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ABSTRACT
In High Performance Computing (HPC) infrastructures, resources

are controlled by batch systems and may not be readily available,

which can negatively impact applications with deadlines and long

queue waiting times. In particular, this is noticeable for data in-

tensive and low latency workflows where resource planning and

timely allocation are key characteristics for efficient processing.

On the one hand, allocating the maximum capacity expected for a

scientific workflow guarantees the fastest possible execution time,

at the cost of spare and idle infrastructural resources, as well as

extended queue waiting times and costly resource usage. On the

other hand, dynamically allocating resources according to specific

workflow stage requirements optimizes resource usage, although it

may also negatively impact the total workflow makespan. With the

aim of enabling new scheduling strategies and features for scientific

workflows, we propose ASA: the Adaptive Scheduling Architecture,

a novel and convergence proven scheduling method to reduce per-

ceived queue waiting times as well as to optimize resource usage

and planning in scientific workflows. The algorithm uses reinforce-

ment learning to estimate queue waiting times, and based on these

estimates pro-actively submits resource change requests, with the

goal of minimizing total workflow inter-stage waiting times, idle

resources, and makespan. The algorithm takes into consideration

both learning (the waiting times), and acts on what is learnt so

far, and thus handles the exploration-exploitation trade-off. Experi-

ments with real scientific workflows in two real supercomputers

show that ASA combines the best of the two aforementioned ap-

proaches for resource allocation, with average workflows’ queue

waiting time and makespan reductions of up to 10% and 2% respect-

ively, with up to 100% prediction accuracy, while obtaining near

optimal resource utilization.

1 INTRODUCTION
Large scale experiments model different aspects of nature such

as weather forecasting, drug discovery, fluid dynamics, and many

other scientific endeavours. Higher resolution sensors have been

generating an ever larger amount of data, usually processed over

large and complex computing infrastructures such as High Perform-

ance (HPC) and cloud computing datacenters. Due to its complexity

with modeling and handling great amounts of data, such time con-

suming scientific campaigns are organized in independent data

pipelines, known as scientific workflows [27]. Figure 1 exemplifies

parts of the Montage Workflow, an image mosaic engine [2]. A

scientific workflow is composed of sequentially interconnected

stages (the different colors in Figure 1), where each stage is re-

sponsible for a specific set of tasks inside the overall application

data flow. Moreover, scientific workflows are not only common

in HPC centres, but also virtually in every sector of industry and

academia, where they are used for analyzing and correlating data

for predictions and decision support.

Intrinsically, a stage in a workflow structure describes its scalab-

ility and the amount of resources required to perform all of its

tasks. To ensure acceptable task performance during workflow ex-

ecution is the responsibility of the developers and the workflow

management systems (WMS). When time to scale the developed

workflow comes, users make use of HPC infrastructures. How-

ever, HPC platforms are primarily designed to support monolithic

applications and provide a static allocation scheduling model i.e.,

the resource allocation is fixed throughout the entire job lifespan

[11, 19, 24, 25]. This methodology guarantees good performance,

however it results in fragmentation and lower datacenter efficiency

due to under-utilization. It also hinders the development of newer

scheduling strategies needed in dynamic computational models,

like data intensive and streaming workflows, increasingly used for

conducting online and in-situ experiments [13]. These problems

are likely to exacerbate with highly dynamic workflows in the

next-generation exascale systems [7], expected to have applications

issuing and orchestrating thousands of simultaneous processes [9].

With increasing use of workflows to process big amounts of data, a

closer integration between the WMS and the datacenter resource

manager (RM) is of vital importance for meeting scientific applic-

ation constraints, like placement, resource isolation and control,

turnaround times, and overall datacenter efficiency [6, 11, 13].

In this paper we propose ASA: the Adaptive Scheduling Archi-

tecture for Scientific Workflows. Leveraging conceptual ideas from

distributed operating systems [17], ASA decouples application de-

velopment and scheduling planning from resource management.

Packaged as a library, ASA presents applications with resources

from multiple job allocations as one global pool of resources. This

allows workflow management systems to be fault-tolerant, elastic,

besides enabling the use of new scheduling strategies. ASA pro-

actively estimates the waiting time for coming stages in a workflow

during the currently executing stage to improve workflow turn-

around times. In this way, ASA not only optimizes total resource

usage, but it also reduces the total workflow makespan. For es-

timating how an user waits in the queue, we designed a simple
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Figure 1: Montage scientific workflow pipeline structure
(snippet), an image mosaic software used at NASA [8]. Each
color in the graph describes a set of specific tasks within
a stage. Each stage produces outputs used as inputs at sub-
sequent stages that produce the final result at the end.

Reinforcement Learning (RL) algorithm, which can adapt to the

current state of a queue. This amounts to both learning (the waiting

times), and acting on what is learnt thus far, and amounts hence

to a realization of the exploration-exploitation trade-off. Experi-

ments with real workflows in real supercomputers show that ASA

achieves a middle ground between the two aforementioned ways

for resource allocation: lower total turnaround times, with near

optimal resource utilization.

The rest of this paper is organized as follows. In Section 2, we

describe in more details the characteristics of scientific workflows,

their scheduling trade-offs, past work, and challenges. In Section 3,

we present ASA, an architecture and algorithm for resource or-

chestration, management, and planning. Experiments, evaluations,

various analyses, and discussion follow in Sections 4 and 5. Finally,

we present our conclusions in Section 6.

2 BACKGROUND AND RELATEDWORK
The nature of scientific models is very complex and thus projects

are often organized in distributed collaborations. Rather than devel-

oping large monolithic applications, scientists use scientific work-
flows: runtime systems for describing and executing applications

as pipelined distributed components. For example, data modeling,

staging, handling, processing, and pre- and post-processing are

concrete tasks that may occur before, within, or after these pipeline

stages. Figure 1 shows the Montage workflow, an image mosaic

application used at NASA [2] with seven sequential stages, each

colored differently. Edges describe sequential data dependencies,

where data outputs of a previous stage are sent to following stages

produced at the end of such (previous) stages. The number of nodes

(shown as color circles in Figure 1) in a stage describes its scalability:

one node means the stage is inherently sequential, using only one

available resource (e.g. CPU/core, GPU, etc.), whereas two or more

nodes mean parallel stages that may use more than one resource.

Streaming workflows are used in in-situ and online experiments,

where all stages run concurrently and data (known as tuples) are
continuously streamed over the workflow pipeline and processed

by each stage as they arrive from predecessor stages [29].

