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Abstract
Estimating kinship is fundamental for studies of evolution, conservation, and breeding. Genotyping-by-sequencing (GBS)
and other restriction based genotyping methods have become widely applied in these applications in non-model organisms.
However, sequencing errors, depth, and reproducibility between library preps could potentially hinder accurate genetic
inferences. In this study, we tested different sets of parameters in data filtering, different reference populations and eight
estimation methods to obtain a robust procedure for relatedness estimation in Scots pine (Pinus sylvestris L.). We used a seed
orchard as our study system, where candidate parents are known and pedigree reconstruction can be compared with
theoretical expectations. We found that relatedness estimates were lower than expected for all categories of kinship estimated
if the proportion of shared SNPs was low. However, estimates reached expected values if loci showing an excess of
heterozygotes were removed and genotyping error rates were considered. The genetic variance-covariance matrix (G-matrix)
estimation, however, performed poorly in kinship estimation. The reduced relatedness estimates are likely due to false
heterozygosity calls. We analyzed the mating structure in the seed orchard and identified a selfing rate of 3% (including
crosses between clone mates) and external pollen contamination of 33.6%. Little genetic structure was observed in the
sampled Scots pine natural populations, and the degree of inbreeding in the orchard seed crop is comparable to natural
stands. We illustrate that under our optimized data processing procedure, relatedness, and genetic composition, including
level of pollen contamination within a seed orchard crop, can be established consistently by different estimators.

Introduction

Quantifying varying levels of kinship and genetic structure
are essential for understanding the underlying genetics of
complex traits (Hall et al. 2007; Lander and Schork 1994),

correctly associating genetic with phenotypic variation
(Sillanpää 2011), identifying genetic signals of adaptation
(Eckert et al. 2010), reducing inbreeding for conservation
and artificial selection regimes in agriculture and forestry
breeding (Allendorf et al. 2010; Hayes et al. 2009). Levels
of relatedness and genetic structure vary extensively among
different organisms and are functions of mating systems,
demography, and landscapes.

Mating systems influence many population genetics
parameters and especially in plants where propagation,
pollination and fertilization biology are more diverse than in
animals (Barrett and Harder 2017; Park et al. 2018).
Organisms with highly fragmented habitats and limited
abilities for long range migration or gene flow have an
increased genetic structure (Horton et al. 2012; Tatarenkov
et al. 2015), while outcrossing wind pollinated trees with
extensive pollen dispersal, such as Scots pine (Pinus syl-
vestris), show little genetic structuring across their dis-
tribution range (Kremer et al. 2012; Lindgren et al. 1995;
Pyhäjärvi et al. 2007; Robledo-Arnuncio 2011; Wang et al.
1991). Low genetic differentiation among populations
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facilitates power to detect associations between genetic and
phenotypic variation, but reduces the possibility to identify
the origins of genetic samples and alleles based on allele
frequencies (Kidd et al. 2014). With low levels of popula-
tion structure, the origins of the samples used for allele
frequency reference become less important than in a highly
fragmented population, where in the former large numbers
of shared alleles among individuals are more likely to be
explained by identity by descent (IBD) than by demo-
graphic history (Wang 2011b).

Estimating relatedness among individuals, particularly in
non-model organisms, has, until recently, mainly relied on
multi-allelic co-dominant markers such as SSRs (simple
sequence repeats) (Funda et al. 2016). The use of SNP
markers has increased tremendously with high-throughput
sequencing methods such as genotyping-by-sequencing
(GBS) that can facilitate the production of an extensive
SNP-matrix for a large number of individuals at an
affordable cost (Pan et al. 2015). GBS has the advantage of
genotyping and discovering SNPs simultaneously, remov-
ing the need to first identify and optimize a set of markers
before analysis of a new species or population (Baird et al.
2008; Davey et al. 2011). Although SSR markers generally
provide more information per marker than SNPs, the limited
number of useful SSRs for many organisms makes the GBS
method superior for assessing diversity and relatedness
(Yang et al. 2011). With thousands of SNPs in any one
population, the power to infer relatedness accurately is
much increased (Attard et al. 2018; Hellmann et al. 2016).
GBS relies on sequencing fragments within a subjectively
decided range that are replicated between experiments to
allow for comparison. There is a potential limit to appli-
cation of GBS in more advanced genetic studies such as
association mapping because which loci are sampled across
the genome depend on the size selection step that can
reduce repeatability between library preps. The method also
suffers from allelic dropout and missing data arising from
stochasticity in library sequencing (O’Leary et al. 2018).

The main purpose of studying relatedness in breeding
programs has been to assess the degree of coancestry in
breeding populations and to monitor the pedigree structure
in offspring from crossing experiments. In forest tree
breeding, genetically improved seeds for operational for-
estry are produced in seed orchards that are established with
phenotypically selected and tested superior trees (called
plus trees). Pollen contribution from surrounding un-
improved stands can reduce the expected genetic gain of
the orchard crops (termed pollen contamination). The main
tools used to estimate pollen contamination to date have
been allozymes and SSRs. The pollen contamination esti-
mates based on these tools show large variation even under
similar conditions (Di-Giovanni and Kevan 1991; Torimaru
et al. 2009). The potential benefit of using GBS is to obtain

more reliable results for parentage analysis and to improve
breeding efforts with more accurate estimates of shared
genetic variation between relatives (Hayes et al. 2009). A
large set of SNPs can also facilitate the construction of
genomic relatedness matrices (VanRaden 2008), where the
expected proportion of shared alleles is an estimate of the
additive genetic covariance, and the proportion of loci
where individuals share genotypes provides an estimate of
the coefficient of dominant genetic covariance (Lynch and
Walsh 1998). There have also been studies aiming to esti-
mate the distances of effective pollen dispersal using
molecular markers (Funda et al. 2016; Robledo-Arnuncio
2011; Torimaru et al. 2012). Direct observation of this has
been difficult because it requires sampling rare mating
events. Utilizing seed orchard settings with known candi-
date parents and their physical map positions for pedigree
reconstruction can mitigate some of these difficulties. The
proportion of external pollen contributing to a limited gene-
pool could provide an indirect estimate of pollen dispersal
effectiveness. Over time and across species, the relative
gene flow within species can facilitate inferences about their
biogeography and ability to track changing climate.

