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Abstract

If the survival function of a random variable 𝑋 lies to the right of the survival function of a random variable 𝑌 , then
𝑋 is said to stochastically dominate 𝑌 . Inferring stochastic dominance is particularly complicated because comparing
survival functions raises four possible hypotheses: identical survival functions, dominance of 𝑋 over 𝑌 , dominance of 𝑌
over 𝑋, or crossing survival functions. In this paper, we suggest four-decision tests for stochastic dominance suitable for
paired samples. The tests are permutation-based and do not rely on distributional assumptions. One-sided Cramér–von
Mises and Kolmogorov–Smirnov statistics are employed but the general idea may be utilized with other test statistics.
The power to detect dominance and the different types of wrong decisions are investigated in an extensive simulation
study. The proposed tests are applied to data from an experiment concerning the individual’s willingness to pay for a
given environmental improvement.

Key words: Stochastic dominance; Stochastic ordering; Four-hypothesis test; Permutation test; Nonparametric
approach; Environmental psychology.

1. Introduction

The concept of stochastic dominance is useful when
comparing two things that can be modeled by random
variables. It has been employed in many contexts, e.g.,
for comparing income distributions (Davidson & Duclos,
2000), comparing investment assets (Levy, 2016), compar-
ing medical treatments (Petroni & Wolfe, 1994), and for
assessing distributional treatment effects (Abadie, 2002).
In psychology, statistical tests for stochastic dominance
are used, e.g., when comparing response time distribu-
tions in the study of perceptual processes (Ashby et al.,
1993; Fitousi & Algom, 2018; Heck & Erdfelder, 2016;
Houpt & Townsend, 2010; Yang et al., 2018). As dis-
cussed by Townsend (1990), stochastic dominance implies
(but is not implied by) the same ordering of the means.
The stochastic dominance paradigm is prevalent in behav-
ioral economics where it was introduced mainly in search
for a robust alternative to classical mean-variance analysis
which has some well-known shortcomings (Hadar & Rus-
sell, 1969; Hanoch & Levy, 1969; Rothschild & Stiglitz,
1970; Whitmore, 1970). Mean-variance analysis is used
for ranking of investment assets and it posits that an in-
vestor has positive preferences over the mean return of an
asset and negative preferences over its variance. If two as-
sets has the same mean return, but different variances, the
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rule picks the one with the smaller variance. A classical ex-
ample, which we borrow from Levy (2016), considers two
assets. Asset 𝐴 returns 1 or 2 with equal probability, while
asset 𝐵 returns 2 or 4 also with equal probability. A simple
calculation shows that asset 𝐵 has a larger mean return
but also a larger variance; therefore the mean-variance cri-
terion is not very helpful. Still, most people would agree
that 𝐵 is to be preferred; after all, 𝐵 gives at least as high
return as 𝐴. In this case, the random variable correspond-
ing to 𝐵 stochastically dominates the one corresponding
to 𝐴, i.e., the survival function of the former variable lies
to the right of the survival function of the latter, implying
that a criterion based on stochastic dominance will over-
come the issue with the mean-variance criterion.

In this paper, we focus on statistical tests for stochastic
dominance. Let 𝑋 and 𝑌 be random variables with sur-
vival functions 𝑆𝑋(𝑡) = P (𝑋 > 𝑡) and 𝑆𝑌 (𝑡) = P (𝑌 > 𝑡).
We say that 𝑋 stochastically dominates 𝑌 if

𝑆𝑋(𝑡) ≥ 𝑆𝑌 (𝑡) for all 𝑡 with strict inequality for some 𝑡.

The stochastic dominance defined above is sometimes called
first order stochastic dominance or stochastic ordering. It
can be equivalently defined using the distribution functions
of 𝑋 and 𝑌 . Hereafter, we will skip the words stochas-
tic/stochastically and we will just say that 𝑋 dominates
𝑌 . If 𝑋 dominates 𝑌 , we write 𝑋 ≻ 𝑌 , or equivalently, we
can say that 𝑌 is dominated by 𝑋 and denote this 𝑌 ≺ 𝑋.
If there exist values 𝑎 and 𝑏 such that 𝑆𝑋(𝑎) > 𝑆𝑌 (𝑎) and
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𝑆𝑋(𝑏) < 𝑆𝑌 (𝑏), we say that the survival functions of 𝑋
and 𝑌 cross one another. Four possible hypotheses about
𝑋 and 𝑌 can be distinguished: (i) 𝑋 and 𝑌 have identical
survival functions, (ii) 𝑋 dominates 𝑌 , (iii) 𝑌 dominates
𝑋, and (iv) the survival functions of 𝑋 and 𝑌 cross one
another.

Two main types of test statistics can be found in the lit-
erature on dominance testing. The first type are statistics
based on the differences between the empirical distribu-
tion functions at a fixed number of points in the support
(see Anderson, 1996; Davidson & Duclos, 2000). How-
ever, the choice of optimal points is not obvious and these
tests might possibly be inconsistent (see Barrett & Don-
ald, 2003). The second type of statistics are based on
some real-valued functional whose value is zero when the
distributions are identical and strictly positive under dom-
inance. For example, McFadden (1989), Barrett & Donald
(2003), Linton et al. (2005), and Donald & Hsu (2016) used
one-sided Kolmogorov–Smirnov statistics or their modifi-
cations, while Schmid & Trede (1996), Bennett (2008),
and Linton et al. (2010) employed one-sided versions of the
Cramér–von Mises statistic. The one-sided Kolmogorov–
Smirnov statistics actually date back to Smirnov (see, e.g.,
Darling, 1957; Hodges, 1958 and the references therein). A
different approach was suggested by Ledwina & Wy lupek
(2012a,b) who deal with the testing problem by formu-
lating the hypotheses in terms of Fourier coefficients in
some system of functions. To our knowledge, the existing
asymptotic results for the Kolmogorov–Smirnov statistics
and the Cramér–von Mises statistics (cf. Durbin, 1973)
assume that the two samples are independent and are not
applicable to paired samples.

Some test statistics (e.g., the one-sided Kolmogorov–
Smirnov) take positive values not only under dominance
but also when the two survival functions cross one another,
which may too often lead to a false detection of dominance,
i.e., the test chooses a hypothesis of dominance when the
truth is that the survival functions cross (see Bennett,
2008, 2013). This issue can be tackled using a decision
rule that involves all four hypotheses. A testing procedure
with four hypothesis (four possible decisions) was proposed
by Bishop et al. (1989); see also Bishop & Formby (1999),
Tse & Zhang (2004), Knight & Satchell (2008), Heathcote
et al. (2010). The procedure, however, does not provide
adequate control over the error probabilities related to the
different types of wrong decisions in a four-hypothesis set-
ting. Bennett (2013) modified the decision rule of Bishop
et al. (1989) and suggested a test that has better power to
detect crossings and allows finer control over the different
error probabilities based on asymptotic properties of the
one-sided Kolmogorov–Smirnov statistics.

