
Errata for thesis

Autonomous Resource Management for High Performance
Datacenters, 2020

Abel Souza
Department of Computing Science, Umeå University

ISBN 978-91-7855-286-3 (print)
 978-91-7855-287-0 (digital)
ISSN 0348-0542
UMINF 20.03

For a full version with all changes applied into the text, please see http://asouza.io/PhD

Changes

Page 5 (v) - Correction in Abstract:
Data intensive workflows are highly dynamic and adaptable to resource changes, system faults,
and by also allowing allow approximate solutions into their models.

Page 17 (3) – Correction and added text in Methodology:
The methodology used in this thesis is mostly experimental is a combination of formal
deduction with scientific experimentation, in concert with the scientific paradigm, where a
priori and a posteriori knowledge about the proposed methods are sought [Ede07].

Added text in Thesis Outline:

The remainder of this thesis is organized as follows.

Page 21 (7) – Correction in subsection 2.1 Applications:

For instance, a query in a search engine should be responded in less than 1000ms 1s or users
may go to the competitor

Page 26 (12)

New section 2.5 Other Characteristics, with added introductory text:
Other characteristics like scheduling and reliability influence how resource managers and
policies are combined and used. In addition, new OS capabilities also enabled the
development of the new specialized resource managers, known as orchestrators.

Sub-subsections “Orchestrators”, “Scheduler Objectives”, and “Reliability and Availability”
previously in section “Resource Manager Components” (pages 26 and 27) were moved into this
new section.

Page 27 (13) – Correction in sub-subsection Reliability and Availability:
High aAvailability (HA) is the percentage of time an infrastructure or a service is running in an
operable state

Page 30 (16) – Added text in Subsection 3.1 Performance Trade-offs:
Systems often depend on other systems with different utilization ratios and would then answer
to similar requests quite differently, depending on time and on the workload. A common PU
metric is the CPU utilization (CPU %), which measures the time a processor is waiting for
memory I/O, and results in the processor not making forward progress with instructions. By
using fine grain monitoring, modern OSes can observe this metric on a per-process basis.

Page 31 (17) – New Subsection “3.2 Strategies and Mechanisms” added, with introductory
text:
In order to enable the performance tradeoffs, strategies such as consolidation and mechanisms
such as isolation should be combined in a way that do not disrupt the developer’s workflow, nor
users QoS experience.

Previous sub-subsections “Consolidation”, “Isolation”, and “Throttling” previously under
subsection “Performance Trade-offs” in page 31 and 32 were moved into this new subsection.

Page 32 (18) – Correction
3.23 Multi-Level Scheduling

Page 33 (19) – Correction
3.34 End Goals

Page 35 (21) – Correction
Figure 4.1(a) shows space-sharing jobs do not fully utilize the processing unity (PU) capacity.

Page 36 (22) – Added text in Figure 4.1:
Figure 4.1: Resource utilization assessment with two consolidation strategies. In (a) isolated
(space-sharing) allocations, PU capacity has no interference. However, when consolidating (b)
and due to time-sharing, some jobs (3, 4, and 5) face performance interference, and may need
larger PU capacity and longer to finish execution.

Page 43 (29) – Added references in introductory text

In Paper I [Fox+17], we design a library that communicates with the resource manager and
allow users to specify the resource requirements following the specific workflow stages. In
Paper II [Sou+18], we focused on extending a hypervisor system (the software emulator that
performs hardware virtualization in datacenters) to dynamically adjust the fault-tolerant
mechanism to use according to the workload faced by the application. In Paper III [Sou+19], we
investigate the monitoring of processor counters to enable finer grained resource allocation on
HPC infrastructures via a two-level scheduling architectural approach. Finally, in Papers IV
[Sou+20] and V [SPT20] we design two reinforcement learning algorithms to enable autonomic
schedule of applications, resulting in extensive resource utilization improvements.

