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Abstract

Research has recently demonstrated the use of multiple anchor tests and external covariates

to supplement or substitute for common anchor items when linking and equating with

nonequivalent groups. This study examines the conditions under which external covariates

improve linking and equating accuracy, with internal and external anchor tests of varying

lengths and groups of differing abilities. Pseudo forms of a state science test were equated

within a resampling study where sample size ranged from 1,000 to 10,000 examinees and

anchor tests ranged in length from 8 to 20 items, with reading and math scores included as

covariates. Frequency estimation linking with an anchor test and external covariate was

found to produce the most accurate results under the majority of conditions studied.

Practical applications of linking with anchor tests and covariates are discussed.

Keywords: equating, linking, simulation
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Linking With External Covariates: Examining Accuracy by Anchor Type, Test Length,

Ability Difference, and Sample Size

A variety of methods are available for equating scores from one form of a test to

another, so that the forms can be used interchangeably. In each method, differences in

form difficulty are used to determine the equivalence, or lack thereof, between test forms.

An equating method is effective when it accurately estimates the impact of form difficulty

differences on score distributions while controlling for any differences in the groups taking

each form and minimizing random and systematic errors. On the other hand, a method is

ineffective when error overwhelms an estimated form difficulty difference, or when

differences between groups are misestimated (von Davier, 2011).

Differences between the groups taking two test forms, X and Y , can confound

estimates of form difficulty differences and must be isolated using an appropriate equating

design. In single-group (SG) and equivalent-groups (EG) designs, samples are taken

directly from the target population T , and are either the same or are considered to be

randomly equivalent. In these designs, there are no confounding group effects. When

equating with samples from potentially nonequivalent populations, P and Q, differences

between the groups must be controlled for statistically. The nonequivalent-groups with

anchor test (NEAT) design includes a common anchor test V that is administered to both

groups, and scores on V are used to control for the difference between them. Although

equating with the SG and EG designs tends to be simpler, involving fewer estimates and

assumptions, the NEAT design is most often used in practice.

The objective in equating with nonequivalent groups is to statistically control for

group differences without substantially increasing standard error and bias. Research has

shown that equating with nonequivalent groups is improved when an anchor test is

designed as a miniature version of the total tests, similar to them in content and certain

statistical characteristics (e.g., Cook & Paterson, 1987; Klein & Jarjoura, 1985; Liu,

Sinharay, Holland, Curley, & Feigenbaum, 2011; Sinharay & Holland, 2007). Studies have
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also shown how equating with nonequivalent groups can be made more accurate when the

traditional anchor test is augmented by other relevant measures of ability, including

measures external to the test itself (e.g., Bränberg & Wiberg, 2011; Kim, Livingston, &

Lewis, 2011; Liou, Cheng, & Li, 2001; Livingston, Dorans, & Wright, 1990; Wiberg &

Bränberg, 2015). In these augmented equating methods it is assumed that equating error

can be reduced through the inclusion of additional variables.

Previous research on equating with multiple common variables has primarily explored

improvements in equating accuracy under two conditions: with and without one or more

anchor variables or external covariates. For example, Bränberg and Wiberg (2011) showed

that including information from covariates correlated with test scores, such as gender and

education level, can reduce linear equating error, relative to equating without such

information. Liou et al. (2001) used multiple imputation methods to reduce group

nonequivalence prior to equipercentile equating in an NEAT design; multiple imputation

using scores on another test as a surrogate variable produced results similar to NEAT

equating with an internal anchor. Moses, Deng, and Zhang (2011) showed how equating

with two anchor tests, one containing only multiple-choice items and the second containing

constructed-response items, led to reductions in standard error of equating differences

within the kernel equating framework, in comparison to equating with only the

multiple-choice anchor. Wiberg and Bränberg (2015) compared equating in an EG design

with equating under a NEAT design, a nonequivalent groups with covariate(s) (NEC)

design, and a combination of the two where both an anchor test and covariate(s) can be

used; standard errors were found to be smallest when all available variables, anchor and

covariates, were used in equating.

More recently, Wallin and Wiberg (2017) proposed incorporating covariates via

propensity scores within the kernel equating framework. Using data from Wiberg and

Bränberg (2015) with total test scores coming from the quantitative section of a large-scale

standardized test, standard errors were found to be lowest when equating in a NEC design
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with propensity scores based on course grades and verbal test scores, compared with

equating without anchor items. Sansivieri and Wiberg (2017) included covariates within an

item response theory framework. Results from observed-score equating based on real and

simulated data confirmed that standard errors were reduced when covariates were utilized

in addition to anchor tests, compared with equating under EG and NEAT designs without

information from covariates.

