This is the published version of a paper published in *Methods in Ecology and Evolution*.

Citation for the original published paper (version of record):

Pontarp, M., Brännström, Å., Petchey, O L. (2019)
Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC)
https://doi.org/10.1111/2041-210X.13129

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-158737
REVIEW

Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC)

Mikael Pontarp1,2,3 | Åke Brännström4,5 | Owen L. Petchey2

1Department of Biology, Lund University, Lund, Sweden
2Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
3Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
4Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
5Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Correspondence
Mikael Pontarp
Email: mikael.pontarp@biol.lu.se

Handling Editor: Timothée Poisot

Abstract

1. Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as a mechanistic and causal link between process and pattern is often lacking, and evolutionary processes and trophic interactions are ignored.

2. Here, we revisit the current knowledge on community assembly across scales and, in line with several reviews that have outlined challenges associated with current inference techniques, we identify a discrepancy between the current paradigm of eco-evolutionary community assembly and current inference techniques that focus mainly on competition and habitat filtering. We argue that trait-based dynamic eco-evolutionary models in combination with recently developed model fitting and model evaluation techniques can provide avenues for more accurate, reliable, and inclusive inference. To exemplify, we implement a trait-based, spatially explicit eco-evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources.

3. Through a case study on inference of prey and predator niche width in an eco-evolutionary context, we demonstrate how inclusive and mechanistic approaches—eco-evolutionary modelling and Approximate Bayesian Computation (ABC)—can enable inference of assembly processes that have been largely neglected by traditional techniques despite the ubiquity of such processes.

4. Much literature points to the limitations of current inference techniques, but concrete solutions to such limitations are few. Many of the challenges associated with novel inference techniques are, however, already to some extent resolved in other fields and thus ready to be put into action in a more formal way for inferring processes of community assembly from signals in various data sources.

KEYWORDS
biogeography, community assembly, community structure, ecology, evolution, process inference
1 | INTRODUCTION

Community assembly processes are difficult to observe in the field and revealing processes using manipulative experiments is not always feasible. Consequently, there is a considerable need to infer processes from observations, such as trait distributions, species distributions, abundances, and phylogenies (Cadotte et al., 2010; Mouquet et al., 2012; Pausas & Verdu, 2010; Ricklefs & Travis, 1980).

Current techniques that aim to infer assembly processes from community data have limitations. Most methods consider one or a few processes, although community assembly occurs via multiple processes including eco-evolutionary feedbacks (Leibold, Economo, & Peres-Neto, 2010). Patterns observed in nature may be consistent with multiple explanations (Vellend, 2010) and current techniques may thus fail to provide accurate inference, particularly if evolutionary processes and trophic interactions that are known to be important for macroevolution are poorly integrated (Pausas & Verdu, 2010; Pontarp & Petchey, 2016).

Fundamental assumptions (e.g., that competition will result in overdispersed trait distributions), on which current inference techniques often rely, have also been questioned (Mayfield & Levine, 2010). Existing inference techniques and their shortcomings are covered in several reviews (Adler, Fajardo, Kleinhesselink, & Kraft, 2013; Cadotte et al., 2010; Cavender-Bares, Kozak, Fine, & Kembel, 2009; Emerson & Gillespie, 2008; Mouquet et al., 2012; Pausas & Verdu, 2010; Vamosi, Heard, Vamosi, & Webb, 2009). Here, we also outline the most relevant features of some of the common inference techniques (Tables 1–2 and Appendix S1), but our major aim is to motivate transformation and improvement of the practice of inferring process from pattern in ecology and evolutionary biology.

Such transformation, already underway, involves models of community assembly and we highlight specific components including mechanistic modelling, parameter estimation, and model selection (see also Cabral, Valente, & Hartig, 2017; Csillery, Blum, Gaggiotti, & Francois, 2010; van der Plas et al., 2015). We present a trait-based and spatially explicit dynamic eco-evolutionary community model of adaptive radiations that includes intra- and interspecific competition, trophic interactions, dispersal as well as trait evolution within trophic levels and co-evolution among trophic levels. We use this model in a case study to illustrate how model modification (including or excluding processes), Approximate Bayesian Computation (ABC) statistics, and multiple data sources can be used for inference. We focus on predator-prey interactions and co-evolution processes that are important in structuring communities but are largely overlooked in traditionally inference techniques (Mouquet et al., 2012).

