kernel. For this, we select points x j /∈ �r such that infy∈�r |x j − y| ≥
lm , in order to avoid the singularity peak. Consecutively, we select lm such that |�(ωmlm)| ≤ C1, which guarantees that 
the integrand is bounded and quadrature rules remain accurate. The benchmarks in Rd , d = 1, 2, 3 presented in this paper 
indicate that for practical computations using Ns ≈ 10 evaluations is a good choice. Ultimately, we use the normalization 
vm := um/‖um‖� , with � := �a ∪ �PML for the PML formulations. Then, we filter out added PML eigenvalues described in 
Definition 6 by requiring the condition ‖vm(x)‖2

�a
/|�a| > ‖vm‖2

�PML
/|�PML|.

The result of applying Remark 11 is an effective and inexpensive way of testing the computed pair (ωh, ξ), where the 
cost scales linearly with the inner loop. If the resulting sorting indicator is larger than a user pre-defined threshold, then 
we disregard the eigenpair and continue testing the next eigenpair in the collection.

8. Applications to metal-dielectric nanostructures

In this section we study four interesting metal-dielectric configurations, from where numerical approximations to reso-
nances and resonant modes are computed. Consecutively, eigenpairs are tested and solutions are sorted according to their 
corresponding pseudospectrum indicator (40). The sorting strategy is tested on problems where exact pairs are known. 
Additionally, we consider as reference problem a test case used in [48].

In all tested problems we define the refractive index function n := √
ε . The first three configurations serve as bench-

marking strategies for non-dispersive and piecewise constant material properties. Then, we apply the sorting algorithm on a 
configuration introduced in [1] where a metal coating is motivated from realistic applications in nano-photonics. Here, three 
different relative permittivity models are used: εv := 1 (Vacuum), εs := 2 (Silica), and εmetal (Gold), modeled by a sum of 
Drude-Lorentz terms (7). For εmetal we similarly as in [1, Table 1] use the data from [49]. Motivated from the applications to 
the so-called graded materials, we introduce a demanding configuration where the refractive index is a continuous function 
of space. Finally, we consider an acoustic benchmark problem in R3.

8.1. Benchmarks in 2D

The next two problems have radial symmetry centered at the origin, and the solutions expressed in polar coordinates 
(r, θ), will be written in terms of Bessel and Hankel functions of integer order m. In this simple case outgoing solutions of 
(9) satisfy

u = H (1)
m (aω)

(
cos mθ

sinmθ

)
, for x ∈ ∂ B(0,a), and m ∈ Z, (42)

where supp (n − 1) ⊂ B(0, a). In subsections 8.1.1 and 8.1.3, we present solutions satisfying (9) and (42) for specific permit-
tivity profiles.

8.1.1. Standard benchmark: single disk problem (SD)
Denote by u = u1, n = n1 the restrictions of u, n to �1 := B(0, R), and set n = n2 = 1 elsewhere. The corresponding exact 

eigenfunctions to (9) and (42) read:

u1 = Nm Jm(n1ωr)

(
cos mθ

sinmθ

)
, u2 = H (1)

m (ωr)

(
cos mθ

sinmθ

)
, Nm := H (1)

m (ωR)

Jm(n1ωR)
. (43)

The eigenvalues ω corresponding to m = 0 are simple and those corresponding to m > 0 are semi-simple with multiplicity 
α = 2. The exact eigenvalue relationship for TM and TE is written

Jm(n1ωR)H (1)′
m (ωR) − g J ′

m(n1ωR)H (1)
m (ωR) = 0, (44)

where g = n1, g = 1/n1 corresponds to the TM polarization and TE polarization, respectively. In the case of a semi-simple 
eigenvalue ω j , the exact solution consists of two eigenfunctions u j,1 and u j,2. Then, we define the linear combination 
v j = c1u j,1 + c2u j,2 for the constants c1, c2 ∈C. In this way, after we have computed an eigenpair (ωh, uh), we compare uh

with the closest exact solution v j . That is, we find c1, c2 by solving the minimization problem

min
c1,c2

‖c1u j,1 + c2u j,2 − uh‖2. (45)

