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Abstract

This thesis is composed of six papers, all dealing with the issue of sampling from a
finite population. We consider two different topics: real time sampling and distri-
butions in sampling. The main focus is on Papers A—C, where a somewhat special
sampling situation referred to as real time sampling is studied. Here a finite popu-
lation passes or is passed by the sampler. There is no list of the population units
available and for every unit the sampler should decide whether or not to sample
it when he/she meets the unit. We focus on the problem of finding suitable sam-
pling methods for the described situation and some new methods are proposed.
In all, we try not to sample units close to each other so often, i.e. we sample with
negative dependencies. Here the correlations between the inclusion indicators,
called sampling correlations, play an important role. Some evaluation of the new
methods are made by using a simulation study and asymptotic calculations. We
study new methods mainly in comparison to standard Bernoulli sampling while
having the sample mean as an estimator for the population mean. Assuming a
stationary population model with decreasing autocorrelations, we have found the
form for the nearly optimal sampling correlations by using asymptotic calcula-
tions. Here some restrictions on the sampling correlations are used. We gain
most in efficiency using methods that give negatively correlated indicator variab-
les, such that the correlation sum is small and the sampling correlations are equal
for units up to lag m apart and zero afterwards. Since the proposed methods are
based on sequences of dependent Bernoulli variables, an important part of the
study is devoted to the problem of how to generate such sequences. The correla-
tion structure of these sequences is also studied.

The remainder of the thesis consists of three diverse papers, Papers D-F, where
distributional properties in survey sampling are considered. In Paper D the con-
cern is with unified statistical inference. Here both the model for the population
and the sampling design are taken into account when considering the properties
of an estimator. In this paper the framework of the sampling design as a multi-
variate distribution is used to outline two-phase sampling. In Paper E, we give
probability functions for different sampling designs such as conditional Poisson,
Sampford and Pareto designs. Methods to sample by using the probability func-
tion of a sampling design are discussed. Paper F focuses on the design-based
distributional characteristics of the m-estimator and its variance estimator. We
give formulae for the higher-order moments and cumulants of the w-estimator.
Formulae of the design-based variance of the variance estimator, and covariance
of the m-estimator and its variance estimator are presented.

Key words: Finite population sampling, inferential issues, real time sampling,
sequential sampling methods, negative sampling correlations, model-design-based
inference, multivariate Bernoulli and multinomial designs.

2000 Mathematics Subject Classifications: 62D05, 62E15, 60G10.
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1 Introduction

We often want to have some information about a specified set of units, a finite
population. What is the proportion of unemployed in a country as a whole and
in various regions of the country? What is the average expenditure for food
in households? What is the total volume of a forest stand? One way to get
answers to such questions is to collect information from every unit that belongs
to the population. Another way is to use some sampling technique. Sampling
is choosing in some way just part of a population — called a sample — so that
with an appropriate study of the sample we may say something about the whole
population.

® — seclected units

O — non-selected units

Figure 1: Illustration of a population and a sample

One of the obvious questions here is how to choose the sample. There are many
different more or less advanced techniques. As a simple example, we may select
every 10th unit from the sampling frame — the list of population units. The
sample may be drawn by a probability mechanism, called sampling design. The
latter then plays a central role by determining how the units are selected from
the population and also the essential statistical properties of the random quan-
tities calculated from the sample. The usual inference problem in sampling is to
estimate some summary characteristic of the population, such as the total or the
mean, after observing the sample. Additionally, we would like to say something
about the precision of the estimate, i.e. the size of the sampling error. The latter
results from the fact that the sample is part of the population and estimates from
the sample may not be identical to the corresponding population quantities. A
sampling method that is easy to implement and gives estimates with good preci-
sion should be used.

Furthermore, nonsampling errors such as imperfections in the sampling frame,
nonresponse, measurement errors, etc., may occur whether the entire population
or a sample of the population is studied and all should be taken into account.



Survey sampling theory has a long history. The idea of observing a representative
sample instead of the entire population goes back to the late 19th century, and
the work of the Norwegian statistician A. N. Kiser was influential at that time.
It is generally agreed that a fundamental step for development of the probability
sampling approach was made by Neyman (1934). Early developments in theory
and methods concentrated on efficient sampling designs and associated estima-
tion techniques for population totals or means. More recently, the methods for
analysis of survey data that take into account the complexity of the sampling
design — both sampling and nonsampling errors — have developed rapidly.

We will not make any attempt to summarize the history of the subject — this
has already been done by many excellent review papers published in recent years.
For a brief history of the development of survey sampling, and in particular the
probability sampling approach, see Hansen, Dalenius & Tepping (1985) and Rao
& Bellhouse (1990). Rao (1999) covers some current topics on survey sampling,
including developments in survey design, data collection and processing, issues
related to inference from survey data, resampling methods for analysis of survey
data, and small area estimation.