To the best of our knowledge, only the tests of David-
son & Duclos (2000), Linton et al. (2005), and Donald &
Hsu (2016) are applicable to paired samples and we are not
aware of a test with four hypotheses for paired samples.
Employing the four-decision rule of Bennett (2013), we
suggest dominance testing procedures suitable for paired

samples. The procedures are based on a permutation test
approach, which allows computing 𝑝-values without rely-
ing on large-sample results for the test statistic. In Sec-
tion 2, we introduce the testing procedures. Section 3
presents a simulation study. In Section 4, the suggested
procedures are applied to data from an experiment con-
cerning the individual’s willingness to pay for an environ-
mental improvement (traffic noise reduction). In this case,
dominance tests are used for comparing participants’ re-
sponses under different scenarios for noise reduction and
under different formats of the willingness-to-pay question.

2. Testing procedures

Let us consider the following hypotheses about the ran-
dom variables 𝑋 and 𝑌 :

𝐻0 : 𝑋 and 𝑌 have identical survival functions,

𝐻≻ : 𝑋 dominates 𝑌 ,

𝐻≺ : 𝑌 dominates 𝑋,

𝐻cr : the survival functions of 𝑋 and 𝑌 cross.

We explore the problem of testing for stochastic dominance
with null hypothesis 𝐻0 and three ”alternative” hypothe-
ses: 𝐻≻, 𝐻≺, and 𝐻cr.

Now, we define the test statistics under a general setup
before restricting the discussion to the case of paired sam-
ples. Let 𝑥1, . . . , 𝑥𝑛 be observations from 𝑆𝑋 and 𝑦1, . . . , 𝑦𝑚
be observations from 𝑆𝑌 . The empirical distribution func-
tion based on the observations 𝑥1, . . . , 𝑥𝑛 iŝ︀𝐹𝑋(𝑡) = (1/𝑛)

∑︀
𝑖 1{𝑥𝑖 ≤ 𝑡} and the empirical survival

function is ̂︀𝑆𝑋(𝑡) = 1 − ̂︀𝐹𝑋(𝑡). The functions ̂︀𝐹𝑌 (𝑡) and̂︀𝑆𝑌 (𝑡) based on 𝑦1, . . . , 𝑦𝑚 are defined analogously. Let us
denote (𝑡1, . . . , 𝑡𝑛+𝑚) = (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚), 𝑎𝑛,𝑚 =
(𝑛𝑚)1/2(𝑛 + 𝑚)−1/2, and 𝑧(+) = max{𝑧, 0} for any real
number 𝑧. For simplicity, the observations (e.g., 𝑥1, . . . , 𝑥𝑛)
denote random variables or values of random variables, de-
pending on the context. We consider the following test
statistics:

∙ One-sided Cramér–von Mises statistics

𝑊𝑋≻𝑌 =
𝑎𝑛,𝑚
𝑛 + 𝑚

𝑛+𝑚∑︁
𝑘=1

(︁̂︀𝑆𝑋(𝑡𝑘) − ̂︀𝑆𝑌 (𝑡𝑘)
)︁(+)

,

𝑊𝑋≺𝑌 =
𝑎𝑛,𝑚
𝑛 + 𝑚

𝑛+𝑚∑︁
𝑘=1

(︁̂︀𝑆𝑌 (𝑡𝑘) − ̂︀𝑆𝑋(𝑡𝑘)
)︁(+)

;

∙ One-sided Kolmogorov–Smirnov statistics

𝐷𝑋≻𝑌 = 𝑎𝑛,𝑚 sup
𝑡

(︁̂︀𝑆𝑋(𝑡) − ̂︀𝑆𝑌 (𝑡)
)︁
,

𝐷𝑋≺𝑌 = 𝑎𝑛,𝑚 sup
𝑡

(︁̂︀𝑆𝑌 (𝑡) − ̂︀𝑆𝑋(𝑡)
)︁
.

If we want to be more precise, 𝑊𝑋≻𝑌 and 𝑊𝑋≺𝑌 should
be called modified Cramér–von Mises statistics as they
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Retain 𝐻0

𝐻≻

𝐻≺ 𝐻cr

𝑊𝑋≻𝑌
𝑐1,𝛼𝑐1,𝛼⋆

𝑊𝑋≺𝑌

𝑐2,𝛼

𝑐2,𝛼⋆

Figure 1: Decision rule.

are not based on squared differences (cf. Schmid & Trede,
1995). We will focus on paired samples, in which case 𝑚 =
𝑛 and the observed data can be written (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛).

Hereafter, we will describe the testing procedure in
terms of the statistics (𝑊𝑋≻𝑌 ,𝑊𝑋≺𝑌 ); the procedure with
(𝐷𝑋≻𝑌 , 𝐷𝑋≺𝑌 ) is essentially the same. The testing prob-
lem involves four hypotheses; hence there are four decision
regions which are determined by four critical values. Let
𝑐1,𝛼 and 𝑐2,𝛼 be defined so that P (𝑊𝑋≻𝑌 ≥ 𝑐1,𝛼 |𝐻0) = 𝛼
and P (𝑊𝑋≺𝑌 ≥ 𝑐2,𝛼 |𝐻0) = 𝛼. Similarly, 𝑐1,𝛼⋆ and
𝑐2,𝛼⋆ are such that P (𝑊𝑋≻𝑌 ≥ 𝑐1,𝛼⋆ |𝐻0) = 𝛼⋆ and
P (𝑊𝑋≺𝑌 ≥ 𝑐2,𝛼⋆ |𝐻0) = 𝛼⋆, where 𝛼⋆ > 𝛼. We em-
ploy the following decision rule, which is equivalent to the
rule studied by Bennett (2013).

Decision rule 1.

(a) If 𝑊𝑋≻𝑌 < 𝑐1,𝛼 and 𝑊𝑋≺𝑌 < 𝑐2,𝛼, then retain 𝐻0.

