Conceivability and Possibility:
Counterfactual Conditionals as Modal Knowledge?

Erik Holmlund
Abstract
How do we have knowledge of what is possible? On what could be considered as the traditional response to this question, we have knowledge of modality by conceivability. We conceive of things and on the basis take this as evidence for possibility. This thesis will consider three objections to this response of how we have knowledge of possibility. We will then consider Williamson’s conjecture: that our cognitive capacity to handle counterfactual conditionals carries the cognitive capacity for us to also handle metaphysical modality (2007, 136), and see if this conjecture avoids these objections. It will be argued that Williamson’s conjecture avoids two of the objections and that it does not seem to have a response to the last objection. It will also be argued that one objection to Williamson’s conjecture seems particularly problematic, and that it is not so clear that Williamson’s conjecture is any better off than the negative conceivability view.

Keywords: Conceivability, possibility, modal epistemology, counterfactual conditionals.

Abstract
Conceivability and Possibility:
Counterfactual Conditionals as Modal Knowledge?

1 Introduction

"We sometimes persuade ourselves that things are possible by experiments in imagination. We imagine a horse, imagine a horn on it, and thereby we are persuaded that a unicorn is possible. But imaginability is a poor criterion of possibility" (Lewis, 1986, 90).

The quote from Lewis circles in on the fact that we move from what we can imagine to what is possible. This will be one of the main concerns in this work. Lewis worries specifically about imaginability, which is one kind of the more general notion of conceivability, based on imagination.¹

For now, we can say that conceivability is, in the broadest sense, our capacity to represent scenarios to ourselves using words, concepts or sensory images (Gendler and Hawthorne, 2002, 1–2). The problem in Lewis’s quote is that we make a modal judgment about what is possible based on our capacity to represent a scenario to ourselves in which what we think is possible obtains. In other words, we make a conceivability–possibility move, or inconceivability–impossibility move, which is (roughly): from the fact that we are (or are not) able to conceive of a scenario in which thus–and–such occur (or does not occur) we take ourselves to have gained knowledge whether thus–and–such could (or could not) occur (Gendler and Hawthorne, 2002, 1–2).

Conceivability can be compared with perception. We usually take perception to be a reliable route (under certain conditions) to knowledge about what is actual. But what is possible but not actual cannot be observed by any sensory organs. Yet, we still seem to have knowledge of these matters. On one common view, we take this knowledge to be acquired by our capacity to represent different scenarios to ourselves, using either words, concepts or sensory images, i.e., our conceivability.

If φ is conceivable on this view, then φ is possible. For instance, if it is conceivable that Caruana had won over Carlsen in the world chess championship match in 2018, then it is possible that Caruana had become world champion of chess in 2018. If φ is inconceivable, then φ is impossible. We will mainly focus on the conceivability–possibility move for this thesis. The conceivability–possibility move is not only common to our everyday thinking (on the standard view of how we acquire this knowledge), but many philosophical arguments are based on this move.²

But what is then the problem about conceivability as a guide to possibility? Stephen Yablo (2009, 42) argues that it is not only that conceivability as a guide to possibility is not proven, accepted or explained, but much worse, it is demonstrably unreliable. In this thesis

¹Not all notions of conceivability are based on imagination. However, this is a problem that will be set aside until section 2.6 where different notions of conceivability will be considered.

²See (Chalmers, 1996, 123–129), in which Chalmers argues against physicalism with a conceivability argument known as 'The Zombie Argument' and (Putnam, 1975) in which Putnam argues for semantic externalism based on a conceivability argument known as the 'Twin Earth Though Experiment,' for instance.
we are going to look at three objections to the assumption that conceivability is a guide to possibility. These will be presented in section 2.7–2.9.

We will also consider another way of how we might have knowledge of modality. Timothy Williamson argues in *Philosophy of Philosophy*, that our cognitive capacity to handle counterfactual conditionals carries the cognitive capacity for us to also handle metaphysical modality (2007, 136). This will here be referred to as ‘Williamson’s conjecture.’ If this is correct, then we would have knowledge of possibility (and also necessity), not by conceivability as it is standardly understood, but via our cognitive capacity to handle counterfactual conditionals.

This thesis has two main projects. The first is to see whether Williamson’s counterfactually based conjecture could avoid (or offer solutions to) the three objections (considered in sections 2.7–2.9) to the conceivability–possibility move. The second project is to see if Williamson’s conjecture is plausible in the light of some of the objections that have been raised against it and compared to alternative views. These two projects are not the same but they are related. According to conceivability–possibility move, we have knowledge of modality by conceivability. This idea faces several objections and the first project is to see whether Williamson’s conjecture avoids or offers responses to these objections, and therefore could be said to be in a better position than views based on the conceivability–possibility move. The second project considers Williamson’s conjecture in the broader picture. It compares Williamson’s conjecture to some alternatives, and therefore addresses the question if there are other explanations of how we have knowledge of modality that might be more plausible than Williamson’s conjecture.

Emphasis will be on the first project for what will be done here. On this project: It will be argued that Williamson’s counterfactually based conjecture avoids two of the three objections. Williamson’s conjecture does not have a satisfying response to the last objection. On the second project: We will briefly consider two alternatives to Williamson’s conjecture as well as their critique of Williamson. We will then consider one objection that seems particularly problematic for Williamson’s conjecture. It will be concluded that it is not so clear that there are any direct advantages in holding that we have knowledge of modality via our knowledge of counterfactual conditionals compared to having knowledge of possibility by the negative conceivability view in the first place.

2 Background

This section will first present some essential notation for this thesis in section 2.1, followed by a discussion on how counterfactuals are to be understood using the Lewis–Stalnaker possible world semantics for counterfactuals in section 2.2. After that we will clarify what we mean by possibility in section 2.3.

Williamson’s conjecture, that our cognitive capacity to handle counterfactual conditionals carries the cognitive ability for us to handle metaphysical modality, will be presented in two parts: First, how can we have knowledge of counterfactuals? This will be addressed in section 2.4. Second, how does this enable us to have modal knowledge of matters such as necessity and possibility? This will be addressed in section 2.5. Williamson introduces several equivalences for how modality is embedded in our counterfactual knowledge (presented
in section 2.5). These equivalences will be assumed in the following discussion. Section 2.6 will introduce conceivability. After that will the three objections against the conceivability–possibility move be introduced throughout sections 2.7 – 2.9.

2.1 Notation

This section will present some of the essential notation. Remaining notation will be presented when required.

(1) □

'□' is the necessity operator. '□φ' is read: 'Necessarily φ.'

(2) ◊

'◊' is the possibility operator. '◊φ' is read: 'Possibly φ.'

(3) →

'→' is an material conditional. φ → ψ is only false when φ is true and ψ is false. For present purposes 'φ → ψ' can be read as 'φ materially implies ψ', or: 'If it is the case that φ, then it is the case that ψ.'

(4) □→

'□→' is the counterfactual conditional. For present purposes 'φ □→ ψ' can be read as 'If it were the case that φ, then it would be the case that ψ' (Lewis, 1973b, 1–2). See section 2.2 for a semantic analysis of the counterfactual conditional.

In natural language, the difference between what is expressed by a material implication and a counterfactual conditional is that the latter generally assumes that the antecedent is contrary to facts, which the former generally does not assume. For instance, 'If it is the case that φ, then it is the case that ψ' assumes nothing about the truth–value of φ. Whereas 'If it were the case that φ, then it would be the case that ψ' assumes that it is not the case that φ.

This section has presented the essential notation that will be required for this thesis. Next section will expand on how counterfactuals could be analysed and understood.

3I will here use '→' for material implication, unless explicitly stated that it refers to a logical implication.

4Not all counterfactuals have antecedents that are contrary to facts. See Lewis (1973b) for a thoroughly account of counterfactuals. Here, the term 'counterfactual conditional' and '□→' will be used interchangeably, and taken to refer to a conditional whose antecedent is assumed to be contrary to facts.
2.2 Lewis–Stalnaker Possible World Semantics

We will here use the Lewis–Stalnaker possible world semantics for counterfactuals.\(^5\) This method appeals to similarity between possible worlds, thought about as a kind of metric. More similar worlds are closer to each other than more dissimilar worlds.\(^5\) Lewis assigns to each world \(i\) a set \(S_i\) of worlds, called spheres of accessibility around \(i\) (1973b, 7). These are regarded as the set of worlds that are accessible from \(i\). It can be used for truth conditions for modal propositions as follows: A proposition \(\Box \phi\) is true at world \(i\) iff, \(\phi\) is true throughout the sphere of accessibility \(S_i\) around \(i\) (Lewis, 1973b, 6–7). A proposition \(\Diamond \phi\) is true at \(i\) iff, \(\phi\) is true somewhere in the sphere \(S_i\) around \(i\).

The truth conditions for the counterfactual conditional \(\phi \Box \rightarrow \psi\) is given in terms of comparative similarity of worlds. Lewis introduces the notation

\[j \leq_i k \]

to mean that the world \(j\) is at least as similar to the world \(i\) as the world \(k\) is (Lewis, 1973b, 48). Two items are assigned to each world \(i\): a two-place relation \(\leq_i\) among worlds, regarded as the ordering of worlds by their comparative similarity to \(i\), and a set \(S_i\) of worlds, regarded as the set of worlds accessible from \(i\). This assignment is called a (centred) comparative similarity system.\(^7\) Truth conditions for the counterfactual conditional can now given in terms of the comparative similarity system as follows (Lewis, 1973b, 49):

\[\phi \Box \rightarrow \psi \text{ is true at a world } i \text{ (according to a given comparative similarity system) iff either} \]

(i) no \(\phi\)-world belongs to \(S_i\) (the vacuous case), or

(ii) there is a \(\phi\)-world \(k\) in \(S_i\) such that, for any world \(j\), if \(j \leq_i k\) then \(\phi \rightarrow \psi\) holds at \(j\).

The counterfactual conditional, \(\phi \Box \rightarrow \psi\), is true at a world \(i\) iff, either, there is no antecedent world accessible from \(i\) by (i), i.e. the vacuous case, or by (ii) there is an antecedent world accessible from \(i\), then the consequent holds at every antecedent world at least as close to \(i\) as a certain accessible antecedent–world (Lewis, 1973b, 49).

In (i) \(\phi \Box \rightarrow \psi\) is said to be vacuously true at \(i\) when there are no \(\phi\)-worlds accessible from \(i\). Vacuous truth can be illustrated by an example involving quantification. Let the proposition \(\phi\) express that ‘all dragons can fly.’ Then, \(\phi\) is going to be vacuously true in all worlds where there are no dragons. In contrast, \(\phi\) is non–vacuously true in all worlds where there are dragons and all of them can fly, and false in all worlds where there are dragons but some which cannot fly.

\(^5\)This method is here used for purposes of illustration. One does not need to assume the correctness of Lewis’s Modal Realism, as argued in Lewis (1986), or any specific semantic account of counterfactuals, for this purpose.

\(^6\)See Stalnaker (1968) and Lewis (1973b) for a full account of the approach. I will here formulate it in Lewis’s terms only, for reasons of simplicity.

\(^7\)The centred comparative similarity system holds iff the following six conditions hold: (1) the relation is transitive, (2) the relation is strongly connected, (3) the world \(i\) is self–accessible, (4) the world \(i\) is strictly \(\leq_i\)-minimal, (5) inaccessible worlds are \(\leq_i\)-maximal, and (6) accessible worlds are more similar to \(i\) than inaccessible worlds. See (Lewis, 1973b, 48) for a full account of the conditions.
For purposes of what will be done here we can (for reasons of simplicity) assume that Lewis’s spheres of accessibility is implicit when we say that □φ is true iff φ is true at all possible worlds, and ◦φ is true iff φ is true at some possible worlds. Likewise, for the comparative similarity of worlds constraint in saying that φ □→ ψ is true iff, all the closest φ–worlds are ψ–worlds.

In this section we have expanded on how modal operators and counterfactuals could be analysed in terms of Lewis’s possible worlds semantics for counterfactuals. Next section will expand on the notion of possibility and how it should be understood.

2.3 Possibility

Possibility can be understood in a number of ways. The claim that thus–and–such is possible, could mean a number of different things (Gendler and Hawthorne, 2002, 3). It could be relative to some individual, as in when someone says: for all I know, thus–and–such is possible. This reflects epistemic possibility which is "notions of possibility that are defined relative to some subject (or sets of subjects) in terms of some body of knowledge or evidence available to (or otherwise associated with) the subject(s) in question" (Gendler and Hawthorne, 2002, 3). But this type of possibility, closely tied to some subject, is not what is usually meant by those who advocate a conceivability–possibility move.