Page 50 (36) – Corrections and added text in subsection 5.7 Future Work

Thus our goal is to extend on Paper IV and V approaches by considering ways to minimize
performance interference and/or false positives in our colocations while making use of job
prioritization as it happens in traditional HPC environments. This is understandable since, for
instance majority of HPC jobs are not fault tolerant or are not designed to deal with stragglers
between tasks. On the other hand, dynamic and elastic jobs are generally, and by design,
developed to deal with those issues. One can also combine the two algorithms proposed in
both papers and create a new level of probabilistic 36 scheduling with reinforcement
learning. In doing so, the architecture unifying the last three papers would be able to support
an unrestricted range of workflows. Resources would now be viewed as statistical entities,
where its capacities would be guaranteed to be within an acceptable range. Applications
could then extend on this architecture to schedule its tasks transparently with no changes in
its workflow, and the side effect would be datacenter higher throughput and utilization.

Page 51 (37) – Corrections and added text in subsection 5.7 Future Work

As such, Finally, the varied and new combined ways for achieving extreme-efficiency at scale at
all layers of the system stack are needed [Jha+14]. One way towards this direction regards the
use of compute specialization, where specialized hardware is used to compute specific types
of operations. This has been replacing the computer industry economies of scale dependency
on Moore’s law [TW17], with new computing paradigms being proposed. For instance, recent
developments such as approximate computing leverages on the idea where applications
progress depend on data estimates, and not on exact data inputs/outputs. Using such
approaches allow a more diverse and intelligent exploitation of the space between the accuracy
required by users and the compute power available in datacenters. As this could be done in
different ways, we can extend on ideas of Paper V for improving efficiency in future datacenter
realizations in order to support approximate applications in conjunction with resource
management. Potential use cases for this can impact scientific and industrial real-time

applications, such as the ones found in aviation and autonomous vehicles. The A possible
outcome can would be aimed at prepare future datacenter realizations, which would be able
to support new power performance tradeoffs by using with autonomic tools and methods to
enable approximate applications to achieve high efficiency and performance needed in such
infrastructures.

Page 53 (39) – 58 (44) – New references added

[Ede07]Amnon H Eden. “Three paradigms of computer science”. In: Minds and machines17.2
(2007), pp. 135–167.

[ORB] ORBIT. Business Continuity as a Service (ORBIT). url: http: //www.orbitproject.eu.

[Sou+18] Abel Souza, Alessandro Vittorio Papadopoulos, Luis Tomas, David Gilbert, and Johan
Tordsson. “Hybrid adaptive checkpointing for virtual machine fault tolerance”. In: 2018 IEEE
International Conference on Cloud Engineering (IC2E). IEEE. 2018, pp. 12–22.

[Sou+19] Abel Souza, Mohamad Rezaei, Erwin Laure, and Johan Tordsson. “Hybrid Resource
Management for HPC and Data Intensive Workloads”. In: 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). 2019, pp. 399– 409.

[Sou+20] Abel Souza, Kristiaan Pelckmans, Devarshi Ghoshal, Lavanya Ramakrishnan, and Johan
Tordsson. ASA – The Adaptive Scheduling Architecture. Research Report. Extended report.
Umeå University, 2020. url: http://umu.diva-
portal.org/smash/record.jsf?pid=diva2%3A1423086 .

[SPT20] Abel Souza, Kristiaan Pelckmans, and Johan Tordsson. An HPC Co-Scheduler with
Reinforcement Learning. Research Report. Umeå University, 2020. url: http://umu.diva-
portal.org/smash/record.jsf?pid=diva2%3A1423087 .

[TW17] Thomas N Theis and H-S Philip Wong. “The end of moore’s law: A new beginning for
information technology”. In: Computing in Science & Engineering 19.2 (2017), pp. 41–50.

Page 175 (189) – Wrong values in Table II for “Slurm”, “ASA”, and “ASAx” Response Time
(h) results

In “Slurm” table line, instead of “2.4”, “1.3”, and “0.5” for 64, 128, and 256 cores respectively, it
should be “4.4”, “2.4”, and “1.4” respectively.

In “ASA” table line, instead of “2.8”, “1.5”, and “0.6” for 64, 128, and 256 cores respectively, it
should be “4.8”, “2.8”, and “2.0” respectively.

In “ASAx” table line, instead of “2.2”, “1.2”, and “0.4” for 64, 128, and 256 cores respectively, it
should be “3.5”, “2.0”, and “0.9” respectively.