2.1 Related Work
Scientific workflows are orchestrated, scheduled, and managed by

a WMS, realized by programming language extensions through Ap-

plication Program Interfaces (API), or by new dialects of common

programming languages [5]. WMS’s are used as execution engines

for helping users and developers to run, scale, and integrate the

distributed components of a workflow. Some WMS examples are

Apache Taverna [22], Kepler [3], Pegasus [12], and Tigres [16]. Be-

cause these systems do not assume specific runtime behaviors like

resources’ performance variability, most of them do not support

Quality-of-Services (QoS) application requirements. To overcome

such limitations, VGrADS [23] combines resources from different

providers into a single virtualized abstraction layer to enable ap-

plications with smarter scheduling and fault-tolerant strategies.

Additionally, new tools enable WMS’s with stage elasticity, achiev-

ing optimal resource expenditures, though with larger makespans

[14].

In environments like HPC centers, jobs have to wait in (prior-

ity) queues for resources before starting execution [15]. Thus, a

natural way to improve total workflow makespan and to enable

deadline planning features, is to estimate the queue waiting times.

For this, three main approaches have been used: (i) simulating sche-

duling according to the job queue (at certain point in time), (ii)

statistical modeling, and (iii) a mix of these two [26]. Queue simu-

lation (i) is a way to predict waiting time, but can be challenging

if estimations needed at runtime do not take into account future

(non-deterministic) job submissions from other users, which may

degrade predictions. Although (i) can be used as a baseline for com-

parisons with more elaborate methods, and though a normal user

may have access to the queue statistics for doing so, static methods

can be seen as non adaptive if they do not adjust to such queue

workload changes.

Traditional Machine Learning models (ii) tend to overfit the wait

time because the dataset used for training can rapidly change. Its

application without understanding the system and its workload

does not work well as boundaries and medians tend to produce

great over-estimations on the waiting time. QBets [21] used to be a

reference system, but it is not in production anymore due to today’s

workload high dynamicity with sudden changes, well captured with

time-series analysis. QBest predictions were not bounded, and did

not take into account variables that affect the job wait time. QBets’

solution (’quantile prediction’) is quite different from ASA (see Sec-

tion 3), as QBet is based on traditional learning, not online learning.

A recent solution is implemented by Karnak [1]. In this work, a

large number of variables are used to model the wait time, includ-

ing seasonal patterns, current system load, queue composition, job

geometry, particular user, particular queue, particular group, etc. A

decision tree is used to classify jobs according to different criteria,

and then the resulting bag of jobs are modelled individually, giv-

ing better precision. In a second version, wait times are improved

with scheduling simulations. Although not perfect, this model was

shown to achieve much better results than QBets. Suggestions on

the future work of Karnak [30] point towards the application of

neural networks.
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Figure 2: (a) Big Job vs (b) Per-Stage managed resource al-
location strategies in HPC. Fig. 2(a): an unique allocation
for the entire workflow duration, with single queue wait-
ing time. Fig. 2(b): per-stage allocations with only as many
resources as required by a particular stage, with extra inter-
stage queuewaiting times. Note the differences inmakespan
and resources charging in each case (summation of area(s)
under the dashed red lines).

2.2 Scheduling Tradeoffs for Scientific
Workflows

In this subsection, we formulate scheduling tradeoffs for different

strategies when submitting workflow jobs to HPC environments.

We analyze the differences in total resource expenditure and work-

flow turnaround time.

Commonly, users submit scientific workflow jobs to HPC clusters

using two different strategies, as shown in Figure 2. In Figure 2a, a

workflow job is submitted as a big allocation (Big Job Strategy in the

figure). Mathematically, the core-usage (C) is defined as C = n ∗ t ,
where n is the number of cores assigned during job execution, and

t is the allocated time (often measured in hours, and specified as

core-hours). Hence, for a workflow with s stages and each needing

time ti to execute, the total core-hours usage is calculated as the

sum of core-hours used by each stage as

CBiдJob = n ∗
s∑
i=1

ti . (1)

Because stages with different resource requirements are not taken

into consideration, the maximum amount of resources n is alloc-

ated for the entire duration of the workflow lifespan. This wastes

resources (white areas above the resource usage black, and under

the dashed red lines in Figure 2a), but guarantees lower total work-

flows’ execution times. Alternatively, users can manually manage

the different stages in the workflow by submitting them as mul-

tiple sub-jobs. E-HPC is a library that does exactly this, providing

elasticity for workflows running over HPC resources [14]. Figure

2b shows this per-stage resource assignment. The change in the

amount of resources occurs at the end of each stage, where a com-

ing stage is assigned with the exact number of cores required for its

execution. Thus CPer−Staдe , the core-hours usage in a per-stage

managed workflow with s stages, is calculated as

CPer−Staдe =
s∑
i=1

(ti ∗ ni ), (2)

where ti and ni respectively represent the time and the number of

resources needed to execute the i-th stage. Comparing definitions

(1) and (2), per-stage management results in lower total core-hour

usage iff the accumulated sum of cores needed at each stagei is

lower than n, or:
∑s
i=1

ni < n. It follows that any workflow with

one or more sequential stages and at least one parallel stage can

have optimal core-hour usage if per-stage management is used [14].

Although per-stage management provides lower resource usage,

it may negatively affects the total turnaround time (also known as

the makespan). Workflow turnaround time (T ) can be defined as

T = t+q, where t is the workflow execution time, and q is the queue
waiting time. Because resource allocation is performed for each

stage in per-stage management, the makespan can be estimated as

TPer−Staдe =
∑s
i=1
(ti + q′i ) , where ti and q

′
i are respectively the

execution times and queue waiting times of the i-th stage. With a

BiдJob scheduling strategy, and assuming t =
∑s
i=1

ti , the work-
flows’ makespan is estimated similarly to T above. Thus, for a per-

state management to have lower makespans, the accumulated sum

of its waiting times q′i has to be lower than the single waiting time

q1 in the BiдJob strategy, i.e.,

∑s
i=1

q′i < q1. One strategy to achieve

this is to heuristically pack multiple stages within medium-sized

job submissions [31], though it may not achieve optimal resource

usage. Finally, as the queue waiting time is a system parameter

controlled by the resource manager, another natural strategy for

the users is to observe its behaviour and estimate it.

2.3 Challenge: Waiting Time Estimation
The clear tradeoffs analyzed in the previous subsection show that,

in one hand, submitting a large job for execution may have a long

single waiting time, with the potential side effect of idle resources

during sequential stages. At the expense of inefficient resource

usage, these two characteristics achieve the minimum application

runtime possible. On the other hand, submitting many pilot jobs

separately (composing each stage) has the advantage of efficient

resource usage as it uses per-staged allocations (as done in [14]).