This can be done in the discrete setting with a standard least-squares optimization routine.
For numerical computations we use R = 1, n1 = 2 and a = 2, 3. Additionally, we place the disk center a distance s = 0.2

from the origin such that many terms are needed in the DtN for approximation of resonances.
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Fig. 4. Functions u(x), uh(x), K huh(x) and corresponding residuals restricted to the straight line L from SD problem described in Section 8.1.1 for TM 
polarization with a discretization with p = 2 and one mesh refinement. Vertically we show different representative eigenfunctions. In the left panel of the 
figures we present real parts of u (black), uh (red), K uh (blue), and imaginary parts in the middle panel. In the right most panel we present the residuals 
|u(x) − uh(x)| in red dashed and |T huh(x)| = |uh(x) − K huh(x)| in blue dotted lines.

Comparison with respect to exact solutions and LS-projections: We denote with uh the computed FE eigenfunction, with u the 
best fitted exact solution and with K huh the LS projected eigenfunction. The best fitted exact eigenfunction u is obtained 
by solving the minimization problem (45).

For convenient visualization and comparison of the eigenfunctions we define the straight line L ⊂ �0 as L := {(x, y) ∈
�0 | x ∈ (s + l + cos(π/6), a cos(π/6) − l), y = sin(π/6)}, where s = 0.2. The vertices defining L are located a small distance 
away from the resonator and the boundary �a by setting l = 10−3. This line has been chosen in order to avoid computations 
over an edge of an element such that we avoid super-convergence of residuals.

In Fig. 4, we gather representative results for the single disk problem. The depicted solutions in the figure correspond to 
the TM polarization with p = 2, ref = 1, and a = 3. Vertically we show different representative eigenfunctions that are drawn 
for x ∈L. In the left panel of the figures we present real parts of u (black), uh (red), K uh (blue), and imaginary parts in the 
middle panel. In the right most panel we present the residuals |u(x) −uh(x)| in red dashed and |T huh(x)| = |uh(x) − K huh(x)|
in blue dotted lines.

Results: In Fig. 4 we observe that for eigenpairs that are good approximations then |T huh(x)| follows very closely |u(x) −
uh(x)|, showing an important resemblance. This presents a measure for convergence of FE computations. Additionally, some 
uh are seen to grow exponentially away from the resonator. However, the corresponding K huh grows at a slower rate and 
seems to agree more with u than uh itself. Finally, in most cases, |T huh(x)| is smoother and more flat than |u(x) − uh(x)|.

The application of the sorting scheme described in Remark 11 to this problem gives the results presented in Figs. 5 and 
the left panel in 6. Exact eigenvalues are marked with dots and computed eigenvalues are marked with colored circles, 
where the color is given by approximating the sorting indicator (40) as described in Remark 11. In Fig. 5 we present 
plots for the TM polarization. The left panels are computed by placing the DtN at a = 2, while a = 3 in the panels on the 
right, and both discretizations have the same FE up to a = 2. We observe that increasing a results in an increase in the 
number of eigenvalues in the given spectral window, which is expected from the discussion in Section 6.1. Moreover, the 
added eigenvalues from a = 3 pollute larger regions in the spectral window compared to a = 2. This conclusion can also be 
obtained by noticing that the minimum in δ̃ increases for larger a, which is related to the fact that exponential growth of 
eigenfunctions becomes a challenge for FE discretizations.

Additionally, we see that computed eigenvalues with small sorting indicator resemble the pattern drawn by the exact 
eigenvalues. As the value of the indicator increases the corresponding eigenvalues lose this property and becomes erratic. 
In this way we can choose a threshold and for example keep eigenvalues ωh

m with δ̃m ≤ 10−2 to obtain a set of eigenvalues 
resembling the behavior of the exact eigenvalues. Moreover, in the lower panels in Fig. 5 we illustrate results for computa-
tions on finer meshes. We observe that computation on finer meshes improves the accuracy of computed eigenvalues and 
exhibits spurious eigenvalues shifted to the right compared to the computation on coarser meshes. Additionally, we obtain 
lower values for δ̃m for finer discretizations.
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Fig. 5. Spectral window showing exact (dots) and FE eigenvalues (circles) of the problem described in Section 8.1.1 for TM polarization featuring two levels 
of mesh refinement. In colors we give δ̃m corresponding to ωh

m from computations over ten points.