The objectives of this study were to: (1) explore GBS
SNP filtering strategies and their reliability in genetic
parameter estimations, (2) compare estimation methods
that retrieve pedigree information, and (3) apply these
methods to compare the genetic diversity of seed orchard
crops and natural stands of Scots pine. Seed orchards are
good experimental systems for validation of kinship
estimates because the candidate parents are known,
making it feasible to reconstruct the pedigree of the off-
spring, for comparison to a theoretical expected mating
structure. We expect that establishing an optimized pro-
cedure for relatedness estimation utilizing high-
throughput sequencing data will be valuable for both
breeding and evolutionary applications.

Material and methods

Seed orchard

Our study system was the Scots pine seed orchard “Väs-
terhus” (13.7 ha), located in northern Sweden (63 °18′N,
18 °32′E) (Fig. 1). This orchard was established in 1991
using 28 genotypes (parents) following the linear deploy-
ment strategy (Lindgren and Matheson 1986), where the
number of ramets per genotype is proportional to their
breeding values. During the last inventory of the orchard
(2011) it contained 3883 ramets with 35 to 332 ramets per
genotype, 34 ramets with lost tags, and 67 trees classified as
overgrown rootstocks. The closest Scots pine stands to the
seed orchard are more than 500 m away.

634 D. Hall et al.



Material

Needles from multiple ramets of each of the 28 genotypes in
the Västerhus orchard were collected to establish their
genetic identity. Additional samples from 149 tree geno-
types were collected in genetic archives and seed orchards
across Sweden. These 177 trees are called plus trees
because they are phenotypically selected from natural
stands and make up a portion of the foundation of the Scots
pine improvement program in Sweden (Stener et al. 2016).
Seeds obtained from a bulk collection of cones produced by
open pollination in 2014 in the Västerhus orchard, an
additional orchard for diversity comparison and two
unmanaged stands were germinated in a greenhouse at
Skogforsk, Sävar, Sweden in the fall of 2016. The two
unmanaged stands represent the approximate deployment
area for the two sampled seed orchards, with Västerhus
seedlings having the more southern deployment (Fig. 1).
The plus trees and unmanaged stands together are expected
to reflect the overall allele frequencies. Needles from
300 seedlings from each orchard and 50 from each

unmanaged stand were harvested in early 2017. We also
included haploid material from two Västerhus genotypes
(eight megagametophytes each), representing selfed mate-
rial and 29 samples from two congeneric species, Pinus
tabuliformis and Pinus yunnanensis. In total, 922 samples
were collected and genotyped.

DNA isolation and GBS library prep

DNA was extracted from each seedling with an Omega Bio-
tek E-Z plant kit (OMEGA Bio-Tek). GBS library preparation
followed the procedure of Pan et al. (2015). Briefly, 200 ng
DNA of each sample was digested with PstI-HF® (New
England BioLabs® inc.) and unique barcodes ligated with T4
DNA Ligase (New England BioLabs® inc.) in a single reac-
tion. The digested and ligated DNA of 300 individuals was
pooled, purified, and PCR amplified. The purified PCR pro-
duct was then separated on an E-gel® Size-Select II™ pre-cast
gel (ThermoFisher Scientific™), and fragments within the size
range of 350–450 bp (including 125–132 bp adapters) were
recovered. Paired-end sequencing (2 × 125 bp or 2 × 150 bp)
was performed on an Illumina Hiseq2500 (SNP&SEQ Tech-
nology Platform, NGI Uppsala Genome Center) or Illumina
HiSeqX (Novogene, Hong Kong). To test reproducibility
within and between library preparations, 71 samples were
replicated to a total of 160 replicates in the libraries to test
reproducibility within and between library preparations.

Genotype data filtering

Sequence reads were first separated by barcodes with
Stacks: process_radtags (Catchen et al. 2013) into paired-
end and single-end reads. The barcode sequences were
removed from the sequences using Trimmomatic (Bolger
et al. 2014). Sequences were then mapped to the Pinus
taeda genome v1.01 (Zimin et al. 2014) with Burrows-
Wheeler Aligner (BWA) (Li and Durbin 2009) and merged
and sorted using SAMtools (Li et al. 2009) to produce a
single BAM file for each sample. Several parameter com-
binations were examined to minimize error rates of repli-
cates and maximize SNP overlap of samples to facilitate
relationship estimation. Error rate was calculated as the
proportion of allelic mismatches between replicates. The
final filtering pipeline is as follows: samples are combined
for variant calling using SAMtools—mpileup. Reads with
minimum mapping quality of 10 (-q= 10) from the recal-
culated base alignment quality (-E option) are kept and then
output as genotype probabilities (-g option). For SNP call-
ing, we used SAMtools/BCFtools (Li et al. 2009) followed
by VCFtools (Danecek et al. 2011) for filtering. Indels and
SNPs within 5 bp of an indel were removed to avoid falsely
called SNPs as result of indel misalignment. We excluded
non-biallelic loci, genotypes, and bases with Quality

Fig. 1 Map of the origin of the samples. Västerhus orchard and
parents in red filled circles; additional orchard location in gray (just
south of Västerhus), additional plus trees by black filled circles, and
natural stands are represented by a black filled diamond (Kuttainen)
and square (Lillberget), respectively.
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<20 and genotype depth <8×. We also filtered for a minor
allele frequency (MAF) threshold of 0.01 and scored SNPs
if at least 60% of the individuals were represented (call rate
60%). As final filtering steps to diminish putative loci,
which mapped to paralogous fragments, we removed loci
with more than 70% heterozygous calls and loci that had
both significant negative FIT-values (1-HO/HE) and were not
in HWE. This step was examined using VCFtools with the
—hardy option and filtered accordingly. We also examined
the effect of filtering heterozygous calls when allele read
depths deviated from the binomial.