However, the extra inter-stage waiting times increase the workflow

makespan, specially if it interweaves many stages with different

resource requirements. A way to mitigate this would be to estim-

ate the queue waiting time, with a pro-active submission strategy

that uses such estimations for coming stages, requesting needed

resources during the execution of ongoing stages, thus resulting in

a minimization of the accumulated inter-stage waiting times [31].

However, depending on the estimation accuracy, three outcomes

are possible: (i) perfect estimation, (ii) over-estimation, and (iii)

under-estimation. In (i), resource usage and workflow makespan

would be optimal. In (ii), resource usage would be optimal, but a

probable increase in workflow makespan would be seen (though

less than achieved by per-stage allocation). In (iii), resources would

be ready for use before they are actually needed, and depending
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Figure 3: ASA - Architecture managing the physical re-
sources. Tasks (the different shapes in the partitions) from
different jobs can access resources from multiple jobs. The
unified view layer enables users to apply different schedu-
ling strategies, such as pro-active job submissions.

on the policy used to mitigate the extra costs regarding this, both

the resource usage and workflow makespan would increase. Some

resource managers (such as Slurm [18]) allow job dependency con-

straints to be specified, including when a job may start execution

in case previous jobs have not finished execution.

3 ASA: THE ADAPTIVE SCHEDULING
ARCHITECTURE

In this section we describe the proposed architecture offering a

global and unified view of resources to the application, and the

proposed algorithm being used to estimate user’s queue waiting

time for upcoming workflow stages.

3.1 Architecture
Figure 3 illustrates the unified view presented to applications.Within

ASA, the Unified View layer bridges the management of the physical

resources made available through a low level resource manager

like Slurm. Essentially, the application only sees a global pool of

resources, where each one can be used freely according to the

application’s needs. By extending upon Mesos [17], a distributed re-

source manager, ASA handles scheduling, fault tolerance, resource

isolation and control (among collocated tasks), elasticity, and other

user defined policies. Mesos was chosen due to its simplicity and

non-intrusiveness at managing resources, allowing users to pack

it as a library which can be dynamically loaded. Moreover, similar

resource managers require administrative capabilities to perform

similar features, diminishing their portability and usefulness in

restricted environments such as HPC clusters.

Current workflows can be easily managed by, and submitted to

Mesos. This can either be achieved through directly submitting the
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Figure 4: ASA - Algorithmworkflow illustrating two concur-
rent pro-active submissions (2 and 3) within ongoing stages.
Note the per-staged charging and lower workflow make-
span.

application through a default Mesos executor, or by extending the

WMS’s internal APIs, bridging them with Mesos and enabling it

to manage all workflow’s tasks. Specific scheduling and placement

policies can be realized through a Mesos Framework, which is the

implementation of a scheduler tailored specifically to an application

(e.g. MPI, Spark, etc). Mesos then monitors task states (e.g. RUN,
COMPLETE, FAIL, etc.) to handle problems such as task crashes,

misbehaviours, and unresponsiveness. In each case, frameworks can

trigger specific actions, e.g., asking for extra resources, or migrating

a failed task to another resource. This model and its associated

runtime system enable applications with enhancements such as

fault-tolerance, resource isolation, performance control, and the

development of novel scheduling algorithms. For example, one

particular feature of this model could be for users who belong to

a same project to dynamically share resources with one another

and save on total resource consumption for the project. This can

be extra useful at developing phases of a project, where trials and

errors are the norm, and performed for testing and prototyping

applications.

3.2 Algorithm
Figure 4 illustrates the algorithm’s overall approach. The algorithm

works by maintaining a distribution over a numberm of fixed queue

waiting times. For example, form = 4, ASA tries to learn which

of the four alternatives (indexes) in the vector (1s, 10s, 100s, 1000s)
works best as queue waiting time estimation for a given resource

allocation request. Rather than focusing on one specific time such

as averaging each perceived queue waiting time, ASA distributes

the alternatives following a probability vector pt ∈ [0, 1]m with∑m
t=1

pt = 1. That is, in case one particular alternative works well,

for instance index ’1s’ (or m1), one wants probability pt to tend

to e1 (pt → e1 = (1, 0, 0, 0); the first unit vector in Rm=4
) when

the number of trials t goes to infinity (t →∞). Generally we aim

to achieve a good mixture on accuracy and exploration, as a good

algorithm needs to be able to detect changes in the queue workload

and embed such behaviour in its predictions. In Reinforcement

Learning, the problem of balancing accuracy with discovery is also

known as the exploration-exploitation trade off [28].

This methodology is applied in the following way. For each stage

at iteration t , a waiting timea is estimated for aworkflow stagey and

used to submit job
y
- the request for change of resources - at time

ty−1−a, where ty−1 is the expected end-date/deadline of an ongoing
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Algorithm 1 ASA - Adaptive Scheduling Algorithm

Require: Initialise p
0
as p

0a ← 1

m for allm actions a
1: for t ← 1, 2, . . . do
2: Initialise ℓta ← 0 for all a
3: while maxa ℓta ≤ 1 do
4: Sample action a according to vector pt
5: ℓta ← ℓta + ℓ (a) for action a
6: end while
7: Update

pt+1,a ← e−γt ℓta
1

Nt
pt,a

for all actions a. Nt is a normalising factor so that

∑
a pa = 1

8: end for

workflow stagey−1 (Figure 4). If all goes as planned, it is expected

that this pro-active job submission strategyminimizes the perceived

waiting times between all workflow stages (see Section 2). However,

if a workflow stage ends later, or an allocation gets assigned earlier

than expected, resources may idle for some time before they can be

effectively utilized. Conversely, if a workflow stage ends sooner, or

resources become available later than expected, the total workflow

process may take longer to complete. Both can be expressed in

terms of a loss function ℓy (a), associated to the workflow stagey
based on the waiting time a. This process is detailed in Algorithm

1 as follows.

Assume there arem potentially good actions {a}, as for example,

m different time estimations for the queue waiting time. Assume

also that after each application of an action a to a given case, one

can score its loss ℓ(a). The ASA (Adaptive Scheduling Algorithm)

consists basically of a double loop. The outer loop (line 1) iterates

overmini batches of cases, referred to as rounds and collects as many

cases in that round so that the total accumulated loss is bounded.

The inner loop (line 3) iterates over such rounds and ensures that

the vector ℓt ∈ Rm collecting loss of the various actions {a} is
initialised properly before starting a new round, and that the vector

p is updated properly after each round (line 7). eγt is used as a

non-increasing sequence, and guarantees the proven convergence

of ASA (see Appendix A for more details and the mathematical

proof). p is a distribution over all possible actions a that can be

taken: after a while (when it has learned well), it peaks on the best

action a∗, while in the beginning it is spread evenly over all actions

a. In other words, in the beginning the algorithm explores options,
like trying out random queue waiting times, or using the resource

manager estimate features, while an exploitative stance is taken
when enough evidence is collected, and more accurate estimations

can be done. By following upon these principles, the coming section

evaluates how all these concepts link together.