(b) If 𝑊𝑋≻𝑌 ≥ 𝑐1,𝛼 or 𝑊𝑋≺𝑌 ≥ 𝑐2,𝛼, then

(i) if 𝑊𝑋≻𝑌 ≥ 𝑐1,𝛼 and 𝑊𝑋≺𝑌 < 𝑐2,𝛼⋆ , then
accept 𝐻≻;

(ii) if 𝑊𝑋≻𝑌 < 𝑐1,𝛼⋆ and 𝑊𝑋≺𝑌 ≥ 𝑐2,𝛼, then
accept 𝐻≺;

(iii) if 𝑊𝑋≻𝑌 ≥ 𝑐1,𝛼⋆ and 𝑊𝑋≺𝑌 ≥ 𝑐2,𝛼⋆ , then
accept 𝐻cr.

The decision rule is depicted in Figure 1. The main idea
is to accept the hypothesis of dominance 𝐻≻ if 𝑊𝑋≻𝑌 is
large enough and 𝑊𝑋≺𝑌 is small enough; similarly, 𝐻≺
is accepted if 𝑊𝑋≺𝑌 is large enough and 𝑊𝑋≻𝑌 is small
enough.

Larger values of 𝛼⋆ result in smaller values of 𝑐1,𝛼⋆

and 𝑐2,𝛼⋆ . Thus, if we increase 𝛼⋆, the acceptance region

for crossing is increased, while the acceptance regions for
dominance are decreased. In this way, we can control the
discrimination between stochastic dominance and crossing
survival functions.

For computing the quantiles of the test statistics un-
der the null hypothesis or the corresponding 𝑝-values, we
adopt a permutation test approach (sometimes called ran-
domization test). That is, we generate random permuta-
tions of the data (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), compute the value
of the test statistic for each generated permutation, and
then use the resulting empirical distribution of the test
statistic as an approximation of the null distribution (see
Hemerik & Goeman, 2018; Lehmann & Romano, 2005,
Ch. 15; Romano, 1989). Generating a random permuta-
tion of (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) corresponds to switching the
places of 𝑥𝑖 and 𝑦𝑖 in each pair (𝑥𝑖, 𝑦𝑖) with probability
1/2. The detailed algorithm is presented below.

Let TS (𝑑𝑎𝑡𝑎) denote the value of the bivariate test
statistic (𝑊𝑋≻𝑌 ,𝑊𝑋≺𝑌 ) calculated for the dataset 𝑑𝑎𝑡𝑎.
For example, (𝑤1, 𝑤2) = TS (𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛) denotes the
value of (𝑊𝑋≻𝑌 ,𝑊𝑋≺𝑌 ) for the observed data
(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛).

Algorithm 1

Input: (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛).
for 𝑟 = 1, . . . , 𝑅

for 𝑖 = 1, . . . , 𝑛
Generate 𝑏𝑖 from Bernoulli(1/2);

if 𝑏𝑖 = 1 then set z
[𝑟]
𝑖 = (𝑥𝑖, 𝑦𝑖);

else set z
[𝑟]
𝑖 = (𝑦𝑖, 𝑥𝑖);

end for
Compute (𝑤

[𝑟]
1 , 𝑤

[𝑟]
2 ) = TS (z

[𝑟]
1 , . . . , z

[𝑟]
𝑛 );

end for
Output: 𝑤

[1]
1 , . . . , 𝑤

[𝑅]
1 , 𝑤

[1]
2 , . . . , 𝑤

[𝑅]
2 .

Let us denote

𝑝1 = P (𝑊𝑋≻𝑌 ≥ 𝑤1 |𝐻0), 𝑝2 = P (𝑊𝑋≺𝑌 ≥ 𝑤2 |𝐻0),

which will be referred to as marginal 𝑝-values.

Using 𝑤
[1]
1 , . . . , 𝑤

[𝑅]
1 , 𝑤

[1]
2 , . . . , 𝑤

[𝑅]
2 obtained through Al-

gorithm 1, the marginal 𝑝-values can be estimated as fol-
lows:

̃︀𝑝1 =
1

𝑅

∑︁
𝑟

1{𝑤[𝑟]
1 ≥ 𝑤1}, ̃︀𝑝2 =

1

𝑅

∑︁
𝑟

1{𝑤[𝑟]
2 ≥ 𝑤2}.

Decision rule 1 can be reformulated like this:

Decision rule 1′.

(a) If ̃︀𝑝1 > 𝛼 and ̃︀𝑝2 > 𝛼, then retain 𝐻0.

(b) If ̃︀𝑝1 ≤ 𝛼 or ̃︀𝑝2 ≤ 𝛼, then

(i) if ̃︀𝑝1 ≤ 𝛼 and ̃︀𝑝2 > 𝛼⋆, then accept 𝐻≻;
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(ii) if ̃︀𝑝1 > 𝛼⋆ and ̃︀𝑝2 ≤ 𝛼, then accept 𝐻≺;

(iii) if ̃︀𝑝1 ≤ 𝛼⋆ and ̃︀𝑝2 ≤ 𝛼⋆, then accept 𝐻cr.

The described procedures can be utilized with any suit-
able test statistic which takes positives values under dom-
inance and equals zero when the survival functions are
identical. Similar procedures can be used in the case of
two independent samples; the only difference will be in
the generation of random permutations of the data vector
(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚).

Similarly to Bennett (2013), the testing problem in-
volves four hypotheses, one of which is the null hypoth-
esis. Still, this problem has much in common with stan-
dard hypothesis testing. The critical values (respectively,
the marginal 𝑝-values) are obtained assuming the null hy-
pothesis is true. Thus, retaining the null hypothesis does
not mean that we have proved that there is no difference
between the survival functions; it only means that the data
do not provide enough evidence against 𝐻0.

There can be some borderline cases when the test statis-
tic is close to the border of the decision region (respec-
tively, a marginal 𝑝-value is close to one of the thresholds
𝛼 and 𝛼⋆). For example, if min{̃︀𝑝1, ̃︀𝑝2} is slightly below
𝛼, the evidence against 𝐻0 is not very strong, but the
smaller the value of min{̃︀𝑝1, ̃︀𝑝2}, the greater the statistical
incompatibility of the data with 𝐻0 (cf. Wasserstein &
Lazar, 2016). Also, if ̃︀𝑝1 ≤ 𝛼 and ̃︀𝑝2 is near the threshold
𝛼⋆, then the null hypothesis is rejected, but the support
for 𝐻≻ over 𝐻cr (or vice versa) is not strong. The case
when ̃︀𝑝2 ≤ 𝛼 and ̃︀𝑝1 is near 𝛼⋆ is similar. In practice,
it is recommended not only to report whether a certain
hypothesis is accepted/retained, but to provide also the
marginal 𝑝-values ̃︀𝑝1, ̃︀𝑝2 and the thresholds 𝛼, 𝛼⋆.