2 | THE CASE FOR INCLUSIVE AND MECHANISTIC PROCESS INFERENCE

Current inference techniques have both been praised and criticized, and calls for more inclusive and mechanistic approaches have been made due to challenges associated with: (a) basic assumptions on which the methods rely, (b) quantification of processes acting in concert on different spatiotemporal scales, and (c) the identification of particular mechanisms that link process and pattern (Table 1, Appendix S1). We now describe each category of challenges in turn.

2.1 | Basic assumptions of classical approaches

The most common inference methods involve analysis of trait or phylogenetic community patterns, to find signals consistent with community assembly processes. Community overdispersion or underdispersion has been determined by comparing the trait/phylogenetic distribution of the focal community with that of randomly

TABLE 1

Methods that infer assembly processes from community patterns (column 1) and the information that they consider (columns 2–5)

<table>
<thead>
<tr>
<th>Method</th>
<th>Input data</th>
<th>Inference of processes</th>
<th>Reference example</th>
</tr>
</thead>
<tbody>
<tr>
<td>typic structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis of phylo-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>generic structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth corner</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Variance partitioning</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Co-occurrence analysis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Tick mark denotes which data/processes are considered explicitly. Superscript denotes data/processes that are implicitly considered (*) or included in extensions of the basic method (+). "Eco" processes include habitat filtering and competitive exclusion; "Evo" includes the evolution of phenotypes, for example, via character displacement; "Bio. geo." includes dispersal limitation.
TABLE 2 Challenges and limitations associated with current inference techniques and methods categorized into three overarching categories (column 1)

<table>
<thead>
<tr>
<th>Challenge category</th>
<th>Challenge/Limitation</th>
<th>Description</th>
<th>Reference example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic assumptions of the methods</td>
<td>Identifying traits that can be used as a proxy for niche</td>
<td>Phenotypic inference techniques assume that trait(s) can be used as a proxy for niche. Identifying the traits that define an organism’s niche and thus drive the assembly processes can, however, be difficult and must be supported by expert knowledge of organisms’ natural histories. Appropriate weighting of traits can also be difficult to establish</td>
<td>Petchey and Gaston (2006)</td>
</tr>
<tr>
<td></td>
<td>Identifying the relationship between niche, traits, and phylogeny</td>
<td>Phylogenetic inference techniques assume a mapping between relatedness and niche. The interpretation of phylogenetic patterns is contingent on trait evolution and the distribution of traits over the phylogeny. The degree of community clustering given by a certain process will, in other words, be contingent on whether the niche is conserved or labile.</td>
<td>Wiens et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Assuming a fixed species pool and no evolution or no explicit space</td>
<td>The current theory is mainly focused on local community assembly from a fixed species pool and assumes that dispersal is not limiting. This implies that local community composition results only from local processes (e.g., habitat filtering and competition)</td>
<td>Pausas and Verdu (2010)</td>
</tr>
<tr>
<td></td>
<td>Assuming that only similar species exclude each other due to competition.</td>
<td>A current paradigm in ecology states that species that are closely related, share traits, and thus also have similar niches cannot co-exist due to competitive exclusion. Recent studies have, however, showed that competition can sometimes eliminate more different and less related species</td>
<td>Mayfield and Levine (2010)</td>
</tr>
<tr>
<td>Method specificity and scale-dependent processes</td>
<td>Single process inference</td>
<td>Most methods only allow for inference on the net effect of processes and do not partition the relative importance of ecological, evolutionary, and spatial processes acting in concert</td>
<td>Petchey (2007)</td>
</tr>
<tr>
<td></td>
<td>Evolution is ignored</td>
<td>Evolutionary contingencies are largely ignored in current inference techniques. This is limiting, in particular when analysing phylogenetic patterns</td>
<td>Emerson and Gillespie (2008)</td>
</tr>
<tr>
<td></td>
<td>Scale-dependent processes</td>
<td>Different traits may be affected by different processes at different temporal and spatial scales.</td>
<td>Trisos, Petchey and Tobias (2014)</td>
</tr>
<tr>
<td>Lack of mechanistic links between process and pattern</td>
<td>Unknown mechanisms</td>
<td>Methods that take environmental factors and explicit spatial components into account (e.g., variance partitioning) are mainly phenomenological or statistical. A mechanistic understanding of the causal link between pattern and process is thus often lacking</td>
<td>Gotelli et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Trophic interactions are often ignored</td>
<td>Even though it is well known that trophic interactions can structure communities, trophic processes are largely ignored when patterns are interpreted</td>
<td>Mouquet et al. (2012)</td>
</tr>
</tbody>
</table>