We also performed a more rigorous filtering on the repli-
cates by creating a reduced reference genome to map GBS-
tags. The bam files were remapped to the reduced reference,
and we used GATK indel realignment (GATK 3.8; Poplin
et al. 2017) to produce more accurate alignments around
indels. Hard filtering was first applied with GATK: QD < 2.0;
FS > 60.0; MQ< 40.0; MQRankSum<−12.5; Read-
PosRankSum <−8.0; SOR > 4.0, and then using VCFtools
with the same parameters as above. Replicated samples were
compared both for locus coverage and allele error rates for
different parameter settings in SNP calling, and by the GATK
and SAMtools filtering pipelines.

Kinship analyses

We applied three methods to examine relatedness in the
samples, namely genotype score correlation, the Ritland’s
methods of moment (MOM) relatedness estimator (Ritland
1996) and Milligan’s maximum likelihood (ML) relatedness
estimator (Milligan 2003). We expected to find four dif-
ferent kinship estimates: unrelated (relatedness coefficient
= 0); half-sib, 0.25; full-sib and parent–offspring, 0.5;
selfed and megagametophytes, 1.

Correlation between samples was calculated over the loci
shared between two samples based on their genotype scores
for those loci (0, 1, or 2). Ritland’s and Milligan’s relat-
edness estimator were calculated in the R-package “related”
(Pew et al. 2015), which is an R implementation of the
software COANCESTRY (Wang 2011a). Population allele
frequencies were based on the set of 177 plus trees (28
Västerhus orchard parents and the 149 additional plus trees)
and 100 natural stand samples in different combinations, as
well as the congeneric species and all samples together to a
total of eight reference sets (i.e., Västerhus parental geno-
types, one or the other unmanaged stand, both unmanaged
stands, all plus trees, all plus trees and unmanaged stands,
congeneric species and finally the total dataset). The dif-
ferent combinations of samples were used as the allele
frequency reference input for coancestry method in “rela-
ted”. This was done to test the impact of the allele reference
on relatedness estimates, because the variance of the relat-
edness estimator is expected to vary with the allele

frequency reference according to Ritland (1996):

Var rXYið Þ ¼ sið1� siÞ
p2i q

2
i

; ð1Þ

where si is the expected similarity of two compared
individuals based on the allele frequencies pi and qi of the
ith locus. We compared different allele frequency references
to establish an estimator with higher precision (more distinct
relatedness status, i.e., lower variance). The allele frequency
reference that gave results with the lowest variances was
selected and used for further analysis. In this reference set, we
removed all individuals showing elevated relatedness, thus
assuming all remaining individuals are unrelated. If a large
proportion of the individuals in the reference population are
related, the relatedness estimates will be lower than expected
(Wang 2014). All parent–offspring pairs were based on
Ritland’s estimator and compared with the correlation and
ML estimates. Only when all three estimates were in
agreement (i.e., all three estimates gave the same top
candidates) was the parent–offspring pair accepted. We used
the established parent–offspring pairs to compare relatedness
estimates of putative full-sibs and half-sibs which in turn was
used to verify parental assignment of related seedlings.

To determine the optimum MAF threshold in related-
ness estimations, we included samples representing dif-
ferent levels of kinship, e.g., unrelated trees, half-sibs and
full-sibs, and estimated their correlation and Ritland’s
relatedness estimator under MAF thresholds 0.01, 0.05,
0.1, 0.2, 0.3, and 0.4 with a bootstrapping-like scheme.
We sampled a maximum of 1000 SNPs without replace-
ment 1000 times for each comparison to build a 95%
confidence interval. If there were <1000 loci to compare at
a particular MAF, 75% of the available loci were used per
sample run. This allowed us to estimate the MAF
threshold that would give most power to distinguish
between different levels of kinship in our dataset.

We also calculated the realized genetic relatedness
matrix to compare established family structure with the
estimated proportion of shared alleles (additive genetic
relatedness) and genotypes (dominance genetic relatedness)
between family members. The purpose was to evaluate
whether GBS data would fit this method to quickly deter-
mine a relatedness matrix overall samples. The genomic
relatedness matrix (G-matrix) was calculated according to
VanRaden (2008) using the package “SNPready” (Granato
and Fritsche-Neto 2018). The G-matrix calculations require
a complete dataset, thus SNPs were filtered more rigorously
by first removing samples that were missing more than 90%
of the SNPs and then setting the call rate to 0.7 and MAF to
0.1. Missing values were imputed naïvely using population
allelic frequencies and their probability of occurrence.

In addition to the above mentioned estimators used we
explored the performance of six other estimators as well.
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Four (Li et al. 1993; Lynch and Ritland 1999; Queller and
Goodnight 1989; Wang 2002) are included in the R-
package “related” (Pew et al. 2015) and COANCESTRY
(Wang 2011a). The last two we explored were v2 of
NgsRelate, a maximum likelihood estimator of relatedness
utilizing genotype probabilities rather than called genotypes
(Hanghøj et al. 2019), and the KGD estimator which cor-
rects for false homozygotes due to low sequencing depth
(Dodds et al. 2015).

Diversity measures

Genetic diversities in the form of average observed (HO),
expected heterozygosity (HE), and MAF were calculated in
R within each sample set. HO was calculated by averaging
the proportion of heterozygous individuals overall loci in
the groups, HE was calculated according to:

HE ¼ 1� 1
m

Xm

l¼1

Xk

i¼1

p2li ð2Þ

where pli is the allele frequency for the ith allele of k
possible alleles (we only used biallelic loci) at the lth of
m loci

For the Västerhus orchard seedlings, we estimated the
effective number of parents (Nep) from the reproductive
success among the parents based on the function of effec-
tive number of types (Simpson 1949) using the sampling-
bias corrected estimate (Nielsen et al. 2003).

