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Urinary exosomes from 
Bladder cancer patients Show 
a Residual cancer phenotype 
despite complete pathological 
Downstaging
Stefanie Hiltbrunner1,8, Michael Mints1,7,8, Maria eldh1, Robert Rosenblatt2,7, 
Benny Holmström3, Farhood Alamdari4, Markus Johansson5,7, Rosanne E. Veerman1, 
ola Winqvist  6, Amir Sherif  7 & Susanne Gabrielsson  1*

invasive urinary bladder cancer shows high recurrence rates after cystectomy even with apparent 
complete downstaging at cystectomy. Exosomes are nano-sized vesicles important in cell-cell 
communication, which have been hypothesized to contribute to cancer dissemination and recurrence. 
The aim of this study was to investigate if pro-carcinogenic exosomes could be detected in urine from 
histologically downstaged bladder cancer patients. 13 Patients were included in this study. Paired 
ureter and urine samples from nine patients underwent mass spectrometry, while samples from the 
remaining patients were used for exosome characterization. At cystectomy, exosomes were isolated 
from bladder and ureter urine, whereafter quantitative proteome profiling was performed. Urinary 
exosomes clustered based on whether they came from the bladder, with tumour contact, or the 
ureters, without tumour contact, even though all came from completely downstaged patients. Proteins 
overexpressed in exosomes derived from bladder urine contained several oncogenes and were mainly 
associated with tumour metabolism pathways. Although patients were histologically tumour-free at 
cystectomy, the bladder urine contained exosomes with a carcinogenic metabolic profile. This suggests 
a continuous release of exosomes from the bladder, which may promote recurrence at distant sites 
through metabolic rewiring, even after apparent complete downstaging. These exosomes, coming from 
either undetected cancer cells or partly transformed cells, are likely to increase the risk of metastasis 
and encourages cystectomy even in completely downstaged patients.

Invasive urinary bladder cancer (UBC) metastasises rapidly, mainly through the draining regional lymphatic 
system1, and there is evidence of establishment of pre-metastatic niches in the lymph nodes long before actual 
metastasis occurs2. Early micro-metastatic dissemination in UBC is mainly evidenced by the fact that patients 
with organ-confined disease (pT2N0) suffer recurrence rates of up to 40% after radical cystectomy (RC)3. Also, 
it has been shown that complete down-staging (pT0) through primary transurethral resection (TUR-B) plus 
neoadjuvant cisplatin-based combination chemotherapy (NAC) and RC as the radical surgical treatment, sub-
stantially improves survival, presumably as an effect on disseminated tumour cells. In the same study, completely 
downstaged patients, who did not receive chemotherapy, showed significantly poorer overall survival, suggesting 
the presence of undetected cancer cells or tumour-promoting factors4.
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Exosomes are nano-sized vesicles, derived from the late endosomal compartment, acting as messengers 
between cells through the transfer of biomolecules5. Exosomes are produced by most cell types and found in 
bodily fluids, including urine6. Tumour-derived exosomes play an important role in carcinogenesis, tissue remod-
elling and metastasis7–9. They can induce apoptosis of immune cells10 and stimulate regulatory T-cells11, leading to 
immune evasion. Moreover, urine-derived exosomes from high-grade UBC patients have been shown to promote 
cell migration12. Thus, exosomes produced from remaining cancer cells or transformed tissue may promote recur-
rence, and provide an attractive source of diagnostic and therapeutic markers in UBC.

Given the high recurrence rate in seemingly cancer-free patients, we aimed to trace cancer-related exosomes 
in downstaged urinary bladder cancer patients. This was achieved through proteomic analysis of urinary 
exosomes derived from the bladder and from the ureter of UBC patients at RC. By integrating proteomics and 
pathway analyses of UBC exosomes, we provide evidence of carcinogenic exosomes that are released into the 
bladder in patients with no macroscopic tumour left after primary TUR-B followed by NAC and with evaluation 
of the completely excised urinary bladder specimen post-RC. These findings challenge the concept of complete 
histopathological downstaging in urinary bladder cancer after combined tumour ablation as a hallmark of a 
non-cancerous urinary bladder.