assembled null communities and interpreted as competitive exclusion or habitat filtering respectively (Webb, Ackerly, McPeek, & Donoghue, 2002). Other methods interpret correlation between traits and environmental variables as a signal of habitat filtering (Legendre, Galzin, & HarmelinVivien, 1997; Mouquet et al., 2012). Furthermore, variance partitioning aims to decompose variation in community composition into fractions determined by environmental factors and spatial location to reveal environmental filtering and spatial contingencies (Borcard, Legendre, & Drapeau, 1992). A fundamental challenge associated with the methods listed above is that a particular trait or set of traits cannot always be assumed to reflect the ecological niche (Trisos, Petchey, & Tobias, 2014). Conclusion based on null models, to which patterns are contrasted, is also criticized (Mittelbach & Schemske, 2015). Even common assumptions about competitive exclusion are contradicted by studies showing that competition can eliminate more different and less related taxa (Mayfield & Levine, 2010).

2.2 Processes acting in concert

Other challenges are associated with the complex nature of community ecology (Appendix S2). Communities are structured through multiple processes, acting on different spatiotemporal scales, and different processes can give similar patterns (Vellend, 2010). Existing methods, however, often only infer the net effect of processes or the dominant process. This introduces challenges even in the simplest case when processes on local geographical and ecological temporal scale are considered. The communities may be structured through a combination of environmental filtering and competition (Kraft, Valencia, & Ackerly, 2008), but the relative strength of these processes varies continuously with abiotic and biotic variables (Pontarp, Ripa, & Lundberg, 2012; Trisos et al., 2014). The focus of current inference methods on habitat filtering and competition is also surprising as both empirical (Alto, Malicoate, Elliott, & Taylor, 2012) and theoretical (Pontarp & Petchey, 2016) studies show that trophic
interactions also structure communities. Furthermore, spatial structure can facilitate coexistence of similar species and high dispersal may lead to increased co-occurrence of species. Current methods do, however, rarely consider spatiotemporal dynamics. Finally, current process inference methods focus largely on ecological processes (Leibold et al., 2010) although the importance of evolutionary processes is well known (Cortez & Ellner, 2010; Leibold et al., 2010).

2.3 Lack of mechanistic inference

The final major challenge associated with current inference techniques that emerge from the literature is their inability to provide explicit information about the mechanistic link between process and pattern (Adler et al., 2013). Lack of information about the underlying mechanisms can lead to misinterpretations of patterns. For example, trophic interactions and evolution are seldom considered in process inference (Pausas & Verdu, 2010) despite evidence of major effects that may give rise to similar patterns and thus may be difficult to distinguish between (b, III). Parameter estimation provides quantitative information on the processes that are modelled given the data (b, IV, V) and the model selection procedure guide the model construction and inclusion or exclusion of particular processes (b, VI, VIII).

3 IMPLEMENTING MECHANISTIC AND INCLUSIVE APPROACHES

In line with advances in other fields, such as macroecology (Cabral et al., 2017; D’Amend, Rahbek, Zimmermann, & Guisan, 2015) and ecological forecasting (Niu et al., 2014; Urban et al., 2016), more general and flexible methodological inference frameworks can be adopted. Here, we present a generic macroevolutionary modelling framework coupled with Bayesian statistical methods for model fitting and model improvement (Fig. 1). The framework makes use of a priori knowledge for both model construction and parameter estimation. Evolutionary processes can be turned on or off, competitive and/or predator–prey interactions can be included, different types of data can be utilized, and the level of mechanistic detail can be adjusted as needed.

3.1 Developing an eco-evolutionary model for inference

A community model for inference needs to be flexible, include multiple processes, and output multiple types of data. With this in mind, we base our model on the generalized Lotka–Volterra (GLV) equations (Case, 2000) extended into geographical space (Fig. 2, Appendix S3). This model thus includes ecological and spatial processes and we combine available microevolutionary theory and simulations of macroevolutionary patterns in the form of adaptive radiations.