4 EVALUATION
In this section, we evaluate ASA’s strategy with respect to work-

flows’ total runtime, resource usage, queue waiting times, and

makespan, all defined in the following subsections. We additionally

evaluate Algorithm 1 convergence over time for three different es-

timation policies for a simulated scenario where the queue waiting

time being experienced by the user changes at 5 different points

in time (see Subsection 4.4). At the end of this section, we evalu-

ate ASA estimation accuracy and how it influences the perceived

waiting time experienced by applications at runtime.

4.1 Metrics
The total runtime is measured by summing up the execution time

of each workflow stage. The summation of each workflow’s stage

runtime multiplied by the amount of resources used in such stages,

measures the total resource usage, or core-hour (measured in hours).

We compare ASA with two different scheduling strategies: (i) tra-

ditional, Big Job allocation strategy; and (ii) dynamic, Per-stage

job allocation. As explained in Section 2, the Big Job strategy (i)

allocates the maximum capacity needed for the entire duration of

the workflow, regardless of its stages’ needs. The second strategy

(ii), though, allocates resources to workflows in a per-stage man-

ner, for the exact duration of each stage. Our proposed strategy

ASA (iii) pro-actively submits resource changes for a coming stage

during the execution of an ongoing stage (see Section 3). The total

queue waiting times is thus calculated slightly different in each

strategy: in (i), there will be only one queue waiting time (the first

one), whereas strategy (ii) has one or more queue waiting times

(one additional wait for each workflow stage). In ASA (iii), the

waiting times are measured by the perceived queue waiting times

(PWT), i.e., the time interval a coming workflow stage actually

waited for resources after a previous stage finished (see Figure 4).

As this waiting time overlaps with a previous stage execution, the

perceived queue waiting time is potentially reduced and can be

observed through the makespan metric. On the other hand, if the

perceived queue waiting time is lower than expected, an extra core-

hour overhead (OV) loss might be incurred. Then, for each strategy,

the total queue waiting time is calculated as the summation of all

queue waiting times . Finally, the total makespan is calculated by

subtracting the time the workflow is submitted for execution from

the time the workflow successfully finishes execution. The total

makespan takes into consideration all the inter-stage waiting times

in each strategy. We evaluate these metrics for each strategy (Big

Job allocation, Per-stage allocations, and ASA) by submitting three

different scientific workflows, each with different resource usage

and requirement profiles (see Subsection 4.3).

4.2 Computing Systems
In order to demonstrate and compare ASA’s feasibility, adaptab-

ility, and generality features, we run a set of workflows in two

different supercomputer centers, with different resource scaling

factors: at System 1 and System 2. System 2 comprises 486 nodes

with two 10-cores Intel Xeon E5 CPU (v4), with 128 GB memory

each. System 2’s storage uses the Lustre file system and provides

6.6 PB of storage. The interconnect is Infiniband FDR, supporting a

theoretical bandwidth of 56 Gb/s and a latency of 0.7ms. All System
2’s nodes run CentOS 7, with Slurm 19.05 with its default fair-share

scheduling policy.

System 1 compromises 602 nodes with two 14-cores Intel Xeon

E5 CPU (v4), with 128 GB of memory each, and similar Infiniband

interconnection as System 2’s. System 1’s storage also uses the

Lustre file system, providing 2 PB of storage. All System 1’s nodes
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run Ubuntu Xenial (16.04 LTS), with Slurm 18.08 with its default

fair-share scheduling policy.

4.3 Applications
Three different, real scientific workflows were selected for compar-

ing ASA to Big Job and Per-Stage scheduling strategies, as explained

earlier in this section: Montage, BLAST, and Statistics.Montage [2]
is a data intensive application that constructs the mosaic of a sky

survey. The workflow has nine ordered stages, grouped into two

parallel (first two, and fifth) and two sequential (third and fourth,

and last three) stages (Figure 1). All runs of Montage construct an

image for survey M17 on band j, degree 8.0 from the 2mass
Atlas images.

BLAST [4] is a compute intensive applications that matches DNA

sequences against a large ( > 6 GB) sequence database. The work-

flow splits an input file (of few KBs) into several smaller files and

then uses parallel tasks to compare the input against the large

sequence database. BLAST is composed of two main stages: one

parallel and one sequential. The database is loaded in-memory on

all compute nodes during the parallel stage. Finally, all the outputs

from the parallel stage are merged into a single file (sequential

stage).

Statistics [20] is an I/O and network intensive application that cal-

culates various statistical metrics (mean, median, average, standard

deviation, variance, etc.) from a large dataset with measurements

of electric power consumption in a household with an one-minute

sampling rate over a period of almost 4 years. Different electrical

quantities and some sub-metering values are available in a public

dataset. The statistics workflow is composed mainly of a two se-

quential and two parallel stages, intertwined, consuming most of

the processing due to communication among the parallel tasks.

Workflow configuration. For each one of the three strategies

(Big Job, Per-stage, and ASA), these three workflows are submitted

sequentially to the queue, concurrently one after the other. This

was done using six different scaling factors: In System 1, workflows

use 28, 56, and 112 cores, respectively; whereas in System 2, work-

flows use 160, 320, and 640 cores, respectively. This combination

creates a total of 54 different runs. For ASA’s strategy, Algorithm

1’s state is kept across different runs, meaning all of its variables are

shared among the different workflow submissions. This allows the

algorithm to converge and adapt itself more quickly to the current

queue state, minimizing errors. Finally, in this evaluation the loss

function ℓy (a) for a given job geometry y is defined as

ℓy (a) :=

{
0, optimal ;

1, otherwise
(3)

where optimal means the algorithm sampled the best possible

(closest to the true queue waiting time) action a among them al-

ternatives available, and thus it returns a loss of 0, and 1 otherwise.

Although more complex functions could be used, choosing a simple

loss function allows ASA’s behaviour to be understood more easily.