This thesis consists of six papers dealing with the issue of sampling from a finite
population. Two different topics are treated: real time sampling and distributions
in sampling. In the following sections the theoretical background is given. Sec-
tion 2 starts with basic notation and gives definitions used further in the thesis.
Then, different approaches to inference when sampling from a finite population
are shortly outlined and some estimators are given. In Section 3, a real time sam-
pling situation is described and some suitable sampling methods are presented.
In Section 4, we give a brief overview of different problems that form the base
for the work in Papers D-F. In Section 5, the contents of the different papers in
the thesis are summarized. In Section 6, some conclusions are given and open
problems are discussed.

2 Inferential issues

2.1 Basic notation

The fundamental problem in sampling theory is to make inference (estimation,
variance estimation, confidence intervals), for example about the population total
by observing a sample selected according to a specified sampling method.

Let U = {1,2,...,N} denote a finite population of N units. Traditionally,
there are two distinguished definitions of a sample in the sampling literature



(e.g. Sérndal, Swensson & Wretman, 1992, pp. 27-28, 49-50). In the case of
sampling without replacement (WOR) where a unit, once sampled can not be
sampled again, a sample s is defined as a subset of population U. For sampling
with replacement (WR), where a unit is allowed to be sampled several times, we
can look at the vector of selected units. Here the unit selected at the kth draw
is the kth element of the vector. Hence this vector includes information on both
the selecting order of the units and the number of times each unit is selected. A
sample s can be defined as the set of distinct units in this vector.

Random selection of a sample s of size n from a finite population U can usually
be described by some probability mechanism, called sampling design. A sampling
design p(s) is defined as a probability distribution on sets; p(s) is the probability
to get the sample (set) s.

The inclusion of a given unit ¢ in a sample is a random event indicated by the
random variable [;, an inclusion indicator. Here I; = 0 if unit 7 is not included in
the sample and I; = k;, where k; > 0 is some integer, if it is included (k; shows
the number of times unit 7 is selected). The N indicators can be summarized in
vector form as I = (I1,I,...,Ix). WR-sampling designs are not used so often
and if not stated otherwise, we have a WOR-design in mind in the remaining
discussion. In the case of WOR-design, the inclusion indicator I; takes only the
values 0 or 1. It is a random variable from a Bernoulli distribution with

E(]z) = T, VCLT(]Z) = 7Tz<1 — 7Ti)7
Corr(I, 1)) = Ry = (mj — mm))/[\/mm;(1 = m)(L = 7), i # J,

where m; = Pr(l; = 1) and m;; = Pr(I; = 1, I; = 1) are the inclusion probabilities
of first- and second-order, respectively, and are fundamental characteristics of a
given sampling design.

The sampling design is often chosen to yield certain desired first- and second-order
inclusion probabilities. The estimators used in survey sampling are functions of
the inclusion indicators, hence the moments of the estimators are functions of the
first- and higher-order inclusion probabilities, respectively. Knowledge of the m;
and 7;; alone is normally sufficient for one of the primary goals in survey sam-
pling, namely to determine exact or approximate expected values and variances
of the estimators, and to determine variance estimators.

The correlations R;; = Corr(l;,I;), here referred to as sampling correlations,
are sometimes used instead of 7;; for describing different sampling designs in the
present thesis.



Let Y = (Y1,Ys,...,Yn) be the vector of values of the study variable Y for the
population units. Sometimes there is some information available about another
variable X prior to sampling. This variable, called an auxiliary variable, can
carry information about the study variable and hence assist in the estimation.
For example, in many surveys of human populations, we can have the value of
the study variable from a previous census as an auxiliary variable. The goal is to
obtain estimators with increased precision for the study variable.

In the following discussion, we use Y (and X) to represent both the variable and
the population total. The exact meaning is given in the context.

There have been some different viewpoints on how to make inference in survey
sampling, depending on the source of randomness. The major approaches are
briefly described in the following section.

2.2 Different approaches to inference when sampling from
a finite population

Foundational aspects of inference from sample survey data have attracted a lot
of attention since the 1960’s.

Finite population sampling is the area of statistics in which the primary mode of
the analysis is based on the sampling design, the distribution of I, rather than
on statistical models for the variable Y. This is called the design-based approach.
Here the population units have fixed but unknown values of the study variable
Y. The uncertainty in estimates obtained by sampling thus stems from the fact
that only part of the population is studied. This means that randomness is only
coming from the sampling design, i.e. the sole random quantities are the inclusion
indicators. While the population characteristic remains fixed, the estimate of it
depends on which sample is selected.