There are three distinctions of non–epistemic possibility that typically figure in the discussions: (i) nomological possibility, (ii) logical possibility and (iii) metaphysical possibility (Gendler and Hawthorne, 2002, 4). On a standard characterisation, φ is nomologically possible for a relevant body of laws just in case φ is consistent with the body of truths expressed by those laws, and φ is logically possible just in case no logical contraction can be proven from φ using the standard rules of deduction (Gendler and Hawthorne, 2002, 4). Metaphysical possibility is standardly taken as primitive, the most basic conception of 'how things might have been'. The conceivability–possibility move typically refers to metaphysical possibility, i.e., those who use conceivability arguments usually refer to metaphysical possibility when they say that φ is possible. In terms of possible worlds, we can say that: it is actual that φ just in case φ in the actual world, and it is metaphysically possible that φ just in case φ in some possible world (Gendler and Hawthorne, 2002, 5). In this text, when φ is said to be possible it will mean metaphysical possibility.

This section has expanded on possibility, and what we mean by saying that φ is possible. Next section will start with the first part of Williamson’s conjecture, i.e., how we can have knowledge of counterfactual conditionals.

2.4 Knowledge of Counterfactuals

Consider the counterfactual that:

(5) If I had set my alarm thirty minutes earlier this morning, then I had not been late to the seminar.

Sometimes it is distinguished between physical and biological possibility: φ is physically possible iff φ is compossible with the laws of physics, and φ is biologically possible iff φ is compossible with the laws of biology (Gendler and Hawthorne, 2002, 4).

Metaphysical possibility will here be assumed to be primitive.
Williamson thinks that our ordinary cognitive capacity to handle counterfactual conditionals like (5), carries with it the cognitive capacity to handle metaphysical modality, i.e., knowledge of necessity and possibility (Williamson, 2007, 136).\(^{10}\) Williamson argues for this in two ways: (i) by claiming that scepticism about counterfactuals is a radical position, and (ii) by offering a positive account of how we can have knowledge of counterfactual conditionals. The negative part will here be presented in section 2.4.1. Section 2.4.2 will be on how the positive account gets started by the imagination, and section 2.4.3 will be on Williamson’s positive account of how we have knowledge of counterfactual conditionals.

2.4.1 Scepticism about counterfactual conditionals is a radical position

Scepticism about counterfactual conditionals is a radical position. Why does Williamson think this? First, Williamson stresses that counterfactual reflections facilitate learning from experience by making evaluative comparisons between what is actual and what is contrary to facts (Williamson, 2007, 140). Consider the following counterfactual:

\[(6) \text{If Jones had not taken arsenic, he would have been in better shape than he now is} \quad \text{(Williamson, 2007, 140).} \]

From (6) one may decide to never take arsenic oneself.

Second, counterfactual conditionals give clues to casual connections in that they play some crucial role for casual thinking (Williamson, 2007, 140–141).\(^{11}\) It seems to be the case that counterfactual conditionals and casual thought is closely related. Lewis and several others have tried to analyse causation in terms of counterfactual conditionals,\(^{12}\) and others have tried to analyse counterfactual conditionals in terms of causation.\(^{13}\) According to Williamson, the overlap between thinking in terms of counterfactual conditionals and thinking in terms of causation is so large that we cannot have much of the one without the other (Williamson, 2007, 141). That we have the ability to think about causation, is an assumption that only an extreme sceptic would deny. Therefore, we can have non–trivial knowledge of counterfactual conditionals (Williamson, 2007, 141).

Why is knowledge of counterfactual conditionals useful? It is argued that we cannot know in advance exactly which possibilities that are to be actualised (Williamson, 2007, 137). We therefore make contingency plans. Furthermore, the only way to be cognitively equipped to deal with the actual is by being cognitively equipped to deal with a variety of contingencies, most of them counterfactual. For instance, think of an ancient being of the human race sneaking around in the bushy plains of what is now Africa some hundred–thousand years ago. An early member of homo sapiens, that we can here call HS for simplicity. His survival will be dependent upon his ability to be prepared for whatever may come. Is it a dangerous tiger in the bushes ahead that might attack or an eatable smaller animal that will flee? According to Williamson’s idea, HS makes contingency plans in terms of counterfactual

\(^{10}\)See Hill (2006) for a similar account as Williamson develops, in which Hill argues that metaphysical modality can be reductively explained in terms of the subjunctive conditional (2006, 224). I will here focus only on Williamson’s account.

\(^{11}\)See Byrne (2005, Chapter 5) for an empirical discussion.

\(^{12}\)See Lewis (1973a) and Paul (2009).

\(^{13}\)See Jackson (1977).
conditionals which makes him prepared to deal with either there being a tiger in the bushes that will hunt him, or a small animal that he will hunt.

2.4.2 The imaginative exercise

But how do we have knowledge of counterfactuals like (5)? Williamson thinks that the process by which we evaluate counterfactuals alike is something like an imaginative exercise that involves some kind of simulation (2007, 147). What is Williamson’s view of imagination and what role does it play in evaluating counterfactual conditionals?

Williamson writes that the common view of imagining and knowing as opposites is misguided (2016, 113). Rather, imagining plays a key role in knowledge acquisition. The orthodox view that knowledge deals with facts, and that imagination deals with fictions, is misguided according to Williamson. Why should our capacity for imagining have arisen in our evolutionary history? It is granted that, sometimes, for structural reasons, the easiest way for evolution to develop certain useful features involves developing certain useless features as accidental by-products. Yet, the imaginative ability is not such a useless feature either for the individual or the species on a whole (Williamson, 2016, 113).

How is it useful then? Think of HS again, sneaking around in the bushy plains of what is now Africa some hundred–thousand years ago. It is not only his capacity to make contingent plans that are crucial for success, but also his alertness to potential dangers as well as opportunities (Williamson, 2016, 114). How does HS become alert of these potential dangers and opportunities? Obviously, he imagines them. To serve this purpose well, the imagination must be both selective and reality–oriented. This might sound puzzling if the imagination is viewed as unconstrained. If the imagination is unconstrained, HS could imagine the tiger bringing him food to eat on a wooden plate. But that would serve only as a distraction from practically relevant possibilities. An unconstrained imagination, that imagines a great variety of unlikely scenarios, is almost as bad as no imagination at all according to Williamson. An imagination that concentrates on a few and more likely scenarios seems to be optimal (Williamson, 2016, 114).

From this, Williamson distinguishes two ways in which imagination can function: voluntary and involuntary (2016, 115–116). When a problem is encountered to which there is no obvious solution, imagination can be turned on to think up ways of solving it. HS might come to a rushing stream that must be crossed. Jumping over it comes with a great risk, for failure will lead to instant death. And taking the long way around suffers great loss of time and energy. Thus, it is vitally important for HS to know whether he would succeed or not if he jumped the stream. Trail and error is not the method of use for this knowledge. So HS needs a method to know in advance of trying. The natural method of acquiring this knowledge according to Williamson is for HS to imagine himself trying, and if he imagines himself succeeding then he is safe to make the judgement that if he tried, then he would succeed (2016, 116). If HS imagines that he fails, then he is safe to make the judgment that if he tried, then he would fail. It is here important to note that when

14Which resembles attention, that is also commonly viewed as having both voluntary and involuntary modes of functioning (Williamson, 2016, 115).

15Again, to imagine oneself successfully jumping across Grand Canyon does not in fact help one determine ones actual jumping ability.
HS makes himself imagine trying to jump the stream, the imagination operates in the voluntary mode, but he neither makes himself imagine succeeding or failing, rather, he fixes the initial conditions, such as the width, the run-up, his jumping-ability, etc., and then lets the imaginative exercise unfold without further interference in an involuntary process. The imagination develops the scenario in a reality-oriented way by default in the involuntary mode according to Williamson (2016, 116).

In the modern world, decision-making often relies on knowledge or beliefs acquired through imagination (Williamson, 2016, 117). For instance, when you are considering buying a house that you are currently looking at, you want to know if you would like to live in it, if you bought it. You then imagine living in it and decide on that basis if you would like it. Or, when you are moving in to the house, you look at a piece of your furniture and then the doorway. Sometimes you come to know whether the former will fit through the latter by imagining trying to fit it through. You thereby gain knowledge of the spatial relations between your furniture and the doorway by means of imagination.

These examples involve mental imagery in some sense, but not all imaginative exercises involve imagery (Williamson, 2016, 117). For instance, you wonder whether to postpone a lunch appointment with a friend, and you want to know if she will be upset if you did. It does not seem necessary for you to visually imagine her with an upset face in order to gain knowledge of this matter.

We have now a better grip on Williamson’s view of the imagination and what ‘imaginative exercise’ might refer to. The next section will expand on Williamson’s positive view of how we have knowledge of counterfactual conditionals.

2.4.3 Positive view of counterfactuals

Consider a scenario in which you are in the mountains (Williamson, 2007, 142). As the sun melts the ice on a nearby slope, a rock embedded in it is loosened and starts crashing down. The rock slides into a bush and stops. You wonder where the rock would have ended up if the bush had not been there. In doing so, you might visualise a scenario in which the rock slides down the slope without there being any bush in the way. It would then bounce down the slope and end up in the lake at the bottom of the valley. You thereby come to know the following counterfactual conditional:

(7) If the bush had not been there, the rock would have ended in the lake (Williamson, 2007, 142).

You come to know (7) by relying on your imagination, by something like a imaginative exercise, discussed in section 2.4.2. And, in doing the imaginative exercise, the imagination is constrained. If the imagination would be unconstrained, then anything might be imaginable, that the rock rolls up the hill for instance. But you do not start to imagine bizarre scenarios like this when evaluating counterfactuals because your imagination is informed and constrained by your perception, the rock, the slope and your sense of the laws of nature according to Williamson (2007, 143). The default mode for imagination, in evaluating counterfactuals like (7) is to proceed as realistically as it can, and subject only to the deviations the thinker imposes by brute force. In this case: the absence of the bush, and other variables as similar to actuality as possible.
(7) is a counterfactual with the same form as \(\phi \Box \rightarrow \psi \) from section 2.1. Two modes of processing counterfactuals are distinguished, online and offline (Williamson, 2007, 147). When we evaluate \(\phi \) or \(\psi \) as free standing propositions we evaluate them by online processing. And, the cognitive faculty that would be run online in evaluating either \(\phi \) or \(\psi \) as free standing propositions are run offline in evaluating the whole counterfactual \(\phi \Box \rightarrow \psi \) (Williamson, 2007, 147). Our capacity to handle the antecedent and the consequent separately is therefore embedded in our capacity to handle the whole counterfactual conditional \(\phi \Box \rightarrow \psi \). And, according to Williamson, our capacity to handle the counterfactual operator \(\Box \rightarrow \) involves a general capacity to move from a capacity of handling the antecedent and the consequent separately to a capacity to handle the whole counterfactual conditional \(\phi \Box \rightarrow \psi \).

So we advance from capacities to handle the antecedent and the consequent separately to a capacity to handle the whole counterfactual conditional (Williamson, 2007, 147–148). But how do we do this? ‘Offline’ only suggest that the direct links with perception are not durable. According to Williamson, we might do this by simulation (Williamson, 2007, 147). Simulation theories concern the ability to simulate mental processes of other agents, or ourselves in other circumstances. Putting oneself in someone else’s shoes, and thinking on the basis of oneselfs imagined idea about their beliefs or desires. We are here going to illustrate this with an example concerning mental simulation about the beliefs and desires of other agents and then consider why this might also apply to counterfactuals that are not about other agents.

We are typically good at thinking on the basis of our imagined idea about other agents beliefs and desires. More specifically, (i) we can effectively attribute beliefs to others in the absence of evidence because we rely on the default strategy of attributing our own beliefs to others (Nichols, 2006, 250). And (ii) inferential prediction is successful because it relies on the same mechanism that are used for inferences with real beliefs, which is relevant for evaluating counterfactuals involving agents. Williamson thinks that this involves the sort of constrained imagination indicated above and in section 2.4.2 (2007, 148). What would Sarah say if you asked her to marry you? You could imagine her immediately stabbing you with her spoon. You could even imagine reacting like that from your point of view. But, likewise as the stone rolling up the hill, imagining bizarre situations do not help you determine how she actually would respond. It is more likely that you hold fixed her actual beliefs and desires (as you take them to be before the proposal is asked). You can then imagine the proposal from her point of view and think through likely replies from there. The imaginative exercise is richly informed and disciplined by your sense of what Sarah is like, her relationship to you etc. How does this mental simulation help us evaluate (7), which is not about any agent? Williamson thinks that we simply evaluate (7) by imagining third–personally the rocks trajectory as it would appear from some unspecified spatial location (2007, 148).