Moreover, queue waiting times can be very large at some supercom-

puter centers, as it depends on resource availability and on many

job constraints. As mentioned in Algorithm 1, lengthierm’s should

theoretically return more accurate estimations. However, for the

purposes of this evaluation and due to practical runtime reasons,
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Figure 5: ASA’s estimation convergence over time regarding
queue waiting time (dark dashed blue line) with three dif-
ferent sampling policies: Greedy (red dotted line), ASA’s de-
fault (black line), and ASA tuned (light pink line).

m is empirically set to represent a maximum queue waiting time

of ∼28 hours (100k seconds), since this was the maximum queue

waiting time reported in Systems 1 and 2. Thus, the value ofm = 53

is used in Algorithm 1 to split the possible range estimators in 53

time intervals representing possible queue waiting time alternat-

ives. The alternatives cover multiples of 10’s, 100’s, 1k’s, 10k’s, and

100k time intervals (in seconds), with higher number of alternatives

assigned to values 10’s and 100’s due to the higher queue wait-

ing times variability usually faced by smaller jobs (with up to 112

assigned cores) usually falling down in these ranges. Finally, all

three workflows use the Tigres WMS for runtime execution, and

the Per-Stage submissions use Tigres’ E-HPC feature.

4.4 Convergence Results
Figure 5 shows a 1000 iterations simulation demonstrating howASA

(Algorithm 1) waiting time estimations converges in a hypothetical

scenario where the true waiting time changes over time. To test

ASA’s adaptability capabilities, the true waiting time (blue stepped

line) is randomly varied at five different occasions: at iterations

numbers 0, 200, 400, 600, and 800. The default ASA policy (black

thick line) takes rather too many iterations to converge to the true

waiting time, which suddenly changes and worsens its convergence

trend. It does so because it keeps exploring the interval space in

order to validate its knowledge. However, with a tuned policy (pink

thin line), where the perceived queue waiting times are used to

randomly and repeatedly adjust the probability distribution p (used

in Algorithm 1) with the calculated losses, the convergence velocity

changes drastically. As it can be seen, at every true waiting time

variation the tuned policy strategy enables ASA to converge to the

true waiting time more rapidly. Even though, it still allows ASA

to keep exploring the interval space, though it makes fewer miss

predictions than the default sampling policy. A greedy approach

is also shown (dashed red line), where the minimum perceived

loss is always used for making estimations for the waiting times.

Because the simple loss function ℓ(i) (see definition (3) in Section

3) is used, when the true waiting time suddenly drops, the greedy

policy reaches a local minimum, and does not behave correctly
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afterwards, defaulting to a very conservative loss estimator (i.e.,

every pro-active submission happens at the end of a stage, similarly

to the Per-Stage’s strategy) and thus behaving as if the algorithm

was not used at all.

4.5 Sensitivity Analysis
By default, ASA uses the resource manager’s helpers to set job

dependencies. This allows ASA to specify different dependencies

between sorted workflow stages with the advantage of optimiz-

ing resource usage, as a job cannot have its resources allocated

(and thus charged) until all dependent jobs completed execution.

However, this can also cause ASA to deviate towards non-optimal

estimations, and furthermore randomly defer the start of jobs. Thus,

to illustrate how ASA behaves in environments managed by re-

source managers with no support of job dependency helpers, and

to calculate such impacts on the total workflow resource usage,

an experiment without this setting is evaluated in System 1 for

the Montage workflow with 112 cores. This strategy is henceforce

denoted ASA Naïve.
A large repetition number within the ASA tuned sampling policy

has the effect of influencing (or biasing) ASA to follow the last

observed waiting time, and thus this feature should be used with

caution to not make ASA simply follow (or exploit) its first queue

waiting time observations, devoting it of learning new outcomes

and changes in the queue workload. In the following sub-sections,

Algorithm 1 is tuned with a repetition parameter of 50, same value

used for the previous simulation shown in Figure 5.

As a complement to these empirical results, we proof the theor-

etical convergence of the ASA algorithm in Appendix A.

4.6 Makespan Results
Figures 6, 7, and 8 show all three workflows’ makespan breakdowns,

showing the different inter-stage queue waiting times for each

scheduling strategy (Big Job, Per-Stage, and ASA allocations), and

for the six different number of cores (scaling, representing the peak

allocations for each strategy). The figures are split in two columns,

(a) left and (b) right, which show results for System 1 and System

2, respectively. The difference in the queue waiting times between

the two supercomputer centers are substantial, with higher waiting

times in System 2.

Figures 6(a) and (b) show the makespan for Montage. It is no-

ticeable that early stages suffer from higher queue waiting times

due to Montage beginning execution with a parallel stage. The

total waiting time gets worse as the peak core allocation (Num-

ber of cores) scales, negatively impacting the Per-Stage strategy in

every scenario with more than 28 cores. Due to multiple interac-

tions of concurrently running workflows, dynamically updating

how the queue is behaving (p distribution in Algorithm 1) are re-

quired. ASA’s strategy leverages this information to submit resource

changes earlier, lowering the total waiting times. This is noticeable

already at scaling to 56 and 112 cores, where the total makespan is

lower than for the Big Job allocation. For Montage Naive, with 112

cores at System 1, there were additional delays as resources for the

third stage got ready for use before the second stage had completed.

In this case, ASA canceled the submission and re-submitted the

job for the third stage, which incurred in an additional (perceived)

queue waiting time as it can be noticed in the largerWait Time 3 in
Figure 6(a).

However, the same effect does not happen to BLAST, as can be

seen in figures 7 (a) and (b). As BLAST is a two stages workflow,

where the first parallel stage is considerable larger than the second

sequential one, the effects of using different scheduling strategies

are neglectable. Besides that, BLAST is a very scalable application,

essentially keeping the resource utilization high as the core scaling

factor increases. Furthermore, due to the higher queuewaiting times

at System 2, BLAST’s total makespan gets severely impacted. Finally,

more notable dynamics are perceived in the Statistics workflow

(Figures 8 (a) and (b)). This is a four stage and network intensive

workflow, with large execution times in each stage. At first, in

System 1 (Figure 8(a)), the queue waiting time has limited impact

on the total makespan. However, at the busier center (System 2,

Figure 8(b)) with larger queue waiting times, the learnt information

gathered by other concurrent workflows allows ASA’s pro-active

system to essentially submit future resource change jobs earlier

than even upcoming stages. This has significant effect, specially

at 320 and 640 cores, where the queue waiting times are severely

impacted for the Per-Stage strategy, which sometimes had twice

the makespan of Big Job allocations.

4.7 Resource Usage and ASA Performance
Table 1 summarizes all runs and the measured metrics explained

in previous sections. Below each workflow, a normalized average

of collected metrics shows workflow’s results in overview. This

average is related to the lowest metric for each resource scaling

row. Besides that, percentages inside parentheses represent the

extra times incurred when comparing specific metrics with the best

metric for that resource scaling.