For simplicity, we assume that space is represented by three patches R, G, and B denoted with subscripts R, G, and B below. Dispersal between any two patches is assumed symmetrical and occurs at given per capita rates (see Appendix S3 for implementation). The dynamics of n prey populations and m predator populations in patch R are given by:

\[
\frac{dv_i}{dt} = r(1 - \sum_{j=1}^{n} a(u_{ij})v_j) - \sum_{k=1}^{m} a(u_{ik})P_{ik} + m_{RG}(V_{iG} - V_{iR}) + m_{RB}(V_{iB} - V_{iR}) \tag{1}
\]

\[
\frac{dP_{ik}}{dt} = -d + c \sum_{j=1}^{n} a(u_{ij})V_{ij} + m_{RG}(P_{iG} - P_{iR}) + m_{RB}(P_{iB} - P_{iR}) \tag{2}
\]

FIGURE 1 The proposed process inference approach including (1) model construction, (2) model fitting and parameter estimation, and (3) model selection. Dynamic community models are suitable as they are often based on simple population dynamical models but can be extended to include mechanisms through trait-based dynamics and population- or individual-based implementation (red section in a). Prior knowledge informs model construction and implementation (b, I, II). Theoretical model investigation can identify different processes that may give rise to similar patterns and thus may be difficult to distinguish between (b, III). Parameter estimation provides quantitative information on the processes that are modelled given the data (b, IV, V) and the model selection procedure guide the model construction and inclusion or exclusion of particular processes (b, VI, VIII).
for $i = 1$ to n and $k = 1$ to m. Here, V_{ij} and P_{ks} denote prey and predator population size in patch s, respectively, with s referring to patch R, G, or B. The equations for the other two patches are similar. The parameters r and d are the intrinsic prey growth rate and the predator mortality rate, respectively. Here, we assume that all patches are similar, but variation can be implemented through species- and/or patch-specific growth and death (formulated as r_{is} and d_{ks}).

The trait-dependent functions on the right-hand side of Equations 1 and 2 are given by:

$$K(u_i, u_{opt}) = K_0 e^{-\frac{(u_i - u_{opt})^2}{\sigma_u^2}},$$

(3)

$$a(u_i, u_j) = e^{-\frac{(u_i - u_j)^2}{\sigma_a^2}},$$

(4)

and

$$b_{max}(u_i, z_k) = b_{max} e^{-\frac{(u_i - z_k)^2}{\sigma_b^2}},$$

(5)

where $K(u_i, u_{opt})$ represents the carrying capacity for a monomorphic population of prey individuals with trait value u_i in a habitat characterized by a resource distribution with its peak resource availability at the point u_{opt}. Resource availability declines symmetrically as u deviates from u_{opt} according to σ_u. The interaction, $a(u_i, u_j)$, between prey populations i and j is modelled with a Gaussian function where σ_a determines the degree of competition between populations with traits u_i and u_j and can thus be viewed as the niche width of the prey. Equation 5 models the interaction, $a(u_i, z_k)$, between a focal predator population k with trait value z and a prey population i with trait value u. The parameter b_{max} denotes the maximum attack rate obtained when $u_i = z_k$ and this rate then falls of symmetrically as u_i deviates from z_k according to σ_b. Similar to the σ_a parameter, σ_b can be viewed as the niche width of the predator. Again parameters b_{max} and K_0 can be made patch- and species-specific if needed.

The model is flexible enough to model newly established communities of organisms with low evolutionary potential by seeding only one patch with interacting populations and by omitting dispersal. With this being said, for more complex systems, explicit space and dispersal may be required. For old communities or fast-evolving organisms (e.g., microbes), implementing evolutionary process is desirable. The model is thus able to capture a range of scenarios ranging from ecological assembly across space to macroevolutionary processes where, for example, ecological opportunity is followed by adaptive radiations. For this, we use an adaptive dynamics approach (Brännström, Johansson, & von Festenberg, 2013; Geritz, Kisdi, Meszena, & Metz, 1998; Metz, Geritz, Meszena, Jacobs, & van Heerwaarden, 1996) (see also Appendix S3). With full complexity, the simulation model includes intra- and interspecific competition, trophic interactions, dispersal, and trait evolution, and can exhibit evolutionary branching (Fig. 2). The model outputs population dynamics, equilibrium population sizes, and trait distributions for each evolutionary step (Fig. 3). By assigning a species identity to
individuals, for example, using a trait-based species definition (see also Pontarp, Ripa, & Lundberg, 2015; Pontarp et al., 2012), we can follow trait evolution, diversity, and phylogenetic and phenotypic community structure throughout evolutionary history (see also Pontarp & Petchey, 2018). Code for the model implementation is provided at https://zenodo.org/badge/latestdoi/158187026 and a guide to model modification is found in Appendix S5.