Studies on linking and equating with multiple common variables are limited in two

main ways. First, they have not fully assessed equating accuracy for equipercentile

methods in terms of overall error. A comprehensive evaluation of accuracy requires access

to true equating functions, which are not typically available (as noted by Wiberg &

Bränberg, 2015), and previous simulation and resampling studies have focused on small

sample equating methods (e.g., Bränberg & Wiberg, 2011; Kim et al., 2011). Second,

previous studies have yet to explore the different conditions under which linking and

equating with multiple common variables are most useful. This paper addresses these two

issues. Resampling studies, based on population data with known true equating functions,

are used to examine linking and equating accuracy under conditions of varying sample

sizes, examinee ability differences, and anchor test lengths, both with and without

additional external covariates. Results provide insight into the benefits of incorporating

external information into the linking process.

The term multivariate is used in this paper to denote equating methods that can

incorporate multiple common variables measured for all examinees in a nonequivalent

groups design. These variables may consist of one or more anchor tests along with external

covariates that may or may not be designed to assess the same content or constructs as the

total test. When the common variables come from instruments designed according to the

same framework and outline as the total test, the methods can be expected to produce

equating functions that generalize to the target population and that are invariant across

subpopulations. For example, this should be the case in Moses et al. (2011), where an
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anchor test was supplemented by scores on constructed-response items internal to the total

test. Otherwise, common variables are expected to produce linking functions with which

population invariance may not necessarily hold, as differences in subgroups on external

covariates may not reflect differences on the total test. For example, this may be the case

in Wiberg and Bränberg (2015), where supplemental information did not come directly

from the total test. The term equating is used here unless a distinction between linking and

equating is necessary.

Two equating methods, Tucker linear and frequency estimation equipercentile, are

available in multivariate form (see Angoff, 1984; Gulliksen, 1950). The multivariate

methods are generalizations of existing methods for NEAT equating with a single common

variable, typically an internal or external anchor test, and in the presence of a single

anchor they function the same (for details, see Albano, 2016a). The methods differ in their

complexity and statistical assumptions. Frequency estimation is expected to require large

samples (e.g., 1,000 or more) to produce accurate results. Including two or more additional

common variables will increase the sample size requirements of the method, especially

when these variables contain numerous score categories that can lead to sparser

distributions (Wiberg & Bränberg, 2015). Although the frequency estimation assumptions

are practically impossible to evaluate (Holland, Sinharay, von Davier, & Han, 2008),

studies have shown that, with a single anchor, frequency estimation produces more bias

than chained equipercentile when group differences are large (e.g., Powers & Kolen, 2014;

Wang, Lee, Brennan, & Kolen, 2008). With multiple common variables, these assumptions

may be even more difficult to support, yet multiple common variables may improve

equating accuracy in the presence of group differences, especially at large sample sizes.

Tucker and simplified versions of it are expected to outperform frequency estimation at

smaller sample sizes. However, because of their stronger assumptions, they are expected to

produce more bias at larger sample sizes, relative to frequency estimation, as is the case

with single-anchor equating.
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The main research question examined in this study is, how does equating accuracy

differ by method over variations in examinee population, sample size, anchor test length,

and anchor type? It is anticipated that the benefits of incorporating external covariates, in

terms of improved accuracy, will be most evident at smaller anchor test lengths, where

anchors are less reliable, less strongly related to total scores, and less able to control for

group nonequivalence. The benefits are also expected to be more evident for external

versus internal anchor tests. Equating over different sample sizes will then shed light on

the numbers of examinees needed to support the more complex estimation required by the

multivariate methods, especially frequency estimation. Furthermore, equating over

different subsets of a target population will shed light on how accuracy is impacted by

differences in group ability. These issues are examined by comparing multivariate methods

with EG and NEAT methods with a single common variable within two resampling studies,

where pseudo forms of a state science test are equated using internal and external science

anchors and linked using reading and math scores as additional external covariates.

Method

Data

The equating methods described above were compared within two resampling studies

using data from the 2013/2014 administration of an end-of-year state test. Scored item

responses were obtained in science, reading, and math for all general education eleventh

graders tested in the state (N = 20,308, after removing examinees with missing data). The

science and math tests contained 60 items each, and the reading test contained 50 items,

with each item worth one point. Table 1 contains descriptive statistics for each test.

Distributions were slightly negatively skewed, with some ceiling effects occurring at the top

of each score scale. Reading and math total scores correlated with science at 0.82 and 0.80,

respectively, in the full population T . Disattenuated correlations between science and

reading, and science and math were 0.90 and 0.86, respectively, with internal consistency
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reliabilities (coefficient alpha) of 0.91, 0.92, and 0.94 for science, reading, and math.

The full population of examinees was divided into two pseudo populations, P and Q.

Cumulative grade point average (GPA) was used as a population selection variable, with Q

consisting of a randomly selected 10,154 examinees having GPA below 3.8 and P consisting

of the remaining examinees with unrestricted GPA. As a result, Q had a mean total science

score about 3 points lower than P (38.79 compared with 41.88 out of 60). Descriptives for

P and Q are also contained in Table 1. Overall, score distributions were slightly less

negatively skewed in Q than in P . The correlations between science, reading, and math

total scores were slightly stronger in P than in T and Q.