Because the considered tests involve four hypotheses,
the possible errors are more complicated compared to clas-
sical hypothesis testing where there are only two hypothe-
ses. With regard to making a wrong decision, two events
are of main interest:

(a) false detection of dominance: accepting the hypoth-
esis 𝐻≻ when it is not true;

(b) non-detection of dominance: not accepting the hy-
pothesis 𝐻≻ when it is true.

In classical hypothesis testing (e.g., testing 𝐻0 against
𝐻≻), a false detection may happen only if we accept 𝐻≻
when 𝐻0 is true. In a test with four hypotheses, a false
detection may happen in three different ways (there are
three other hypotheses). Let FDP be the probability of
a false detection of dominance (𝐻≻) and let NDP be the
probability of a non-detection of dominance (𝐻≻). These
probabilities can be expressed as follows:

FDP = P (accept 𝐻≻ |𝐻0) + P (accept 𝐻≻ |𝐻cr)

+ P (accept 𝐻≻ |𝐻≺),

NDP = P (do not accept 𝐻≻ |𝐻≻).

The power to detect dominance (𝐻≻) is defined as
P (accept 𝐻≻ |𝐻≻) = 1−NDP. Note that we consider the
probability of a false detection (respectively, non-detection)
of either 𝐻≻ or 𝐻≺, depending on what we are interested
in.

In a testing problem involving just a null hypothesis
(the hypothesis of no difference) and an alternative hy-
pothesis (the hypothesis of interest), the event of wrongly
accepting the alternative hypothesis is called Type I er-
ror, while the event of not accepting the alternative when
it is true is called Type II error. In our context, if 𝐻≻
is the hypothesis of interest, false detection of 𝐻≻ and
non-detection of 𝐻≻ can be viewed as analogues of Type
I error and Type II error, respectively. As usual, we want
to have a test such that the probability of a false detec-
tion is small. From the decision rule we can deduce that
P (accept 𝐻≻ |𝐻0) ≤ 𝛼. The probabilities
P (accept 𝐻≻ |𝐻cr) and P (accept 𝐻≻ |𝐻≺) are hard to
assess theoretically and they will be explored in our simu-
lation study (Section 3).

3. Simulation study

3.1. Setup

In order to investigate the different types of wrong de-
cisions and the power to detect dominance, we conducted
simulations under 𝐻0, 𝐻cr, and 𝐻≺, with sample sizes
𝑛 = 50, 100, 200, and 500.

Let us denote:

𝒩 (𝜇, 𝜎) normal distribution with mean 𝜇 and standard
deviation 𝜎;

LN(𝜇, 𝜎) lognormal distribution with parameters 𝜇 and 𝜎
such that 𝑋 ∼ LN(𝜇, 𝜎) ⇐⇒ log(𝑋) ∼ 𝒩 (𝜇, 𝜎);

La(𝜇, 𝜎) Laplace distribution with mean 𝜇 and standard
deviation 𝜎;

Gu(𝜇, 𝜎) Gumbel distribution with location parameter 𝜇
and scale parameter 𝜎.

Also, let 𝜇 = (𝜇1, 𝜇2), Σ =

(︂
𝜎2
1 𝜌 𝜎1𝜎2

𝜌 𝜎1𝜎2 𝜎2
2

)︂
.

We simulated data from the following models:

(A) Bivariate normal distribution with mean vector 𝜇
and covariance matrix Σ, (𝑋,𝑌 ) ∼ 𝒩2(𝜇,Σ). The
R package MASS was used (see Venables & Ripley,
2002).

(B) Bivariate lognormal distribution: (𝑋,𝑌 ) ∼ LN2(𝜇,Σ)
⇐⇒ (log𝑋, log 𝑌 ) ∼ 𝒩2(𝜇,Σ). The R package MASS

(Venables & Ripley, 2002) was used for generating
(log𝑋, log 𝑌 ).

(C) Bivariate Laplace distribution with mean vector 𝜇
and covariance matrix Σ (see, e.g., Kotz et al., 2001).
The R package LaplacesDemon was used (see Statis-
ticat LLC, 2018).
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Figure 2: Survival curves: first row – normal distribution, second row – lognormal distribution, third row – Laplace distribution, fourth row
– Gumbel distribution.
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(D) Bivariate Gumbel distribution with location param-
eters 𝜇1, 𝜇2, scale parameters 𝜎1, 𝜎2, and correlation
𝜌, based on the so-called logistic model (see Tawn,
1988, p. 401). The R package evd was used (see
Stephenson, 2002).

The following will be of use:

∙ If 𝑋 ∼ 𝒩 (𝜇1, 𝜎), 𝑌 ∼ 𝒩 (𝜇2, 𝜎) and 𝜇2 > 𝜇1, then
𝑌 ≻ 𝑋.

∙ If 𝑋 ∼ LN(𝜇1, 𝜎), 𝑌 ∼ LN(𝜇2, 𝜎) and 𝜇2 > 𝜇1, then
𝑌 ≻ 𝑋.

∙ If 𝑋 ∼ La(𝜇1, 𝜎), 𝑌 ∼ La(𝜇2, 𝜎) and 𝜇2 > 𝜇1, then
𝑌 ≻ 𝑋.

∙ If 𝑋 ∼ Gu(𝜇1, 𝜎), 𝑌 ∼ Gu(𝜇2, 𝜎) and 𝜇2 > 𝜇1, then
𝑌 ≻ 𝑋.

Figure 2 illustrates various pairs of survival functions
under some of the settings used in the simulations. All
computations were performed with R (see R Core Team,
2018). The R code can be obtained from the first author
upon request. The results in this section are based on
3000 simulated datasets under each setting; the number of
generated random permutations for each dataset is 𝑅 =
5000, and 𝛼 = 0.05. CvM stands for Cramér–von Mises
and KS stands for Kolmogorov–Smirnov.