Williamson’s account relies on the widespread picture for semantic evaluation of conditionals in terms of ‘rolling back’ history to shortly before the time of the antecedent, modifying its course by stipulating its truth and the rolling history forward again according to patterns of development that resembles actuality as much as possible, in order to test the truth of the consequent (2007, 150). This rolling back strategy corresponds to the offline use of expectation–forming capacities to judge counterfactuals. Yet, this does not explain why we imagine initial conditions in one way rather than another, e.g., why do we not imagine the Great Wall of China in place of the bush when thinking about (7)? Williamson’s response
is that often, no alternative occurs to us (2007, 151).16

In general, our capacity to evaluate counterfactual conditionals recruits all our cognitive capacities that are present in evaluating propositions according to Williamson (2007, 152).17 Imaginative simulation is neither always necessary nor always sufficient for evaluation of counterfactual conditionals. Nevertheless, imaginative simulation is the most distinctive process for evaluating counterfactuals (Williamson, 2007, 152). This is so because imaginative simulation is much more useful for counterfactual conditionals than for most non-counterfactual contents where reason, perception and testimony is more useful (Williamson, 2007, 152).

In evaluating the counterfactual conditional, one supposes the antecedent and develops the consequent, adding further judgments within the supposition by reasoning and offline predicative mechanisms (Williamson, 2007, 152–153). The imaginative process does not need perceptual imaging. All of one’s background knowledge and beliefs are available from within the supposition as a description of one’s actual circumstance for the purpose of comparison with the counterfactual circumstance. If we know ψ, then we can infer $\phi \rightarrow \psi$ for any ϕ. Thus: one asserts the counterfactual conditional iff the development eventually leads one to add the consequent.

What happens when the counterfactual development of the antecedent ϕ fails to robustly yield the consequent ψ (Williamson, 2007, 153)? We do not always deny the counterfactual as a whole ($\phi \rightarrow \psi$), because if ψ has not emerged after a given amount of development, the question still remains whether it will emerge in the course of further development (Williamson, 2007, 153). In order to reach a negative conclusion, and deny the counterfactual as a whole one must in effect judge if the consequent were to ever emerge, it would have done so by now. And, if one is confident that ψ will not emerge from further development, one could still be epistemically ignorant of a counterfactual connection between the antecedent and the consequent (Williamson, 2007, 153).

The case in which $\phi \rightarrow \psi$ is denied is usually the strongest when the counterfactual development of the antecedent yields the contrary consequent (Williamson, 2007, 154). Then the opposite counterfactual is asserted: $\phi \rightarrow \neg \psi$. There is an epistemic asymmetry between asserting and denying counterfactual conditionals that resembles an asymmetry between asserting and denying many quantifying claims (Williamson, 2007, 154). If one finds snakes in Iceland, one may assert that there are snakes in Iceland, and if one fails to find snakes in Iceland, one cannot assert that there are no snakes in Iceland without some assessment of the thoroughness of one’s search. But we are capable of making such assessments, and sometimes we are epistemically in a position to deny such existential claims. Likewise, for the case of asserting and denying counterfactuals for the same reasons. More specifically, if the counterfactual development of ϕ robustly yields ψ, then, one asserts the counterfactual $\phi \rightarrow \psi$, and if the counterfactual development of ϕ does not robustly yield ψ, then one denies the counterfactual, provided that it is judged that if ψ were ever to emerge, then it would have done so by now, and that one is confident that ψ will not emerge by further development (Williamson, 2007, 155).

16If the counterfactual does not concern a particular time, then the rolling back method is not durable. Presumably, explicit reasoning plays a much greater role in evaluating such counterfactuals (Williamson, 2007, 150).

17See (Williamson, 2007, 152) for an argument for this.
This section has looked at how we have knowledge of counterfactuals. Next section will consider the question how knowledge of counterfactuals enables us to have knowledge of metaphysical modality.

2.5 Modal Knowledge by Counterfactual Conditionals

This section will expand on how knowledge of counterfactual conditionals bear on metaphysical modality. Williamson starts with introducing two principles for metaphysical modality (Williamson, 2007, 156):

\[\text{Necessity} \quad \Box (\phi \rightarrow \psi) \rightarrow (\phi \Box \rightarrow \psi) \]

Necessity can be read as: 'If \(\phi \) could not have held without \(\psi \) also holding, then, if \(\phi \) would have held, \(\psi \) would also have held' (Williamson, 2007, 156). In terms of Lewis’s possible world semantics introduced in section 2.2: If all \(\phi \)–worlds are \(\psi \)–worlds, then either there are no \(\phi \)–worlds, or there is an \(\phi \)–world such that any \(\phi \)–world at least as close as it is to the actual world is a \(\psi \)–world.

\[\text{Possibility} \quad (\phi \Box \rightarrow \psi) \rightarrow (\Diamond \phi \rightarrow \Diamond \psi) \]

Possibility can be read as: 'If \(\phi \) had held, \(\psi \) would also have held, then if \(\psi \) could have held, \(\psi \) could also have held' (Williamson, 2007, 156). In terms of Lewis’s possible world semantics: If either there are no \(\phi \)–worlds, or there is an \(\phi \)–worlds such that any \(\phi \)–world at least as close as it is to the actual is a \(\psi \)–world, then, if there is an \(\phi \)–world, there is also a \(\psi \)–world.

Necessity and Possibility yields necessary and sufficient conditions for necessity and possibility in terms of the counterfactual conditional (Williamson, 2007, 156). On this basis Williamson introduces two equivalences, for necessity and possibility respectively:

\[(8) \quad \Box \phi \equiv (\neg \phi \Box \rightarrow \bot) \]

(8) can be read as: "The necessary is that whose negation counterfactually implies a contradiction" (Williamson, 2007, 157). (8) also yields a corresponding necessary and sufficient condition for possibility, since possibility is the dual of necessity, i.e., being possible is equivalent to having a non–necessary negation. When the double negation in the antecedent have been eliminated:

\[(9) \quad \Diamond \phi \equiv \neg (\phi \Box \rightarrow \bot) \]

(9) can be read as: 'The possible is that which does not counterfactually imply a contradiction’ (Williamson, 2007, 157). These two equivalences will here be assumed. If the right

18See Williamson (2007, 156–158) for the logical details.

19'\(\bot \)’ is the symbol for a logical contradiction.

20Williamson argues for these as follows (2007, 158): (i) \(\psi \Box \rightarrow \chi \) is vacuously true iff the antecedent \(\psi \) is impossible. And, (ii) \(\psi \Box \rightarrow \chi \) is non–vacuously true iff, the antecedent \(\psi \) is possible. Then for necessity, if \(\Box \phi \) is true, then \(\neg \phi \) is impossible, so by (i) \(\neg \phi \Box \rightarrow \bot \) is vacuously true. Conversely, if \(\neg \phi \Box \rightarrow \bot \) is true then it is vacuously true by (ii), so by (i) \(\neg \phi \) is impossible, and \(\Box \phi \) is true. The same simple logic applies for possibility: If \(\Diamond \phi \) is true, then \(\phi \) is not impossible. So by (i) \(\phi \Box \rightarrow \bot \) is non–vacuously true, and by (ii) it is vacuously true, therefore \(\neg (\phi \Box \rightarrow \bot) \) is true. And conversely, if \(\Diamond \phi \) is not true, then \(\phi \) is impossible, by (i) \(\phi \Box \rightarrow \bot \) is vacuously true, so \(\neg (\phi \Box \rightarrow \bot) \) is not true.
hand side of (8) and (9) are compared, we see that the difference between necessity and possibility lies simply in the scope of negation with respect to the counterfactual conditional. In (8) the double negation is within the brackets and in (9) it is on the outside of the brackets.

Given that (8) and (9) and their necessitation’s are logically true, thinking about metaphysical modality is equivalent to a special case of counterfactual thinking (Williamson, 2007, 158). Two new equivalences are generated by the closure principle\(^{21}\) and the reflexivity principle for counterfactual conditionals\(^{22}\) (Williamson, 2007, 158–159):

\[(10) \Box \phi \equiv (\neg \phi \Box \rightarrow \phi)\]

(10) can be read as: ’The necessary is equivalent to that which is counterfactually implied by its own negation’ (Williamson, 2007, 158) And,

\[(11) \lozenge \phi \equiv \neg(\phi \Box \rightarrow \neg \phi)\]

(11) can be read as: ’The possible is equivalent to that which does not counterfactually imply its own negation’ (Williamson, 2007, 158–159).\(^{23}\) If we allow propositional quantification, we can formulate two new versions of (10) and (11) in terms of quantifications that might illustrate what is going on a bit further.

\[(12) \Box \phi \equiv \forall x \ (x \Box \rightarrow \phi)\]

(12) can be read as: ’Something is necessary, iff whatever were the case, it would still be the case’ (Williamson, 2007, 159) And,

\[(13) \lozenge \phi \equiv \exists x \ \neg(x \Box \rightarrow \neg \phi)\]

(13) can be read as: ’Something is possible iff it is not such that it would fail in every eventuality’ (Williamson, 2007, 159).

To summarise Williamson’s conjecture, by the rough sketch in section 2.4 we assert \(\phi \Box \rightarrow \psi\) when our counterfactual development of \(\phi\) robustly yields \(\psi\), and we deny \(\phi \Box \rightarrow \psi\) when our counterfactual development of \(\phi\) does not robustly yield \(\psi\) (and we are confident that the consequent is not to emerge by further development) (Williamson, 2007, 163). Correspondingly, by (8) we assert \(\Box \phi\) when our counterfactual development of \(\neg \phi\) robustly yields a contradiction. For example, in (7), if we deny that ‘If the bush had not been there, the rock would have ended in the lake,’ then the bush would have been there, and as in the actual case, the rock stopped in the bush, but that contradicts the consequent that ‘the rock would have ended in the lake.’ So we have a contradiction in the supposition that \(\neg \phi\), and therefore asserts \(\Box \phi\). To repeat, by (8), the necessary is that which negation counterfactually imply a contradiction. We deny \(\Box \phi\) when our counterfactual development of \(\neg \phi\) does not robustly yield a contradiction (and we do not attribute the omission to a mistake in our search). Likewise, by (9) we assert \(\lozenge \phi\) when our counterfactual development of \(\phi\) does not

\(^{21}\)Given a derivation of \(\chi\) from \(\psi_1, \ldots, \psi_n\), we can derive the counterfactual conditional \(\phi \Box \rightarrow \chi\) from the counterfactual conditionals \(\phi \Box \rightarrow \psi_1, \ldots, \phi \Box \rightarrow \psi_n\) (Williamson, 2007, 143–144).

\(^{22}\)I.e., that \(\phi \Box \rightarrow \bot\) is logically equivalent to \(\phi \Box \rightarrow \neg \phi\).

\(^{23}\)(10) and (11) are also assumed here.
robustly yield a contradiction, and we do not attribute the omission to a mistake in our search (Williamson, 2007, 163). We deny $\diamond \phi$ when our counterfactual development of ϕ robustly yields a contradiction.

According to Williamson, our cognitive capacity to evaluate counterfactual conditionals gives us exactly what we need to evaluate corresponding modal claims too (Williamson, 2007, 162). This is related to what Morato (2017) calls the byproduct hypothesis: that our cognitive capacity to evaluate metaphysical modality claims is a byproduct of our cognitive capacity to develop counterfactual suppositions, whose main product is our cognitive capacity to evaluate counterfactual claims. From this byproduct hypothesis Morato (2017) formulates Williamson’s counterfactual view of modal knowledge as: our cognitive capacity to know metaphysical modality is a byproduct of our cognitive capacity to evaluate counterfactual conditionals. Specifically, our cognitive capacity to evaluate whether ϕ is metaphysically necessary or metaphysically possible, is a byproduct of our cognitive capacity of judging whether it does follow a contradiction from the counterfactual supposition of $\neg \phi$ (then ϕ is necessary), or whether it does not follow a contradiction from the counterfactual supposition that ϕ (then ϕ is possible).

Williamson thinks that it is implausible that we evaluate modal claims by some other means (2007, 162). Our modal thinking about the natural world cannot be isolated from our ordinary thinking about the natural world, which clearly involves counterfactual thinking (Williamson, 2007, 162). In other words, metaphysical modality is implicit in counterfactual thinking.

This account is based on the assumption that counterfactuals with impossible antecedents are true. Some have argued against this assumption, for instance, see Jenkins (2008) for a specific objection against this assumption, and see Ichikawa (2016) and Gregory (2017) for more general objection against Williamson. We will not consider the vacuity assumption here. We have now introduced Williamson’s conjecture. Next section will introduce conceivability.

2.6 Conceivability

According to Hume, it is an established maxim in metaphysics that

"whatever the mind clearly conceives includes the idea of possible existence, or in other words, that nothing we imagine is absolutely impossible" (Hume, 1968, 32, emphasis original).