Four pseudo test conditions with varying anchor test lengths were examined in the

resampling studies described below. These lengths included KV = 8, 12, 16, and 20 anchor

items (labeled V 8 to V 20). The shortest anchor test condition, with only 8 items,

represents what some testing programs may hope to achieve, given practical constraints on

test length and concerns around test security with the increased exposure of anchor items

across administrations (discussed by Fitzpatrick, 2008). The longest anchor condition, with

20 items, represents a more ideal length for the NEAT design (e.g., Angoff, 1984).

At each study replication, the science items were randomly assigned to test forms X,

Y , and V , while accounting for the science content domain of each item.1 At each

replication, 20 unique items for X and for Y were selected first, balancing by content

domain across forms. KV items were then selected for V . Given the uneven number of

items per content domain, V was similar but not always identical in content to X and Y .

With internal anchor items, the total test lengths were KX = KY = 20 + KV , depending on

the anchor condition. With external anchors, test lengths were always KX = KY = 20.

Note that other studies have used fixed pseudo tests to examine equating accuracy (e.g.,

Holland et al., 2008; Sinharay & Holland, 2007). The present study is unique in its use of

random sampling to select pseudo forms by replication, discussed further below.

Two preliminary analyses were conducted to examine: a) the linear relationships
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among the various pseudo tests, which were found to align with expectations and b)

invariance in the population linking and equating functions by gender, which was found to

be acceptable. See the Appendix for details.

Resampling Studies

Equating accuracy was examined here using resampling procedures that involved

repeated random sampling from T , P , and Q. Resampling allows for the simulation of

random variability and estimation of statistical precision without reliance on parametric

population models (Efron, 1981). Resampling was conducted under two separate studies,

each based on a different approach for sampling from T . In Study 1, random samples of

sizes N = 1,000, 2,000, 5,000, and 10,000 were drawn without replacement directly from T

at each replication. Study 1 approximated an EG design, where groups were expected to

be randomly equivalent, and the need for statistical control via anchor tests or covariates

would be minimized. In Study 2, population T was divided into P and Q as described

above, so that P scored roughly 3 out of 60 points higher on the full science test than Q.

As a result, Study 2 approximated a design with nonequivalent groups, where anchors and

covariates could lead to improvements in equating accuracy. Sample sizes in Study 2

matched those of Study 1.

As noted above, forms X, Y , and V were created via random sampling without

replacement at each replication of the studies. The unique items per form were always a

randomly selected 20, balanced by content, and the number of common items varied by

anchor length condition. This random sampling by item ensured that, overall, the pseudo

forms were fully representative of the content and statistical properties of the total test. At

a given replication, the forms may have differed in statistical characteristics, including

difficulty. However, overall, the need for equating is expected to have been minimized and

unintentional, as is ideally the case in practice. Averaging across replications then provides

a more comprehensive summary of equating accuracy than could be obtained using fixed
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pseudo forms which are less likely to represent all the complex relationships among items

(for a discussion of related issues, see Michaelides & Haertel, 2014).

Prior to conducting the resampling studies, another preliminary analysis examined

the expected form difficulty difference in advance by sampling pseudo forms X and Y , each

of length 20 items, 1,000 times from the distribution of 60 science item difficulties obtained

in T . Form difficulty was approximated by the sum of item difficulties. The mean form

difficulty difference was found to be 0.68 out of 20 points. The largest possible form

difficulty difference would be obtained when the easiest 20 items were assigned to one form,

e.g., X, and the most difficult to the other, Y . In this case, X would have a mean of 10.69

and Y would have a mean of 16.28, with the mean difference being 5.59 points out of 20.

Although such an extreme form difficulty difference would be rare in the resampling

studies, a constraint was added to the item selection process so that pseudo forms always

had difficulty differences of 2 points or less out of 20.

At each replication of the resampling studies, equating was performed under four

designs: (1) an EG equating design with no anchor or covariates, (2) a NEAT equating

design with only the science anchor, (3) a NEC linking design with only the reading test as

the common variable, and (4) a NEATC linking design with the science anchor

supplemented by the reading test. Additional designs incorporating math scores as a

second external covariate were also examined. Results were nearly equivalent with the

designs including reading scores, and are not reported here. As noted above, equatings

were conducted both with the science items in V as an internal anchor, contributing to the

total score, and as an external anchor. Note that in the EG design with an internal anchor,

X and Y contain common anchor scores but they are not used in equating. Such a design

would not be used in practice, and it is included here for completeness. In the EG design

with an external anchor, the external anchor is ignored. As a result, this condition

represents the typical EG design wherein X and Y contain only unique items and an

anchor test is not used.
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Under the EG design, identity, linear, equipercentile, and presmoothed equipercentile

equating were all performed. Under the NEAT, NEC, and NEATC designs, Tucker linear

and frequency estimation equipercentile equating with presmoothing were performed. In

the NEAT and NEC designs, chained equipercentile equating was also performed.