Methods
Patients. Thirteen patients with invasive UBC, scheduled for radical cystectomy (RC), were prospectively 
recruited for the study in 2014–2015 at five Swedish departments of urology (Norrland University, Akademiska, 
Sundsvall, Västmanland and Gävle Hospitals). The patient data are found in Table 1. For the nine patients where 
paired samples were obtained, mass spectrometry was performed. Out of these nine patients, six were male and 
three were female. Following TUR-B, eight were staged cT2N0M0G3 and one high risk cT1N0M0G3. Six patients 
(four male and two female) received NAC preceding RC, and of these five had complete pathological down-stag-
ing (CD) i.e. pT0N0. Two patients had remaining tumour in the bladder. Three of the patients had concomitant 
prostate cancer. At RC, tumour site tissue went for histopathological analysis and staging. All patients were recur-
rence-free as of 11/04/2019.

Urine was obtained from the bladder prior to surgery, and directly from the ureters after transection, by 
introduction of Ch.8 baby feeding catheters to the renal pelvises. All samples were shipped and processed on the 
day of cystectomy. All methods were carried out in accordance with relevant guidelines and regulations and all 
experimental protocols were approved by the Regional Ethical Review Board in Stockholm (original no.: 2007/71-
31), and all patients were above 18 and gave written and oral informed consent.

Exosome isolation. Urine samples were spun at 3000 g for 30 min and filtered through a 0.22 µm filter. 
Exosomes were isolated by ultracentrifugation at 100 000 g for 2 h, washed with PBS, resuspended in PBS and 
stored at −80 °C. Protein concentration was measured by DC protein assay (Bio-Rad).

Flow cytometry. 30 µl sulfate-aldehyde latex beads (4 μm, 1.3 × 109 beads/ml, Invitrogen) were incubated 
with 30 µg anti-CD63 antibody (H5C6, BD Pharmingen) for 30 min at RT and rotated overnight at RT. Beads were 
blocked with 100 mM glycine for 30 min and washed with 0.5% BSA/PBS. Exosomes were bound to anti-CD63 
coated beads with 1.25 µg exosomes per µl beads and phenotyped as described13. Antibodies used (dilution 1:100): 

Patient
Preoperative 
clinical stage

Staging post-
cystectomy Gender Age

NAC/
noNAC

Number of 
Cycles Response

Additional 
Information

1† cT2N0M0,G3 pT2N0M0** male 76 noNAC 0 /

2†§¤ cT2N0M0,G3* pT0N0M0 female 69 NAC 1 CR

3† cT2N0M0,G3 pT0N0M0 male 39 NAC 4 CR

4† cT2N0M0,G3 pT0N0M0 male 66 NAC 3 CR
Prostatic cancer 
Gleason score 
(3 + 4 = 7)

5† cT2N0M0,G3 pT0N0M0 female 79 NAC 3 CR

6† cT2N0M0,G3 pT0N0M0 female 77 noNAC 0 /

7†#§ cT2N0M0,G3 pT2bN0M0** male 65 NAC 4 SD

8† cT2N0M0,G3 pT0N0M0 male 76 NAC 3 CR
Prostatic cancer 
Gleason score 
(3 + 3 = 6)

9† cT1N0M0,G3 pT0N0M0 male 57 noNAC 0 /
Prostatic cancer 
Gleason score 
(3 + 3 = 6)