Example 1. An often used estimator for the population total Y is

5 LY;

YHT:Z )

Uy

the well-known Horvitz-Thompson estimator (called the HT-estimator or the 7-
estimator) introduced by Horvitz & Thompson (1952). Here and in the following
discussion, any sum ». without summation restrictions means a sum over the
whole population. Since the values of Y;/m; are given constants, we can easily see
that this estimator is design-unbiased, i.e. Ep(f/) =Y, where the index p denotes
that the expectation is with respect to the sampling design. Design-unbiased

variance estimators have been derived by Horvitz & Thompson (1952), Yates &



Grundy (1953) and Sen (1953). The goodness of the HT-estimator depends on
the values of 7;, working best when 7; is approximately proportional to the value
of Y;.

In general, using design-based inference with careful attention to the sampling
design and using a suitable estimation method, we can obtain estimates that have
good properties without relying on any assumptions about the population itself.

In some sense an opposite approach is the model-based approach, which requires
some probability model £ for the N-dimensional distribution of Y. Here the po-
pulation values Y7, Ys, ..., Yy are random variables, generated by a model &, often
called a superpopulation model. The specification of £ can vary from something
crude and basic to a very detailed description, depending on what assumptions
the model maker feels are rational to make. For example, a simple model to adopt
is that Y7,Ya, ..., Yy are independent with E¢(Y;) = pu and Vare(Y;) = 0% The
actual finite population values are considered to be realizations of Y;,Ys,..., Yy
and the inference still concerns the finite population and its parameters.

Example 2. We can write the population total Y as

y=Yv=Yv+¥v.
i€s i¢s
Here the values of non-selected units are predicted using the model and then a
suitable estimator Y is derived. Hence the estimators are dependent on the cho-
sen model. Now, however, the properties of the Y, e.g. unbiasedness, are derived
with respect to the model £ and not with respect to the sampling design p.

Model-based inference may have advantages if the model is appropriate. The
challenge with the model-based approach lies in the question of how to specify
the model exactly. The major weakness of the model-based approach is that if
the model is misspecified, it may lead to invalid conclusions.

Models are widely used also within the design-based inference, both in sampling
design and in estimation, but in a model-assisted way using the terminology of
Sérndal, Swensson & Wretman (1992, p. 227). The values of the study variable
are still fixed, but assumptions about a possible model that has generated these
values are made. For example, we can assume some correlation structure in the
model. In the case of available auxiliary information, a relation between the study
variable and the auxiliary variable can be assumed. These assumptions are not
expected to hold exactly.

Example 3. Let Y be some estimator of the population total. We can study how
this estimator behaves under different population models, for example by calcu-
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lating E¢(Var,(Y)). Here the estimator is design-based and the formula of the
variance estimator is also derived with respect to the sampling design. However,
we can get reduced variance in situations where the assumed model is approxi-
mately valid. We use this framework when considering suitable methods for the
real time sampling situation.

Example 4. Let X be an auxiliary variable. Then we can use the Horvitz-
Thompson ratio estimator for estimating the total Y

) v )
Yirg = X=X = XR,
HT

where X is a population total, R = Y/X and YHT and X g are the HT-estimators
for the Y- and X-totals. It is most appropriate, i.e. has small design-based vari-
ance, when the following model is approximately valid: E¢(Y;) = 8X;, Vare(Y;) =
02 X;, that is, when there is an approximate proportionality between the variables
X and Y in the population.

Hence, in the model-assisted approach, the model is used as a tool for motivating
the choice of a sampling method or an estimator. Inference remains design-based
and the design-based properties of the estimators are not dependent on the cho-
sen model. Here, increased precision of the estimators may be achieved.

Strengths and weaknesses of the above-mentioned approaches have been discussed
in several articles. A paper by Royall (1970) can be considered a starting point
for the ”design-based versus model-based” debate, which continues e.g. in Sarndal
(1978), Hansen, Madow & Tepping (1983), and Kalton (2002). For an overview
of the debate, the reader is referred to Little (2004).

To sum up, different approaches are often used depending on the context. Design-
based methods are used when calculating descriptive statistics, such as totals and
means, based on large probability samples. To handle nonsampling errors, e.g.
nonresponse, models are necessary even in the design-based approach. Many of
the developments in survey sampling during recent years have been concerned
with the application of model-based methods for small-area estimation and non-
sampling errors.

Remark. In this thesis, design-based inference is mainly considered. How-
ever, sometimes some superpopulation models are used for studying properties
of different designs or estimators. In Papers A-B, our notation of the study vari-
able values differs from the notation in well-known sampling textbooks such as
Cochran (1977) and Sérndal, Swensson & Wretman (1992). The symbols y; are
commonly used to denote fixed, but unknown, population values. We use the



symbol Y; to denote both the random variable associated with the ith population
unit (if some model is used) and a fixed finite population value. This notation is
also used e.g. in Raj (1968).

2.3 More about some estimators

In this section, the concern is with design-based inference. We assume a sampling
design that ensures positive first-order inclusion probabilities, 7;, and also posi-
tive second-order inclusion probabilities, m;;, for all ¢ # j. Such designs permit
design-unbiased estimators and variance estimators.