3.2. Error probabilities against 𝛼⋆

The value of 𝛼⋆ controls the acceptance of 𝐻≻, 𝐻≺,
and 𝐻cr. Thus, it affects the probability of a non-detection
of dominance (NDP) and the probability of a false detec-
tion of dominance given that the truth is crossing survival
curves (FDP2). In order to find a reasonable value of 𝛼⋆,
we examined NDP and FDP2 using different values of 𝛼⋆.
We conducted simulations for 𝑛 = 100 with the settings
specified below:

(a) 𝐻≺ : bivariate normal with 𝜌 = 0.8, 𝜇1 = 0, 𝜎1 =
1, 𝜇2 = 0.25, 𝜎2 = 1;

𝐻cr : bivariate normal with 𝜌 = 0.8, 𝜇1 = 0, 𝜎1 =
1, 𝜇2 = 0.4, 𝜎2 = 1.5;

(b) 𝐻≺ : bivariate lognormal with 𝜌 = 0.8, 𝜇1 = 0, 𝜎1 =
0.6, 𝜇2 = 0.15, 𝜎2 = 0.6;

𝐻cr : bivariate lognormal with 𝜌 = 0.8, 𝜇1 = 0, 𝜎1 =
1, 𝜇2 = 0.3, 𝜎2 = 0.6.

The results with the Cramér–von Mises statistics are pre-
sented in Figure 3. We see that as 𝛼⋆ gets larger, FDP2

decreases, while NDP increases. Different values of 𝛼⋆

can be chosen depending on how conservative one wants
to be. We decide to take 𝛼⋆ = 0.96 as it gives some bal-
ance between the two errors. For the Kolmogorov–Smirnov
statistics we also take 𝛼⋆ = 0.96 based on similar reason-
ing. This value of 𝛼⋆ is used throughout the remainder of
the paper.

3.3. False detection of dominance

We first look at the probability of a false detection of
dominance when the truth is 𝐻0. Simulation results are
shown in Table 1. The probability to wrongly accept 𝐻≺
is approximately the same as the probability to wrongly
accept 𝐻≻ and both are not greater than 𝛼/2 = 0.025.
Analogous simulations with the lognormal, the Laplace,
and the Gumbel distributions gave similar results (not pre-
sented here).

To investigate the false detection of dominance when
the truth is 𝐻cr, we performed simulations under the set-
tings illustrated in Figure 2, second and third columns.
The results are presented in Table 2 and Figure 4. We
see that as the sample size increases, the probability of
a false detection approaches zero and the probability to
detect crossings approaches one. For smaller sample sizes
(𝑛 = 50, 100) the probability to detect crossings is over-
all higher with the Cramér–von Mises statistics, while for
large sample sizes (𝑛 = 200, 500) the two tests have quite
similar performance (see Table 2).

With regard to the probability to accept 𝐻≻ given 𝐻≺,
in our simulations under 𝐻≺ (Section 3.4) the hypothesis
of dominance in the opposite direction (𝐻≻) was never ac-
cepted. This type of false detection may happen for small
𝑛 when the two survival curves are close to one another;
yet, under such scenarios the tests are not expected to be
powerful.

To sum up, under the settings of our study, the results
indicate that the total probability of a false detection of
dominance in a certain direction is less than 𝛼 for large
sample sizes.

3.4. Power to detect dominance

Power curves for 𝑛 = 100 are illustrated in Figure 5.
The power to detect dominance is calculated for a grid of
values of 𝛿 = 𝜇2 − 𝜇1, under the following settings, where
𝜎1 = 𝜎2 = 𝜎:

(a) Bivariate normal with 𝜇1 = 0, 𝜎 = 1;

(b) Bivariate lognormal with 𝜇1 = 0, 𝜎 = 0.6;

(c) Bivariate Laplace with 𝜇1 = 0, 𝜎 = 1;

(d) Bivariate Gumbel with 𝜇1 = 1, 𝜎 = 5.

The test with Cramér–von Mises statistics displays over-
all better power compared to the test with Kolmogorov–
Smirnov statistics (cf. Schmid & Trede, 1995). However,
when the correlation is low, the differences in power are
smaller and in the cases of the Laplace and the Gumbel
distributions, the Kolmogorov–Smirnov test is slightly bet-
ter.

Simulation results showing the power to accept a given
hypothesis of dominance for different sample sizes are de-
picted in Figure 6. The settings are as follows: 𝜌 = 0.5,
𝜇1 and 𝜎 are as above, and for the normal 𝜇2 = 0.35, for
the lognormal 𝜇2 = 0.2, for the Laplace 𝜇2 = 0.35, for the
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Table 1: Simulation results with bivariate normal distribution, true hypothesis 𝐻0

𝜌 Decision 𝑛 = 50 𝑛 = 100 𝑛 = 200 𝑛 = 500

CvM KS CvM KS CvM KS CvM KS

0.8 Retain 𝐻0 0.905 0.933 0.894 0.925 0.892 0.911 0.898 0.915
Accept 𝐻≻ 0.014 0.004 0.021 0.008 0.019 0.009 0.022 0.010
Accept 𝐻≺ 0.014 0.008 0.020 0.008 0.021 0.009 0.025 0.008
Accept 𝐻cr 0.066 0.055 0.066 0.059 0.068 0.071 0.055 0.067

0.2 Retain 𝐻0 0.907 0.922 0.899 0.918 0.898 0.923 0.915 0.918
Accept 𝐻≻ 0.019 0.011 0.019 0.013 0.022 0.015 0.018 0.012
Accept 𝐻≺ 0.019 0.012 0.022 0.016 0.022 0.014 0.014 0.011
Accept 𝐻cr 0.056 0.055 0.060 0.053 0.058 0.048 0.052 0.059

Note. 𝜇1 = 𝜇2 = 0, 𝜎1 = 𝜎2 = 1. The table reports the empirical probabilities of
making each of the four decisions.
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Figure 3: Error probabilities against 𝛼⋆. Panel (a) for normal dis-
tribution, panel (b) for lognormal distribution. Solid curves denote
FDP2, dashed curves denote NDP. 𝜌 = 0.8, 𝑛 = 100.

Gumbel 𝜇2 = 3. The power increases from 0.40–0.55 for
𝑛 = 50 to approximately one for 𝑛 = 500.

Further simulations concerning the power to detect dom-
inance are reported in Table 3. In Setup 1 (the upper half
of the table), the parameter 𝜇2 is chosen so that the power
with the Cramér–von Mises statistics is approximately 0.9.
In Setup 2 (the lower half of the table), the choice of pa-
rameters allows comparing the power for high and low cor-
relation. As observed before, the Cramér–von Mises statis-
tics lead to better power than the Kolmogorov–Smirnov
statistics. This is more noticeable for higher values of the
correlation. Overall, it is easier to detect dominance when
the correlation between 𝑋 and 𝑌 is higher.