10#§ cT2N0M0,G3 pT0N0M0 male 73 NAC 3 CR

11§ cT2N0M0,G2 pT0N0M0 female 67 NAC 3 CR

12§ cT2N0M0,G3 pT0N0M0 male 66 NAC 3 CR

13§ cT2N0M0,G3 pT0N0M0 male 73 NAC 3 CR

Table 1. Patient Characteristics. CR = Complete Response; SD = Stable Disease; *In addition to the solid 
tumour, the patient also had concomitant CIS (Cancer in Situ); **Remaining tumors in the bladder and 
therefore excluded from mass spectrometry analysis; †Mass spectrometry; #Electron microscopy; §Nanoparticle 
Tracking Analysis; ¤Flow cytometry.
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isotype control mouse IgG1 FITC (MOPC-21, Biolegend) and anti-human CD9 FITC (M-L13, BD Pharmingen), 
CD63 FITC (H5C6, Biolegend), CD81 FITC (5A6, Biolegend). Beads were analysed on a FACS Calibur (BD 
Bioscience) by FlowJo software (TreeStar Inc.).

Nanoparticle tracking analysis. Exosome size was determined with the Nanosight LM10HSB system. 
Vesicles were measured at circa 45 particles/frame and 2 × 108 to 8 × 108 particles/ml. Three independent samples 
were run 5 times each for 60 seconds with a camera level of 9 and screen gain of 3 with a syringe pump speed of 50.

Electron microscopy. 3 µL from each sample was added to a grid with a glow-discharged carbon-coated 
supporting film for 3 minutes. The grid was rinsed by adding 5 µL distilled water. Water was soaked off by a filter 
paper and the grid stained with 5 µL 1% uranyl acetate in water for 7 seconds. Samples were examined in a Hitachi 
HT 7700 electron microscope at 80 kV and digital images were taken by a Veleta camera (Olympus,).

Mass spectrometry. 18 urinary exosome samples (9 ureter and 9 bladder) underwent mass spectrometry. 
Proteins were extracted in a urea-containing buffer using a sonication bath. Total protein concentration was 
measured using Bradford assay (Bio-Rad). Proteins were reduced, alkylated and digested with trypsin. Finally, 
samples were purified on Pierce C18 Spin Columns (ThermoScientific), dried and resolved in 0.1% FA to a con-
centration of 0.3 μg/μL. Peptides were separated in reversed-phase on a C18-column, using a 90 min gradient and 
electrosprayed onto a Q-Exactive Plus Orbitrap mass spectrometer (ThermoFinnigan). Tandem mass spectrom-
etry was performed applying HCD collision-induced dissociation.

For identification, database searches were performed using the Mascot algorithm embedded in Proteome 
Discoverer 1.4 (ThermoScientific) against proteins from Homo Sapiens extracted from UniProtKB (January, 
2016). A decoy search database, including common contaminants and a reverse database, was used to estimate the 
identification false discovery rate. The search criteria for identification were set to at least two matching peptides 
of 95% confidence per protein. For quantification, a label-free intensity analysis was performed for each sample.

Statistics and network analysis. The clustering of all samples, including the bladder urine from the two 
patients with residual disease, is found in Supplementary Fig. 1. As this study focused on bladder urine in com-
pletely downstaged patients, the bladder urine exosomes from the patients with residual disease were removed 
from downstream analysis. The ureter urine samples from these patients were kept as controls in order to 
increase statistical power. Upon PCA, these samples did not differ from ureter exosomes taken from tumour-free 
patients (Supplementary Fig. 2). Protein expression values were log-transformed, and an outlier sample, iden-
tified through PCA, was removed (Supplementary Fig. 3). PCA was performed using the FactomineR package 
in R14 with exosome origin, gender, concomitant prostate cancer and NAC treatment as qualitative supplemen-
tary variables and age and number of NAC cycles as quantitative supplementary variables. T-tests were adjusted 
for multiple testing with Benjamini-Hochberg correction. Pathway analysis was performed through network 
set enrichment analysis (NSEA), using Enrichnet15. STRING16 provided the interaction network and functional 
pathways were taken from KEGG17.