Nep ¼ n� 1ð Þ2
PNp

i¼1
p2i nþ 1ð Þ n� 2ð Þ þ 3� n

ð3Þ

where n is the number of seedlings sampled, Np is the
number of parents, and pi is the relative reproductive
success of the ith parent. We calculated the estimate with
and without external pollen sources. We estimated the
frequencies of each external pollen source through the
relatedness of seedlings with at least one unassigned parent.

Results

GBS error rate and reproducibility

Examination of the genotypes after filtering with a median
depth of 41 for a supported call (mean 67.3) of replicated
samples showed that the error rate (average percent of alleles
that were not consistent over replicates) was around 5%
(Fig. S1). This error rate was used in the calculation of the
likelihood relatedness estimator. The difference in error rates
between the two data processing pipelines was small, on

average 3.7% lower for the GATK pipeline (GATKe= SAMe

0.963, R2= 0.9) giving an error rate of around 4.8%. The
final SNP calling on the total dataset was produced with the
SAMtools pipeline as the more memory and time demanding
GATK pipeline offered only slight improvements. The pro-
portion of shared loci between replicates varied substantially,
from 0.55 to 0.99, but the overall median was high, 0.89 (Fig.
S2). The median proportion of shared loci for replicates
within libraries was 0.90, and 0.87 between libraries.

Kinship reconstruction

We choose to use the combination of the 177 plus trees and
the two unmanaged natural stands as allele frequency
reference for the relatedness estimator because we observed
lower variance in the estimate (maximum peak height in the
3D-density plot, Figs. S3 and S4) with these samples as
reference. For the final allele frequency reference set, we
removed seven genotypes from the natural stands due to
pairwise elevated relatedness and one sample due to low
coverage. We also removed six plus trees due to elevated
relatedness (these trees come from controlled crosses of
other plus trees) and six trees with lower coverage (<80%).
We observe a unimodal distribution of the relatedness
estimate of non-related individuals suggesting a uniform
allele frequency of the seedlings and parental trees (Fig.
S4). We examined the population structure of the selected
reference set and found that only a small fraction of the
genetic variation (≈0.22%) can be attributed to genetic
structure and/or library effects (Fig. S5).

Allele frequency distribution overall Scots pine sam-
ples showed that rare-allele SNPs were the most common
and around half of all the SNPs had a 0.01 ≤MAF ≤ 0.05
(Fig. S6a). The minor allele frequencies are relevant for
the power of separating different relatedness. Higher
MAF SNPs have the most power but are uncommon and
the opposite is true for MAF at the low range. This is
visible in our relatedness estimates (Fig. 2). With low
MAFs (e.g., 0.01) the relatedness estimates show low
precision and the genotype score correlation is large
(Fig. 2). This is the result of the properties of the allelic
frequency spectrum where the majority of the genotypes
are the same (homozygous for the common allele, Fig.
S6a). The power of separating different relatedness
increases with increasing MAF, but the number of avail-
able SNPs for comparison decreases rapidly (Fig. S6b).
With lower numbers of SNPs, the discrimination power
between relatedness decreases (Fig. 2). We thus set the
MAF threshold to 0.1 to retain as many SNPs (7387, see
Fig. S6b) as possible for inferring relatedness.

With the MAF threshold set to 0.1, we examined the
discrimination power by varying number of SNPs from
100 to 4000. In the example shown in Fig. 3, one parent is
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Fig. 2 Pairwise comparison of three seedlings with assumed rela-
tionship to seedling 8P16-14-2 for Ritland’s, Milligan’s ML esti-
mator and genotype score correlation for MAF 0.01, 0.05, 0.1, 0.2,
0.3, and 0.4. The x-axis shows the average minor allele frequency in
the population after filtering for the various thresholds. Numbers above

the second x-axis is the average number of SNPs in the population
representing the subsampled loci. We sampled 1000 SNPs for 1000
times per MAF cut off except for MAF 0.4 to get an estimated 95%
confidence interval. Numbers above the top C.I. bars are the MAF
cut off.

Fig. 3 Recovery of different levels of kinship under different no. of
SNPs. Y-axis is the log no. of individuals and X-axis is pairwise
genotype score correlation between samples. The results show pair-
wise comparison between Västerhus parent AC3065 and 4 categories
of samples: megagametophytes (haploid) from AC3065; putative

offspring of AC3065; all other samples of Scots pine including natural
stand seedlings, additional orchard crop and all other plus trees; and
samples of two congeneric species P. tabuliformis and P. yunnanensis.
MAF= 0.1 was applied to all comparisons.
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compared pairwise to all other samples included in the
study to estimate the putative relatedness. We found that
different levels of relatedness were easily separated above
1000 SNPs (Fig. 3), and thus based our assessment of
relatedness on comparisons, which included at least 1000
SNPs. We also found that the pairwise comparisons
among P. sylvestris samples had a unimodal distribution
indicating an absence of genetic structure and a uniform
allele frequency spectrum across the range, at least at
MAF 0.1 (Fig. S5).

In addition, we examined how the differences in het-
erozygosity filtering and the proportion of SNPs available
for comparison affected the relatedness estimate. More
rigorous heterozygosity filtering (the maximum percentage
of heterozygous genotypes allowed for a locus to be kept)
improved the relatedness estimate slightly, although filter-
ing for negative FIT-values appeared to be more effective,
especially for Milligan’s ML estimation method in con-
junction with correcting for the error rate (Fig. S7). The
proportion of SNPs available for a comparison had, how-
ever, the largest effect on the tested methods. The
parent–offspring relatedness estimate using Ritland’s

method went from 0.28 when 20% of the total number of
SNPs were available for the comparison to 0.43 when 80%
of the SNPs were shared among the two compared samples.
These estimates came closer to the expected 0.5 with the
ML-method, with an estimate of 0.43 at 20% shared SNPs
up to 0.53 at 80% (Figs. 4. and S8).