Because the Kolmogorov–Smirnov statistics are based
on maximum differences and the Cramér–von Mises statis-
tics are based on average differences, the former may be
more powerful when the differences are large only in a
small part of the support of the survival functions. In
order to illustrate this, we conducted simulations with bi-
variate normal mixture:

𝑋 = 𝐵 𝑈1 + (1 −𝐵)𝑉1,

𝑌 = 𝐵 𝑈2 + (1 −𝐵)𝑉2,

where 𝐵 ∼ Bernoulli(0.8), (𝑈1, 𝑈2) is bivariate normal
with (𝜇1, 𝜇2) = (0, 0.1), (𝜎1, 𝜎2) = (1, 1), 𝜌 = 0, (𝑉1, 𝑉2) is
bivariate normal with (𝜇1, 𝜇2) = (4, 5), (𝜎1, 𝜎2) = (0.4, 0.4),
𝜌 = 0. Thus, the correlation between 𝑋 and 𝑌 is approxi-
mately 0.8. In this setting, the difference between the two
survival functions is more pronounced in the tail (see Fig-
ure 7). The simulations with 𝑛 = 200 show that the power
of the Kolmogorov–Smirnov test is higher compared to the
Cramér–von Mises test (0.378 vs. 0.324).

4. Application

The procedures developed above were applied to data
from an experiment conducted in Stockholm. In this ex-
periment, respondents gave answers to a question about
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Table 2: Simulation results, true hypothesis 𝐻cr

Setting Decision 𝑛 = 50 𝑛 = 100 𝑛 = 200 𝑛 = 500

CvM KS CvM KS CvM KS CvM KS

Normal distribution
(a2) Retain 𝐻0 0.046 0.105 0.001 0.002 0.000 0.000 0.000 0.000

Accept 𝐻≻ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻≺ 0.145 0.175 0.069 0.080 0.017 0.014 0.001 0.000
Accept 𝐻cr 0.809 0.720 0.930 0.918 0.983 0.986 0.999 1.000

(a3) Retain 𝐻0 0.134 0.202 0.011 0.014 0.000 0.000 0.000 0.000
Accept 𝐻≻ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻≺ 0.070 0.084 0.018 0.024 0.002 0.001 0.000 0.000
Accept 𝐻cr 0.796 0.714 0.971 0.962 0.998 0.999 1.000 1.000

Lognormal distribution
(b2) Retain 𝐻0 0.289 0.243 0.040 0.019 0.000 0.000 0.000 0.000

Accept 𝐻≻ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻≺ 0.003 0.005 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻cr 0.707 0.752 0.960 0.981 1.000 1.000 1.000 1.000

(b3) Retain 𝐻0 0.013 0.027 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻≻ 0.085 0.126 0.031 0.036 0.003 0.002 0.000 0.000
Accept 𝐻≺ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻cr 0.902 0.847 0.969 0.964 0.997 0.998 1.000 1.000

Laplace distribution
(c2) Retain 𝐻0 0.268 0.384 0.056 0.097 0.000 0.003 0.000 0.000

Accept 𝐻≻ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻≺ 0.103 0.119 0.073 0.093 0.025 0.021 0.001 0.001
Accept 𝐻cr 0.630 0.497 0.871 0.810 0.975 0.976 0.999 0.999

(c3) Retain 𝐻0 0.277 0.360 0.054 0.072 0.000 0.001 0.000 0.000
Accept 𝐻≻ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻≺ 0.065 0.085 0.028 0.039 0.004 0.004 0.000 0.000
Accept 𝐻cr 0.659 0.555 0.918 0.888 0.996 0.995 1.000 1.000

Gumbel distribution
(d2) Retain 𝐻0 0.679 0.777 0.461 0.577 0.168 0.231 0.002 0.003

Accept 𝐻≻ 0.091 0.060 0.088 0.060 0.060 0.043 0.006 0.005
Accept 𝐻≺ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻cr 0.230 0.162 0.451 0.363 0.772 0.725 0.992 0.992

(d3) Retain 𝐻0 0.350 0.464 0.111 0.153 0.006 0.009 0.000 0.000
Accept 𝐻≻ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Accept 𝐻≺ 0.137 0.144 0.112 0.133 0.050 0.056 0.007 0.008
Accept 𝐻cr 0.514 0.391 0.777 0.714 0.943 0.935 0.993 0.992

Note. The table reports the empirical probabilities of making each of the four decisions.
The results are under the settings depicted in Figure 2 (see the panel titles) with 𝜌 = 0.8.

8



Table 3: Power under 𝐻≺

𝑛 Normal Lognormal

𝜇2 𝜌 CvM KS 𝜇2 𝜌 CvM KS

Setup 1
50 0.35 0.8 0.890 0.726 0.21 0.8 0.887 0.711
50 0.60 0.5 0.913 0.864 0.35 0.5 0.903 0.851
50 0.75 0.2 0.900 0.900 0.44 0.2 0.892 0.888

100 0.25 0.8 0.897 0.743 0.15 0.8 0.902 0.747
100 0.40 0.5 0.895 0.826 0.25 0.5 0.906 0.852
100 0.50 0.2 0.885 0.877 0.32 0.2 0.908 0.903

200 0.18 0.8 0.913 0.753 0.11 0.8 0.931 0.785
200 0.28 0.5 0.910 0.835 0.17 0.5 0.912 0.840
200 0.38 0.2 0.921 0.902 0.22 0.2 0.906 0.887

500 0.11 0.8 0.902 0.727 0.07 0.8 0.938 0.789
500 0.18 0.5 0.919 0.849 0.11 0.5 0.923 0.857
500 0.22 0.2 0.894 0.851 0.14 0.2 0.914 0.880

Setup 2
50 0.60 0.8 0.997 0.994 0.35 0.8 0.993 0.989
50 0.60 0.2 0.784 0.731 0.35 0.2 0.763 0.727

100 0.40 0.8 0.996 0.989 0.25 0.8 0.996 0.992
100 0.40 0.2 0.754 0.712 0.25 0.2 0.771 0.747

200 0.28 0.8 0.998 0.985 0.17 0.8 0.997 0.983
200 0.28 0.2 0.749 0.695 0.17 0.2 0.743 0.695

500 0.18 0.8 0.999 0.988 0.11 0.8 0.998 0.990
500 0.18 0.2 0.761 0.697 0.11 0.2 0.774 0.706

Note. Normal: 𝜇1 = 0, 𝜎1 = 𝜎2 = 1. Lognormal: 𝜇1 = 0, 𝜎1 =
𝜎2 = 0.6.
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Figure 4: Probability of a false detection of dominance when the
truth is 𝐻cr. Results for different sample sizes under the settings
depicted in Figure 2 (second column) with 𝜌 = 0.8.

the willingness to pay for an improved residential sound
environment. Each participant was requested to answer
the question by means of: (i) a self-selected point (SSP),
i.e., the amount in Swedish kronor he/she finds reasonable
to pay per month for the improvement, and (ii) a self-
selected interval (SSI), i.e., the lowest and highest amounts
he/she finds reasonable to pay. Allowing interval answers
accounts for the fact that the individual might not know
exactly how much he/she would be willing to pay for a
given environmental improvement. The purpose of the ex-
periment was twofold: (i) to study whether there is a con-
sistency between SSP and SSI, and (ii) to study whether
the answers exhibited an expected dose-response relation-
ship with the degree of noise-exposure reduction.