Hume thinks that we can form the idea of a golden mountain, and on that basis conclude that such a mountain could exist (Hume, 1968, 32). But we cannot form the idea of a mountain without a valley. We therefore conclude, on that basis, that no such mountain could exist. What is it for the mind to clearly conceive of something? Could we say something more informative about this? In the introductory section, conceivability was characterised extremely broadly, as our capacity to represent scenarios to ourselves using words, concepts or sensory images. The project here is not to give a conceptual analysis of conceivability,²⁴

²⁴See Gendler and Hawthorne (2002, 7–8) for a long and diverse list of mental activities that the notion of ‘conceivability’ might refer to.
but to provide some clarification to what is typically meant by saying that ϕ is conceivable. From Hume’s quote it is apparent that he thinks that our ability to conceive is closely related to our ability to imagine. In the introduction we saw that Lewis thinks that imaginability is a poor criterion of possibility, and we postponed the discussion of what conceivability is. It is now time to take up that thread.

Section 2.6.1 will introduce different readings of conceivability presented by Yablo. These will be relevant for the following discussion. Yablo’s notions of conceivability are complicated to fully grasp. I will therefore include a section on how Chalmers views conceivability along the lines of three dimension, since these dimensions are informative. These will be presented in section 2.6.2. One of Chalmers’s dimensions will be relevant for the following discussion. Section 2.6.3 will expand on how we supposedly have knowledge of modality by the so called negative conceivability view.

2.6.1 Yablo on conceivability

Yablo introduces five notions of conceivability (2009, 63). The first two notions of conceivability are based on believability, i.e., what is believable. The three following are based on imagination, i.e., what is imaginable.

(14) ϕ is conceivable_b for a subject η iff it is (not un)believable for η that ϕ.

This type of conceivability is based on the idea that to find ϕ conceivable, is to find that it is $\text{true for all you know}$ (Yablo, 2009, 45). Then, ϕ is conceivable_b iff it is not unbelievable, abbreviated: believable. It is noteworthy that Yablo here moves from what is believable to what is knowable. We will not follow Yablo on this terminology and instead say that if ϕ conceivable$_b$ for η, then ϕ is $\text{true for all } \eta$ believes.

Conceivability$_b$ could reflect how the notion of conceivable is used in ordinary language (Yablo, 2009, 45). For instance, we do not take ‘It has become conceivable that there be peace between Israel and Palestine’ to mean that our powers of imagination have improved, but rather, that something has happened in the political climate between Israel and Palestine such that peace is no longer is inconceivable. In this ordinary language sense, ‘conceivable’ refers to ‘believable’ and ‘inconceivable’ refers to ‘unbelievable.’

(15) ϕ is $\text{conceivable}_b p$ for a subject η iff it is (not un)believable for η that possibly, ϕ.

To find ϕ conceivable$_b p$ is to find oneself unable to rule its possibility out (Yablo, 2009, 57). The difference between (14) and (15) is that in (14) it is believable for a subject η that ϕ is possible, whereas in (15) it is believable for η that possibly, ϕ. We have now introduced the two notions of conceivability that are based on believability. The next three notions of conceivability are based on our ability to imagine, i.e., imaginability.

25Yablo (2009, 63) also discusses philosophical conceivability, which is none of the here discussed notions of conceivability, (14) – (18). (17) comes closest to this philosophical conceivability but has the problem that under that reading of conceivability one cannot imagine truly believing anything that conflicts with the hypothesis of one’s belief in it. For instance, the proposition that ‘I do not exist’, which is philosophically conceivable according to Yablo. Philosophical conceivability will not be further discussed here.
φ is conceivability for a subject η iff η can imagine justifiably believing that φ.

To conceive of a proposition φ in the sense of conceivability is to imagine acquiring evidence that justifies you in believing φ (Yablo, 2009, 59).

φ is conceivability for a subject η iff η can imagine believing φ truly.

To conceive of a proposition φ in the sense of conceivability is to imagine truly believing that φ (Yablo, 2009, 59).

φ is conceivability for a subject η iff η can imagine believing something true with η’s actual φ-thought.

Conceivability is when we imagine believing some other true proposition ψ when we think that φ is possible, or in Yablo’s terminology, when we can imagine believing something true, like ψ, with our actual φ-thought (Yablo, 2009, 61–62).

2.6.2 Chalmers’s dimensions of conceivability

Chalmers (2002, 146) distinguishes three dimensions of difference between notions of conceivability. These three dimensions are largely independent, such that there may be up to eight types of conceivability. I will not go through all combinations here, nor discuss their relation to Yablo’s notions of conceivability, but simply introduce the dimensions with some examples of combinations in order to improve our understanding of the more general concept of conceivability. The first dimension is prima facie versus ideal conceivability:

φ is prima facie conceivable for a subject η when φ is conceivable for η on first appearances (2002, 147).

φ is ideally conceivable for a subject η when φ is conceivable for η on ideal rational reflection (2002, 147).

A subject η might after some consideration, find that φ passes the test that are criterial for conceivability, then φ is prima facie conceivable for η (Chalmers, 2002, 147). The criteria for conceivability will depend on the notion of conceivability outlined by the remaining dimensions. Sometimes, it happens that φ is prima facie conceivable to η, but that this prima facie conceivability is undermined by further reflection, showing that the test for conceivability is not in fact passed. Then, φ is not ideally conceivable by (20). If φ do in fact pass the test for conceivability on ideal reflection, then φ is ideally conceivable by (20). The second dimension is positive versus negative conceivability:

φ is positively conceivable for a subject η when η can imagine that φ, i.e., when η can imagine a situation that verifies φ (2002, 150).

φ is negatively conceivable for a subject η when φ is not ruled out a priori for η, or when η finds no (apparent) contradiction in φ (2002, 148).
This dimension will be relevant for the following discussion. Positive notions of conceivability require that some sort of positive conception of a situation in which \(\phi \) obtains can be formed (Chalmers, 2002, 150). Positive conceivability can be placed under the broad heading of imagination: to positively conceive of \(\phi \), is to imagine (in some sense) a specific configuration in which \(\phi \) obtains.\(^{26}\) Negative conceivability can be illustrated by combining it with the prima facie versus ideal conceivability distinction (Chalmers, 2002, 149). \(\phi \) is prima facie negatively conceivable for \(\eta \) when \(\eta \), after some consideration, cannot rule out \(\phi \) on a priori grounds, and \(\phi \) is ideally negatively conceivable for \(\eta \) when it is not a priori that \(\neg \phi \), for \(\eta \). The last dimension concerns primary versus secondary conceivability:

\[(23) \ \phi \ \text{is primary conceived (or epistemically conceivable) for a subject } \eta \text{ when it is conceivable for } \eta \text{ that } \phi \text{ is actually the case (2002, 157).}\]

\[(24) \ \phi \ \text{is secondarily conceived (or counterfactually conceivable) for a subject } \eta \text{ when it is conceivable for } \eta \text{ that } \phi \text{ might have been the case (2002, 157).}\]

This last dimension reflects two different ways of thinking about hypothetical possibilities: by (23) epistemically, as ways the world might actually be, and by (24) counterfactual, as ways the world might have been but is not (Chalmers, 2002, 157).\(^{27}\) It is usually the case that one describes a situation differently depending on whether one considers it as actual or counterfactual. \(\phi \) is primarily positively conceivable for \(\eta \) when \(\eta \) can coherently imagine a situation that verifies \(\phi \) when considered as actual, and secondarily positively conceivable for \(\eta \) when \(\eta \) can coherently imagine a situation that verifies \(\phi \) when considered as counterfactual.

2.6.3 The negative conceivability view

How do we move from conceivability to possibility? Morato (2017) argues that the traditional view of how we have knowledge of possibility is the negative conceivability view in which we come to know the truth of modal claims of possibility by means of negative conceivability. On this view we conclude that \(\phi \) is possible in case the supposition that \(\phi \) does not entail a contradiction, and we conclude that \(\phi \) is necessary in case the supposition that \(\neg \phi \) entails a contradiction. On the negative conceivability view, \(\eta \) knows that \(\phi \) is necessary if \(\eta \) conceives \(\phi \) as necessary and \(\eta \) is able to derive a contradiction from the supposition that \(\neg \phi \), and \(\eta \) knows that \(\phi \) is possible if \(\eta \) conceives \(\phi \) as possible and \(\eta \) is not able to derive a contradiction from the supposition that \(\phi \) (Morato, 2017).

We have now introduced some notions of conceivability, and how we supposedly have knowledge of modality according to the negative conceivability view. Next section will deal with the first objection to the conceivability–possibility move known as the confusion objection.

\(^{26}\)Chalmers also stresses that different notions of conceivability corresponds to different notions of imagination, such as perceptual imagination in which a subject \(\eta \) perceptually imagines that \(\phi \) when \(\eta \) has a perceptual mental image that represents \(\phi \) as being the case, and modal imagination in which \(\eta \) modally imagines that \(\phi \) as being the case (2002, 150–151).

\(^{27}\)See section 2.1 and 2.4 for discussions on counterfactuals.
2.7 The Confusion Objection

On the reading of conceivability as (14) conceivability\textsubscript{b}, a proposition \(\phi \) will be conceivable for a subject \(\eta \) iff it is (not un)believable for \(\eta \) that \(\phi \) (Yablo, 2009, 45). If \(\phi \) is conceivable in this sense of believable, does this support that \(\phi \) is metaphysically possible? If this would be the case, then, the poorer our evidence for \(\phi \) the greater the conceivability, and perfect ignorance about \(\phi \)’s truth would guarantee its possibility (Yablo, 2009, 45–46). According to Yablo, conceivability in this sense is an unreliable guide to possibility. The fact that \(\phi \) might be true for all we believe in our actual world does not tell us much about the issue whether it is true in some possible world. The objection has it that terms like 'might' and 'could' are ambiguous. It jumps straight from a sense of what could/might be so according to our epistemic situation, and what could/might be so in the sense of what is metaphysically possible. Once we notice this equivocation, the appearance of possibility evaporates.

In other words, the objection has it that those who rely on conceivability as evidence for possibility, fail to notice the different distinctions of conceivability and possibility (briefly discussed in section 2.6 and 2.3 respectively). What is ‘true for all \(\eta \) believes’, is a poor guide to metaphysical possibility according to this objection.

We have now looked at the first objection, known as the confusion objection. Next section will deal with the second objection, known as the circularity objection.

2.8 The Circularity Objection

Suppose that we can hold what Yablo calls believability apart from conceivability, and we make the conceivability–possibility move, i.e., we hold that \(\phi \) is possible based on that \(\phi \) is conceivable in the sense of (15) conceivability\textsubscript{bp}, then, according to the objection: the conceivability of \(\phi \) as a guide to the possibility of \(\phi \) is constrained by prior modal information about \(\phi \)’s modal status (Yablo, 2009, 50).28 The argument has two premises and one conclusion:

(P1) If all it takes to find a proposition \(\phi \) conceivable is to be unaware that it is impossible, and

(P2) Since impossibilities go unappreciated all the time, they are just as often conceivable.

(C) Then, we would need to know that \(\phi \) is possible prior to concluding that \(\phi \) is possible from finding \(\phi \) conceivable (Yablo, 2009, 52–57).

If all it takes to find \(\phi \) conceivable is to be unaware that \(\phi \) is impossible (by (15) conceivability\textsubscript{bp}), and because impossibilities go unappreciated all the time, they are also conceivable all the time (Yablo, 2009, 54). Before relying on conceivability evidence in any specific case, you will need a reason to think that in this case, \(\phi \)’s conceivability signifies that \(\phi \) is possible rather than in that case. In other words, you will need a reason to deny the conjunction that:

28Yablo presents three weaker versions of this objection that will not be discussed here, see Yablo (2009, 50–52) if interested in those.

18
Although you are unaware that \(\phi \) is impossible, \(\phi \) is impossible (Yablo, 2009, 54).

Because the first conjunct is true, you are unaware that \(\phi \) is impossible, you can only reasonably deny (*) by denying the second conjunct (Yablo, 2009, 54). But the second conjunct is that \(\phi \) is impossible. You must already know that \(\phi \) is possible before you can conclude that \(\phi \) is possible from its conceivability.

An example of this can be illustrated with an objection against Descartes’s argument for dualism, where he moves from the conceivability of existing in a disembodied form to the possibility of existing in a disembodied form (Yablo, 2009, 52–53). The fallacy lies in that he takes it for granted that he has no essential properties beyond the ones that he knows of. Shoemaker objects:

"In the sense in which it is true that I can conceive of myself existing in a disembodied form, this comes to the fact that it is compatible with what I know about my essential nature... that I should exist in a disembodied form. From this it does not follow that my essential nature is in fact such as to permit me to exist in a disembodied form”

(Shoemaker, 1984, 155).