Loglinear presmoothing (Holland & Thayer, 2000) was performed prior to estimating all

equipercentile functions. Loglinear models increased in complexity, with terms for

preserving up to six moments for each univariate distribution (science total, science anchor,

reading, math), up to two additional moments for each bivariate distribution, up to two

moments for each trivariate distribution, and up to two moments for the full multivariate

distribution of all four variables. Less complex models were also fit, and the final model

chosen at a given replication was the one having the smallest AIC.2

Single-Group Criterion and Error

With the pseudo test forms differing by replication, there was no single true criterion

equating function. Instead, a criterion was obtained via SG equipercentile equating at each

replication, using all examinees in T for the given forms. Presmoothing for the criterion

equating always preserved the first six univariate moments in X and Y , and the first two

bivariate moments.

The crossing of four anchor test lengths with four sample sizes and two anchor types,

internal vs external, resulted in a total of 32 conditions per resampling study, with the

criterion equating and estimated linkings and equatings under the four designs conducted

at each replication. Smoothing, linking, and equating were performed using the equate

package (version 2.0-5; Albano, 2016b) in R (version 3.3.1; R Core Team, 2016).3

Equating accuracy and error are typically defined for a fixed criterion equating

function that specifies the true equated score for each raw score in a scale. In the

resampling studies, equating accuracy and error could not be defined in the usual way

(e.g., Kolen & Brennan, 2014, p. 248). With examinees and test forms both treated as
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random effects, and without multiple estimates of any single true equated score, there was

no way to partition total equating error into its systematic and random components.

Instead, an overall root mean square error was obtained at each replication r as

RMSEr =

√√√√ 1
K + 1

K∑
i=0

pri(êir − eir)2, (1)

where raw scores range from i = 0 to the number of items K, pri is a weight set to 1, êir is

an estimated equated score, and eir is the true equated score for raw score i at replication

r. Means, denoted MRMSE , were obtained for each condition and method by averaging

over the R = 1, 000 replications. Weighted means were also obtained for each condition and

method by setting pri to be the smoothed proportion of examinees in T at replication r

having raw X score i. Finally, mean errors for the internal anchor conditions were

multiplied by the corresponding rescaling constants 21/(KV + 21) so as to adjust for the

differing scale lengths and express the results in terms of a 21-point scale, like in the

external anchor conditions. In the interest of space, weighted means are not presented here

but can be made available upon request. Results differed only slightly for weighted and

unweighted mean error.

Summary

The resampling process utilized in Studies 1 and 2 can be summarized in the

following steps.

1. Select examinees by randomly sampling either N × 2 examinees from T , in Study 1,

or N examinees each from P and Q, in Study 2.

2. Build test forms by randomly sampling, from the 60 science items, 20 unique items

each for forms X and Y and KV common anchor items.

3. Subset the full population distribution for T across all 60 items based on the

examinees selected in step 1, and the subsets of items selected in step 2. Calculate
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total and anchor scores based on internal and external anchor tests.

4. Find the reading and math total scores for selected examinees, combine with science

total scores, and convert the resulting data sets into multivariate frequency

distributions for X and Y .

5. Fit to each multivariate distribution a series of nested loglinear models. Compare

model fit, select the final model, and apply it to obtain smoothed frequency

distributions for X and Y .

6. Estimate the different linking and equating functions, based on their corresponding

designs and with internal and external anchor tests, as described above.

7. Find the presmoothed equipercentile criterion equating function based on an SG

design that includes all examinees in T taking both X and Y , as determined in step 2.

8. Estimate error for each function based on the discrepancy between the estimates

obtained in step 6 and the criterion from step 7.

These eight steps were replicated 1,000 times for Studies 1 and 2. Results were then

summarized across replications for a given study, condition, and equating method using

mean error.

Results

Results based on MRMSE are presented first for Study 1 and then for Study 2.

Accuracy is summarized across all sample sizes and equating methods, with a focus on

anchor lengths V 8 and V 20, which represent the two extremes of the anchor conditions.4

As noted above, results are excluded for NEATC designs that included both reading and

math scores as external covariates, since they did not differ noticeably from results for the

NEATC design with reading scores and without math.
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Study 1: Resampling from T

Table 2 contains MRMSE for Study 1, with results for internal anchors in the top

half of the table and external anchor tests in the bottom half. Designs and methods are

shown in rows, with anchor lengths (V 8 and V 20) and then sample sizes (1,000, 2,000,

5,000, and 10,000) in columns. Note that results for a given column in Table 2, and given

columns in subsequent tables, are all based on the same 1,000 replications within the

respective resampling study. The smallest error within each column is bolded.