The scenario was a planned traffic noise reduction that
would improve the sound environment in an outdoor liv-
ing space (e.g., a balcony). The participants of the ex-
periment were seated in a sound laboratory and listened
to recordings of outdoor sound environments. Their task
was to decide how much they would be willing to pay for
a noise reduction that would change a given sound en-
vironment with road-traffic noise (quiet-plus-noisy) to an
environment without the road traffic noise (quiet). The
quiet environment was a recording in a quiet area with
no audible noise sources and an average sound pressure
level of 45 dB(A). The quiet-plus-noisy environment was
a mix of the quiet environment with a recording of distant
road-traffic noise. Five scenarios were creates as follows:
first, the original road-traffic noise was set to five differ-
ent levels: 40, 45, 50, 55, and 60 dB(A); then, each of
these was mixed with the quiet environment. Thus, five
quiet-plus-noisy environments were obtained, with aver-
age sound pressure levels of 46, 48, 51, 55, and 60 dB(A),
respectively. Hereafter, the five quiet versus quiet-plus-
noisy environments are denoted scenario 1, 2, 3, 4, and 5,
corresponding to the rank order from smallest to largest
noise reduction. In addition to these five scenarios (tar-
gets), the experiment involved 26 other quiet and quiet-
plus-noisy scenarios (fillers) created from selected outdoor
recordings. These were included to mask the experiment’s
focus on the five scenarios with a systematically increasing
noise level.

Each participant was exposed to the 31 environments
four times (at four separate sessions); at each session the
environments were presented in a random order. The first
two sessions were performed on a different day from the
other two sessions, where the two days were separated by
at least a week. Point answers were given on one day and
interval answers on the other day, with the order of answer
type counterbalanced across participants, i.e., half of the
participants gave point answers on the first day and half
of the participants gave point answers on the second day.
The dataset contains responses from 60 participants that
conducted all four sessions (40 females, 20 males, mean age
29 years). The participants were recruited among students
from universities in the Stockholm area.

In each trial of the experiment, the participant could
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Figure 5: Power as a function of 𝛿 = 𝜇2 − 𝜇1, 𝑛 = 100.
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Figure 6: Power for different sample sizes, 𝜌 = 0.5.

switch between listening to the quiet and the quiet-plus-
noisy environments as many times as they liked till they
were ready to give an answer. The sounds were presented
in a sound laboratory using an ambisonic system with 25
loudspeakers to assure a highly realistic and immersive
sound experience. There were no visual stimuli; the par-
ticipants were asked to imagine that the reproduced sound
environment was heard while seated in an outdoor living
space at home.

The dataset includes the following variables:

∙ pt1 is the point answer at the first SSP session.

∙ pt2 is the point answer at the second SSP session.

∙ low1 and upp1 are respectively the lower bound and
the upper bound of the interval answered at the first
SSI session.

∙ low2 and upp2 are respectively the lower bound and
the upper bound of the interval answered at the sec-
ond SSI session.

∙ mid1 is the midpoint of the interval answered at the
first SSI session.

∙ mid2 is the midpoint of the interval answered at the
second SSI session.

Each variable was observed under five scenarios and
these are denoted, e.g., pt1[1], . . . , pt1[5]. One partici-
pant was excluded because of extreme answers: in most
cases he/she responded with amounts greater than 4000,
while the other participants responded with amounts not
greater than 2000. Moreover, in some cases, his/her re-
sponses were with a negative dose-response trend, sug-
gesting that he/she had probably misunderstood the in-
structions. Thus, the analysis is based on 59 participants.
Results based on all 60 participants are included in an
online supplementary material to this paper.

We focused on comparisons at the distribution level,
rather than comparisons at the individual level. Therefore,
we utilized the proposed tests for stochastic dominance.
The reported results are based on 𝛼 = 0.05, 𝛼⋆ = 0.96,
and 𝑅 = 10000.

To evaluate consistency between SSP and SSI, we ini-
tially plotted the median SSP and the median lower and
upper bounds of SSI versus the noise reduction levels (sce-
narios), see Figure 8. For each level of noise reduction,
the median SSP falls between the median lower and upper
bounds, i.e., with respect to medians there is a consis-
tency between the two formats of answers. Further, if we
compare not just the medians but the survival functions,
consistency between SSP and SSI implies that the survival
function of SSP lies between the survival functions of the
lower and the upper bounds of SSI. In most cases, the per-
formed dominance tests confirm this (see Table 4). In a
few cases, however, the conclusion of the test is that the
survival functions cross one another, i.e., in these cases
there is an inconsistency between SSP and SSI.
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We expect that the respondents are willing to pay more
for higher levels of noise reduction. Thus, the survival
function of willingness to pay under scenario 2 should dom-
inate the survival function under scenario 1. Similarly,
the survival function under scenario 3 should dominate
the survival function under scenario 2, and so on. We
performed tests for stochastic dominance based on the ob-
served SSP and the midpoints of SSI (see Table 5). The
corresponding empirical survival functions are illustrated
in Figure 9 (there is one plot for each pair of variables that
are tested for dominance). In most cases, the willingness
to pay for the higher level of noise reduction dominates the
willingness to pay for the lower level. There are a few cases
where the conclusion of the test is that the survival func-
tions cross one another, e.g., mid1[2] and mid1[3]. How-
ever, additional tests show that mid1[3] dominates mid1[1]
and mid1[4] dominates mid1[2], implying that in this case
there is a weaker dose-response relationship. Similarly, we
got that pt1[1] is dominated by pt1[3], which is dominated
by pt1[5].

In summary, for the most part our stochastic domi-
nance analysis suggests response consistency, with SSP
being between the lower and upper bounds of SSI, and
a monotonic increase in willingness to pay with amount of
noise reduction.

5. Concluding remarks

We suggested permutation-based paired-sample tests
for stochastic dominance that involve four hypotheses. Our
simulations indicated good power properties and control of
false-detection errors. Both the probability to detect domi-
nance and the probability to detect crossings approach one
as the sample size increases, implying that the probabil-
ity to retain a false null hypothesis tends to zero. The
Cramér–von Mises statistics provided overall better power
than the commonly used Kolmogorov–Smirnov statistics.