It is visible that Per-Stage and ASA strategies provide the best

resource usage in most scenarios, as shown in the table as Core-

hour Usage. This comes, however, at the cost of extra workflow’s

makespan. Also, due to some variations in how long the workflows

take to run, the resource usage in each strategy can vary. As noted

in the previous subsection, the total makespan can be severely im-

pacted when the amount of time an application waits in the queue

is larger than the application’s total execution time. As Montage

is a not a scalable application, its execution time across different

scaling factors does not considerably decrease its total execution

time, and requesting larger amounts of resources actually impacts

the total makespan negatively. This is illustrated by the Montage

and BLAST workflows (320 and 640 cores), where the Per-Stage

allocation strategy had 82% and 13% increase in the makespan. Pro-

active ASA submissions reduced these severe extra times by 72%

and 9% respectively, reducing large queue waiting time impacts as

the normalized average makespans show. This behavior is particu-

larly more noticeable for runs using the Per-Stage strategy than it

is for ASA, as it learns about the queue’s current state by observing

the impacts other concurrent workflow submissions had. This in-

formation allows ASA to act to mitigate such severe impacts in

earlier stages.
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Figure 6: Montage Workflow - Makespan results for (a) System 1 and (b) System 2 for different scaling factors (28, 56, 112, 160,
320, and 640 cores), and scheduling strategies (Big Job, Per-Stage, and ASA). Number of cores indicate peak allocations for a
given strategy. ASA Naive strategy means no resource manager dependency setting is used.
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Figure 7: BLAST Workflow - Makespan results for (a) System 1 and (b) System 2 for different scaling factors (28, 56, 112, 160,
320, and 640 cores), and scheduling strategies (Big Job, Per-Stage, and ASA). Number of cores indicate peak allocations for a
given strategy.

4.8 Prediction accuracy
In order to validate and quantify ASA’s decision accuracy that has

impact on its performance as a scheduling algorithm, additional

experiments were conducted. Here, each job geometry related to

each workflow described in Section 4.3 is submitted to their re-

spective system 60 times, with a one minute time interval between

submissions. This is done to capture variations in each system’s

queue workload, which affects the experienced waiting times. As

in the previous evaluations, System 1 handles all job geometries

submissions with 28, 56, and 112 cores, whereas System 2 handles

job geometries with 160, 320, and 640 cores. For each submission,

waiting times are compared to ASA predictions of waiting time.

Table 2 summarizes averages results for each workflow job geome-

try. In this table, the real waiting time (WT) averages actual queue

waiting times (in hours), ASAWT averages predicted waiting times

(in hours), and Perceived WT averages workflows’ actual waiting

times (in hours) are given. The impact of the predictions are also

assessed as follows: Hit (the higher, the better) and Miss (the lower,

the better) ratios represent the fractions of ASA’s accurate- and

over-predictions, the latter when jobs need to be re-submitted due

to larger predictions than actual WTs, over all job submissions. On

the other hand, misses and over-predictions impact total resource

usage (measured in core-hours) because job allocations get assigned

earlier than the estimates, causing extra job submission overheads

(OV) when compared to resource usage for the Per-Stage strategy.

As it can be seen, there are high variations in System 1 (Cores

28-112), whereas there are no misses (incorrect predictions causing

re-submissions) at all for System 2 due to its stability. This can
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Figure 8: Statistics Workflow - Makespan results for (a) System 1 and (b) System 2 for different scaling factors (28, 56, 112, 160,
320, and 640 cores), and scheduling strategies (Big Job, Per-Stage, and ASA). Number of cores indicate peak allocations for a
given strategy.

Table 1: Experimental results respectively for Montage, BLAST, and Statistic Workflows in the six different core scalings. Bold
values show best normalized results with relation to the three different scheduling strategies (Big Job, Per-Stage, and ASA
allocations). Normalized averages are shown below results for each workflow (the lower, the better), with extra percentages
(in relation to the best result achieved for any strategy) included inside parentheses (values over 1%).
Acronyms: WF (Workflow), TWT (Total Waiting Time), and CH (Core-Hour).

Big Job Allocation Per-Stage Allocation ASA

WF Cores TWT (s) Makespan (s) CH (h) TWT (s) Makespan (s) CH (h) TWT (s) Makespan (s) CH (h)

M
on

ta
ge

28 150 (+13%) 1287 9 (+24%) 258 (+95%) 1408 (+10%) 7 132 1277 7
56 206 1261 16 (+32%) 426 (+105%) 1496 (+19%) 12 219 (+6%) 1280 (+2%) 12
112 452 (+15%) 1513 (+3%) 33 (+65%) 699 (+78%) 1779 (+22%) 20 393 1464 20
160 1415 2718 58 (+47%) 2220 (57%) 3507 (+29%) 40 1652 (+17%) 2921 (+7%) 39
320 8135 10126 177 (+68%) 15582 (+91%) 17170 (+69%) 106 10062 (+24%) 11637 (+12%) 105
640 10200 11940 309 (+83%) 16600 (+63%) 18200 (+52%) 171 11851 (+16%) 13436 (+12%) 169

Normalized
Average +5% +1% +53% +82% +34% 0% +10% +6% 0%

B
LA

ST

28 70 (+3%) 2750 20 68 2727 20 75 2749 20

56 133 (+20%) 1476 20 153 (+2%) 1508 21 111 1477 21
112 165 (+15%) 926 (+2%) 23 194 (+35%) 965 (+6%) 24 144 907 23
160 7100 7846 33 7125 7880 33 7041 7800 33
320 8133 8494 32 8240 8611 33 8194 8557 32
640 10133 10394 46 10150 10429 47 10144 10419 48

Normalized
Average +6% 0% +1% +13% +2% 0% +2% 0% +1%

St
at
is
ti
cs

28 52 (+8%) 5593 (+2%) 43 (+2%) 48 5487 42 51 (+6%) 5549 43

56 96 4397 66 (+99%) 263 (+174%) 4644 (+6%) 34 116 (+21%) 4444 33
112 124 (+77%) 4110 (+1%) 124 (+99%) 191 (+173%) 4193 (3%) 62 70 4085 62
160 2772 (+2%) 7095 (+2%) 192 (+102%) 4960 (+83%) 9241 (+32%) 95 2712 6986 95
320 7935 (+6%) 11886 (3%) 351 (+99%) 18008 (+141%) 21993 (+92%) 177 7471 11439 176
640 10122 (+7%) 13868 (+4%) 665 (+97%) 21014 (+121%) 24817 (+86%) 338 9497 13369 344

Normalized
Average +17% +2% +83% +115% +36% 0% +5% 0% +1%
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Table 2: ASA - Average results (with standard deviations)
summary for Montage, BLAST, and Statistic workflows in
six job geometries. Cores 28, 56, and 112 are System 1’s,
whereas 160, 320, and 640 are System 2’s.
Acronyms: WT (Waiting Time), PWT (Perceived Waiting
Time), and OV (Core-Hour overhead in hours).