With the internal anchor test, the largest MRMSE was 0.50, for identity equating in

V 8, sample sizes 1,000 and 10,000. The smallest MRMSE was 0.08 for frequency

estimation equipercentile equating under the NEAT design in V 20, sample size 10,000.

Equipercentile equating always produced the smallest error under the EG design, except in

V 20, sample size 1,000, where error was smaller for identity equating. Comparing methods

within a given common variable design (NEAT, NEC, and NEATC), anchor condition, and

sample size, frequency estimation always produced the smallest error. For a given anchor

condition and sample size, comparing across designs, error was smallest in V 8, sample sizes

1,000 and 2,000 for frequency estimation under the NEATC design. In V 8, sample sizes

5,000 and 10,000, MRMSE was smallest for frequency estimation under both the NEAT

and NEATC designs. In V 20, error was smallest for frequency estimation under the NEAT

design, at all sample sizes.

Trends in MRMSE with the external anchor test were similar to those found with the

internal anchor. Identity equating again produced the largest MRMSE of 0.68 in V 8 at

sample sizes 1,000 and 10,000. Errors for identity were close to the estimated form difficulty

difference of 0.68 noted above. The smallest MRMSE was 0.08 for frequency estimation

linking under the NEATC design in V 20, sample size 10,000. Under the EG design, error

was always smallest for a given anchor condition and sample size for equipercentile

equating. Comparing methods within a given common variable design, anchor condition,

and sample size, error was again always smallest for frequency estimation. Finally, for a
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given anchor condition and sample size, comparing across designs, errors tended to be

similarly small for frequency estimation under the NEAT, NEC, and NEATC designs. In

some of these comparisons frequency estimation under the NEATC design was smallest.

Study 2: Resampling from P and Q

Table 3 contains MRMSE for Study 2, both internal and external anchors, and is

structured like the previous results tables. With the internal anchor test, the largest

MRMSE was 1.05, for linear equating in V 8, sample size 1,000. The smallest MRMSE was

0.13 for chained equipercentile equating under the NEC design in V 8, sample size 10,000.

Under the EG design, identity equating always produced smaller error than linear and

equipercentile. Under the NEAT design, chained equipercentile equating produced smaller

error than Tucker linear and frequency estimation, except in V 20, sample size 1,000 where

it was comparable with frequency estimation. Comparing across designs and methods for a

given anchor length and sample size, frequency estimation under the NEATC design

produced the smallest errors in V 8, sample sizes 1,000, 2,000, and 5,000. In V 20, sample

size 1,000, errors were similarly small for Tucker and frequency estimation under the

NEATC design. Errors in V 20, sample sizes 2,000 and 5,000 were smallest for chained

NEAT equating, and in V 20, sample size 10,000, they were similarly small for chained

NEAT and NEC equating.

With the external anchor test, MRMSE for identity equating again hovered around

the expected form difficulty difference of 0.68, as in Study 1. Under the NEAT design,

chained equipercentile again tended to produce smaller error than Tucker linear and

frequency estimation, with the only exception being in V 20, sample size 1,000. The

smallest MRMSE for a given anchor condition and sample size were nearly always

produced by frequency estimation under the NEATC design. The only exception was in

V 8, sample size 10,000, where chained NEC equating was similarly small. The smallest

MRMSE overall was 0.13 for frequency estimation linking under the NEATC design in
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V 20, sample size 10,000.

Discussion

Previous research has shown that a single anchor test can sometimes be insufficient

when equating with nonequivalent groups (Moses et al., 2011). Potentially problematic

situations include large form difficulty differences, large ability differences between groups,

and weak anchor tests. Whereas studies have demonstrated the use of equating with

multiple anchors and linking within NEC and NEATC designs, research has not addressed

the conditions under which these methods are expected to perform well. Furthermore,

simulation and resampling studies, wherein true equating functions are available, have been

limited to small sample methods (e.g., Bränberg & Wiberg, 2011; Kim et al., 2011). The

overall accuracy of equipercentile methods with multiple common variables has not been

thoroughly examined.

This study examined equating accuracy for observed-score linking and equating

methods that utilize no common variables (under the EG design), one common variable

(the NEAT and NEC designs), and multiple common variables (the NEATC design), over

conditions of varying sample size (1,000 through 10,000), anchor test length (V 8 to V 20),

anchor type (internal versus external), and student ability (population T in Study 1 versus

P and Q in Study 2). Resampling of items and examinees using population data from a

state testing program resulted in overall estimates of accuracy, via mean RMSE , for each

method by condition. Results are summarized here by study and discussed in terms of

practical applications and future research.