Among the 300 seedlings from the Västerhus orchard
crop, two samples had very low coverage and were dis-
carded from analyses. The pairwise comparisons between
the 298 offspring and 28 parents had an average of
4326 shared SNPs (average of around 82% loci overlap
between parent and offspring, Table 1) and a standard
deviation of 1447 SNPs at MAF 0.1 and 40% missing. All
pairwise relatedness established by the three estimators
agreed well, Furthermore, the estimator of Milligan (2003)
was less sensitive to low proportions of shared SNPs
between sample pairs, indicated by the flatter slope (Figs. 4
and S9). The Milligan’s estimate also showed clear dis-
tinction between parent–offspring pairs and self-pollination
events and megagametophytes. Filtering away erroneous
heterozygous calls effectively increases the relatedness
estimators and decreases the dependency on shared SNPs

Fig. 4 Four scatter plots of
pairwise relationship estimates
of Västerhus seedlings and the
genotypes assumed to be their
parents. Blue filled circles are
detected self-pollination, gray
are haploid megagametophytes,
and red are those deemed to be
parent–offspring. a Ritland’s
estimate as a function of the
shared proportion of SNPs that
could be used for the
comparison, total number of
SNPs after filtering (0.1 MAF,
allowed for 40% missing, and
loci with 70% heterozygosity or
less, loci with significant
negative FIT-values were
removed) was 7387. b Ritland’s
estimate as a function of the
correlation in genotype scores.
c and d similar to a and b,
respectively, but with Milligan’s
ML estimation of relatedness.
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between samples. We see almost no effect of removing
heterozygous genotype calls due to deviation from the
binomial (data not shown). Removing loci with more than
70% heterozygotes had some effect while removing loci
with negative FIT-values was most effective together with
higher MAF (Figs. 2, S8, and S9). The tested KGD esti-
mator compensates for varying sequencing depths of gen-
otype calls (Dodds et al. 2015). Some of the observed
dependency between the proportion of shared SNPs and
relatedness estimates lie in the varying depths of these

samples, although other unknown factors may also distort
the results (Fig. S9). The parent–offspring pair assignment
by the MOM and ML estimators also had the greatest
genotype score correlations relative to other comparisons
(see Figs. S4 and 4 for comparison between correlation and
Ritland’s estimate). Parental assignment was successful for
295 of 298 seedlings, and the remaining three could not be
assigned to any of the parental genotypes in the orchard.

Diversity and mating structure

Based on the parent–offspring assignments, selfing rate
was low in the Västerhus crop; only 9 seedlings were
identified as being the result of self-fertilization or crosses
between clone mates (3%, see Fig. 4), and 39 crosses were
replicated into full-sib families with 2–6 offspring each. A
total of 98 seedlings could be assigned to only one parent
from the orchard and 196 (including selfing) had both
parents from the orchard. This resulted in an estimated
33.6% pollen contamination.

Reproductive success varied among the parents in the
orchard. Based on their ramet abundance, most parents
produced fewer offspring than expected, while a few were
highly overrepresented (Table 2), which is likely to be
correlated to the genotypes’ pollen production (Torimaru
et al. 2012). The number of internally and externally pol-
linated seedlings varied little among parents. Parents that
produced a large proportion of internally pollinated seed-
lings also produced a large proportion of the externally
pollinated seedlings (adjusted R2: 0.84, P value≪ 0.01).
Parent Z4019 produced five externally pollinated seedlings
of a total of 16, which is a larger proportion than other
parents produced (Table 2).

Including the background pollen contamination as a
source of unique pollen donors, the estimated effective
number of parents Nep was 23.2, and excluding externally
pollinated seedling in the calculation resulted in an estimate
of 16.2. The observed average heterozygosity (HO) was
higher than the expected (HE) for parental trees, similar to
that observed in natural stands and the other orchard crop,
and slightly lower than expected for the additional plus trees
(Table 1). However, the individual inbreeding coefficient
(F) of the Västerhus orchard crop and the natural stands

Table 1 Summary of Scots pine
samples (N) included in the
study, their sequencing depth,
no. of SNPs and standard
deviation (SD), and genetic
diversity in the form of observed
(HO), expected heterozygosity
(HE) and average minor allele
frequency (MAF).

Samples N Median depth Average no. SNPs SD HO HE MAF

Parents 28 14 5256 1248 0.357 0.338 0.365

Offspring 298 44 6375 1069 0.338 0.342 0.367

Nat. stands 99 44 6762 606 0.337 0.34 0.366

Add. orchard 300 16 5161 1299 0.312 0.332 0.359

Plus trees 149 19 5090 1517 0.225 0.328 0.345

Västerhus orchard parents, offspring, natural stands, a crop from an additional seed orchard, and a group of
Scots pine plus trees selected across Sweden were included in this analysis.

Table 2 The number of seeds produced by internal (IP) and external
pollination (EP) by each Västerhus orchard parent and the expected
number (E(IP), E(EP)) based on their relative abundance (ramet
number) in the orchard.