According to the objection, Descartes would need to know that it is metaphysically possible for him to exist in a disembodied form before he can conclude that it is metaphysically possible for him to exist in a disembodied form (by finding it conceivable to exist in a disembodied form).

We have now looked at the second objection known as the circularity objection. Next section will deal with the third and last objection, known as the a posteriori objection.

2.9 The a posteriori Objection

The a posteriori objection is based on Kripke’s\(^{29}\) and Putnam’s\(^{30}\) discovery of a posteriori necessary truths, such as that cats are animals, and that Hesperus is identical to Phosphorus\(^{31}\) (Yablo, 2009, 58). If we take any a posteriori necessity, such as that Hesperus is identical to Phosphorus and negate it, we will get a necessary falsehood, which falsity is knowable only through experience. In other words, if we negate the a posteriori necessity that Hesperus is identical to Phosphorus, which is to deny that Hesperus is identical to Hesperus, we get a metaphysical impossibility which we can only know thorough experience. But if it takes experience to know that propositions like these are false, then there should be an alternative course of experience that would have revealed them as true (Yablo, 2009, 58). Yablo offers the following argument:

(P1) Whenever \(\phi \) is a posteriori false, I find it conceivable whether it is possible or not.

(P2) Often, a posteriori falsehoods are impossible.

\(^{29}\)See Kripke (1980, Lecture I).

\(^{30}\)See Putnam (1975).

\(^{31}\)Hesperus was the evening star according to ancient Greek thought, visible at a certain location in the evening, and Phosphorus was the morning star, visible at another location in the morning. Both Hesperus and Phosphorus referred to the planet Venus.
(C) So a posteriori falsehoods are often found conceivable despite their impossibility (Yablo, 2009, 59).

The objection only concerns conceivability arguments where the conceived proposition is a posteriori false. Yablo stresses that this is bad enough, because, we cannot argue from the conceivability of 'being born on another day' to the conclusion that it really could have happened (Yablo, 2009, 59). Even if, it was not possible for me to have been born on another day, I will still find it conceivable that it could have happened (Yablo, 2009, 59).

What is this alternative course of experience that would have revealed a posteriori necessary falsehoods as true? Consider the case with Hesperus and Phosphorus. The alternative course of experience that would have revealed the a posteriori necessary falsehood that Hesperus is distinct from Phosphorus as true is simply that of an astronomer in ancient Greece (unless he somehow had formed the idea that they are identical).

To summarise the objection: When ϕ is a posteriori false, it is conceivable whether it is possible or not. Often a posteriori falsehoods, i.e., denials of a posteriori necessary truths, are impossible. And, according to the conclusion, these impossible a posteriori falsehoods are often found conceivable, and thus possible, despite the fact that they are impossible.

We have now looked at the three objections against conceivability as a guide to possibility. According to them, conceivability is a demonstrably unreliable guide to possibility (Yablo, 2009, 42).

3 Discussion

Williamson’s modal epistemology, i.e., how we have knowledge of modality according to Williamson, will in the following discussion be considered as having two components. The first is the imaginative component, and the second is the counterfactual component. We will here try to hold these two components apart in discussing the two projects for this thesis. Particularly for the discussion on the a posteriori objection and the latter project. One question that we will try to expand on in these sections is how much of a difference to our knowledge of modality does the counterfactual component do? How much does it contribute to our modal knowledge. See section 3.2.3.

The first project in this thesis is to address the question if Williamson’s conjecture could avoid or offer solutions to the three objections against the conceivability–possibility move presented in sections 2.7 – 2.9. Why are these three objections relevant for Williamson’s conjecture in the first place? In specific, these three objection concern a conceivability–possibility move, which does not seem to figure in Williamson’s conjecture based on the imaginative component and the counterfactual component, i.e., evaluations of counterfactual conditionals.

We do not exactly know the relationship between notions such as 'imaginability' and 'conceivability,' how much they overlap and where they diverge. Since Williamson’s conjecture is based on imagination, which seems to overlap with some notions of conceivability, such as Yablo’s three notions of conceivability that which are based on imagination (i.e., (16) conceivability_{ijb}, (17) conceivability_{itb} and (18) conceivability_{ep}, or (21) positive conceivability in Chalmers’s terminology), it does seems to be the case that Williamson would need be
able to offer some response to these objections. In other words, these objections could be raised against Williamson’s conjecture since it relies on the imaginative component.

What would it be for Williamson’s conjecture to avoid these objections? Since each of these objections are dependent upon a specific reading (or combination of readings) of what conceivability is, then Williamson’s conjecture could be said to avoid the specific objection(s) if his account of the imaginative component is significantly different from the type of conceivability on which the given objection is plausible. It will here be argued that Williamson’s conjecture avoids both the confusion objection and the circularity objection, since these objections are dependent on a reading of conceivability as believability which is significantly different from Williamson’s conjecture. These two arguments will here be considered mutually since Williamson’s strategy for avoiding them is the same for both objections. This will be done in section 3.1.

It will be argued in section 3.2 that the a posteriori objection cannot be avoided by Williamson’s conjecture. It seems to be the case that the readings of conceivability on which the a posteriori objection is plausible might be similar to Williamson’s imaginative component. It will also be argued that Williamson’s conjecture does not seem to have a plausible response to this objection. Section 3.3 will consider some alternatives to the Williamson’s counterfactually based approach to knowledge of modality, as well as some objections to Williamson’s conjecture in specific.

3.1 The Confusion Objection and The Circularity Objection

I will here argue that Williamson’s conjecture is not threatened by either the confusion objection or the circularity objection. This is so because the type of conceivability that figures in these objections is significantly different from Williamson’s conjecture. I will here: specify the relevant type of conceivability that figures in these objections in section 3.1.1. Section 3.1.2 will consider what it is to find a proposition conceivable on these readings. Section 3.1.3 will illustrate why these objections are not plausible on the other readings of conceivability which are based on imagination. Section 3.1.4 will consider how Williamson’s conjecture would find a similar proposition conceivable (to be more precise: asserting a counterfactual about possibility in Williamson’s terminology). In section 3.1.5, it will be concluded that the way we have knowledge of possibility on readings of conceivability on which the objections are plausible, are so different from Williamson’s conjecture that Williamson does not need to be bothered by these two objections. These two objections are avoided by Williamson’s conjecture.

3.1.1 The relevant type of conceivability for each argument

What type of conceivability is it that figures in these objections? Let’s start with the confusion objection. According to Yablo, it is the sense of conceivability as (14) conceivabilityb (Yablo, 2009, 45). On this reading of conceivability, a subject η finds proposition φ conceivable iff it is (not un)believable for η that φ. On this reading, φ is conceivable for η iff φ true for all η believes. To summarise the conclusion of this objection: There is a confusion between what is ‘epistemically conceivable’ and what is metaphysically possible. When this confusion is
made apparent, the appearance of conceivability as a guide to possibility evaporates. See section 2.7 for a full account of the objection.

On the circularity objection, (14) conceivability\(_b\) has been set aside. It is (15) conceivability\(_{bp}\) that this objection concerns according to Yablo (2009, 57–58). On this reading of conceivability, a subject \(\eta\) finds a proposition \(\phi\) conceivable iff it is (not un)believable for \(\eta\) that possibly, \(\phi\). On this reading, \(\phi\) is conceivable for \(\eta\) iff \(\eta\) is unable to rule \(\phi\)’s possibility out. To summarise the conclusion of this objection: We would need to know \(\phi\)’s modal status, i.e., that \(\phi\) is possible in this case, prior to concluding that \(\phi\) is possible from finding \(\phi\) conceivable. See section 2.8 for a full account of the objection.

In the end, this objection comes down to the same sort of misunderstanding as the confusion objection according to Yablo (2009, 58). In the confusion objection, the mistake was that conceivability was taken as the believability of that \(\phi\) is true, and here, the mistake is that conceivability is taken as believability that \(\phi\) is possible.

3.1.2 The golden mountain

Let’s consider what it is to find a proposition conceivable on these readings of conceivability as (14) conceivability\(_b\) and (15) conceivability\(_{bp}\) respectively and in extension consider what it is to judge that a proposition is possible on the basis of these readings of conceivability. Let \(\phi\) be the proposition that ‘a golden mountain exists.’

By (14), \(\eta\) finds \(\phi\) conceivable\(_b\) when \(\phi\) true for all \(\eta\) believes. \(\eta\) will then judge that a golden mountain is possible, i.e., \(\Diamond \phi\), when \(\phi\) is true for all \(\eta\) believes. By (15), \(\phi\) is conceivable\(_{bp}\) for \(\eta\) when \(\eta\) is unable to rule \(\phi\)’s possibility out. \(\eta\) will then judge that a golden mountain is possible, i.e., \(\Diamond \phi\), when \(\eta\) is unable to rule \(\phi\)’s possibility out.

3.1.3 The objections and the readings of conceivability based on imagination

Both these readings of conceivability, as (14) and (15) are types of conceivability based on believability. Why are not the confusion objection and the circularity objection plausible on the other readings of conceivability? Those that are based on imaginability? Let’s illustrate this with the confusion objection.\(^{32}\)

Consider (16) conceivability\(_{ijb}\). ‘A golden mountain exists’ is conceivable\(_{ijb}\) for \(\eta\) iff \(\eta\) can imagine justifiably believing that a golden mountain exists, or in other words imagine acquiring evidence that justifies \(\eta\) in believing that \(\phi\). The confusion objection has it that the appearance of possibility evaporates once the confusion between \(\eta\)’s epistemic situation and what is metaphysically possible is noticed, but on the reading of conceivability as (16) conceivability\(_{ijb}\), there is no ‘appearance’ that could evaporate, since when one is having evidence (that justifies belief in something) one is in a much greater epistemic position then when one simply believes the given proposition. In other words, there seems to be no confusion on this reading of conceivability.

The argument is not plausible on a reading of conceivability as (17) conceivability\(_{itb}\) either, because for \(\eta\) to conceive\(_{itb}\) of \(\phi\) is for \(\eta\) to imagine truly believing that \(\phi\), which in fact requires that \(\phi\) is true, otherwise it would not be truly believing \(\phi\), but falsely believing \(\phi\). How about (18) conceivability\(_{ep}\)? It is not so clear whether the argument is

\(^{32}\)The same reasoning applies for the circularity objection. I will not explicitly illustrate this here.
plausible on a reading of conceivability as (18) conceivability\textsubscript{ep} or not. It might be, however, it seems to be beside the point of the argument whether \(\eta\) conceives of \(\phi\) in the sense of (18) conceivability\textsubscript{ep} or not, since the argument states that we confuse what is conceivable according to \(\eta\)’s epistemic situation and what is metaphysically possible, and not that we our \(\phi\)-thought has the same truth value as \(\psi\) when we judge that \(\phi\) is possible.

3.1.4 Williamson’s conjecture and the golden mountain

How would \(\eta\) evaluate \(\phi\)’s modal status, i.e., the proposition that ‘a golden mountain exists’ on Williamson’s conjecture? By (9), \(\eta\) would assert \(\lozenge \phi\), i.e., that it is possible that a golden mountain exists, when \(\eta\)’s counterfactual development of \(\phi\) does not robustly yield a contradiction (and \(\eta\) does not attribute the omission to a mistake in \(\eta\)’s search). And \(\eta\) would deny \(\lozenge \phi\) when \(\eta\)’s counterfactual development of \(\phi\) robustly yields a contradiction.

Let’s consider \(\eta\)’s counterfactual development of \(\phi\) in closer detail. By (9), \(\lozenge \phi\) is equivalent to \(\neg (\phi \rightarrow \bot)\). \(\eta\) will judge that \(\phi\) is possible on Williamson’s conjecture when \(\eta\)’s counterfactual development of \(\phi\) does not robustly yield \(\bot\). Williamson holds that the default is to deny a counterfactual conditional if the opposite counterfactual is asserted (2007, 154). Which means that if one denies, \(\phi \rightarrow \bot\), then one asserts \(\neg (\phi \rightarrow \bot)\).\(^{33}\) The counterfactual that \(\eta\) denies when \(\eta\) asserts \(\lozenge \phi\) can be written, by (4), as: \(\phi \rightarrow \bot\), which could be read as: If it were the case that \(\phi\), then it would be the case that \(\bot\). This is what is denied when \(\eta\) asserts \(\lozenge \phi\) on Williamson’s conjecture.