The sample size n, is given by n = 3 I;. Hence E(n) = > m; and
Var(n) = Y m(l—m)+2) ZK],(WU — ™).

Sampling methods that give random sample size are often avoided in practice
since the variable sample size will cause an increase in variance for certain types
of estimators. The double sum in Var(n) depends on the correlations between
the inclusion indicators and it is clear that one must sample with negative de-
pendencies in order to get low sample size variation.

Further, we consider estimation of the population mean Y. The Horvitz-Thompson
estimator of Y is

~ 1 v 1
Y = — E LY, = —Yur, 1
HT N N HT (1)
where V; = Y, /m;, which is the notation introduced in Sérndal, Swensson &

Wretman (1992, p. 42). There are different forms for the variance of the HT-
estimator. For fixed size sampling designs, it can be given in the Sen-Yates-
Grundy form (Sen, 1953; Yates & Grundy, 1953) by

~ 1 o v 2
Var(Yur) = =535 222 (m — mm) (Yi = 1))
and its unbiased estimator is given by
— 2 1 Mg — M, o 2
Var(Ypr) = —552. > ———(Yi=Y)) Ll
2N Uryi

where the summation is effectively over the sample.

Since we can view Y as a ratio of two population totals, Y and N, respectively,
another possible estimator of Y is

- Y, Y LY,
YHTR == ;AI[ - Z[u ) (2)



where [; = I;/m;. For m; = 7 the estimator (2) reduces to the sample mean 7.

Since y is a nonlinear function of the inclusion indicators, it has a slight bias. An
approximate MSE of the estimate y is given by

MSE(y) =~ —W S ay(Yi— V)

where E(n) = N and the coefficients a;; = E((I; — n/N)(I; —n/N)) are func-
tions of the second-order inclusion probabilities.

The estimator Y’ murr performs better than (1) in cases where the sample size is
variable. Therefore it is used as an estimator for real time sampling methods.

3 Real time sampling situations

In the first half of the thesis, Papers A—C, the concern is with the real time sam-
pling situation and the corresponding sampling methods. The sampling situation
under study may have been considered before by others. However, searches in
the sampling literature and databases have not revealed any systematic attention
and research about the underlying case.

3.1 Background

When taking a sample from a finite population, there is often a sampling frame
available. Units to be measured are selected from the frame by some procedure
corresponding to a chosen sampling design. There are many different methods
to use for this case, depending for example on the amount of accessible auxiliary
information.

Consider now a sampling situation where there is no sampling frame available
and where units come, one by one, in real time to a sampler. For every unit the
sampler should decide immediately whether or not to sample it by using some
sequential selection method. Alternatively, the sampler visits the units in some
order chosen by the sampler. The population size N is usually unknown before
the sampling but will eventually become known. This kind of sampling is here
referred to as real time sampling.

Example 5. The units may be passengers using the public transportation in
some city. It might be possible that the units in the population can order them-
selves. In an extreme case, the units can order themselves by taking into account



the sampling scheme. Some units, like people coming to a customs control, may
want to avoid being sampled. In such a case, systematic sampling of every fifth
unit may be a bad sampling method.

Figure 2: Passengers as sampling units

Example 6. The units may be every tree in a forest stand, with some of the
trees sampled by a forester walking around. The visiting order of the trees in the
stand is chosen more or less subjectively by the sampler. Therefore, the selection
of units for the sample is influenced by the sampler’s subjective choice of order.

Figure 3: A forest stand where some trees are sampled

In the following section we present some methods that partly avoid the negative
effects of ordering.



3.2 Suitable sampling methods

As stated before, several well-known sampling methods need a list of the popu-
lation and are not suitable to use in real time sampling situations. Here, some
sequential selection method is needed. Systematic sampling and Poisson sampling
are two possible well-known methods (see e.g. Sérndal, Swensson & Wretman,
1992, Chapter 3) to apply for sampling a finite population that passes or is passed
by the sampler. Both methods are also easy to use for the sampler.

For systematic sampling in its basic form, the first unit in the sample is drawn by
simple random sampling from among the first p units in the population. Then,
every puth population unit is chosen. However, for systematic sampling there is a
problem with the variance estimator because the condition about positive second-
order inclusion probabilities for every pair of units is not fulfilled. This method
is included for comparisons in Paper A but excluded in Papers B and C.

For Poisson sampling, independent U(0, 1) random variables Uy, Us, ..., Uy are
generated to perform the sampling. The selection or non-selection of unit ¢ is
decided by the following rule: if U; < m;, where 7; is a predetermined inclusion
probability, unit ¢ is selected, otherwise not. Because the m;s can be specified
in a variety of ways, Poisson sampling corresponds to a whole class of designs.
In the general case, the inclusion probabilities are often chosen to be propor-
tional to some size measure. A special case of Poisson sampling is Probability
Proportional to Prediction (3P) sampling, as described by, for example, Husch,
Miller & Beers (2003, p. 355). Here no auxiliary information is accessible prior
to sampling and the inclusion probabilities are based on predicted values of the
study variable. This method is commonly recommended as a sampling method
in forestry, at least in the US. When all the units have the same inclusion prob-
ability, m; = m, Poisson sampling is called Bernoulli sampling. Since sampling
methods with equal inclusion probabilities are studied in Papers A-C, just the
latter is considered for comparisons in the following discussion.