Study 1, with examinees sampled randomly from the full population T , resembled a

testing program wherein ability differences between groups taking forms X and Y are

expected to be small and random. In terms of mean error, equating was always more

accurate than not equating at all. Results showed that some form of equating was always

preferable to identity equating. In the absence of a common variable, equipercentile
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equating was always most accurate under the EG design. Furthermore, linking under the

NEC design was always more accurate than equating without a common variable under the

EG design (confirming Wiberg & Bränberg, 2015). Frequency estimation was nearly always

the most accurate method, with the smallest errors tending to come from the NEATC

design (similar to Wiberg & Bränberg, 2015, who used kernel methods).

Although mean error was minimized under the NEAT, NEC, and NEATC designs in

Study 1, the gains were relatively small when compared with results from the EG design.

For example, the smallest MRMSE in V 8 was 0.09 for both anchor types, whereas the

smallest MRMSE under the EG design was 0.11 for the internal anchor and 0.10 for the

external anchor (Table 2). In V 20, the smallest error overall was similarly close to the

smallest error under the EG design. Furthermore, increasing the anchor test length had

little relative impact on accuracy, with mean errors only decreasing slightly from V 8 to

V 20 for a given sample size and method. The largest gains in accuracy occurred for larger

sample sizes. These findings suggest that the RMSE in Study 1 consisted primarily of

random error, with minimal bias, as would be expected when groups are randomly

equivalent and the assumptions of the equating methods are expected to be met.

Study 2, with examinees sampled randomly from two different subpopulations P and

Q, imitated a testing program wherein groups taking X and Y are expected to differ

systematically in ability. The need for equating, overall, should be the same as in Study 1,

since test forms were generated by replication in the same way. However, the need for

common variables should be greater in Study 2, as group differences were systematically

larger and thus more likely to confound form difficulty estimates. MRMSE for identity

equating were the same in Study 2 as in Study 1 (Table 3). Otherwise, mean errors in

Study 2 tended to be larger, especially under the EG design. Results from Study 2 showed

that identity equating was always preferable to linear or equipercentile under the EG

design. This was expected, given the size of the overall ability difference (roughly 3 points

out of 60, or 1 point out of 20) compared to the expected average form difficulty difference
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(0.68 out of 20 points). Most of the common variable linking and equating methods

(NEAT, NEC, and NEATC) were preferable to identity equating for a given condition.

Increases in sample size in Study 2 still produced smaller mean error, as in Study 1.

However, the increase in anchor length had more of an impact in Study 2 than 1, with

MRMSE sometimes decreasing by 0.10 or more from V 8 to V 20 for a given design,

method, and sample size. For example, with an external anchor, NEAT Tucker linear

MRMSE at sample size 1,000 decreased by 0.10 from V 8 to V 20, as did NEAT frequency

estimation (Table 3). In Study 1, the respective decreases were 0.01 and 0.02 (Table 2).

Note that, for this same comparison, MRMSE for frequency estimation under the NEATC

design decreased by 0.01 in Study 1 and did not decrease in Study 2. Similar trends were

evident for other sample size comparisons and with internal anchors. These comparisons

confirm that common variables are more important with nonequivalent groups. They also

indicate that increases in anchor length have less of an impact when the anchor is

supplemented by an external covariate. In fact, for the condition presented here (external

anchor, sample size 1,000), the smallest mean error in V 8 was the same as the smallest

mean error in V 20 (0.35). Thus, in terms of mean error, the covariate was able to

compensate for an anchor test that was less than half as long.

In Study 2, NEATC frequency estimation again tended to be the most accurate

method, especially in V 8 and at medium to large sample sizes, for internal and external

anchors. In V 20 and at larger sample sizes, chained NEAT and NEC equating sometimes

produced comparable or smaller mean errors. The emergence of chained equipercentile

linking and equating as the preferable method in some conditions of Study 2, with

comparable or larger errors for NEATC frequency estimation, shows that the benefits of

chained equating (less bias with large group differences, e.g., Powers & Kolen, 2014) can

outweigh the benefits of multiple common variables.

Future research on linking and equating with multiple common variables should

consider the following issues. First, the pseudo test forms examined here, with anchors
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ranging in length from 8 to 20 items, may be shorter than those used in some large scale

testing programs. As test length and anchor test length increase, and the relationship

between them is strengthened, the capacity of the anchor test to control for group

nonequivalence should increase, thus reducing the need for additional external covariates.

The findings of this study are most relevant to testing programs involving tests of small to

medium length, and potentially weak anchors. Future studies should examine the benefits

and feasibility of NEATC linking with longer total and anchor tests. Second, the testing

program used in this study provided easy access to scores on three strongly correlated tests.

In practice, high-quality external covariates may not be available. Future research should

thus also examine the extent to which the benefits of linking with external covariates

depend on the relationships between covariates and total scores. Third, random sampling

of items by replication resulted in pseudo forms that, overall, were balanced in content and

statistical characteristics. This was considered a novel and useful approach to form

creation. However, the pseudo forms did not match any predetermined difficulty level, and

did not present a strong need for equating. They also resulted in overall estimates of error,

in terms of RMSE , that could not be partitioned into systematic and random components.