In evaluating this counterfactual conditional we suppose the antecedent, in this case \(\phi\), and develops the consequent, in this case \(\bot\), adding further judgments within the supposition by reasoning (as well as offline predicative mechanisms) (Williamson, 2007, 152–153). All our background knowledge about physics, chemistry, how nature works, etc., is available within the supposition for comparison of the actual situation with the counterfactual situation. One could rationally reason about this within the supposition without visually imagining a golden mountain. I take this to mean that when \(\eta\) denies the counterfactual \(\phi \rightarrow \bot\), and thus assert \(\lozenge \phi\), \(\eta\) does this in a careful and systematic way, that needn’t be perceptual imaging, by means of all \(\eta\)’s cognitive processes.

In asserting \(\lozenge \phi\), \(\eta\) also judges that the omission of the counterfactual development to robustly yield the contradiction is not due to a mistake in \(\eta\)’s search, i.e., counterfactual development. What does this mean? According to Williamson’s conjecture, it means that: in order for \(\eta\) to reach a negative conclusion, and deny \(\phi \rightarrow \bot\), \(\eta\) must in effect judge that if the consequent were to ever emerge, it would have done so by now. In Williamson’s example (2007, 145), if there are snakes in Iceland, then, I would have found them by now. For \(\eta\) to judge that omission of the counterfactual development to robustly yield the contradictory consequent is not due to a mistake in \(\eta\)’s search is for \(\eta\) to be sure that the consequent will not emerge by further development. In other words, further counterfactual development will not robustly yield the consequent.

To summarise, \(\eta\) will assert \(\lozenge \phi\) when \(\eta\)’s counterfactual development of the antecedent \(\phi\) does not robustly yield a contradiction, and this omission is not attributed to a mistake in \(\eta\)’s search.

\(^{33}\)There are exceptions to this which will here not be considered. For example, deductive closure yields both \((\phi \land \neg \phi) \rightarrow \phi\) and \((\phi \land \neg \phi) \rightarrow \neg \phi\) (Williamson, 2007, 154).
3.1.5 Conclusion

We have now identified which readings of conceivability these two arguments are plausible, and concluded that the confusion objection is plausible on (14) conceivability\textsubscript{b} and the circularity objection on (15) conceivability\textsubscript{bp}. We then considered what it is to find a proposition conceivable and what it is to judge that it is possible on these readings, which we then compared to what it is to find a proposition possible on Williamson’s conjecture.

It seems to be the case that finding a proposition believable by (14) or finding that one cannot rule its possibility out by (15) is not analogous to how Williamson holds that we can have modal knowledge of possibility by our knowledge of counterfactuals. How Williamson’s conjecture holds that we assert possibility as formulated in previous section is not analogous to how we have knowledge of possibility by conceivability in the sense of either (14) conceivability\textsubscript{b} or (15) conceivability\textsubscript{bp}. When \(\eta \) considers the counterfactual conditional, \(\eta \) does not only believe, in the sense of finding a proposition believable, or true for all one believes. In other words, there is much more to asserting and denying counterfactual conditionals than to believability in propositions. If this is correct, then the confusion objection and the circularity objection is not relevant for Williamson’s conjecture.

Could they be made relevant? In order to do so, one would have to give an argument that shows that asserting and denying counterfactuals about possibility on Williamson’s conjecture is analogous to how we have knowledge of possibility by either (14) conceivability\textsubscript{b} or (15) conceivability\textsubscript{bp}. It does not seem as though there are such an argument in the vicinity, since evaluating counterfactuals is greatly different from finding propositions believable on these readings of conceivability.

One questions that arises here is how much of a difference for our knowledge of modality does the counterfactual component of Williamson’s conjecture do? It might be that it is important and does contribute to our knowledge of modality, however, it might also be the case that the imaginative component already carries this difference for our knowledge of modality, since it might be argued that imaginability is different from believability, and that this fact already does the job of avoiding these two objections. This is a question that will be reflected in the following discussion of the \textit{a posteriori} objection and the second project of this thesis.

3.2 The \textit{a posteriori} Objection

It will here be argued that Williamson’s conjecture does not have a plausible response to the \textit{a posteriori} objection. We will first specify which notions of conceivability that figures in this objection in section 3.2.1. Section 3.2.2 will compare these notions of conceivability to Williamson’s conjecture. Section 3.2.2 will expand on the idea that it is the counterfactual development that makes the difference for our knowledge of modality. Section 3.2.4 will expand on the idea that Williamson’s conjecture might be defended against the \textit{a posteriori} objection by arguing that the imagination is constrained on Williamson’s account. Section 3.2.5 will conclude that none of these ideas seems to be promising for Williamson’s conjecture.

In specific, we are missing an argument that supports the claim that it is the counterfactual component of Williamson’s conjecture that makes a difference for our knowledge of modality, and it it not so clear how one could argue for this claim. And, to argue that the
imagination is constrained on Williamson’s conjecture and not as it figures in the *a posteriori* objection does not seem to be helpful for Williamson’s conjecture.

3.2.1 What type of conceivability figures in the argument?

According to Yablo, the types of conceivability, on which it is plausible that *a posteriori* impossibilities are found conceivable are (16) conceivability$_{ijb}$ and (18) conceivability$_{ep}$ (2009, 62).

Let's start with considering the readings of conceivability as (16) conceivability$_{ijb}$. The *a posteriori* objection against conceivability arguments is due to Kripke’s and Putnam’s discovery of *a posteriori* necessary truths, such that Hesperus is identical to Phosphorus. To conceive of a proposition ϕ in Putnam’s sense, is to imagine acquiring evidence that justifies you in believing ϕ, i.e., (16) conceivability$_{ijb}$ (Yablo, 2009, 59). The objection is plausible on this reading of conceivability as (16) since one could imagine acquiring evidence that justifies one in believing *a posteriori* necessary falsehoods. Yablo notices that one could "imagine being rationally persuaded of almost anything" (Yablo, 2009, 59) if one is allowed (i.e., to specify its truth–value as one pleases) to imagine that the thing one is persuaded of is true, false, or has an unspecified truth–value. However, the danger of conceiving an impossibility is only when the truth value is specified as true, i.e., for a subject η when η imagines believing a proposition ϕ justifiably *and truly* (Yablo, 2009, 59). This means that the objection is plausible on the reading of conceivability as (16) conceivability$_{itb}$ when the truth–value is imagined as true.

The objection is also plausible on the reading of conceivability as (18) conceivability$_{ep}$, since for η to imagine believing something true is for η to imagine a situation in which η believes a true proposition (Yablo, 2009, 61–62). How is this proposition to be identified? In conceiving an *a posteriori* impossibility ϕ, is it the proposition that the ϕ–thought actually expresses, or is it *some other* proposition that the ϕ–thought *would* have expressed, if the imagined situation had obtained?

The first option simply leads to (17) conceivability$_{itb}$, since the proposition actually expressed by the ϕ–thought is ϕ (Yablo, 2009, 61). The second option, is (18) conceivability$_{ep}$ since by (18) η can imagine believing *something* true with the ϕ–thought, not the proposition that ϕ, but some other proposition, lets say ψ, with η’s ϕ–thought. For instance, let the proposition ϕ express that ’Hesperus is distinct from Phosphorus’, and the proposition ψ express that ’Venus is distinct from Mars.’ Then, ϕ is conceivable$_{ep}$ for η if η can imagine, not truly believing that ϕ, but truly believing that ψ with η’s actual ϕ–thought.

Let’s now consider why the argument is not plausible on the reading of conceivability as (17) conceivability$_{itb}$. Consider the Hesperus and Phosphorus case. It is metaphysically impossible for Hesperus and Phosphorus to be distinct. If the argument is to be plausible then the notion of conceivability needs to incorrectly have that it is conceivable that Hesperus and Phosphorus are distinct. On the reading of conceivability as (17) conceivability$_{itb}$, a subject η finds a proposition conceivable iff η can imagine believing ϕ truly. And, as Yablo stresses, that one cannot do (Yablo, 2009, 60). It cannot be truly imagined that Hesperus and Phosphorus are distinct, since that would involve them *being* distinct, and one cannot truly imagine them being distinct no more than Venus can be truly imagined to be distinct from Venus (Yablo, 2009, 60). So, the argument is not plausible on the reading of conceivability as
(17) conceivability\textsubscript{itb}. Does this mean that Williamson could base his modal epistemology on (17) conceivability\textsubscript{itb} in order to avoid the \textit{a posteriori} objection? This might be an option for Williamson. However, it is not so clear that it is preferable since doing so seems to make the counterfactual component of his conjecture superfluous. If Williamson’s bases his modal epistemology on (17) conceivability\textsubscript{itb} then the counterfactual component does not seem to have much to contribute to our knowledge of modality since we would have knowledge of modality by (17) conceivability\textsubscript{itb} directly. Williamson holds that our knowledge of modality is embedded in our knowledge of counterfactual conditionals so it seems like an option that would make a great part of Williamson’s conjecture unnecessary.

To summarise, the objection is plausible on the reading of conceivability as either (16) conceivability\textsubscript{ijb} or as (18) conceivability\textsubscript{ep}.

3.2.2 Conceivability\textsubscript{ijb}, conceivability\textsubscript{ep}, and Williamson’s conjecture

This section will compare how we have knowledge of possibility on Williamson’s conjecture to how we have knowledge of possibility by (16) conceivability\textsubscript{ijb} and (18) conceivability\textsubscript{ep} respectively. We will then specify two options/replies for Williamson against the \textit{a posteriori} objection and in the end conclude that these replies might not be plausible. Let’s first consider how we have knowledge of possibility by (16) conceivability\textsubscript{ijb} in comparison with how we have knowledge of possibility by Williamson’s conjecture.

(16) says that φ is conceivable\textsubscript{ijb} for a subject η, iff η can imagine justifiably believing that φ. And, according to Yablo, we do not need to put much emphasis on justification, for if the belief is imagined as true (as it needs to be in order for the objection to be plausible), then whether it is imagined as justified or not becomes a side issue, the evidence for possibility would be exactly the same (Yablo, 2009, 59). Let’s consider an example. Let φ express the proposition that ‘a copper mountain exist.’ Then, φ will be conceivable\textsubscript{ijb} for η iff η justifiably imagine believing that a copper mountain exists. How would η come to justifiably imagine believing that a copper mountain exists?

It seems to be the case that it could be argued that if Williamson’s conjecture is right, then η would come to know that a copper mountain exist in something like the way Williamson holds that we can have modal knowledge by our ability to handle counterfactuals. Since, according to Williamson, our counterfactual thinking cannot be isolated from our ordinary thinking. Then, η would find φ conceivable (at least partially) on the basis of counterfactual thinking.

However, one could also argue in the opposite direction. For instance, if one argues that what Putnam writes that ”we can perfectly well imagine having experiences that would convince us (and that would make it rational to believe that...” (Putnam, 1975, 151) is significantly different from what is to evaluate counterfactuals. Not in terms of what conceivability consists in, the content of the imaginative component, but in terms of how we come to have knowledge of possibility. By doing so, one would be committed to the claim that there is something in the counterfactual development in Williamson’s conjecture that contributes to our knowledge of modality. This is the first option for Williamson in order to offer a response to the \textit{a posteriori} objection. To argue for this claim is to argue that it is the counterfactual component in Williamson’s conjecture that makes a difference in our knowledge of modality. This option will be thoroughly considered in section 3.2.3.
How about (18) conceivability_{ep} in comparison to Williamson’s conjecture? (18) says that \(\phi \) is conceivable for a subject \(\eta \) iff \(\eta \) can imagine believing something true with \(\eta \)'s actual \(\phi \)-thought, not that \(\phi \) but that something else, \(\psi \) for instance. If we conclude that \(\phi \) is possible on finding it conceivable in this sense, then we seem to have made some form of mistake in our conceivability. It seems to be the case that there is something not exactly correct if I conceive of Hesperus as being distinct from Phosphorous, but my ‘Hesperus as being distinct from Phosphorous’-thought was not about Hesperus being distinct from Phosphorous, but of something like Venus being distinct from Mars. This mistake seems to consist directly in conceivability, and not in the move from conceivability to possibility.

If (18) was the only reading of conceivability on which the *a posteriori* objection was plausible, then it might be the case that Williamson could live with the *a posteriori* objection. Since Williamson’s conjecture of how we have modal knowledge by counterfactual conditionals is not meant to be infallible. His account is meant to capture our usual method of coming to know about modality, which sometimes fail (Williamson, 2007, 164). Our imaginative evaluation of counterfactuals can easily produce the wrong truth–values through background ignorance or error and distortions of judgement for instance (Williamson, 2007, 155). (18) conceivability_{ep} could then be one of the ways in which modal errors occurs on Williamson’s account.

This section has compared how we have knowledge of possibility by (16) conceivability_{ijb} and (18) conceivability_{ep} to Williamson’s conjecture. Next section will expand on one line of response for Williamson’s conjecture against the *a posteriori* objection.

