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Abstract

This thesis comprises four papers concerning modelling of financial count data. Paper [1], [2]
and [3] advance the integer-valued moving average model (INMA), a special case of integer-
valued autoregressive moving average (INARMA) model class, and apply the models to the
number of stock transactions in intra-day data. Paper [4] focuses on modelling the long
memory property of time series of count data and on applying the model in a financial
setting.
Paper [1] advances the INMA model to model the number of transactions in stocks in

intra-day data. The conditional mean and variance properties are discussed and model
extensions to include, e.g., explanatory variables are offered. Least squares and generalized
method of moment estimators are presented. In a small Monte Carlo study a feasible least
squares estimator comes out as the best choice. Empirically we find support for the use of
long-lag moving average models in a Swedish stock series. There is evidence of asymmetric
effects of news about prices on the number of transactions.
Paper [2] introduces a bivariate integer-valued moving average (BINMA) model and

applies the BINMA model to the number of stock transactions in intra-day data. The
BINMA model allows for both positive and negative correlations between the count data
series. The study shows that the correlation between series in the BINMA model is always
smaller than one in an absolute sense. The conditional mean, variance and covariance are
given. Model extensions to include explanatory variables are suggested. Using the BINMA
model for AstraZeneca and Ericsson B it is found that there is positive correlation between
the stock transactions series. Empirically, we find support for the use of long-lag bivariate
moving average models for the two series.
Paper [3] introduces a vector integer-valued moving average (VINMA) model. The

VINMA model allows for both positive and negative correlations between the counts. The
conditional and unconditional first and second order moments are obtained. The CLS and
FGLS estimators are discussed. The model is capable of capturing the covariance between
and within intra-day time series of transaction frequency data due to macroeconomic news
and news related to a specific stock. Empirically, it is found that the spillover effect from
Ericsson B to AstraZeneca is larger than that from AstraZeneca to Ericsson B.
Paper [4] develops models to account for the long memory property in a count data

framework and applies the models to high frequency stock transactions data. The uncon-
ditional and conditional first and second order moments are given. The CLS and FGLS
estimators are discussed. In its empirical application to two stock series for AstraZeneca
and Ericsson B, we find that both series have a fractional integration property.

Key words: Count data, Intra-day, High frequency, Time series, Estimation, Long memory,
Finance.
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1 Introduction

What determines the price of a good is one of the most important questions
in economics. If a household or an individual wishes to buy a good at a price
and another individual agrees to sell the good at the same price we can say
that the price is determined through the mutual agreement between the buyer
and the seller. Since many people are interested in buying the same type
of products at different prices and several suppliers or sellers are interested in
selling the products at different prices the question of how market clearing price
is determined arises. The market clearing price refers to the price at which the
quantity demanded for a good is the same as the quantity supplied. According
to classical economic theory, the market clearing price or equilibrium price is
determined through the intersection of demand and supply curves.
The studies of market microstructure depart from the classical economic

theory of price determination or Walrasian auctioneer approach, i.e. the auc-
tioneer aggregates demands and supplies of a good to find a market-clearing
price. Some early studies on price formation, e.g., Working (1953), not only
concern the matching of demand and supply curves in equilibrium but also focus
on the underlying trading mechanism. Demsetz (1968) focuses on transactions
costs for the determination of prices in the securities market and analyzes the
importance of the time dimension of demand and supply in the formation of
market prices. The availability of high frequency data specially in stock and
currency markets has spurred interest in studying market mechanisms or mar-
ket microstructures. For stock and currency markets, the market microstruc-
ture studies concern, for example, the impact of transactions, bid-ask spreads,
volume and time between transactions (duration) on price formation. The
studies also concern how news, rumors, etc., are interpreted and used by the
actors in trading.
A transaction or a trade takes place when a buyer and a seller agree to

exchange a volume of stocks at a given price. A transaction is impounded
with information such as volume, price, spread, i.e., the difference between bid
and ask prices. The time between transactions and numbers of transactions
or trades are related due to the nature of these kinds of data. The more time
elapses between successive transactions the fewer trades take place in a fixed
time interval. Hence, the trading intensity and the durations can be seen as
inversely related. The trading intensity and durations have played a central
roll in understanding price processes in the market microstructure research
during the last two decades. Diamond and Verrecchia (1987) show that a low
trading intensity implies the presence of bad news, while Easley and O’Harra
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(1992) shows that a low trading intensity implies no news. Engle (2000) finds
that longer durations are associated with lower price volatilities. The stock
transactions data are counts for a fixed interval of time. Until now there is
no study of pure time series models for count data in this area and this thesis
contributes to filling this gap.
A time series of count data is an integer-valued non-negative sequence of