It should be noted that the indicator δ̃ resembles the FE discretization error. Namely, δ̃m increases with Reωm , which is 
the expected behavior for the FE discretization error of non-dispersive Helmholtz problems [15,50,1]. Additionally, eigenval-
ues with small indicator values appear very close to the exact eigenvalues of the problem.

A similar discussion holds for the TE polarization, where we plot results for a = 2 in the left panel of Fig. 6.

8.1.2. Reference configuration: single square problem (SS)
For this problem, we set �1 := [−s, s]2, n = n1 for x ∈ �1 and n = 1 elsewhere. The correct parameters for the results 

presented in [48, Fig. 10] are s = 1.5 and n1 = 0.2 for TM polarization.
Results: For this problem, we compute all eigenvalues in the spectral window only once, and cheaply test each computed 

eigenpair. The results are plotted in the right panel of Fig. 6, by using a DtN. Again we can see the effectiveness of using 
the indicator δ̃.

Correct approximations to resonances are easily identified from the overwhelming rest of computed eigenvalues. For 
example, we mark with dots the two reference values given in [48, Fig. 9], and we see that for the presented discretizations 
in Fig. 6 the reference eigenvalues have relatively low indicator δ̃m .

Comparison from the results in Fig. 6 against those in [48, Figs. 10, 11, 12] not only illustrates the reliability of the 
identification of true approximation to resonances by using the sorting indicator strategy but it also shows its flexibility and 
large coverage in the complex plane.

8.1.3. Benchmark with dispersion: single coated disk problem (SCD)
In this configuration, we consider a resonator consisting of a dielectric disk with a uniform coating layer. The geometry 

is described by two concentric circumferences of radii 0 < R1 < R2, with vacuum as surrounding medium. The inner disk 
has constant relative permittivity index, and is coated by a layer of gold. We set n1 = √

εs , and n2 := √
εmetal is the value 

such that Im{n2} (absorption coefficient) is positive. Further details of the SCD problem can be found in [1].
The exact solutions satisfy (9) and (42) with R ≥ R2. The resonance relationship reads

f m
1 (ω) = g1 J ′

m(ωn1 R1)H (1)
m (ωn2 R1) − g2 Jm(ωn1 R1)H (1)′

m (ωn2 R1),

f m
2 (ω) = g3 Jm(ωn1 R1)H (2)′

m (ωn2 R1) − g4 J ′
m(ωn1 R1)H (2)

m (ωn2 R1),

f m
3 (ω) = g5 H (1)

m (ωn2 R2)H (1)′
m (ωR2) − g6 H (1)′

m (ωn2 R2)H (1)
m (ωR2),

f m
4 (ω) = g7 H (1)

m (ωR2)H (2)′
m (ωn2 R2) − g8 H (1)′

m (ωR2)H (2)
m (ωn2 R2),

F (ω) := ( f m f m − f m f m)(ω) = 0,

(46)
m 1 4 2 3
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Fig. 6. Spectral windows: We show on the left panel exact (dots) and FE eigenvalues (circles) of the problem described in Section 8.1.1 for TE polarization. 
On the right panel we show two reference eigenvalues (dots) from [48] and FE eigenvalues (circles) of the Single Square problem described in Section 8.1.2
for TM polarization. In colors we give δ̃m corresponding to ωh

m from computations over ten points.

Fig. 7. Spectral window showing exact • and FE eigenvalues © of the Single Coated Disk problem described in Section 8.1.3 for TM and TE polarizations. 
The poles of ε(ω) are given by � and it’s roots ε(ω) = 0 with �. Additionally, the plasmonic branch points ε(ω) = −1 is marked with (×), and ε(ω) = −2
with (+). In colors we give δ̃m corresponding to ωh

m from computations over ten points.

where for TM, g := (n1, n2, n2, n1, 1, n2, n2, 1), and for TE, g := (n2, n1, n1, n2, n2, 1, 1, n2). The parameters used for the com-
putation are R1 = 0.8 and R2 = 1.0.

A complex root finder [51] is then used to compute accurate approximations of the resonances. For each m in equation 
(46), we search numerically the resonances ωm,1, ωm,2, . . . with machine precision stopping criterion. In [1, Table 2], we list 
a selection of resonances computed from (46).