For Bernoulli sampling, population units are selected independently of each other.
Neighbouring units may have similar study variable values, and therefore it may
be wise not to sample units close to each other too often. Hence sampling with
negative dependencies, i.e. with negative sampling correlations, would be more
efficient. We introduce some sampling methods that partly take into account the
pre-history of the sampling.

These methods, as well as Bernoulli sampling, usually give random sample size.

However, for sampling methods with negative sampling correlations, the variabil-
ity of the sample size is smaller than for Bernoulli sampling.

10



There are several alternative methods with which to perform the sampling. When
applying Bernoulli sampling, we sample population units for which the corre-
sponding random numbers are below some level. By permitting these random
numbers to be dependent, two simple extensions of this method are obtained:
sampling according to a stationary process and sampling according to some func-
tion of independent uniform random variables.

For sampling according to a stationary process, a strictly stationary process {Z;}
with given correlations r, = Corr(Z;, Z;yx) is used as a tool for defining the
values of the inclusion indicators. We set

‘ 0 otherwise ’

where ¢ is a given constant determined by the desired inclusion probability =, i.e.
¢ = F~1(r), where F is the distribution function of Z;. The process {Z;} must be
easy to simulate, so a stationary standard normal process is mainly considered,
both in Papers A and C.

Sampling according to some function of independent uniform random variables
is introduced in Paper C. We generate independent U(0, 1) random variables
Ui_m, Uz, Us_pp, ..., where m > 1 is some fixed integer. The general rule for
defining the value of I; is
= {1 if Uy <h(Ui_pmy ., Ui—2,Ui_1)
' 0 otherwise ’

where h(-) is some function that gives negative correlations between the inclusion
indicators. The choice of h(-) is a delicate task. We look at three cases — a linear,
a product and a minimum function — where an explicit formula can be derived
for the sampling correlations. An attempt to generalize this method by using a
geometric approach is made. The focus is on the 2-dependent case, i.e. sets of
inclusion indicators more than lag 2 from each other are independent. We look
at a subset B of the unit cube and set I; = 1 if (U;_5,U;_1,U;) € B. Here the
question is how to choose B to get an efficient sampling method.

Figure 4 shows the form of a suitable B when using a unit square in the 1-
dependent case.

11
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Figure 4: The optimal subset B for m = 3/8

We can also look at the step length between two sampled units. Instead of a
one point distribution as for systematic sampling, or a geometric distribution as
for Bernoulli sampling, we can use other step length distributions to get different
sampling methods. An attempt to use such a method was made by Fan, Muller
& Rezucha (1962) with a truncated geometric distribution but it did not give
encouraging results. Methods used in this thesis were introduced by Bondesson
(1986), where conditions for suitable step length distributions were given. Results
from renewal theory (see e.g. Feller, 1957, Chapter 13) are used and therefore the
obtained method is called renewal sampling. The latter is considered in papers
A and C, where different methods are derived by using different step length dis-
tributions.

A wish to get a sampling design with almost fixed sample size for the real time
sampling situation is behind the idea for stratified sampling with a random start
described in Paper C. This method is distinct from the other suggested methods.
Here the dependence structure for the inclusion indicators is not the same as for
the other methods and this explains somewhat different results.

3.3 Comparison of methods

The evident problem in Papers A-C is how the suggested methods for the real
time sampling situation work compared to suitable well-known methods, espe-
cially compared to Bernoulli sampling.

Using the sample mean y for estimating the population mean, we are interested

in the variability of the estimate when using different sampling methods. The
mean square error of the sample mean, MSE(y), is used as an efficiency measure.
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In Paper A, some of the methods are compared in a simulation study for a special
population model. Here renewal sampling and sampling according to a stationary
process are studied among the new methods. Some good results are observed,
but some final conclusions are that one should look at larger populations as well
as different population models.

For getting better insight when the new methods work well, some asymptotic
calculations are made in Paper B. We assume that the sequence of inclusion indi-
cators, {I;}, is a real stationary Bernoulli process in discrete time. Besides, some
assumptions are made about the population structure. We look at the asymptotic
model-based expectation of MSE(y) that depends on both model correlations and
sampling correlations. We compare this quantity in the case of Bernoulli sampling
and general sampling with negative sampling correlations. The question here is
in which form the sampling correlations should be to gain most in efficiency by
using more advanced real time sampling methods.

Some restrictions are used for finding the best correlations. At first, we use the
condition 0 > Ry, > —d, k = 1,2,3,..., where d is some constant depending on
the predetermined w-value. This condition is important for getting stable MSE-
estimates. Also, a condition on the sum of sampling correlations is used; see
below.