A protein interaction network was constructed in Cytoscape v 3.6.118 using all identified proteins as nodes, 
and the calculated spearman correlation coefficients between each protein’s expression values as edges. Clustering 
was done with the clusterMaker Cytoscape plugin, using the gLay community cluster algorithm19. Pathway anal-
ysis of clusters in the cytoscape network was performed through network set enrichment analysis (NSEA) using 
the JEPETTO plugin20. In these clusters, only proteins with a log-fold expression change of >0.2 between bladder 
and ureter were subjected to network analysis.

Results
Firstly, we investigated whether the isolated extracellular vesicles (EV) displayed an exosome-like phenotype. 
Flow cytometry of EVs bound to anti-CD63 coated latex beads showed expression of tetraspanins CD9, CD63 
and CD81 in all samples (Fig. 1a). Nanoparticle tracking analysis and electron microscopy showed size distribu-
tion and morphology typical for exosomes (Fig. 1b,c). Bladder urine and ureter urine yielded 0.8 µg exosomal 
protein/mL urine and 0.67 µg exosomal protein/mL urine (median) respectively, with no significant difference 
between sample type. In addition, western blot analysis showed that EVs were negative for the endoplasmatic 
reticulum marker calnexin (data not shown). Furthermore, proteomic analysis showed exosomal markers such as 
Rab proteins, annexins and heat shock proteins (Supplementary Table 1). These data demonstrate that the urinary 
EVs have an exosomal phenotype without contamination of ER-derived cellular debris, thus they are hereafter 
referred to as exosomes.

From the nine patients that were analyzed by mass spectrometry, excluding the removed outlier and the blad-
der urine from patients with residual disease, in total 1094 proteins were identified in urinary exosomes – 403 
unique to bladder urine and 120 to ureter urine. PCA showed a clear separation between urinary exosome sam-
ples from bladders and ureters (Fig. 2a). Separation in the 1st dimension was based on whether exosomes came 
from the bladder or ureters (p = 0.008), while the 2nd dimension correlated with concomitant prostate cancer 
(p = 0.04). Thus, proteins that correlated significantly with 1st dimension separation could only be explained by 
the physical origin of the exosomes and none of the other clinical characteristics (Table 2, Supplementary Fig. 1). 
We also performed differential expression testing for all proteins across the different clinical parameters and 
found very few differences. No proteins showed significant differential expression in patients with prostate can-
cer. In men; envoplakin, periplakin and uroplakin 1A were all lower than in women. Patients receiving NAC had 
significantly higher levels of FTR and HRG, and lower levels of ITGA3 (Supplementary Table 2).

487 proteins were significant descriptors of bladder urine in that they correlated significantly with bladder 
origin in the PCA (Supplementary Table 1). These proteins were subjected to network set enrichment analysis 
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(NSEA). We found that bladder urine showed several enriched pathways, mainly representing cancer metabo-
lism, such as glycolysis and gluconeogenesis, but also inflammatory pathways (Table 3).

In the protein correlation network (Fig. 2b), three main clusters were formed – two heavily interconnected 
clusters with proteins mainly overexpressed in bladder as opposed to ureters, and one separate cluster – formed 
from three smaller ones – with proteins overexpressed in ureters. Upon NSEA, cluster 1 turned out to repre-
sent mainly inflammatory pathways, while cluster 2 was enriched for metabolic pathways and cluster 3, which 
contained proteins overexpressed in ureters, was enriched for proteasome proteins but no pathways involved in 
tumour signalling.

All proteins contained in these clusters are found in Supplementary Table 2, and the enriched pathways are 
found in Table 3.

The top 50 overexpressed proteins in bladder and ureter urine, respectively, also underwent NSEA. While 
no pathways were significantly enriched, due to the low number of proteins, the top three pathways enriched in 
bladder urine were metabolic. Interestingly, complement activation was enriched in both the ureter and bladder 
exosomes (Supplementary Table 4).