3.2 | Quantifying assembly processes through parameter estimation and model selection

While classical parameter estimation methods assign each parameter a given value or range of values based on the data provided, Bayesian methods additionally make use of prior knowledge of reasonable parameter values to arrive at parameter estimates. This knowledge takes the form of a prior probability of a given model and prior distribution for each model parameter. The data are then used to determine corresponding posterior distributions that reflect the best estimate of each parameter value and model selection is made through Bayes factors (Appendix S4). The uncertainty associated with the distributions provides information about model sensitivity or lack of signal in data for a given parameter while comparisons of estimates among parameters help reveal the relative strength and importance of different processes. Furthermore, by each time evaluating an increasingly complicated model (Fig. 1), it is possible to circumvent potential problems of using an overly complex model.

There are several benefits associated with using the proposed approach (Fig. 1). First, and before the models are fitted to real data, a theoretical model investigation can identify different processes that may give rise to similar patterns. In this case, it will be difficult to distinguish between those processes and additional information or experimentation may be needed for successful inference. Second, it is possible to evaluate the model and inference techniques by simulating data and then using the suggested inference method to retrieve known parameters. The amount of prior information about the system necessary for correct inference can be evaluated. If processes cannot be inferred in simulated data,
even though the model that underlies the patterns is known, correct inference on non-simulated (real) data is unlikely. Third, while fitting models to data (Fig. 1), one can evaluate a model that includes fewer ecological processes against models that include more processes and thus guiding the inclusion or exclusion of particular processes.

Approximate Bayesian Computation (ABC) is a parameter estimation and model fitting technique (Beaumont, 2010; Csillery et al., 2010; Sisson, Fan, & Tanaka, 2007) with promise for overcoming the difficulty of fitting complex models to diverse data. ABC takes priors for each model parameter as input, data are simulated with the model many times given parameters that are each time drawn randomly from the priors, and then, the distance (often Euclidean distance) between model output and observed data is evaluated through a set of summary statistics. Parameter combinations that render small distance (defined through some user-defined thresholds) constitute the posterior distributions. The mean, mode, variance, and other metrics of the posteriors define the actual parameter estimates. The simplest way of generating posterior distributions is through a simple rejection algorithm where parameters are drawn from a constant prior, but more powerful global optimization techniques such as Kalman filters (Kalman, 1960), Markov chain Monte Carlo (Gao et al., 2011), or Sequential Monte Carlo (Sisson et al., 2007) are commonly used. The model selection procedure is based on the same general principles, except that the summary statistics is defined somewhat differently (Prangle, Fearnhead, Cox, Biggs, & French, 2014). The output from the ABC model selection is focused on acceptance/rejection ratio between models rather than posterior parameter distributions. The mean, mode, variance, and other metrics of the posteriors define the actual parameter estimates. The simplest way of generating posterior distributions is through a simple rejection algorithm where parameters are drawn from a constant prior, but more powerful global optimization techniques such as Kalman filters (Kalman, 1960), Markov chain Monte Carlo (Gao et al., 2011), or Sequential Monte Carlo (Sisson et al., 2007) are commonly used. The model selection procedure is based on the same general principles, except that the summary statistics is defined somewhat differently (Prangle, Fearnhead, Cox, Biggs, & French, 2014).

3.3 Inferring competitive and trophic interactions—an illustrative case study

We asked whether it is possible to use the framework, model, and tools presented above to discriminate and quantify competition and trophic interactions from data on trait distributions, phylogenetic data, and species abundances. The answer to this question is non-trivial for two reasons. First, competition and predation have been shown to have similar effects on trait distributions which may limit inference of the two processes (Pontarp & Petchey, 2016). Second, as far as we know, no one has considered predatory effects on prey community structure in an inference framework before.