Parent ID No. rametes IP EP E(IP) E(EP)

AC3056 332 30 4 34.4 8.6

Y2005 309 28 7 32 8

Y4016 276 24 8 28.6 7.2

AC1006 239 9 2 24.8 6.2

Y3012 229 11 2 23.7 5.9

Z3007 221 27 5 22.9 5.7

Y4507 214 48 15 22.2 5.5

Z2081 206 39 9 21.4 5.3

Y3014 192 36 14 19.9 5

AC2064 167 15 3 17.3 4.3

Y3001 166 14 5 17.2 4.3

AC3040 127 18 2 13.2 3.3

Z4022 122 7 1 12.6 3.2

Z4003 108 7 1 11.2 2.8

Y4508 107 15 5 11.1 2.8

Z3029 93 7 0 9.6 2.4

Z3009 87 4 0 9 2.3

X4203 67 1 0 6.9 1.7

AC4221 65 9 3 6.7 1.7

Y2004 64 3 1 6.6 1.7

Z4019 60 11 5 6.2 1.6

AC1075 58 2 0 6 1.5

AC2047 55 3 0 5.7 1.4

AC3033 49 2 0 5.1 1.3

AC3015 47 3 1 4.9 1.2

AC3065 46 3 0 4.8 1.2

Y4103 41 3 1 4.2 1.1

Z4032 35 13 4 3.6 0.9

Total 28 3782 392 98
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showed very minor differences. The Västerhus orchard crop
had a slight shift toward greater individual inbreeding
coefficients compared with seedlings from natural stands
(Fig. 5a), with a median of 0.047 and 0.045 for Västerhus
crop and natural stands, respectively. Estimates of related-
ness between seedlings produced by self-pollination and
their parents compared with megagagametophytes and their
parents were similar although the genotype score correla-
tions between the megagametophytes and parent appear to
be lower (Fig. 4a–d). The likelihood point estimates of
relatedness for parent–offspring pairs (0.52) and full-sibs
(0.51), were close to the expected 0.5. The half-sib pairwise
comparison was also close (0.26) to the expected value
(0.25, see Fig. 5b). The Ritland estimates, on the other
hand, had lower than expected values, especially for
parent–offspring (0.37) but also for full-sib (0.42) and half-
sib (0.20, see Fig. 5c) pairs.

A G-matrix provides an overview of the proportion of
shared alleles among the samples, and is expected to
follow estimates based on pedigrees. The G-matrix cal-
culations require a full set of all samples comparisons to
determine the proportion of shared alleles between sam-
ples. The analysis was thus based on more rigorously
filtered data; 862,176 data points were inputed (17.53%)
for a final number of 5028 SNPs for the analysis. The G-
matrix relationship estimate is based on alleles shared
among samples and reflects the proportion of additive
genetic covariance. The dominance G-matrix reflects the
shared genotypes and is proportional to the shared dom-
inance genetic covariance among samples. The G-
matrices estimated from our samples reflected kinship
status, although the variation in estimation from shared
alleles (relatedness estimates, proportional to the shared
additive genetic covariance, AR ∝ σ2A) and shared geno-
types (proportional to the shared dominant genetic

covariance DR ∝ σ2D) was large within the different relat-
edness classes and with a lower average than expected.
For parent–offspring, the median AR was 0.22 with a
standard deviation of 0.091 (DR= 0.027 ± 0.047), slightly
larger for full-sibs, 0.29 ± 0.086 (DR= 0.15 ± 0.068), and
0.14 ± 0.049 for half-sibs (DR= 0.025 ± 0.00.026).

To visualize the differences in relatedness estimations,
we reconstructed the extended family structure for all the
offspring from one parent (Y2005) and its mates using
Ritland’s estimator (Fig. S10a). The pairwise relatedness
among the individuals was also presented as a tree (Fig.
S10b) where branch length reflects genetic distance,
mirroring the relatedness between different sub-families.
The G-matrix for these samples is pictured as a heatmap
of the shared additive and dominant genetic variation in
Fig. S10c, Supporting information. The clear distinction
between parent–offspring observable in the Ritland’s
estimator is not discernable in the G-matrix, but the
overall pattern is reflected.

Discussion

GBS filtering

GBS is a cost-effective method to assess genetic variation of
populations. However, due to the random distribution of
coverage across samples and GBS libraries, missing data
creates problems. In this study, orchard parents and off-
spring were analyzed from different GBS library preps and
different sequencing systems (Illumina HiSeq 2500 and
HiSeq X), which introduced some reduction in overlapping
fragments between runs. However, a larger source of noise
probably arises from the difficulty of manually sampling the
same fragment length distribution accurately among

Fig. 5 Density plots of individual inbreeding coefficient and
relatedness estimates. a Milligan’s ML of individual inbreeding
coefficient of the Västerhus crop (median= 0.047) and the two sam-
pled natural stands (median= 0.045). b Distribution Milligan’s pair-
wise relationship estimates of parent–offspring (green, point estimate

= 0.52), full-sib (red, 0.51) and half-sib pairs (blue, 0.26) as well as the
distribution of (c) the Ritland’s estimates (0.37, 0.42, and 0.20,
respectively). The numbers in the legend of c represent the number of
pairwise comparisons made in each category.
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libraries during the GBS library preparations. Along with
the inherent errors from the GBS method, e.g., genotyping
error and allelic dropout, this requires a filtering and relat-
edness estimation strategy that handles these sources of
noise adequately (Attard et al. 2018; Wang 2017). The
reference guided mapping procedure applied to our data
along with our final filtering procedure reduced the allelic
dropout among replicates from 1.2 to 0.1% (different
homozygote alleles between replicates, data not shown) but
the error rate remained around 5%.

This error rate (5%) with a minimum coverage threshold
of 8× is expected from the GBS method when using
reference alignment (Fountain et al. 2016; Lou et al. 2013).
Errors may be derived from null alleles, where a mutation
removes the digestion site for one or both strands in an
individual, or allelic dropout from PCR reactions. However,
the effect of null alleles for parental assignment when
implementing the Ritland (1996) estimator is small with a
large number of markers (Wang 2007). Some relatedness
estimators are influenced by rare alleles (Wang 2011b),
which in turn can be a consequence of allelic dropout, but
setting the MAF threshold at 0.1 is expected to eliminate
most of those loci and we observe a stabilization of our
estimates at that threshold (Fig. 3).