It appears that the sampling method with negative sampling correlations has
advantages for a stationary population model with decreasing autocorrelations.
The resulting optimal sampling correlations have a simple form. A sampling
method with equal negative correlations Ry = Ry = ... = R,, and Ry = 0
for k > m, where m is some integer, has approximately an optimal structure.
Therefore, to find sampling methods that allow such a correlation structure is of
great interest.

3.4 About stationary Bernoulli processes

In the following discussion the focus is mainly on m-dependent processes, i.e. sets
of variables more than lag m apart are independent.

Let {I;} be a stationary Bernoulli process in discrete time. Hence, we sample
with equal inclusion probabilities and the sampling correlations

2
T4 — T
Rk = COTT(L‘, [z+k) = 71'7(—5k—7r) (3)

are equal for every two units k steps apart.
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Since the proposed sampling methods are based on such Bernoulli processes as
described above, it is important to pay some attention to the properties of these
processes. Let m be some fixed integer. We want to sample units with a lag up
to m apart dependently, and those more than lag m apart independently. Here,
negative dependencies are desired and hence the sequences {I;} such that R, < 0
for kK =1,2,...,m, and 0 for k > m are of interest. The possible values of the
sampling correlations play an important role. We would like to have these as neg-
ative as possible for gaining most in efficiency compared to Bernoulli sampling.
As seen from (3) there is an obvious lower bound for the correlation Ry, that is
Ry > —m/(1 — 7). However, more conditions are needed for getting a sequence
{I;} with desired properties.

A condition on the sum of sampling correlations is used due to the following
reasoning: Under which conditions is a sequence { Ry} with Ry = 1, R, < 0,k =

1,2,3,..., a correlation sequence for a stationary Bernoulli process? In the cor-
responding stationary normal process case with correlations rg = 1,7, < 0,k =
1,2,3,..., the problem has a simple solution. In this case, it is shown in Bondes-
son (2003) that a necessary and sufficient condition is
TR
Ty = ——.
k=1 2

In the Bernoulli case, the problem is more complicated. A necessary condition is
that the correlation sum is not lower than —1/2. This can be shown by looking
at the variance of the sum of the Bernoulli variables and using the fact that it
has to be nonnegative. The correlation sum ) ;" ; R) should preferably be close
to its lower bound. In Bondesson (2003), it is conjectured that for m = 1 the
lower bound for the correlation sum is —1/3 at least for a 1-dependent sequence
and this still unproved conjecture is used in Paper B for finding the form of the
optimal correlations.

For m > 2, however, the correlation sum can actually be below —1/3. There is no
general result about the lower limit in this case. To get better insight, correlation
sums are studied for different sampling methods in Paper C. Numerical examples
about possible negative correlations and minimum values of the correlation sum
with given values of 7 are presented for different sampling methods.

There are many different ways to derive sequences {/;} with negative correla-
tions. Many good results have been achieved but at the moment we can not give
a simple general solution of how to define a sequence {I;} with predetermined
7, and with equal negative correlations Ry = Ry = ... = R,,, and R, = 0 for
k > m. More research is certainly needed.
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4 On distributional characteristics in sampling

The second half of the thesis includes three diverse papers about distribution
theory in survey sampling. As mentioned before, sampling design is a basic no-
tion in sampling theory when using design-based and model-assisted approaches.
In Section 2.1, a sampling design is defined as a probability distribution on sets.
One can also consider the vector of inclusion indicators, I, here called a design
vector, and define the multivariate distribution of I, p(k) = Pr(I = k), as a
sampling design, see e.g. Traat (2000). Here, k = (ki, ks, ..., ky) is the outcome
of I and is an indicator of the realized sample, being always of dimension N.

This definition of a sampling design has some advantages. It covers both WR-
and WOR-sampling designs and also uses the knowledge and tools worked out
for multivariate distributions (see e.g. Johnson, Kotz & Balakrishnan, 1997).
The multivariate distribution of I is a multivariate Bernoulli distribution for
WOR-sampling designs and some other multivariate discrete distribution for WR-
sampling designs. Drawing a sample from a population U according to some
sampling design means generating an outcome from a multivariate design distri-
bution p(k).

The vector form of a sample can be naturally incorporated into the inference
process. The design vector can be used in the definition of the survey data and
different statistics are functions of I and study variable values. This definition of
sampling design is used in Paper D for considering statistical inference in sam-
pling. Here both the population model and the sampling design is included in
the inference, and characteristics of some estimators are considered.

A vector form of survey data makes it possible to use matrix tools in the sampling
theory. The way of expressing the sampling design as a multivariate distribution,
as well as expressing the samples as vectors, is used by Ollila (2004), who con-
siders different sample resampling methods for variance estimation.