Cores Real
WT (h)

ASA
WT (h)

ASA
PWT (h)

Hit
Ratio (%)

Miss
Ratio (%)

OV
Loss (h)

M
on

ta
ge

28 0.4±0.3 0.7±0.6 0.5±0.4 60 40 1.7±0.5
56 1.1±0.8 1.2±0.9 0.4±0.4 68 32 3.0±0.8
112 1.5±0.7 2.0±1.9 0.5±0.4 87 13 2.0±0.8
160 11 ±1.6 3.9±4.6 0.7±0.3 100 0 0

320 15 ±1.3 12±3.9 0.2±0.3 100 0 0

640 17 ±0.6 12±3.3 0.3±0.2 100 0 0

B
LA

ST

28 0.4±0.3 1.0±1.0 0.6±0.3 70 30 8±1.9
56 1.1±0.8 1.3±1.2 0.7±0.5 71 29 11±2.7
112 1.5±0.7 1.0±1.0 0.6±0.4 89 11 3±0.7
160 11±1.6 4.5±5.0 0.7±0.4 100 0 0

320 15±1.3 11±4.1 0.2±0.3 100 0 0

640 16±0.6 11±3.8 0.3±0.2 100 0 0

St
at
is
ti
cs

28 0.4±0.6 0.5±0.7 0.4±0.4 67 33 3±0.2
56 1.1±0.8 1.2±0.9 0.4±0.4 69 31 6±2.0
112 1.5±0.7 2.0±1.9 0.5±0.4 87 13 5±1.0
160 11±1.7 5.2±5.8 0.6±0.4 100 0 0

320 14±1.3 11±3.9 0.2±0.3 100 0 0

640 16±0.6 12±3.3 0.3±0.2 100 0 0

be explained due to the higher fragmentation caused by smaller

jobs and allocations. Notable, although there is a fair amount of

misses for smaller job geometries (up to 112 cores) and thus job

re-submissions for System 1, ASA still controls considerably the

core-hour overhead losses. We remark that ASA achieves very good

overall results on System 1, as summarized in Table 1, where ASA

has very good makespan and resource usage results compared to

the alternative strategies (Big Job and Per-Stage).

5 DISCUSSION
The evaluation illustrates how ASA combines a pro-active submis-

sion scheduling with Per-stage’s strategy to simultaneously minim-

ize resource usage and waiting times. ASA can be specially useful

when a workflow has multiple large consecutive stages, where the

impacts of waiting in a queue can overtake the usefulness of non-

monolithic applications and workflows, represented by the Big Job

allocations.

To summarize, Table 1 demonstrates that ASA achievesmakespans

close to those of Big Job allocations, while using as little resources

as Per-Stage allocation strategy. Big Job strategy results in shorter

makespans, but always end up in larger resource usage (core-hours).

E-HPC’s Per-Stage [14] strategy results in best resource usage and

worse makespans. ASA simultaneously tackles both, with close-to-

optimal makespans when compared to Big Job’s and specially to

Per-Stage (Figures 6-8), with best core-hour usage (Table 1). In real

systems, job submission planning is key, and as explained in Sec-

tion 4.3, We pro-actively and concurrently submitted multi-stage

jobs. To avoid both bad estimations and violating workflow’s order-

ing constraints, ASA uses Slurm dependency features to link the

various stages. Thus we have shown no losses, except in ASA Naive

(Figure 5a) which does not use such features. Although the archi-

tecture supports collocation of different workflow tasks in other’s

workflow allocations and resources (Figure 3), we preferred not

managing resource allocations among different workflow stages.

For instance, the architecture allows task co-placement from differ-

ent workflows to share a same resource like CPU. As mentioned,

this is supported by Mesos in a fine-grained manner as Mesos sup-

ports resource capacity scheduling constraints to be specified, like

for example CPU utilization: if one task uses only up to 10% of a

CPU resource, Mesos can co-schedule additional tasks in the same

CPU up to a global threshold is reached (e.g. 100%). Although task

co-placement optimizes overall resource usage if done correctly, it

may have direct impacts on the time limits set by users, besides

workflow performance impacts. As additional actions would need

to be studied to safely support such proposition, we decided to not

do it in this paper.

Table 2 shows how System 1 and System 2 affect ASA predictions

and resource usage fares. Although smaller jobs experience shorter

queue waiting times, they experience variations of up to almost 1

hour in System 1’s queue workload, ASA controlled quite notably

the core-hour overhead losses. A high queue variation negatively

impacts ASA, causing its predictions to also vary largely during

experiments because ASA has to adjust its probability distribution

modelling the queue. For smaller job geometries (up to 112 cores),

ASA has to acquire knowledge from a large number m (see pre-

vious Section) of alternatives until it can build-up knowledge for

making accurate estimates. However, as the system’s load varies

aggressively, ASA has to adapt to such variations to bound the

overhead losses. ASA is still able to reduce the perceived waiting

times seen by workflows most of the time. The high variation in a

queue usually happens due to fragmentation caused in the system

by smaller job geometries with varied similar, but not identical

constraints, something that larger jobs (> 112 cores) in System 2

do not experience, and explains the high ASA accuracy in such

system.

As explained in Section 4, ASA can be tuned to follow closely the

last observed queue waiting time, which would change the results

seen in Table 2, though its effects should be extensively studied in

more specific scenarios. Modern schedulers like Slurm allow de-

pendencies to be set among different jobs, and such features would

mitigate the core-hours overhead caused by over-estimations, as

can be seen in Table 1. Although job-dependencies enable over-

head control, it may affect perceived queue waiting times because

schedulers postpone job submissions until their dependencies are

set. Our experimental results from Table 2 show that ASA can be

specially useful for large job geometries (achieving 100% accuracy),

which can enable the resource planning capability as a feature.

Generally, our paper focuses on the first of two ASA features:

to the best of our knowledge, a new, convergence proven (see

Appendix A) Reinforcement-Learning method for estimating queue

waiting times (WT) exclusively from user’s perspective; a library

for finer-grain management and scheduling of workflow’s tasks

(Mesos). Rather than using traces and/or resource manager’s queue

waiting time estimates (which can speed-up ASA convergence),

we opted for real experiments in production systems. In this way

we can evaluate how ASA would work as a general scheduling

algorithm, and not only as a neat library enabling a diverse set of
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scheduling strategies to modern HPC systems. Results summarize

experiments using 1000s of core-hours across two production HPC

systems with large differences in architecture, users, workload, etc

(Table 2). Algorithm 1 is a very simple method which adapts its

knowledge and estimations by adjusting mini-batches (or rounds),

resetting them when bad estimates are detected so to bound its

losses. By sharing this information in a per job-geometry basis

across different experimental scales, improvements in both systems

are reported (Figures 5-8).