It would be of interest in future research to develop anal-
ogous testing procedures for two independent samples as
well as for the case of more than two samples (more than
two repeated measurements). The proposed testing pro-
cedures rely on less assumptions than the existing asymp-
totic tests for two independent samples, which assume,
e.g., continuous survival functions (cf. Bennett, 2013; Don-
ald & Hsu, 2016). With even more assumptions, e.g.,
𝑆𝑋(𝑡) = 𝑆𝑌 (𝑡 − ∆) for some ∆, the problem can be sub-
stantially simplified; however, we consider a more general
problem.

The empirical example presented here is, to the best
of our knowledge, the first use of self-selected intervals
in a psychophysical experiment involving a large set of
stimuli tested on a sample of participants. The results of
our stochastic dominance analysis demonstrated a large
degree of group-level consistency in how participants used
this question format. This motivates further development
of question formats based on intervals as a complement to
conventional approaches based on point assessments.
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Table 4: Results: comparison of self-selected points and self-selected intervals

𝑋 𝑌 CvM KS

Decision ̃︀𝑝1 ̃︀𝑝2 Decision ̃︀𝑝1 ̃︀𝑝2
low1[1] pt1[1] Retain 𝐻0 1.0000 0.0737 Retain 𝐻0 1.0000 0.2548
pt1[1] upp1[1] Accept 𝐻≺ 1.0000 0.0004 Accept 𝐻≺ 1.0000 0.0022
low1[2] pt1[2] Accept 𝐻≺ 1.0000 0.0437 Accept 𝐻≺ 1.0000 0.0445
pt1[2] upp1[2] Accept 𝐻≺ 1.0000 0.0004 Accept 𝐻≺ 1.0000 0.0014
low1[3] pt1[3] Accept 𝐻≺ 1.0000 0.0032 Accept 𝐻≺ 1.0000 0.0033
pt1[3] upp1[3] Accept 𝐻cr 0.9461 0.0009 Accept 𝐻cr 0.9594 0.0024
low1[4] pt1[4] Accept 𝐻≺ 1.0000 0.0075 Accept 𝐻≺ 1.0000 0.0066
pt1[4] upp1[4] Accept 𝐻≺ 0.9873 0.0000 Accept 𝐻≺ 0.9873 0.0001
low1[5] pt1[5] Accept 𝐻≺ 0.9614 0.0030 Accept 𝐻≺ 0.9745 0.0131
pt1[5] upp1[5] Accept 𝐻cr 0.9050 0.0001 Accept 𝐻≺ 0.9723 0.0108
low2[1] pt2[1] Retain 𝐻0 1.0000 0.1263 Retain 𝐻0 1.0000 0.1196
pt2[1] upp2[1] Accept 𝐻≺ 1.0000 0.0001 Accept 𝐻≺ 1.0000 0.0038
low2[2] pt2[2] Accept 𝐻≺ 1.0000 0.0285 Accept 𝐻≺ 1.0000 0.0372
pt2[2] upp2[2] Accept 𝐻cr 0.7800 0.0000 Accept 𝐻cr 0.7783 0.0000
low2[3] pt2[3] Accept 𝐻≺ 1.0000 0.0007 Accept 𝐻≺ 1.0000 0.0279
pt2[3] upp2[3] Accept 𝐻≺ 0.9665 0.0054 Accept 𝐻≺ 0.9821 0.0192
low2[4] pt2[4] Accept 𝐻≺ 1.0000 0.0016 Accept 𝐻≺ 1.0000 0.0017
pt2[4] upp2[4] Accept 𝐻cr 0.9239 0.0000 Accept 𝐻≺ 0.9921 0.0094
low2[5] pt2[5] Accept 𝐻≺ 1.0000 0.0000 Accept 𝐻≺ 1.0000 0.0085
pt2[5] upp2[5] Accept 𝐻≺ 0.9972 0.0000 Accept 𝐻≺ 0.9989 0.0092

Table 5: Results: comparison of willingness to pay for different levels of noise reduction

𝑋 𝑌 CvM KS

Decision ̃︀𝑝1 ̃︀𝑝2 Decision ̃︀𝑝1 ̃︀𝑝2
mid1[1] mid1[2] Accept 𝐻≺ 1.0000 0.0005 Accept 𝐻≺ 1.0000 0.0050
mid1[2] mid1[3] Accept 𝐻cr 0.9454 0.0000 Accept 𝐻cr 0.9561 0.0061
mid1[3] mid1[4] Accept 𝐻≺ 1.0000 0.0000 Accept 𝐻≺ 1.0000 0.0001
mid1[4] mid1[5] Accept 𝐻≺ 0.9649 0.0009 Accept 𝐻≺ 0.9975 0.0241
mid2[1] mid2[2] Accept 𝐻≺ 1.0000 0.0000 Accept 𝐻≺ 1.0000 0.0006
mid2[2] mid2[3] Accept 𝐻≺ 0.9768 0.0000 Accept 𝐻≺ 0.9806 0.0002
mid2[3] mid2[4] Accept 𝐻≺ 1.0000 0.0000 Accept 𝐻≺ 1.0000 0.0021
mid2[4] mid2[5] Accept 𝐻≺ 0.9902 0.0186 Retain 𝐻0 0.9993 0.1941
pt1[1] pt1[2] Accept 𝐻cr 0.8702 0.0007 Accept 𝐻cr 0.8364 0.0076
pt1[2] pt1[3] Accept 𝐻≺ 1.0000 0.0000 Accept 𝐻≺ 1.0000 0.0000
pt1[3] pt1[4] Accept 𝐻≺ 1.0000 0.0010 Accept 𝐻≺ 1.0000 0.0022
pt1[4] pt1[5] Accept 𝐻cr 0.8332 0.0001 Accept 𝐻cr 0.7775 0.0000
pt2[1] pt2[2] Accept 𝐻≺ 1.0000 0.0005 Accept 𝐻≺ 1.0000 0.0015
pt2[2] pt2[3] Accept 𝐻≺ 1.0000 0.0000 Accept 𝐻≺ 1.0000 0.0000
pt2[3] pt2[4] Accept 𝐻≺ 1.0000 0.0043 Accept 𝐻≺ 1.0000 0.0116
pt2[4] pt2[5] Accept 𝐻≺ 0.9972 0.0000 Accept 𝐻≺ 0.9972 0.0158
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