Differential expression of individual proteins from urinary exosomes from the bladders and ureters was stud-
ied to identify potential biomarkers for remaining malignant potential despite complete downstaging. SLC4A1 
was underexpressed in exosomes from bladder urine compared to the ureter urine, while 40 proteins were signif-
icantly overexpressed, including known oncogenes such as TPP1, TMPRSS2 (transmembrane protease serine 2), 
FOLR1 (folate receptor 1), RALB and RAB35 (Supplementary Table 5). As validation, the FOLR1 protein could 
also be detected in exosomes by western blot in three out of three patients, while it could not be detected in whole 
protein extracts from the same patients’ urine (data not shown).

Figure 1. Phenotypic analysis of urine- derived extracellular vesicles. (a) Exosomes were bound to anti-
human CD63 latex beads, stained for CD9, CD63 and CD81 and analysed by flow cytometry. Data are shown 
as representative histograms (black represents marker, line the corresponding isotype control). (b) Size 
distribution of urine -derived exosomes measured by nanoparticle tracking analysis, all exosomes analysed 
showed a mode size typical for exosomes, bladder urine 155 nm, ureter urine 115 nm. (c) EM picture of 
exosomes from bladder urine (top) and ureter urine (bottom), bar equals 200 nm.
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Discussion
In order to design novel treatments to combat the high recurrence rates in UBC, a comprehensive understand-
ing of the metastatic mechanisms is needed. Exosomes, being able to carry molecular information from cancer 
cells to distant tissues, and remodelling these tissues to create a pre-metastatic niche, are prime study objects to 
understand metastasis. This study is the first to compare the proteomic profiles of urine-derived exosomes from 
the bladder and the ureter of the same patients in order to study whether they could explain tumour recurrence 
despite complete histopathological downstaging.

During cystectomy, urine was collected from the ureters and compared with urine that had passed through the 
bladder. Interestingly, we identified a unique proteomic profile in bladder-derived exosomes, which was enriched 
for pathways involved in metabolic remodelling. This altered exosomal protein profile, in the absence of mac-
roscopic tumour, could have four explanations: (i) exosomes are released from remaining undetected tumour 
cells, (ii) the exosomes are released from non-malignant tissue that has been altered through signalling from the 
tumour, (iii) the exosomes are altered by the scarring process after TUR-B, or (iv) that a normal bladder urothe-
lium releases these exosomes. Due to the malignant profile of these exosomes, we find the last two alternatives less 

Figure 2. Separation of samples according to exosome origin. (a) PCA on urine-derived samples only shows 
significant separation between bladder/ureter urine in the 1st dimension. Ellipses represent 95% CI. (b) Clusters 
from protein correlation network. Red denotes higher expression in bladder and blue higher in ureter urine. The 
more intense the colour, the larger the expression difference. The three largest clusters are numbered.

Dim.1 category R² P-value

Bladder/ureter 0.4246892 0.00848231

Dim.2 category R² P-value

Concomitant prostate cancer 0.2836727 0.04094804

Table 2. Categories showing significant separation on PCA.
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likely. Therefore, we suggest that these exosomes are derived from transformed cells in the bladder. Furthermore, 
these exosomes may be potentiating local tumour dissemination through rewiring metabolic networks in healthy 
tissue, where a pre-metastatic niche is established, thus favouring establishment of metastases.

Specifically, exosomes from bladder urine were shown to overexpress proteins involved in glycolysis and glu-
coneogenesis, both relevant to cancer metabolism. Cancer cells are known to undergo a glycolytic shift, leading 
to the production of macromolecules required for the higher nutrient demand21. This contributes to an acidic 
extracellular environment, promoting metastasis, drug resistance and immune suppression22.