In many instances the computational resources can be
a limiting and expensive factor for bioinformatic pipe-
lines especially for organisms, such as conifers, that have
large genomes. We could effectively assign parent–
offspring pairs using a less resource-demanding pipeline
employing BWA for mapping, and filtering with SAM-
tools and VCFtools. The latter tools handle memory
assignment better when dealing with large reference
genomes compared with JAVA-based tools like GATK.
Low depth sequencing of a large number of individuals
allows confident parental assignment when incorporating
the established error rate and basic filtering, at least in
Scots pine.

Estimation of kinship

For pairwise relatedness estimates, a reliable allele fre-
quency reference and good coverage of the samples are
needed. Loci with higher MAF are more informative but are
rare, and a MAF of 0.1 retained enough SNPs to allow for a
low call rate and still establish reliable allele frequencies for
use in pairwise comparisons (Fig. 2).

All Västerhus orchard genotypes in this study are well
tested plus trees, selected for their phenotype in natural
stands, and are unrelated. With no external pollen con-
tribution, the Västerhus orchard crop should only have four
classes (five including unrelated) of relatedness:
parent–offspring, full-sib (first degree relatedness), half-sib
(second degree relatedness), and a few seedlings produced

by self-pollination. The three methods of relatedness esti-
mation agreed well in all pairwise assignments, although the
estimated degree of relatedness varied substantially within
each class of relatedness (Fig. 5b, c). This variation is
expected for full- and half-sibs and arises from the sto-
chastic processes of recombination (Attard et al. 2018;
Powell et al. 2010). Although parent–offspring have lower
variance, the expected variance is zero because offspring
should share exactly one allele at each locus from each of its
parents. Distant relatedness between parents could increase
relatedness estimates of parent–offspring pairs and in turn
the variance around the estimate, but not to the extent
observed. We therefore conclude that the variance observed
mainly originates from an unknown source, possible erro-
neous calls. The variance around relatedness estimates is
inversely proportional to the number of markers used (Yang
et al. 2010). This study utilizes comparatively few SNPs
and thus precision of relatedness estimates are likely to be
low relative to whole-genome sequence data. Further, when
coverage and depth are comparatively low for any one
sample of GBS data in the pairwise comparisons, the
relatedness estimate is lower than expected (Fig. 4; Dodds
et al. 2015), while estimates from SNP arrays with similar
SNP numbers are closer to expected values (Munoz et al.
2014). This suggests that samples with less coverage have a
lower proportion of quality SNPs (Fig. S5), which in turn
leads to an underestimate of the relatedness. The main
source of these low quality SNPs is often improperly called
heterozygous SNPs (Patel et al. 2014). In line with this,
erroneous heterozygous calls observed in our haploid
megagametophytes were scored with high genotype quality
by the caller algorithm, and these heterozygous sites dif-
fered among the haploid samples (data not shown). That is,
although the mapping software calls a heterozygous SNP
with high probability, it may be a false positive. Stricter
filtering of heterozygosity rates led to slightly increased
relatedness estimates although the effect was much lower
than for coverage (Fig. S5). One reason for this could be
strand bias, which results in differently called SNPs from a
sample depending on which strand was sequenced. This
phenomenon is difficult to filter because there is no con-
sistency in which loci are affected and it is not limited to
any one mapping method (Guo et al. 2012). On the other
hand, trying to correct for paralogous calls and account for
genotyping errors improved the estimates substantially. One
possible reason for this is because the genotyping of the
parental trees appeared to suffer more from paralogous calls
than other sample categories, as suggested by the elevated
HO (Table 1). This, in turn, could also indicate the presence
of contamination and/or degradation of DNA in these
samples (Graham et al. 2015).

In Scots pine, pairwise genotype correlation performed
well in distinguishing simple relatedness (parent–offspring
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and full-sib), and was strongly correlated with Ritland’s
estimate (Fig. 3), although fine adjustment of thresholds
was necessary for samples with lower coverage (Figs. 4 and
S5). It will be more difficult to infer relatedness in an
orchard crop where varying degrees of relatedness are
already present among the orchard parents’ genotypes,
especially with GBS data. For such instances, greater cov-
erage or higher sequencing depth is necessary, and the
length of IBD blocks used to estimate the number of
crossover events between individuals must be established to
better infer pedigree and relatedness status in a crop (Powell
et al. 2010; Speed and Balding 2015).

The coefficients of relatedness estimated from the
method of moments in this study are based on the
assumption that the scored genetic variants of the samples
are correct and that any genotyping errors will reduce the
relatedness estimates. One way to mitigate this reduction is
by using a maximum likelihood method that can correct for
genotyping and/or genotype call error rates and constrain
the estimates to biologically meaningful values (see Figs.
S7 and S9; Milligan 2003). This would not necessarily
make pedigree reconstruction easier but relatedness esti-
mates would be more accurate. The proportion of shared
genetic information between individuals is most often
visualized in a G-matrix. Building a G-matrix and assigning
the proportion of shared additive and dominance genetic
covariance among individuals requires that all SNPs are
scored and that missing data points are imputed for esti-
mation purposes. Low-coverage GBS data are not suitable
for this type of analysis if a large proportion of data points
need to be imputed, especially in a species where genetic
population structure and linkage disequilibria are insignif-
icant, providing little guidance to the imputation step. The
example presented in Fig. S10C shows some discernable
pattern of increased proportion of shared alleles within
families although not to the extent of what was expected,
e.g., the two seedlings that appear to be a product of selfing
shared more alleles (0.315 and 0.318, respectively) with all
other offspring than with their parent (Y2005, 0.213).
However, the dominant genetic relatedness shared between
seedlings from self-pollination and parent was high, as
expected. When compared with the average Ritland esti-
mate of 0.42 for full-sibs, which was slightly lower than
expected (Fig. 5c), the proportion of shared alleles (AR)
among full-sibs was 0.29 while only 0.21 for
parent–offspring, well below the expected 0.5. This could
be due to the lower coverage of the parental samples (Table
1), and thus more imputations for those samples. Imputation
based on population allelic reference (i.e., naïve imputation)
will diffuse the signal of pairwise relatedness because
individual differences are important in such analyses. We
assume that the naïve imputation can enhance the effect of
erroneous heterozygous calls (especially if these are in the

allele reference population) on the underestimation of
relatedness estimation. One way around this would be to
first establish the pedigree and then to use that as a guide to
the imputation step similar to that used in nearest neighbor
imputation methods (Wang et al. 2012). However, the
expected outcome would still be values lower than expected
for the same reasons that most relatedness estimators are
lower than expected.