To address these issues, future work should explore the accuracy of these methods using

resampling or simulation studies with fixed test forms and/or forms of known difficulty. It

is expected that the addition of supplemental common variables in the NEATC design may

reduced bias while also increasing standard error. Finally, linking under the NEC and

NEATC designs may produce score conversions wherein population invariance does not

hold. Future studies should investigate further the trade-off between improvements in

accuracy and the loss of population invariance for NEC and NEATC linking methods.

Linking with supplemental external covariates was shown here to produce more

accurate results than other methods under a variety of conditions, and it is recommended

for consideration whenever external variables are available. However, the use of external

variables seems especially appropriate in two specific contexts. The first is in testing
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programs not designed or not well suited for equating with an internal anchor test (e.g.,

Wiberg & Bränberg, 2015), including testing programs that utilize an EG design with

groups that may not be randomly equivalent (e.g., Lyren & Hambleton, 2011). The second

is in less traditional testing programs, such as those involving small-scale, formative, or

longitudinal assessments. In these cases, tests are often brief and internal anchors may be

limited or nonexistent, but external measures may be readily available. In either context,

findings suggest that sample sizes of 1,000 are sufficient to realize the benefits of

incorporating external variables. Additional research, including real data applications, is

needed to further clarify the benefits of linking and equating with multiple common

variables in these contexts.
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Footnotes

1The four content domains were: (1) inquiry, the nature of science, and technology, with 13 items; (2)

physical science, with 16 items; (3) life science with 17 items; and (4) earth and space science, with 14 items.
2Model fit was also compared using chi-square likelihood ratio tests, but equating accuracy did not differ

noticeably from results based on AIC model fit.
3Example R code demonstrating the programming behind the resampling studies can be obtained from

the corresponding author.
4Results for V 12 and V 16, which followed the trend evident in V 8 to V 20, can be obtained from the

corresponding author.
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Table 1
Total Score Descriptive Statistics for Population Distributions

Correlation
Pop Variable Mean SD Skew Science Reading
T Science 40.34 10.75 -0.49

Reading 34.62 9.86 -0.64 0.82
Math 39.63 12.84 -0.31 0.80 0.77

P Science 41.88 10.84 -0.61
Reading 36.03 9.84 -0.78 0.83
Math 41.78 13.12 -0.49 0.82 0.79

Q Science 38.79 10.44 -0.42
Reading 33.21 9.68 -0.55 0.80
Math 37.48 12.19 -0.19 0.76 0.73

Note: Pop refers to the student population, where the total population T contained all 20,308
students, and pseudo populations P and Q contained 10,154 students each.
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Table 2
Study 1 MRMSE for Internal and External Anchors of Lengths 8 and 20 Over Designs,
Methods, and Sample Sizes

Internal anchor
V 8 V 20

Design Method 1,000 2,000 5,000 10,000 1,000 2,000 5,000 10,000
EG I 0.50 0.48 0.49 0.50 0.35 0.35 0.35 0.35

L 0.45 0.40 0.38 0.38 0.39 0.35 0.31 0.30
E 0.38 0.28 0.17 0.11 0.39 0.29 0.17 0.11

NEAT LT 0.40 0.38 0.37 0.38 0.31 0.30 0.29 0.29
EC 0.35 0.25 0.15 0.10 0.31 0.24 0.14 0.09
EF 0.32 0.23 0.14 0.09 0.28 0.21 0.12 0.08

NEC LT 0.41 0.38 0.37 0.37 0.35 0.33 0.30 0.29
EC 0.43 0.32 0.20 0.14 0.43 0.32 0.21 0.14
EF 0.34 0.24 0.15 0.10 0.33 0.25 0.15 0.10

NEATC LT 0.40 0.37 0.37 0.37 0.31 0.30 0.29 0.29
EF 0.31 0.22 0.14 0.09 0.29 0.23 0.15 0.10

External anchor
V 8 V 20

Design Method 1,000 2,000 5,000 10,000 1,000 2,000 5,000 10,000
EG I 0.68 0.65 0.67 0.68 0.66 0.66 0.66 0.65

L 0.53 0.49 0.47 0.47 0.53 0.51 0.47 0.46
E 0.35 0.26 0.17 0.10 0.35 0.26 0.16 0.10

NEAT LT 0.50 0.48 0.47 0.47 0.49 0.48 0.47 0.46
EC 0.40 0.29 0.18 0.11 0.41 0.31 0.20 0.13
EF 0.34 0.24 0.15 0.09 0.32 0.24 0.14 0.09

NEC LT 0.49 0.47 0.46 0.47 0.50 0.49 0.47 0.45
EC 0.43 0.30 0.20 0.13 0.43 0.31 0.20 0.14
EF 0.34 0.23 0.15 0.09 0.33 0.24 0.14 0.09