Results: The results for both polarizations are gathered in Fig. 7. Here, we observe typical behavior of dispersive resonators 
i) there exist clustering of eigenvalues close to the poles and zeros of the Drude-Lorentz model (7), ii) in the TE polarization 
we have clustering of eigenvalues to the so-called plasmonic branch points of the model, which are those values ω such that 
εmetal(ω) = −ε j , with j = 0, 1. In other words, −εmetal(ω) matches the value of a neighboring dielectric constant (juncture). 
In the figure, the bottom panels are close up windows showing such accumulations and the corresponding values for the 
resulting eigenpair indicator δ̃m as described in Remark 11. As expected, the value of δ̃m increases when approaching a 
critical value (pole, or zero), this behavior is expected since close to a critical point the value |n(ω)ω| increases and the 
resulting eigenfunction oscillates more rapidly, and the FE error increases. This is further discussed in [1].

8.1.4. Configuration with continuous n(x): Bump problem
Consider the following refractive index:

n(x) =
{

1 + P3(|x|) 0 ≤ |x| ≤ R
1 |x| > R

(47)

subject to the compatibility conditions: P3(0) = 1, P3(R) = 0, P ′ (0) = 0, P ′ (R) = 0, and R = 1.
3 3
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Fig. 8. Spectral window showing computed FE eigenvalues (circles) of the Bump problem described in Section 8.1.4 for TM and TE polarizations. In colors 
we give δ̃m corresponding to ωh

m from computations over ten points.

Fig. 9. Spectral window showing exact (dots) and FE eigenvalues (circles) of the Single Ball problem described in Section 8.2 for TM and TE polarizations. 
In colors we give δ̃m corresponding to ωh

m from computations over ten points.

8.2. Acoustic benchmark in 3D: single ball problem (SB)

This case is analogous to the Single Disk problem 8.1.1 with d = 3.
Denote by u = u1, n = n1 = 2 the restrictions of u, n to �1 := B(0, R), and set n = n2 = 1 elsewhere. The corresponding 

exact outgoing resonant modes of (9) read:

um�(r, θ,φ) =
{

Nm jm(n1ωr) Y m
� (θ,φ), r ≤ R

h(1)
m (ωr) Y m

� (θ,φ), r > a
, |�| < m, Nm := h(1)

m (ωR)

jm(n1ωR)
. (48)

The eigenvalues ω corresponding to m = 0 are simple and those corresponding to m > 0 are semi-simple with multiplicity 
α = 2m + 1. The exact eigenvalue relationship can be written as

jm(n1ωR)h(1)′
m (ωR) − n1 j′m(n1ωR)h(1)

m (ωR) = 0. (49)

Results for problems 8.1.4 and 8.2: Similarly as pointed out in former discussions of this section, the results gathered in 
Figs. 8 and 9, confirm the effectiveness from the application of the sorting scheme described in Remark 11. The results in 
the figures illustrate a clear method to effectively sort the computed eigenpairs by using an approximation of the sorting 
indicator (40).

9. Conclusions

We have presented a sorting scheme, based on the Lippmann–Schwinger equation, for marking of potentially spurious 
scattering resonant pairs in Rd Helmholtz problems. For all computations and for TM and TE polarizations, numerical 
experiments on a broad range of problems illustrate that the sorting scheme provides valuable information on the location 
of potentially spurious resonances at low computational cost. This information can, for example, be used to determine the 
most important modes in quasimodal expansions.
18



J.C. Araújo C. and C. Engström Journal of Computational Physics 429 (2021) 110024
CRediT authorship contribution statement

Juan C. Araújo C.: Conceptualization, Data curation, Investigation, Methodology, Software, Validation, Visualization, Writ-
ing – original draft. Christian Engström: Conceptualization, Funding acquisition, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript. This 
work is founded by the Swedish Research Council under Grant No. 621-2012-3863.

References

[1] J.C. Araújo C., C. Campos, C. Engström, J.E. Roman, Computation of scattering resonances in absorptive and dispersive media with applications to 
metal-dielectric nano-structures, J. Comput. Phys. 407 (2020) 109220.