Moreover, our finding that the pentose phosphate pathway was enriched in exosomes derived from the bladder 
urine is of interest, seeing as shuttling of carbon into the pentose phosphate pathway has been shown important 
for the ability of cancer cells to withstand oxidative stress and provide building blocks for sustained replication23. 
Up-regulation of glutathione metabolism, also enriched in bladder urine exosomes, is another mechanism for 
cancer cells to combat oxidative stress, and glutathione transferase activity has previously been associated with 
bladder cancer progression24. Further supporting our findings, metabolomic studies have identified glycolysis, 
glutathione and phenylalanine as among main pathways dysregulated in bladder cancer25. Phenylalanine as well 
as lactate, a marker of active glycolysis, have also been found to be overexpressed in several studies of bladder 
cancer26. These findings, together with the down-regulation of SLC4A1, a pH-regulating membrane protein, 
in exosomes from the bladder urine support the fact that metabolic dysregulation is a major function of these 
exosomes.

Pathways enriched in proteins correlating with 
bladder urine on PCA XD-score Fisher Dataset Pathway Overlap

hsa04964:Proximal tubule bicarbonate reclamation 2,86 7,70E-05 460 21 8

hsa04966:Collecting duct acid secretion 2,67 5,08E-05 460 25 9

hsa00620:Pyruvate metabolism 1,90 5,21E-05 460 40 11

hsa00030:Pentose phosphate pathway 1,85 2,21E-03 460 26 7

hsa00010:Glycolysis / Gluconeogenesis 1,75 2,02E-06 460 62 16

hsa00480:Glutathione metabolism 1,68 1,09E-04 460 44 11

hsa00360:Phenylalanine metabolism 1,68 4,80E-02 460 16 4

hsa00051:Fructose and mannose metabolism 1,61 1,95E-03 460 33 8

hsa04614:Renin-angiotensin system 1,55 5,60E-02 460 17 4

hsa05110:Vibrio cholerae infection 1,33 5,49E-04 460 52 11

hsa05130:Pathogenic Escherichia coli infection 1,16 2,14E-03 460 52 10

hsa00630:Glyoxylate and dicarboxylate metabolism 1,12 2,08E-01 460 16 3

hsa00770:Pantothenate and CoA biosynthesis 1,12 2,08E-01 460 16 3

hsa00740:Riboflavin metabolism 1,12 2,08E-01 460 16 3

hsa05120:Epithelial cell signaling in Helicobacter pylori 
infection 1,09 8,35E-04 460 65 12

Pathways enriched in cluster 1 XD-score Fisher q-value Gene set size Pathway size Overlap size

hsa04614:Renin-angiotensin system 2,75 4,82E-04 366 17 6

hsa04610:Complement and coagulation cascades 2,57 3,27E-14 366 69 23

hsa04964:Proximal tubule bicarbonate reclamation 1,71 1,23E-02 366 21 5

hsa05020:Prion diseases 1,37 4,26E-03 366 35 7

hsa00010:Glycolysis / Gluconeogenesis 1,31 5,86E-05 366 62 12

hsa05322:Systemic lupus erythematosus 1,25 1,17E-06 366 91 17

hsa04670:Leukocyte transendothelial migration 1,24 4,36E-08 366 113 21

hsa04520:Adherens junction 1,19 5,72E-05 366 72 13

hsa05146:Amoebiasis 1,16 1,17E-06 366 102 18

hsa05100:Bacterial invasion of epithelial cells 1,03 6,88E-04 366 68 11

Pathways enriched in cluster 2 XD-score Fisher q-value Gene set size Pathway size Overlap size

hsa04966:Collecting duct acid secretion 2,31 3,42E-05 191 25 7

hsa00480:Glutathione metabolism 1,22 1,00E-03 191 44 7

hsa05110:Vibrio cholerae infection 1,18 4,30E-04 191 52 8

hsa00030:Pentose phosphate pathway 1,18 3,37E-02 191 26 4

hsa00051:Fructose and mannose metabolism 1,16 1,18E-02 191 33 5

hsa00620:Pyruvate metabolism 1,14 3,78E-03 191 40 6

hsa00040:Pentose and glucuronate interconversions 1,13 3,51E-02 191 27 4

Pathways enriched in cluster 3 XD-score Fisher q-value Gene set size Pathway size Overlap size

hsa03050:Proteasome 2,18 5,04E-11 99 43 11

hsa05412:Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 0,99 4,36E-06 99 73 9