NEATC LT 0.49 0.47 0.46 0.47 0.49 0.48 0.47 0.45
EF 0.33 0.23 0.14 0.09 0.32 0.23 0.14 0.08

Note: Methods are abbreviated with an initial I for identity, L for linear, and E for equiper-
centile, and a subsequent T for Tucker, C for chained, and F for frequency estimation.
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Table 3
Study 2 MRMSE for Internal and External Anchors of Lengths 8 and 20 Over Designs,
Methods, and Sample Sizes

Internal anchor
V 8 V 20

Design Method 1,000 2,000 5,000 10,000 1,000 2,000 5,000 10,000
EG I 0.50 0.48 0.49 0.50 0.35 0.35 0.35 0.35

L 1.05 1.03 1.02 1.02 1.01 1.01 1.00 1.00
E 0.92 0.89 0.86 0.85 0.94 0.89 0.86 0.85

NEAT LT 0.50 0.47 0.47 0.47 0.33 0.33 0.32 0.31
EC 0.40 0.32 0.24 0.21 0.34 0.25 0.18 0.14
EF 0.43 0.37 0.32 0.30 0.33 0.26 0.20 0.18

NEC LT 0.45 0.41 0.41 0.41 0.38 0.36 0.35 0.34
EC 0.44 0.33 0.20 0.13 0.45 0.32 0.20 0.14
EF 0.39 0.31 0.23 0.20 0.40 0.32 0.25 0.23

NEATC LT 0.42 0.39 0.39 0.39 0.32 0.31 0.30 0.30
EF 0.34 0.26 0.18 0.15 0.32 0.26 0.20 0.18

External anchor
V 8 V 20

Design Method 1,000 2,000 5,000 10,000 1,000 2,000 5,000 10,000
EG I 0.68 0.65 0.67 0.68 0.66 0.66 0.66 0.65

L 1.09 1.07 1.07 1.07 1.08 1.10 1.08 1.08
E 0.91 0.88 0.86 0.85 0.91 0.88 0.85 0.85

NEAT LT 0.65 0.62 0.62 0.63 0.55 0.55 0.53 0.52
EC 0.43 0.34 0.24 0.20 0.42 0.32 0.21 0.14
EF 0.51 0.46 0.41 0.39 0.41 0.33 0.27 0.24

NEC LT 0.53 0.49 0.49 0.50 0.52 0.51 0.50 0.49
EC 0.44 0.34 0.22 0.16 0.46 0.34 0.22 0.15
EF 0.37 0.30 0.22 0.19 0.38 0.30 0.22 0.19

NEATC LT 0.51 0.47 0.48 0.48 0.50 0.49 0.47 0.46
EF 0.35 0.28 0.19 0.16 0.35 0.26 0.18 0.13

Note: Methods are abbreviated with an initial I for identity, L for linear, and E for equiper-
centile, and a subsequent T for Tucker, C for chained, and F for frequency estimation.
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Appendix

A preliminary analysis was conducted to examine the linear relationships among the

various pseudo tests. Mean correlations between total scores (including the internal

anchor) and anchor, reading, and math scores were estimated over 500 randomly sampled

pseudo tests for each anchor length. For the full population T , correlations between anchor

and total scores increased from 0.83 at V 8 to 0.94 at V 20. Correlations for reading and

math increased from 0.78 and 0.76 at V 8, to 0.80 and 0.78 at V 20. Correlations for P and

Q differed only slightly from those for T for a given pair of variables. Over these same 500

samples, mean internal consistency reliabilities were also obtained by anchor length

condition, for the total and anchor tests. Reliabilities increased from 0.82 to 0.87 for the

total tests, and from 0.56 to 0.76 for the anchors, from V 8 to V 20. Reliabilities increased

similarly in P and Q, but were slightly lower overall for population Q compared to P .

A second preliminary analysis examined invariance in the population linking and

equating functions by gender. A set of pseudo forms was created by randomly assigning the

60 science items to X, Y , and V , while controlling for content. Each form contained the

maximum 20 items. Equipercentile equating under an SG design was used to equate X to

Y , first in the full population T , then again with all female examinees in T , and all male

examinees in T . The unstandardized root expected mean square difference (Dorans &

Holland, 2000), which measures the discrepancy in equating by subpopulation from the full

population, was found to be 0.07. Next, X and Y were equated under a nonequivalent

groups design using P and Q, again separately by gender. Form V , treated as an external

anchor, was supplemented by reading and math total scores. The discrepancy in

multivariate frequency estimation equating for female and male examinees relative to SG

equating in T , again obtained as the unstandardized root expected mean square difference,

was 0.08. These results indicate that the average discrepancy in equating by subpopulation

should be negligible, below a tenth of a score point, and incorporating external covariates



LINKING WITH EXTERNAL COVARIATES 28

with nonequivalent groups should not substantially impact population invariance.
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