6 CONCLUSIONS
Keeping the highest possible application performance for timely

processing with no wastage of resources has always been a chal-

lenge, and will be even more relevant for upcoming Exascale sys-

tems designed for low latency and highly dynamic data intensive

workflows. These newer constraints demand novel combined solu-

tions to classical problems such as queue waiting time predictions

with adaptive, elastic, and fault tolerant architectural features. To

tackle these, and leveraging on user perceived system’s perform-

ance, we propose ASA: the Adaptive Scheduling Architecture. ASA

learns and estimates the queue waiting times by using a novel rein-

forcement learning algorithm, which combined with its resource

manager layer provides applications with the ability to dynamically

adjust job resource planning based on workflow stage requirements.

These allocations are done proactively based on the waiting time

predictions to ensure that resources for subsequent workflow stages

are available upon completion of ongoing stages. The evaluation

based on three real workloads running with different job sizes

on two different HPC systems demonstrates that ASA achieves

makespans close to those of traditional, large job allocations. ASA’s

makespan averages only 2% higher than large allocations across

all three workflows. Combined with a lower resource usage of

Per-stage allocation, ASA achieves a total core-hour usage within

0.2% compared to optimal, Per-stage allocations, which is 43% less

than the large allocations across all evaluated scenarios. For large

job geometry submissions with lower queue workload variability,

ASA achieves 100% prediction accuracy, while simultaneously min-

imizing overall resource usage even when faced with high queue

workload variability. Future work points to extending ASA with

statefulness, allowing ASA to support different metrics and/or het-

erogeneity, and enabling yet more complex pro-active scheduling

techniques and the support to multi-constraint/dimensional sche-

duling.
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A CONVERGENCE OF ASA
In this appendix we mathematically prove ASA’s convergence to-

wards the true waiting time, as shown in Figure 5.

Theorem 1. Let θ = (θ1, . . . ,θm ) ∈ Rm be a fixed, given collec-
tion of waiting time alternatives amongst which to choose. Let the
ASA algorithm run on a sequence of t processes, and let η(t) denote
the number of mini-batches created by the algorithm as of time t .
Then for any δ > 0 with probability exceeding 1 − δ , one has that

t∑
s=1

ℓs

(
θs−1

)
−

t∑
s=1

ℓs ( ¯θ ) ≤ 4η(t) + ln(m) +
√

2t ln

(m
δ

)
. (4)

Proof. The key to this proof is to consider two different times-

cales: (1) runs from 1, . . . , t in a linear fashion, and (2) runs over the

same range in a different fashion as follows. Letmk ⊂ {1, . . . , t}
such that eachmk = a, . . . ,b and ∪kmk = {1, . . . , t}. We refer to

mk as a mini-batch, or round, of length |mk |. Consider a sequence
{ai , . . . ,at } for any t , then

t∑
s=1

as =

η(t )∑
k=1

∑
j ∈mk

aj , (5)

with η(t) the number of mini-batches {mk }. Let (s) point to the

last completed mini-batchmk before iteration s . Rather than fixing

the length of the mini-batches, the algorithm itself constructs the

minibatches according to how well the learned solution is working.

This extra layer of adaptivity enables the non-stationary setting.

Let θs−1
denote the estimated waiting time, randomly sampled

according to p(s−1), which is implemented for process ys , with
s = 1, 2, 3, . . . , t . Define Zt > 0 as

Zt =
∑
θi

e−
∑t
s=1

I (θi=θ s−1)ℓs (θi )

=
∑
θi

e
−∑nk

k=1

∑
j∈mk

I (θi=θ j−1)ℓj (θi ). (6)

Then

ln

Zt
Z0

= ln(Zt ) − ln(Z0)

= ln

∑
θi

e−
∑t
s=1

I (θi=θ s−1)ℓs (θi ) − ln(m)

≥ −
t∑

s=1

I
(

¯θ = θs−1

)
ℓs ( ¯θ ) − ln(m). (7)

Conversely

ln

Z ¯k
Z ¯k−1

= ln

∑
θi e
−∑ ¯k

k=1

∑
j∈mk

I (θi=θ j−1)ℓj (θi )∑
θi e
−∑ ¯k−1

k=1

∑
j∈mk

I (θi=θ j−1)ℓj (θi )

= ln

∑
θi

p ¯k−1,ie

(
−ℓ( ¯k )(θi )

)
, (8)

where we use the definition

ℓ( ¯k)(θi ) ≜
∑
j ∈mk

I
(
θi = θ

j−1

)
ℓj (θi ). (9)

Then using the inequality property 1 − x ≤ e−x ≤ 1 − x + x2
for

all x ≥ −1, gives

ln

∑
θi

p ¯k−1,ie
−ℓ( ¯k )(θi )

≤ ln

©­«1 −
∑
θi

p ¯k−1,i ℓ( ¯k)(θi ) +
©­«
∑
θi

p ¯k−1,i ℓ( ¯k )(θi )
ª®¬

2ª®®¬
≤ ln e−

∑
θi p ¯k−1,i ℓ( ¯k )(θi )+1

= −
∑
θi

p ¯k−1,i ℓ( ¯k )(θi ) + 1, (10)

where by construction

(∑
θi p ¯k−1,i ℓ( ¯k )(θi )

)
2

≤ 4 for any
¯k . In

conclusion,

−
t∑

s=1

I
(
θi = θ

s−1

)
ℓs ( ¯θ ) − ln(m)

≤ ln

Zt
Z0

=

t∑
s=1

ln

Zs
Zs−t

≤ −
t∑

s=1

∑
θi

p(s),i I
(
θi = θ

s−1

)
ℓs (θi ) + 4η(t), (11)

or

t∑
s=1

∑
θi

p(s),i I
(
θi = θ

s−1

)
ℓs (θi ) −

t∑
s=1

ℓs ( ¯θ ) ≤ 4η(t)+ ln(m). (12)

So by defining the expectation at iteration s as

Es [·] =
∑
θi

p(s),i ℓ·(θi ), (13)

one gets

t∑
s=1

Es [ℓs (θs−1)] −
t∑

s=1

ℓs ( ¯θ ) ≤ 4η(t) + ln(m). (14)

Finally, invokingAzuma’s inequality [10] gives that with probability

exceeding 1 − δ < 1, one has

t∑
s=1

ℓs

(
θs−1

)
−

t∑
s=1

ℓs ( ¯θ ) ≤ 4η(t) + ln(m) +
√

2t ln

(m
δ

)
, (15)

as desired.
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