Table 3. Network set enrichment analysis.
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Even though this study was not primarily designed to find or validate biomarkers, several potential biomark-
ers, such as TPP1, TMPRSS2 and FOLR1, were detected and highly upregulated in urinary exosomes derived 
from the bladder compared to those derived from the ureter. The TMPRSS2:ERG fusion protein has been dis-
cussed as a prognostic marker for prostate cancer in urine and tissue27 and was described to be overexpressed in 
prostate cells and shed in prostasomes28, however this has not previously been associated with UBC. FOLR1 has 
been shown to be up-regulated in several cancers, including lung and ovarian, and clinical trials with targeted 
antibodies are underway in these cancer types29,30. In addition, our finding of FOLR1 by western blot in urinary 
exosomes but not in whole urine further encourages larger studies on exosomal FOLR1 as biomarkers. TPP1 is a 
serine protease also known as CLN2, mainly known for being mutated in certain neurodegenerative diseases, but 
it has also been found to have increased activity in squamous esophageal carcinoma31 and breast cancer32, and is 
overexpressed and associated with liver metastasis in colorectal cancer33.

Taken together, TPP1, TMPRSS2 and FOLR1 could all be possible prognostic markers and treatment targets 
in bladder cancer. However, the potential biomarkers identified in this study needs to be evaluated in larger 
cohorts with differential staging and longer follow-up. Interestingly, both EPSL1 and EPSL2, which were among 
the proteins we found to be overexpressed in bladder exosomes, have been previously described as overexpressed 
in urinary microvesicles of bladder cancer patients, compared to healthy controls34. Additionally, NRAS, EHD4, 
ITGB1 and MUC1, which were among the protein set correlating with bladder cancer on PCA, have been found 
in various studies of bladder cancer exosomes35,36. This further supports our hypothesis that the exosomes found 
in our study are malignant; i.e., despite macroscopic tumour ablation, exosomes carrying a malignant metabolic 
phenotype are present in the bladder. Our findings further support that urinary exosomes are a good source of 
biomarkers in urinary bladder cancer. While we cannot draw definite conclusions on how these exosomes impact 
recurrence in this study, other studies comparing partial with radical cystectomy support our hypothesis that the 
bladder and surrounding tissues are susceptible to recurrence followed by metastasis as long as the bladder is 
present. In line with this, partial cystectomy, i.e. local resection with macroscopic and microscopic free margins, 
shows higher recurrence rates, than RC37.

In conclusion, we demonstrate that urinary exosomes from the bladder, even when no macroscopic tumour 
remain after a combination of TUR-B and NAC, differ from exosomes found in urine from the upper tract. 
These exosomes are showing a malignant metabolic phenotype, which could promote metastasis and recurrence. 
Through pathway analysis, we provide support for exosomal involvement in establishing a pre-metastatic niche 
through rewiring of metabolic signalling networks. We suggest that the bladder acts as a reservoir for exosomes 
able to disseminate to regional and distant sites in lymph nodes and distant organs, where they aid dissemination 
through metabolic rewiring. We hypothesise that this explains why so many invasive bladder cancer patients 
relapse even after NAC and RC, and the even higher recurrence rates in non-muscle invasive bladder cancer 
patients not treated with RC. Further follow-up, including metabolomic profiling of urine and bladder tissue is 
needed to establish this as a fact. In our proposed model, exosomes retain a malignant memory phenotype in the 
bladder even after TUR-B plus NAC, emphasising the importance of radical over minor surgery to remove the 
source of tumour-promoting exosomes.

Data availability
All datasets generated during the study are available on request from the corresponding author.
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