3.2.3 The counterfactual component

How important is the counterfactual component for our knowledge of modality on Williamson’s conjecture? This section will expand on the idea that it is the counterfactual component of Williamson’s conjecture that makes a difference in our knowledge of metaphysical modality.

It seems to be the case that Williamson implies that the counterfactual component is important for our knowledge of modality based on the overall reading of his account. For instance, when he writes that our capacity to handle counterfactual conditional operators involves a general capacity to go from handling the antecedent and the consequent separately, to a capacity to handle the whole counterfactual conditional (2007, 147). And this capacity contains "more than mere linguistic understanding of it, since it involves ways of assessing its application that are not built into its meaning" (Williamson, 2007, 147). Which seem to suggest that it is not merely the meaning of what goes into the counterfactual supposition that determines whether the counterfactual conditional about modality will be asserted or not. However, it is not clear that this idea actually is supported in Williamson’s account, since there is nothing specific, beyond the above suggestions, that indicate that it is in fact the counterfactual development, i.e., the counterfactual component of Williamson’s conjecture, that makes a difference for our knowledge of metaphysical modality.

Let’s consider the rock and the slope one more time in order to illustrate my point. (7) states that: ‘If the bush had not been there, the rock would have ended in the lake.’ We evaluate (7) is by means of a counterfactual development. Williamson’s rough sketch, we assert the counterfactual conditional, \(\phi \Box \rightarrow \psi \) when:
(i) our counterfactual development of the supposition \(\phi \) robustly yields \(\psi \) (Williamson, 2007, 163).

And we deny the counterfactual conditional \(\phi \square \rightarrow \psi \) when:

(ii) our counterfactual development of the supposition \(\phi \) does not robustly yields \(\psi \), and we do not attribute the failure (of not robustly yielding \(\psi \)) to a defect in our counterfactual development (Williamson, 2007, 163).

How could it be the case that it is the counterfactual development that makes a difference for our knowledge of metaphysical modality? Let’s assume that we have knowledge of counterfactuals, and even that knowledge of modality is embedded in our knowledge of counterfactual conditionals as Williamson claims. It does not follow from this that it is in fact the counterfactual development, i.e., the counterfactual component, that makes the difference for our knowledge of modality. We could still have this knowledge by some other means, which is not counterfactually based.

If it is the case that it is the counterfactual development that makes the difference for our knowledge of modality, then one might think that this would somehow be more apparent in the difference between asserting and denying counterfactual conditionals. And, it is not clear from considering the difference between (i) and (ii) above that it is somehow this difference that gives us knowledge of modality. Obviously, it does not follow a negative conclusion from this consideration, i.e., that the counterfactual component does not make any difference for our knowledge of modality. However, if the counterfactual component is what makes the difference, then it not so obvious and we are missing an argument that in fact shows this.

To summarise this section: Williamson seems to think that it is the counterfactual development that makes the difference for our knowledge of modality, i.e., that it is the counterfactual component that somehow enables us to have knowledge of metaphysical modality. However, it is not clear that this actually is the case. The next section will expand on the idea that Williamson could reply to the a posteriori objection by claiming that the imagination is constrained on his account, which it might not be as it figures in the a posteriori objection.

3.2.4 The constrained imagination

The other option for Williamson to respond to the a posteriori objection is to emphasise that on his account the imagination is constrained, and the imagination might not be constrained as it figures in the a posteriori objection.

Williamson writes: "Discussions of the epistemology of modality often focus on imaginability or conceivability as a test of possibility while ignoring the role of the imagination in the assessment of mundane counterfactuals" (Williamson, 2007, 163). He continues with arguing that this fact "omit the appropriate context for understanding the relation between modality and the imagination" (Williamson, 2007, 163). That it is imaginable but not possible for a wet mop to hold no water for instance. Once we admit the vital role that imagination plays in evaluating counterfactuals, then we should be more open to the idea that it plays a similar role for knowledge of modality according to Williamson (2007, 163).

Williamson’s conjecture might be defended against the a posteriori objection by arguing that when we find a posteriori falsehoods conceivable (despite them being impossible)
the imagination might operate in an unconstrained manner. On Williamson’s conjecture, the imagination is constrained, informed by our sense of how nature works etc. And, on Williamson’s constrained imagination, it might be that we do not find these impossible \textit{a posteriori} falsehoods conceivable/imaginable. However, it is not so clear that this line of reply would be plausible or even how one could motivate it. Let’s assume that the imagination works in an unconstrained manner when we find these impossible \textit{a posteriori} falsehoods conceivable. Then, consider: How would a constrained imagination somehow inhibit an astronomer in ancient Greece to conceive that Hesperus is distinct from Phosphorus, and thus not judge that it is possible that Hesperus is distinct from Phosphorus? It is not clear how this would work. A constrained or unconstrained imagination seems to make no difference in this ancient astronomer’s conceivable/imaginable.

3.2.5 Conclusion

We have now considered which readings of conceivability the \textit{a posteriori} objection is plausible, and compared how we have knowledge of possibility according to these readings to how we have knowledge of possibility on Williamson’s conjecture. Both readings of conceivability on which the argument is plausible, i.e., (16) conceivability$_{ijb}$ and (18) conceivability$_{ep}$, are based on our imaginative ability, likewise as Williamson’s conjecture is based on the imaginative component. We also discussed that Williamson could base his modal epistemology on (17) conceivability$_{itb}$ in order to avoid the \textit{a posteriori} objection. However, if Williamson does this, it seems to be unclear why the counterfactual component of his conjecture does, and why it is needed. It might be the case that one could argue that it is the combination of the imaginative component, based on a reading of conceivability as (17) conceivability$_{itb}$ and the counterfactual component of Williamson’s conjecture that makes it the case that we have knowledge of modality. However, this is just a speculation and it is unclear whether it would even be plausible. Therefore, it seems to be the case that if Williamson’s modal epistemology is based on (17) conceivability$_{itb}$, then the counterfactual component seems to be superfluous. We would have knowledge of modality by (17) directly and the counterfactual component is not needed.

To summarise where we are now: This means that the strategy to which Williamson’s conjecture avoided the other two objections (the confusion objection and the circularity objection) is not workable against this objection. In section 3.2.2 we concluded that Williamson’s conjecture might live with the conclusion of the \textit{a posteriori} objection on the reading of conceivability as (18) conceivability$_{ep}$, since his account of how we have knowledge of modality by our counterfactual knowledge is not meant to be infallible, rather to capture our ordinary (and sometimes fallible) way of evaluating counterfactual conditionals. In other words, Williamson’s conjecture is a descriptive thesis, of that happens in the best cases when we do acquire modal knowledge. Then, (18) conceivability$_{ep}$ could be one of the ways we sometimes fail when evaluating counterfactual conditionals about modality. However, the argument is also plausible on the reading of conceivability as (16) conceivability$_{ijb}$, which makes this option implausible.

We then specified two options for Williamson’s conjecture to reply to the \textit{a posteriori} objection. The first option was to argue that it is the counterfactual development, i.e., the counterfactual component of Williamson’s conjecture, that makes the difference for our
knowledge of modality. However, we are missing an argument that supports this claim. And it is not so clear how such an argument would look like. We then considered another option to argue that the imagination is constrained on Williamson’s conjecture and it might not be constrained as it figures in the a posteriori objection. However, it is not so clear how this actually might do any difference on finding impossible a posteriori falsehoods conceivable. Therefore, it is not clear how Williamson’s conjecture might respond to the a posteriori objection.

We have now considered Williamson’s conjecture in the light of the three objections, which was the first project of this thesis. The next section will regard the second project, to consider Williamson’s conjecture in the light of some of the objections that have been raised against it, and compare it to some alternative views. We cannot consider all the objections here. I have therefore chosen two that also offers alternatives to Williamson’s conjecture, and one objection that I find particularly problematic for Williamson’s conjecture.

3.3 A General Discussion

If we are optimistic about knowledge of metaphysical modality and assume that we somehow do have knowledge of modal notions such as necessity and possibility, then the question of how we have this knowledge still remains. We have in this thesis considered three objections to what is usually taken as the standard response. Namely that we have knowledge of possibility by conceivability. We then considered these objections in the light of Williamson’s conjecture which propose that we have knowledge of modality via our knowledge of counterfactual conditionals. It is now time to take on the second project.

How does the second project relate to the first project? One could say that the first project was to see how Williamson’s conjecture stands against the objections to the conceivability–possibility move, i.e., that we have knowledge of possibility by conceivability, and the second project will set Williamson’s conjecture in the broader picture and see how plausible it is in comparison to alternative views on how we could have knowledge of modality, and to see how well it stands against some of its objections. There are plenty of alternative views in the literature, and we cannot consider all of them here. I will therefore briefly consider two alternative views as well as their critique of Williamson’s conjecture in section 3.3.1. There are also plenty of objections raised against Williamson’s conjecture that are not directly tied to an alternative account of how we could have modal knowledge. We cannot go through all of them here. I will consider one objection that I find particularly problematic for Williamson’s conjecture in section 3.3.2.

3.3.1 A possibility–based approach and quotidian modals

Barbara Vetter agrees with Williamson’s general outlook that our knowledge of modality is continuous with our ordinary knowledge about the physical world (Vetter, 2016, 766). However, she disagrees with Williamson on that our knowledge of metaphysical modality arises from our knowledge of counterfactual conditionals, and instead argue for a ‘possibility–based’ approach in which our knowledge of metaphysical modality arises from restricted possibility statements, called ‘can statements’ of the form ‘x can F’ (Vetter, 2016, 768). It has been suggested that Williamson’s equivalences, i.e., (8) and (9), might be too demanding to pro-
vide a plausible account of the ease to which we have knowledge of many de re possibilities, such as the possibility of my desk breaking, and that this possibility–based approach does a better justice to this fact (Vetter, 2016, 769).

On this approach, we have knowledge of ordinary can statements of the physical world of the form x can F, which then extends to knowledge of modality (Vetter, 2016, 771–772). How do we have knowledge of can statements? According to Vetter, there is no unique way of properly evaluating can statements (2016, 770–771). However, it is clear that we know whether many of them are true or not. The imagination may well play a role in this knowledge, as it does on Williamson’s conjecture, and it might be that our knowledge of simple de re possibilities is acquired through induction on actualised possibilities according to Vetter. How do we go from knowledge of ordinary can statements to knowledge of metaphysical modality on this account? According to Vetter, we do this by generalising from time and contextual restrictions (2016, 772). "Can statements made in ordinary language are context-sensitive; with a little work on the context, we can generally extend the realm of true possibility statements" (Vetter, 2016, 773). Which means that can statements in our ordinary language can be generalised into to modals, i.e. modal statements.

Another similar alternative to Williamson’s conjecture is Jonathan Ichikawa’s quotidian modals approach. Ichikawa’s (2016) account favour quotidian modals instead of counterfactual conditionals as our route to modal knowledge. Quotidian modals are "the sort of thing we express with modal language in everyday nonphilosophical contexts" (Ichikawa, 2016, 130). In motivating this approach, Ichikawa stresses that 'how questions', i.e., questions concerning how it is that we have epistemic access to knowledge of metaphysical modality only illuminates part of the puzzle about our knowledge of metaphysical modality (Ichikawa, 2016, 126–127). For instance, consider a group of people that have the ability to tell, without a scale, whenever some object weighs an even or an odd number of grams (rounded to the nearest number of grams). They cannot tell exactly how many grams a given object weighs. Evenly-grammed objects feel a certain way to them which oddly-grammed objects does not. Suppose then that we were to find out about the neural mechanism underlying this ability. According to Ichikawa, this would only tell us part of the mystery, leaving the question of why this group of people have this extraordinary ability unexplained.34

According to Ichikawa, claims of metaphysical modality are importantly similar to claims of quotidian modality (2016, 130). To ask whether something is metaphysically possible is to ask the same kind of question as whether something is physically possible, or possible in some sense according to context (Ichikawa, 2016, 132). Ichikawa then sketches an evolutionary approach to the why question of our knowledge of metaphysical modality. If you walk through some dangerous part of town alone at night, and someone says to you:

(25) You could have been mugged (Ichikawa, 2016, 132).

In our typical context, (25) does not express that it is metaphysically possible that you should have been mugged, but that among some of our close possible worlds, there are some worlds in which you were mugged (Ichikawa, 2016, 132). According to Ichikawa, it is no mystery that we have the cognitive ability to know propositions like (25), both on developmental

34Ichikawa points out that how and why questions are not wholly independent (2016, 128). Certain answers to how questions constrain why questions and vice versa.
and on evolutionary grounds. According to Ichikawa, it is unmysterious that we have the
capacity for knowledge of quotidian modals, and this capacity should be a general capacity
that also equips us with the capacity to evaluate modality in general (Ichikawa, 2016, 133).
This approach is claimed to do better justice to the why question of metaphysical modality,
why we have this ability in the first place.