Using the framework of the design vector, it is possible to give the probability
function of a sampling design. Probability functions of several important sam-
pling designs, e.g. the conditional Poisson, Sampford, and Pareto, are given in
Paper E. Some different ways to use probability functions for drawing a sample
are described.

In Paper F, the main focus is on the m-estimator for the population total. We con-
sider a design-based distribution of this estimator, and give design-based higher-
order moments and cumulants which have not received so much attention in the
sampling literature. Since the m-estimator is a linear function of the inclusion
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indicators, its higher-order moments and cumulants depend on the respective
quantities of the inclusion indicators. Some attention is also paid to the variance
estimator of the m-estimator. It is well known that it is design-unbiased, but in
this paper its design-based variance is considered.

5 Summary of the papers

The present thesis contains six papers that consider different topics in survey
sampling. In Papers A-C, we focus on the real time sampling situation and
corresponding sampling methods. Some sampling methods suitable for this case
are proposed and conditions giving efficient methods are considered. In Papers D—
F, distribution theory in survey sampling is considered from different viewpoints.
In Papers D and E, we use the design vector in the definition of the sampling
design. In Paper D, unified inference is considered where both the population
model and the sampling design are taken into account. In Paper E, the focus is on
probability functions of different sampling designs. Formulae of the probability
functions of several sampling designs are given. In Paper F, we consider the
design-based distributional characteristics of the m-estimator of the population
total and its variance estimator.

Paper A. Some real time sampling methods

Let us consider a sampling situation where a finite population passes or is passed
by the sampler. There is no list of the population and for every population unit
the sampler has to decide whether or not to sample a unit when he/she meets it.
The population size N is most often unknown before the sampling but eventually
it becomes known. Among the well-known methods, systematic sampling and
Poisson (Bernoulli) sampling can be adopted for taking a sample in this sampling
situation. The aim of this paper is to find more suitable methods. We con-
sider sampling methods with equal inclusion probabilities. Two general classes
of sampling methods are introduced: renewal sampling and sampling according
to a stationary process, which in some way take into account the pre-history of
the sampling. To make some evaluation of these methods, a simulation study
is performed. Different methods with equal first-order inclusion probabilities are
compared numerically. In comparison with systematic sampling and Bernoulli
sampling, some promising results are derived for the new methods in the case of
a specific population model.
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Paper B. Asymptotic considerations concerning real time
sampling methods

A general real time sampling method with negative sampling correlations is con-
sidered in this paper. This method is compared with Bernoulli sampling, having
independent inclusion indicators and hence zero sampling correlations. The sam-
pling correlations enter into the formulae of variances of different estimators and
hence negative sampling correlations can contribute to reduced variances.

The aim of this paper is to find conditions under which the sampling method
with negative sampling correlations should be used in favor of the well-known
Bernoulli sampling. In other words: in which form should the correlations be
for gaining most in efficiency using some more advanced sampling method than
Bernoulli sampling? Some asymptotic calculations are made for finding the solu-
tion to this problem. We assume some stationary model for the study variable.
The asymptotic model-based expectation of the mean square error (MSE) of the
sample mean is studied. It depends on both population model correlations and
sampling correlations. Bernoulli sampling and general sampling with negative
correlations are compared with respect to expected MSE, with some restrictions
on the values of possible correlations.

It appears that the latter sampling method has advantages for a stationary pop-
ulation model with decreasing autocorrelations. The optimal sampling correla-
tions have a simple form and approximately optimal sampling designs should have
equal negative correlations for units up to lag m apart and zero correlations af-
terwards. The achieved gain in efficiency depends also on how strongly correlated
the population values are.

Paper C. Some different methods to get stationary Bernoulli
sequences with negative correlations for sampling applica-
tions

In the previous paper we gave an approximately optimal form for sampling corre-
lations to use to achieve more efficient sampling than standard Bernoulli sampling.
The main question in this paper is how to get the nearly optimal sampling method
with given first-order inclusion probabilities and negative sampling correlations.
A stationary sequence of Bernoulli variables can be used as a tool for defining
different methods. Hence, problems such as how to get these Bernoulli sequences
and the correlation structure of these sequences are the main focus of this paper.
Special attention is paid to the lowest possible correlation sum for given inclusion
probabilities and for different methods.
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The emphasis is on finding a way to get a Bernoulli sequence with negative cor-
relations and with as low correlation sum as possible. Special cases of sampling
according to a stationary process and renewal sampling are studied. A generali-
zation of Bernoulli sampling is obtained by using some function of independent
uniform random variables for defining the Bernoulli variables. Further, a stratifi-
cation method with random start is described. Numerical examples showing the
lowest possible correlation sum for different methods are presented.

Paper D. Statistical inference in sampling theory

The framework with sampling design as a discrete multivariate distribution is
used in this paper. This covers both with and without replacement sampling
designs. We look at a unified approach where both the sampling design and the
population model are taken into account in inference. A general linear estimator
and its variance formula are given. It includes, for example, well-known design-
based estimators as special cases. A two-phase sampling design is studied on a
more general level where with and without replacement designs are allowed in
both phases.