We generate our own observed, “empirical”, data through simulations (Zurell et al., 2010) (Fig. 4). We start simulations with monomorphic population(s) at the centre of the resource distribution and we simulate the eco-evolutionary assembly of four local consumer communities for 5,000 evolutionary time steps. Our simulated data are thus representing a macroevolutionary scenario where ecological opportunity facilitates diversification through adaptive radiations. Two of the observed communities includes competitive prey only (no predators) and we set prey niche width $\sigma_p = 0.1$ and $\sigma_p = 0.3$ for the two communities respectively. In our simulations, we also set the width of the resource distribution $\sigma_K = 1$ which means that diverse communities can evolve (Geritz et al., 1998). Furthermore, we simulate the assembly of two communities of co-evolving predators and prey. We use the same values for σ_a as above and we set predator niche width $\sigma_p = 0.7$. Constant model parameters for all simulations were $K_0 = 10,000$; $\sigma_K = 1$; $r = 1$; $d = 0.2$; $c = 0.3$; $b_{\text{max}} = 0.0001$. Mutation size for both predators and prey was defined as a random trait value drawn from a normal distribution with mean equal to the

FIGURE 4 Four simulated communities used as “observed” data in our illustrative case study. Radiations and trait distributions for prey (grey) and predators (red). Two of the communities contain competitive consumers only (a–d) with low (0.1) niche width (a,b) and high (0.3) niche width (c,d). Two communities are assembled through co-evolving competitive consumers and predators (e–h). The competitors in the predator–prey communities have the same high (e, h) and low (g, h) niche widths. The predators have niche width
trait value of the mutating population and a variance \((\sigma_{\text{mut}}) \) equal to 0.02 and mutation probability for the prey and predators were kept constant at 0.01. We will refer to data, including species richness, species abundance, trait distributions, and phylogenetic structure, from these four communities as “observed data” from now on.

To infer the processes that underpin patterns in observed data, we consider prior information about the observed system and available theory while constructing the candidate model scenarios (Fig. 1). For this case, we assume that the system is known well enough for us to focus on eco-evolutionary predator–prey interactions and we use established predator–prey models in our simulations. To illustrate how model modification can facilitate process inference, we generate model output for two candidate models: one that includes consumer competition only and one that includes competition and predation. We also implement the model such that multiple data types are produced and we generate model output given parameters from wide non-informative prior distributions. We infer the processes for each of our four observed communities by selecting the best model and by approximating the posterior parameter distribution for the parameters that are relevant for prey competition (prey niche width) and predator niche width, using ABC and a rejection algorithm (Beaumont, 2010; Sisson et al., 2007). As summary statistics for the ABC, we utilize as much of the available data as possible. We use well-known community structure metrics in the field of inference, including the number of prey species, mean abundance, the width of the trait distribution, mean trait distance, mean nearest trait distance, net relatedness index, and nearest phylogenetic taxon index (Appendix S4). The output from the ABC analysis constitutes the distance between simulated and observed data, evaluated as the Euclidean distance between summary statistics, as a function of model structure and model parameters (Figs S1–S3, Appendix S4). The Euclidean distance approximates the likelihood for a given model and parameter set (Beaumont, 2010; Liepe et al., 2014; Prangle et al., 2014), and hence also the posterior parameter distribution (Fig. 5).

We find that the minimum Euclidean distance between the observed data and the correct model is always smaller than the distance obtained by fitting the wrong model, and the acceptance ratio provided by the rejection algorithm is always larger for the correct model compared to the wrong model (Figs S1–S3, Appendix S4). The correct model is thus selected for each of the four observed communities, suggesting that prey only communities can indeed be distinguished from predator–prey systems. This is encouraging as previous studies (Pausas & Verdu, 2010; Pontarp & Petchey, 2016; Schluter, 1984) have raised concerns about inferring predator–prey interactions, using traditional techniques. The parameter estimates were also largely correct for the best

![Figure 5](image-url)
performing models (Fig. 5), showing that quantitative measures of the strength of competition and predation can be obtained in a scenario described by our case study. This is an advantage over more traditional inference where quantitative or relative measures of processes are rarely presented.

4 | DISCUSSION

Ecological communities are complex, with diverse processes and actors (e.g., Urban, De Meester, Vellend, Stoks, & Vanoverbeke, 2012; Vellend, 2010) and it is clear that several of the current inference techniques are too simplistic (Adler et al., 2013; Cadotte et al., 2010; Cavender-Bares et al., 2009; Emerson & Gillespie, 2008; Mouquet et al., 2012; Pausas & Verdu, 2010; Vamosi et al., 2009). A novel, more mechanistic, more inclusive, and more unified approach, like the one proposed here, for future assembly-process inference techniques is desirable as this will allow for a causal and quantitative link between multiple processes and community patterns.