Both Vetter’s possibility based approach and Ichikawa’s quotidian modals approach share
a demarcation issue, which is, that it is not not so clear where the limits of metaphysical
possibility and necessity are on these accounts. How do we know that can statements on
Vetter’s approach and claims of quotidian modal on Ichikawa’s account do not express some
other form of possibility, such as nomological or epistemic possibility? See section 2.3. One
advantage with Williamson’s conjecture is that it allows us to "single out the limiting case
simply by putting a contradiction in the consequent" (Williamson, 2007, 178), which can be
formed in any language using conjunction and negation. This means that we get metaphys-
ical modality directly from putting a contradiction in the consequent of a counterfactual
conditional according to Williamson. See section 2.5.

Vetter argues that this demarcation challenge can be plausibly met by the possibility–based
approach to modal knowledge (2016, 775). There are two sides of this demarcation
challenge. The first is that can statements generalise too short and express epistemic pos-
sibility for instance. It is epistemically possible that Goldbach’s conjecture is either true
or false, and none of these epistemic possibilities corresponds to metaphysical possibility
(Vetter, 2016, 775). This means that, if we generalise from epistemic possibilities, there is
no guarantee that we would end up including metaphysical possibilities. In other words, can
statements might fall short of metaphysical modality. The second side of this demarcation
challenge is that we might generalise too far, and include some epistemic possibilities that
are metaphysically impossible.

How does Vetter’s account meet the demarcation challenge? On the first side, Vetter
argues that we start with an understanding of circumstantial modality, i.e., modals that are
restricted to a given place in the sentence structure (2016, 779). We have a firm and implicit
understanding of the distinction between circumstantial modality and epistemic modality.
Vetter argues that we use circumstantial modals such as 'can' to ascribe modal properties to
objects, and we do not generally do this for epistemic modals (Vetter, 2016, 779). And this

"is not an arbitrary distinction: we tend to think about objective, mind–independent
reality as a matter of objects having properties. It is no wonder that we use the same
way of thinking for objective, as opposed to epistemic, modality" (Vetter, 2016, 779).

This implies that we run little risk of confusing circumstantial modals expressed by can
statements with epistemic modality according to Vetter (2016, 778–779). The second side
of the demarcation challenge is met by arguing that the meanings of circumstantial modals
are sufficiently different from each other, and that we could expect that there is a natural
boundary between different circumstantial modals when we generalise from ordinary circum-
stantial modals to metaphysical modals (Vetter, 2016, 779). Vetter seems to think that this
implies that that the worry of generalising too far does not arise on her possibility based
approach.

35Goldbach’s conjecture states that every number greater than two is the sum of two primes.
Ichikawa agrees with Williamson36 that the demarcation challenge seems to be unanswered by his quotidian modals approach (Ichikawa, 2016, 135–136). However, he does not think that we should be bothered by this particular failure since Williamson’s conjecture also fails this challenge in just the same way. Ichikawa stresses that to put a contradiction in the consequent of a counterfactual conditional does not in fact identify the limiting case, it merely flags that we have reached the limit (Ichikawa, 2016, 141). “There is nothing in the semantics of counterfactual conditionals that requires us to draw the line at metaphysical possibilities, rather than somewhere else” (Ichikawa, 2016, 141). Which seems to suggest that a similar demarcation challenge could be raised against Williamson’s conjecture. And, Williamson has not given any clear argument that shows why our ordinary capacity to handle counterfactual conditionals demands the line to be drawn at metaphysical modality rather than somewhere else (Ichikawa, 2016, 141).

We have now briefly considered two alternatives to Williamson’s conjecture. These two views cannot be fully assessed here, which means that there might be issues with these accounts of how and why we might have knowledge of modality that are not considered here. Next section will consider one objection to Williamson’s conjecture that seems to be especially problematic.

3.3.2 Williamson’s conjecture and the negative conceivability view

Morato (2017) argues that there are structural similarities between Williamson’s conjecture, which he calls the \textit{counterfactual view of modal knowledge} and the traditional negative conceivability view. See section 2.6.3. First, it is not clear that all versions of conceivability discussed in section 2.6 can be brought under the negative conceivability view and how we have modal knowledge according to it. However, for the sake of argument, lets assume that we have knowledge of modality according to the negative conceivability view. Second, in order to show that Williamson’s conjecture have structural similarities to the negative conceivability view we will need to introduce some new notation. Morato (2017) offers a structural account of the supposition on which we have modal knowledge on Williamson’s account. He starts by introducing the following notation

\[\phi \succ \psi \]

\[\phi \succ \neg \psi \]

\[\phi \succ \bot \]

\[\neg \phi \succ \bot \]

\[\phi \not\succ \bot \]

36See Williamson (2007, 178).
If we are allowed to view the counterfactual nature of (26) and (27) as features of the content of the supposition interacting directly with \(\neg \phi \) or \(\phi \), rather than a feature of the act of supposing, then we could use

\[[\phi]^{\alpha} \]

to mean that the supposition of \(\phi \) is done with respect to a situation, or scenario, maximally similar to the actual (Morato, 2017). The claim that a contradiction is derivable from the counterfactual supposition that \(\neg \phi \) can then be represented as:

(28) \[[\neg \phi]^{\alpha} \succ \bot \]

and that a contradiction is not derivable from the counterfactual supposition that \(\phi \) can then be represented as:

(29) \[[\phi]^{\alpha} \npreceq \bot \]

According to Morato (2017), (28) and (29) represent capacities, and (28) should be taken to mean that there exists at least one subject that is able to determine that it follows a contradiction from the counterfactual supposition that \(\neg \phi \), and (29) should be taken to mean that there exists at least one subject that is able to determine that it does not follow a contradiction from the counterfactual supposition that \(\phi \). On this notation, Williamson’s conjecture is committed to the following conditionals for knowledge of modality:

(30) \(\Box \phi \), if \[[\neg \phi]^{\alpha} \succ \bot \]

(31) \(\Diamond \phi \), if \[[\phi]^{\alpha} \npreceq \bot \]

Morato (2017) then formulates a structural account of how we have modal knowledge according to the negative conceivability view as follows, using the same notation:

(32) \(\Box \phi \), if \(\neg \phi \succ \bot \)

(33) \(\Diamond \phi \), if \(\phi \npreceq \bot \)

On the negative conceivability view, knowledge of modal claims depends upon our cognitive capacity to conceive this very thing as possible or necessary (Morato, 2017). Conceiving something as necessary is being able to derive a contradiction from the supposition of its negation, and conceiving something as possible is not being able to derive a contradiction from the supposition of its truth.

This means that both Williamson’s conjecture and the negative conceivability view relies on our capacity to detect contradictions (Morato, 2017). According to Morato (2017): (30) is structurally similar to (32), and (31) is structurally similar to (33). There are some differences between these two. Namely that Williamson’s conjecture is based on the notion of counterfactual supposition whereas the negative conceivability view is based on the notion of supposition. And, the two view might give different interpretations of \(\succ \) and \(\npreceq \). However, the similarities exceed the differences according to Morato (2017), and supposing that \(\phi \) in order to determine whether it does follow (or does not follow) a contradiction from \(\phi \) is the
same kind of act as counterfactually supposing that ϕ in order to determine whether it does follow (or does not follow) a contradiction from ϕ.

If this is correct, and considered in addition to the fact that is unclear whether the counterfactual component of Williamson’s conjecture does any difference to our knowledge of modality or not, as argued in section 3.2.3, then it seems to be the case that we do not have any substantial advantage in assuming that we have knowledge of modality by Williamson’s conjecture compared to having knowledge of modality by the negative conceivability view. How could Williamson respond to this consideration? Does this mean that we would have to abandon the counterfactual approach to knowledge of modality?

It has not been established here that Williamson’s conjecture fails. However, it does seem particularly problematic for Williamson’s conjecture that it has structural similarities to the negative conceivability view. If one could somehow show that it is the counterfactual component of Williamson’s conjecture that makes the difference for our knowledge of modality, then one could argue that counterfactually supposing is greatly different from supposing, and that this structural similarity between Williamson’s conjecture and the negative conceivability view is not a problem for Williamson’s conjecture. However, it is not clear, how such an argument would look like.

The negative conceivability view does not state what conceivability actually is, but it do say how we (supposedly) have knowledge of possibility by negative conceivability, see Chalmers’s second dimension of conceivability in section 2.6.2. Could Williamson argue that the negative conceivability view gets the notion of conceivability wrong? That Williamson’s imaginative component should be based on (21) positive conceivability rather than (22) negative conceivability? This does not seem helpful for Williamson since his conjecture would still be structurally similar to the negative conceivability even if he would base his notion of the imaginative component on the positive side of Chalmers’s second dimension.

We have now considered some objections and alternatives to Williamson’s conjecture. Next section will end with some final conclusions for this thesis.

4 Conclusion

We have now seen that Williamson’s conjecture avoids two of the three objections to the conceivability–possibility move. In specific, we saw in section 3.1, that the account of how we have modal knowledge by our knowledge of counterfactuals is greatly different from the readings of conceivability on which the confusion objection and the circularity objection are plausible. This result, as it stands on it’s own, is not of any great advantage for Williamson’s conjecture because these arguments are not plausible on the readings of conceivability based on imagination, i.e., (16) conceivability_{ijb}, (17) conceivability_{itb} and (18) conceivability_{ep}. Which means that if we do not define conceivability as being based on believability, as either (14) conceivability_{b} or (15) conceivability_{bp}, then we do not seem to run into this objections anyways.

In section 3.2 it was shown that Williamson’s conjecture does not have a response to the a posteriori objection. Two options for Williamson to eventually develop an response to this objection was considered, and we then concluded that these options does not seem promising. This does not imply that one could not develop a plausible response to the a
posteriori objection in defence of Williamson’s conjecture. Although it does suggest that there is still work that needs to be done in order for Williamson’s conjecture to have a response to this objection. And, it is not so clear how this could reasonably be done.

Could Williamson’s conjecture accept the conclusion of the a posteriori objection? If one considers examples of a posteriori necessary falsehoods such as Hesperus being distinct from Phosphorous, one might think that these are somehow rare and that Williamson’s conjecture could live with rare cases. However, there are more common and natural a posteriori necessary falsehoods, such as that ‘cats are not animals’ for instance (Yablo, 2009, 58). And, for Williamson’s conjecture to accept the conclusion of the a posteriori objection does not seem like an attractive option. We also considered the option for Williamson to base his modal epistemology on (17) conceivability_{itb}. However, doing so seems to make the counterfactual component of his conjecture unnecessary since it we would then have knowledge of modality directly from (17) conceivability_{itb}.

To conclude on the first project for this thesis, namely how Williamson’s conjecture stands against Yablo’s three objections to the conceivability–possibility move, it seems to be the case that Williamson’s conjecture cannot be said to be better off than the traditional view of how we have knowledge of possibility in terms of notions of conceivability based on imagination.

How about the second project? Namely how Williamson’s conjecture stands against some of the objections that have been raised against it, as well as alternatives to Williamson’s conjecture. This question is too big to fully assess in what we have done here. We could not consider all the objections, or even all the alternatives to Williamson’s conjecture. However, in section 3.3.1, we saw that there are plausible alternatives to Williamson’s conjecture in the literature. What we have done here is not enough to fully evaluate Williamson’s conjecture in comparison to either Vetter’s possibility–based approach or Ichikawa’s quotidian modals approach.

However, we saw in section 3.3.2, that Williamson’s conjecture has structural similarities to the negative conceivability view, which seem to be particularly damaging for Williamson’s conjecture. If this is correct, then it seems to be the case that we have no direct advantage in holding that we have knowledge of possibility through our knowledge of counterfactual conditionals compared to the negative conceivability view, since both these rely on our ability to detect contradictions. This is a problem that does not seem to arise for either Vetter’s possibility–based approach or Ichikawa’s quotidian modals approach since these accounts do not hold that our knowledge of modality is based on our ability to detect contradictions. On Vetter’s account, our knowledge of metaphysical modality generalises from ordinary possibility–statements, and on Ichikawa’s account it extends from general capacity to evaluate quotidian modals.

This suggest that Williamson needs to develop an argument that clearly shows that it is the counterfactual supposition on his account, what I have here called the counterfactual component, that makes a difference for our knowledge of modality in order for his conjecture to have an response to both the a posteriori objection and the objection from the negative conceivability view. Also, it might be productive for future research to consider Vetter’s possibility–based approach and Ichikawa’s quotidian modals approach of how we have knowledge of metaphysical modality on independent grounds, as well as in the light of the objections to the conceivability–possibility move here considered.
References