Diversity

The genetic diversity of our sampled individuals is high
and levels of genetic structure are low. The distribution of
minor allele frequencies (Fig. S3) show “L”-shaped pat-
terns similar to other conifers with wide distribution
ranges (Chen et al. 2016; Conte et al. 2017). Both the
MAF distribution and that very low genetic differentiation
is found in the PCA of the allele frequency reference
population (Fig. S5) indicate a large population with near
random mating structure maintaining high genetic
diversity.

Genetic diversity in the Västerhus orchard crop where
all parents are unrelated remains high compared with
natural stands (Table 1), although the average individual
inbreeding coefficient is slightly higher (Fig. 5a). The
linear deployment strategy increases the genetic con-
tribution from the most common parent genotypes to the
crop even though flowering capacity and phenology dif-
ferences among parents can modify the expected genetic
makeup of the crop. Previous studies in this orchard have
estimated the effective number of fathers in seeds col-
lected from known mother trees, with an average of 13.27
ranging from 9.31 to 15.92 (Funda et al. 2016; Torimaru
et al. 2012, 2013). In this study we made a comparative
estimate, but because we cannot identify the pollen donor
we estimated the effective number of parents instead. This
estimate was 23.2 when external pollination events were
included, and 16.2 excluding external pollen contamina-
tion, which is close to the largest previous estimate
excluding pollen contamination (Funda et al. 2016). Even
when pollen contamination was included, the effective
number of parents was still well below the number of
actual parents (28) represented in the orchard, suggestive
of a departure from panmixia. Previous investigations in
the orchard have shown large differences between parents
in flower production, and the parents that produced the
most seedlings in this study have been shown to have a
larger pollen production (Funda et al. 2016; Torimaru
et al. 2012).

Some of the seedlings classified as sired by external
pollen could have been produced by rootstock within the
orchard. There were 67 overgrown rootstocks in the orch-
ard, which make up 1.8% of the ramets in the orchard. Bulk
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collected seeds in the orchard likely carry genetic repre-
sentation of the rootstocks.

The inbreeding coefficients in the Västerhus seedlings
were slightly higher than those observed in the natural
stands (Fig. 5a). The increased number of individuals with
an inbreeding coefficient above 0.2 (right hand tail of
Fig. 5a) implies that some seedlings, 8.1% from natural
stands and 3% from Västerhus orchard parents, are the
products either of selfing or of mating between related
individuals. The proportion of self-pollination found in
Västerhus is close to the expected value of 3.3%, given
genotype frequencies and the level of external pollen con-
tribution to the crop

EðfsÞ ¼ 1� PCð Þ
X

P2
i ; ð4Þ

where E(fs) is the expected proportion of seedlings from
self-pollination, PC the proportion of pollen contamina-
tion, and Pi is the frequency of genotype i in the orchard
(Table 2).

The seedlings with elevated inbreeding coefficients are
also identified as a product of selfing in the relatedness
estimation (Fig. 4). The seeds produced in natural stands are
not expected to travel long distances and relatedness among
adjacent trees is expected to be elevated creating family
structure (García-Gil et al. 2015). Family structure is not
expected in seed orchards where parents are unrelated,
planted randomly, and new seedlings are not allowed to
establish. However, ramets die and family structure might
arise in the orchard if seeds chance to germinate and
establish near the dead ramet. In the Västerhus seed orchard,
some ramets categorized as overgrown rootstock may
actually be seedlings produced from within the orchard
which in turn could produce seedlings with higher
inbreeding coefficients.

Conclusion

This study illustrates that the GBS method can be
effectively applied in kinship estimations in Scots pine.
Under our optimized data processing procedure, relat-
edness, and genetic composition, including level of pol-
len contamination within a seed orchard crop, can be
established consistently by different estimators. Cor-
recting for putative paralogous mapping by excluding
excessive heterozygous loci and accounting for geno-
typing error rates substantially improved the recon-
struction of relatedness, particularly for samples with
lower coverage. However, the results show that more
must be done to optimize filtering strategies and to
increase the understanding of how GBS data behaves in
different applications. In orchard crops there are only

three classes of relatedness (disregarding self-pollination
events and unrelated samples) to establish, and for these
estimates no major difficulties were encountered even
though manual corrections of thresholds were needed,
especially in cases with low overlap of SNPs between
samples. However, the situation may become more
challenging in natural populations with continuous and
more complex pedigree structures.

Determining the genetic composition and diversity of
breeding, and natural populations and reforestation
materials are invaluable for keystone species in boreal
forest ecosystems. This is also of economic relevance for
forest owners to forecast the breeding gain of their forests.
Estimating relatedness from genomic data also has
important evolutionary applications, e.g., in conservation
programs, and for improving the accuracy of heritability
estimates of target traits. Furthermore, studies of orchard
trees can aid estimation of effective gene flow for parti-
cular forest tree species. The level of external pollination
should be a good indicator of long distance pollen dis-
persal in a species, an estimate that has been difficult to
obtain in natural populations (Robledo-Arnuncio 2011).
In light of the low genetic differentiation in P. sylvestris
across the entire sampled range, we expect pollen flow to
be extensive and thus, all else being equal, pollen con-
tamination rates will be higher in comparison to seed
orchards of other conifer species.
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