Paper E. Sampling design and sample selection through
distribution theory

We use a multivariate approach with a unifying treatment of with and without
replacement designs. The probability functions of several important sampling de-
signs, such as hypergeometric, conditional Poisson, Sampford, and general order
sampling designs are presented. A list-sequential method for generating a sample
from any given design using probability function is developed.

Paper F. The design-based distribution of some estimators
in survey sampling

In this paper, we consider design-based distributional characteristics of the -
estimator for the population total. Usually only the design-based expected value
and variance are given in the sampling literature. General formulae for the design-
based kth-order moments and cumulants of the m-estimator are presented in this
paper. The m-estimator is a linear function of the inclusion indicators, hence its
kth-order moments and cumulants depend on the kth-order moments and cumu-
lants of the inclusion indicators, respectively.

For estimating the variance of the m-estimator, an unbiased variance estimator is

used. We give formulae for the design-based variance of this estimator and the
covariance of the m-estimator and its variance estimator.
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6 Conclusions and open problems

The recent work of the author has concentrated on the real time sampling situa-
tion. Hence, only questions arising in Papers A—C are treated in this section. The
topics considered in the other papers have been developed further by others. For
example, probability functions of some sampling designs are treated and applied
in Bondesson, Traat & Lundqvist (2004).

Consider real time sampling with equal inclusion probabilities. The initial goal of
the work was to find suitable sampling methods (e.g. renewal sampling) and com-
pare these to well-known methods that are possible to adopt in this case. Several
new methods are proposed. All have in common that we in some way take into
account how the previous units are sampled and try not to sample units close to
each other so often, i.e. we sample with negative dependencies. It makes sense
intuitively that in the real time sampling population, units close to each other
may have similar study variable values. Hence, the proposed methods should
improve the estimation.

We have chosen to study sampling methods with negative correlations mainly
in comparison to standard Bernoulli sampling, while using the sample mean as
an estimator for the population mean. Also, we assume a stationary population
model with decreasing autocorrelations. In this case, we have found the form
for the nearly optimal sampling correlations by using asymptotic calculations.
Here some restrictions on the sampling correlations are used. We gain most in
efficiency using methods that give negatively correlated indicator variables and
such that the correlation sum is small and that the correlations Ry are equal for
units up to lag m apart and zero afterwards.

Instead of giving further attention to the estimation problem, the focus has
changed to study sequences of negatively correlated Bernoulli variables. It is
of main interest to study how to generate such sequences with desired properties.

As shown in Paper C, there are many different ways to get negative correlations.
However, despite many attempts, a nice, simple, optimal solution for choosing
which method to use for a given m-value to obtain the desired sampling corre-
lations has not been found. Thus, practical suggestions for the sampler are not
given. More research is certainly needed.

There is a difficult unsolved problem concerning the minimum value of the cor-
relation sum. We have presented some numerical calculations of the correlation
sum for different methods that give some possibility to compare these methods
with each other.
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We do not assume that the population model is exactly true. Hence it is not al-
ways clear what the best value of m should be. It depends both on conditions of
the sampling correlations and also on the population model. For larger m-values,
i.e. 7 close to 1/2, only units close to each other are usually sampled dependently.
In the case of small 7w-values, we can have more correlations negative. It would
be of interest to study more how the estimates and variance estimates behave,
depending on how many sampling correlations are negative. Here different popu-
lation structures should give different results.

Would the form of the optimal sampling correlations hold also for other estima-
tors? In the design-based framework, different estimators are functions of the
inclusion indicators, hence sampling correlations enter into the variance formu-
lae. If it is possible to have the variance estimator in Sen-Yates-Grundy form,
then under some restrictions sampling with negative correlations should result in
reduced variance.

Not much has been said about sampling with unequal inclusion probabilities.
Sampling according to a stationary process can easily be extended to the case of
unequal probabilities. For the other methods it is not so obvious how to act for
sampling with unequal probabilities. For instance, we can first apply sampling
with equal inclusion probabilities and then decide, for a selected unit, if it will
be sampled or not by using some predictions or auxiliary variables.

If the sampler determines the order of the units in the population (or the popu-
lation units can order themselves), then Poisson sampling gives total protection
against subjective ordering bias. The methods proposed in this thesis protect
partially against such ordering. It would be of interest to find a measure of this
protection.

The inclusion probability 7 is assumed to be determined before taking the sam-
ple. However, the way of choosing the value of © has not been much discussed.
Some guess about the population size N should be made.

The preliminary plans of this work also included a plan to use different methods
on real data, for instance data from forestry. However, since the focus of the work
changed over time, this plan was set aside. Still, the author’s belief is that the
ideas behind the presented methods will eventually find good practical applica-
tions.
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