[2] S.A.S. El-Busaidy, B. Baumann, M. Wolff, L. Duggen, Modelling of open photoacoustic resonators, Photoacoustics 18 (2020) 100161.
[3] B. Vial, F. Zolla, A. Nicolet, M. Commandré, Quasimodal expansion of electromagnetic fields in open two-dimensional structures, Phys. Rev. A 89 (Feb 

2014) 023829.
[4] M. Gallezot, F. Treyssède, L. Laguerre, A modal approach based on perfectly matched layers for the forced response of elastic open waveguides, J. 

Comput. Phys. 356 (2018) 391–409.
[5] J. Gopalakrishnan, S. Moskow, F. Santosa, Asymptotic and numerical techniques for resonances of thin photonic structures, SIAM J. Appl. Math. 69 (1) 

(2008) 37–63.
[6] B. Kettner, Detection of spurious modes in resonance mode computations, PhD thesis, 2012.
[7] L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, July 2005.
[8] E.B. Davies, Pseudospectra of differential operators, J. Oper. Theory 43 (1997) 243–262.
[9] J.C. Araújo C., C. Engström, On spurious solutions in finite element approximations of resonances in open systems, Comput. Math. Appl. 74 (10) (2017) 

2385–2402.
[10] M. Cessenat, Mathematical Methods in Electromagnetism, Series on Advances in Mathematics for Applied Sciences, vol. 41, World Scientific Publisher, 

Singapore, 1996.
[11] R.B. Melrose, Geometric Scattering Theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995.
[12] P.D. Lax, R.S. Phillips, Scattering Theory, second ed., Pure and Applied Mathematics, vol. 26, Academic Press, Inc., Boston, MA, 1989. With appendices 

by Cathleen S. Morawetz and Georg Schmidt.
[13] B. Osting, M.I. Weinstein, Long-lived scattering resonances and Bragg structures, SIAM J. Appl. Math. 73 (2) (2013) 827–852.
[14] C.-Y. Kao, F. Santosa, Maximization of the quality factor of an optical resonator, Wave Motion 45 (4) (2008) 412–427.
[15] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences, Springer, New York, 1998.
[16] X. Wang, Y. Deng, Q. Li, Y. Huang, Z. Gong, K. Tom, J. Yao, Excitation and propagation of surface plasmon polaritons on a non-structured surface with 

a permittivity gradient, Light Sci. Appl. 5 (12) (2016).
[17] O. Steinbach, G. Unger, Combined boundary integral equations for acoustic scattering-resonance problems, Math. Methods Appl. Sci. 40 (5) (2017) 

1516–1530.
[18] T. Hohage, L. Nannen, Hardy space infinite elements for scattering and resonance problems, SIAM J. Numer. Anal. 47 (2) (2009) 972–996.
[19] J.C. Araújo C., C. Engström, E. Jarlebring, Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map, J. Comput. 

Appl. Math. 330 (2018) 177–192.
[20] E. Jarlebring, K. Meerbergen, W. Michiels, Computing a partial Schur factorization of nonlinear eigenvalue problems using the infinite Arnoldi method, 

SIAM J. Matrix Anal. Appl. 35 (2) (2014) 411–436.
[21] E. Jarlebring, G. Mele, O. Runborg, The waveguide eigenvalue problem and the tensor infinite Arnoldi method, SIAM J. Sci. Comput. 39 (3) (2017).
[22] E.B. Davies, Non-self-adjoint differential operators, Bull. Lond. Math. Soc. 34 (5) (2002) 513–532.
[23] M. Lenoir, M. Vullierme-Ledard, C. Hazard, Variational formulations for the determination of resonant states in scattering problems, SIAM J. Math. Anal. 

23 (3) (1992) 579–608.
[24] F. Schenk, Optimization of Resonances for Multilayer X-Ray Resonators, Göttingen Series in X-Ray Physics, Univ.-Verlag Göttingen, 2011.
[25] S. Kim, J.E. Pasciak, The computation of resonances in open systems using a perfectly matched layer, Math. Comput. 78 (267) (2009) 1375–1398.
[26] Y. Ikebe, The Galerkin method for the numerical solution of Fredholm integral equations of the second kind, SIAM Rev. 14 (3) (1972) 465–491.
[27] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, K. Kimura, A numerical method for nonlinear eigenvalue problems using contour integrals, JSIAM Lett. 1 

(2009) 52–55.
[28] W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra Appl. 436 (10) (2012) 3839–3863.
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