Although the approach has not been synthesized for process inference explicitly before, inference does seem to be moving in the proposed direction (e.g., van der Plas et al., 2015). Several modelling approaches (Harris, 2016; Jabot & Bascompte, 2012; May, Giladi, Ristow, Ziv, & Jeltch, 2013) and statistical techniques can be used, but the trade-off in model complexity and tractability needs to be considered. We present dynamical eco-evolutionary modelling in combination with ABC as particularly suitable. Dynamic modelling is simple in the sense that it is based on simple, often phenomenological population dynamical models (Brännström et al., 2012), but they can be extended to include detailed mechanisms through the inclusion of trait-based dynamics and through a population- or individual-based implementation. A major advantage is a clear link between ecological and microevolutionary processes and macroevolutionary patterns. The trade-off between realizability, computational costs, and model tractability can be monitored and controlled as the models gain in complexity. By iterating over model construction and model evaluation, each time evaluating different models that include/exclude particular assembly processes, a type of robustness check can be accomplished and the best model for the data identified. Similarly, by evaluating increasingly complex versions of the models, the optimal model for inference about the study system can be found (see details in Appendix S4). Any model that includes several processes will, however, tend to be complex and computationally costly. Likelihood functions are often intractable, leading to the need for fitting and model selection techniques like ABC.

In our case study, we illustrate how dynamical modelling and ABC can be used for inference, through model selection and parameter estimation. We test multiple models against simulated data and the correct models were selected for our observed data, indicating that the different processes can be distinguished between with a simple rejection algorithm (Sisson et al., 2007) and without explicit summary statistics optimization (Prangle et al., 2014). Our case study emphasizes the importance to include the correct processes and thus to test different models. For example, a predator-prey system that is evaluated by a prey only model (Fig. S4c, Appendix S4) can lead to seemingly good estimates of prey niche width, but the overall model fit compared to the true model is relatively poor with overestimation of the niche width parameter. These results are promising and they indicate that our suggested approach is working under the ideal conditions associated with our case study. It will be intriguing to see how the approach will perform in practice.

Our case study also emphasizes the possibility and value of taking prior information and multiple data sources into account. The fact that we are using both phylogenetic and trait distribution data seems to be one of the reasons why we are able to distinguish between predator and prey processes as such signals can be diffuse in trait data only (Pontarp & Petchey, 2016). This also highlights the empirical side of inference, namely data to which the models are fitted. As noted above, data inform the models and are thus imperative for the model fitting. Data also dictate model construction as the model output needs to be comparable with data (e.g., diversity, size distributions, or phylogenetic patterns). In our case study, we are thus not only illustrating the technical aspects of novel inference but also provide an indication of what type of data may be useful in the future for inference to become more inclusive and detailed. Furthermore, data provide the knowledge of the natural history of the study system that also informs model construction. A priori information of a particular system can narrow down the priors for ABC and thus facilitate parameter estimation by reducing the parameter space that needs to be searched in the optimization procedure. For certain systems, reasonable parameter values may already be available in the literature and it might be possible to measure some parameters in independent studies. With this in mind, we envision that process inference will continue to move away from simple statistical and non-mechanistic inference techniques for approaches with a constant flow of information between experimental and field data, model construction, parameter estimation, and model selection. This will come with technical challenges as well as increased demands on data, computational power, and experimental progress. Many of these difficulties are, however, already identified and to some extent resolved.

ACKNOWLEDGEMENTS

The University of Zurich Research Priority Programme on Global Change and Biodiversity supported this research. In addition, funding came from the Swiss National Science Foundation (grant 31003A_159498 to O.L.P.). Financial support to MP was provided by the Swedish Research Council. ÅB acknowledges support from the Swedish Research Council and the Swedish Research Council Formas. Simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Center for Scientific and Technical computing LUNARC Lund University. We
thank Jonathan Levine, Florian Altermatt, and Miguel Verdú for comments and suggestions that improved initial versions of this paper.

AUTHORS’ CONTRIBUTIONS

All authors contributed with the ideas for the content of the manuscript; M.P. designed and implemented the case study model analyses. All authors contributed to the writing of the manuscript.

DATA ACCESSIBILITY

The model and the ABC analysis presented in the main text are implemented as MATLAB (version R2017b) code. All code is publicly available at https://zenodo.org/badge/latestdoi/158187026 and described in Appendix S5. No empirical or other previously published data were used.

ORCID

Mikael Pontarp https://orcid.org/0000-0001-9045-7829

Owen L. Petchey https://orcid.org/0000-0002-7724-1633

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.