count observations observed at equidistant instants of time. There is a grow-
ing literature of various aspect of how to model, estimate and use such data.
Jacobs and Lewis (1978ab, 1983) develop discrete ARMA (DARMA) models
that introduce time dependence through a mixture process. McKenzie (1986)
and Al-Osh and Alzaid (1987) introduce independently the integer-valued au-
toregressive moving average (INARMA) model for pure time series data, while
Brännäs (1995) extends the INAR model to incorporate explanatory variables.
The regression analysis of count data is relatively new, though the statistical
analysis of count data has a long and rich history. The increased availability
of count data in recent years has stimulated the development of models for
both panel and time series count data. For reviews of these and other mod-
els, see, e.g., Cameron and Trivedi (1998, ch. 7) and McKenzie (2003). In
INARMA, the parameters are interpreted as probabilities and hence restricted
to unit intervals. Some empirical applications of INAR are due to Blundell,
Griffith and Windmeijer (2002), who studied the number of patents in firms,
Rudholm (2001), who studied competition in the generic pharmaceuticals mar-
ket, and Brännäs, Hellström and Nordström (2002), who estimated a nonlinear
INMA(1) model for tourism demand.
In this thesis, we focus on advancing and employing an integer-valued mov-

ing average model of order q [INMA(q)], i.e. a special case of the INARMA
model class, for analyzing high frequency financial data in the form of stock
transactions data aggregated over one or five minute intervals of time. Later,
we propose a bivariate integer-valued moving average (BINMA) model, a vec-
tor integer-valued moving average (VINMA) model and an integer-valued au-
toregressive fractionally integrated moving average (INARFIMA) model. The
BINMA model is developed to capture the covariance between stock transac-
tions data due to macroeconomic news or rumors, while the VINMA Model is
more general than the BINMA model and enables the study of the spillover
effects of news from one stock to other. Macroeconomic news refer to the news
that may have impact on the stock markets as a whole and necessarily on a
particular stocks. For example, news related to interest rates, unemployment
statistics for a country, etc. may influence all stocks. Rumors are the informa-
tion related to, e.g., macroeconomic news or news related to a particular stock
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that spread unofficially. The INARFIMA model is developed to study the long
memory property of high frequency count data. The models introduced in this
thesis can also be used to measure the reaction times to shocks or news. A
description of high frequency data, the INMA model, the BINMA, VINMA
model, long memory and the INARFIMA model is given below.

2 High Frequency Data

Financial market data are tick-by-tick data. Each tick represents a change in,
e.g., a quote or corresponds to a transaction. For a liquid stock or a currency,
these tick-by-tick data generate high frequency data. Such financial data are
also characterized by lack of synchronization, in the sense that only rarely is
there more than one transaction at a given instant of time. For reviews of
high frequency data and their characteristics, see, e.g., Tsay (2002, ch. 5),
Dacorogna et al. (2001) and Gourieroux and Jasiak (2001, ch. 14). The access
to high frequency data is getting less and less of a problem for individual
researchers and costs are low. As a consequence, many issues related to the
trading process and the market microstructure are under study.
Transactions data are collected from an electronic limited order book for

each stock. Incoming orders are ranked according to price and time of entry
and are continuously updated. Hence, new incoming buy and sell orders and
the automatic match of the buy and sell orders are recorded. The automatic
match of a buy and a sell order generates a transaction. In Figure 1, we see that
the transactions in the two stocks are not synchronized, i.e. the transactions
appear at different points of time. The counts in the intervals are the number of
transactions for corresponding intervals. In papers [1] and [4] a one minute time
scale is employed and for papers [2] and [3] a five minute scale. The collection
of the number of transactions over a time period makes up a time series of
count data. The time series of transactions or count data are synchronized
between stocks in the sense that all the numbers of transactions are aggregated
transactions over the same time interval. An example of real transactions data
over a 30 minute period for the stock AstraZeneca is exhibited in Figure 2.
Each observation number corresponds to one minute of time. This type of data
series comprises frequent zero frequencies and motivates a count data model.
The time series of transactions or count data may have a long memory prop-

erty. The long memory implies the long range dependence in the time series of
counts, i.e. the present information has a persistent impact on future counts.
Note that the long memory property is related to the sampling frequency of
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Figure 1: An illustration of how transactions data are generated. The black
triangles and circles represent transactions for stock 1 and stock 2, respectively,
while the white triangles and circles represent all other activities in an order
book. The stock counts record the number of black triangles/circles falling into
a time interval, i.e. falling between vertical lines.
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Figure 2: The number of transactions data over minute long intervals for 30
minutes of trading in AstraZeneca.
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Figure 3: The autocorrelation function for AstraZeneca as an illustration of
long range dependence of long memory.

a time series. A manifest long memory may be shorter than one hour if ob-
servations are recorded every minute, while stretching over decades for annual
data. The time series containing long memory has a very slowly decaying auto-
correlation function. The autocorrelation function for stock transactions data
aggregated over one minute interval of time for AstraZeneca is illustrated in
Figure 3. The autocorrelation function decays sharply in the first few lags but
decays very slowly thereafter. Hence, we may expect long memory in stock
transactions data for AstraZeneca. Models for long memory and continuous
variable time series are not appropriate for integer-valued counts. Therefore,
long memory models developed for continuous variables are not automatically
of relevance neither with respect to interpretation nor to efficient estimation.

For this thesis the Ecovision system is utilized. Daily downloads are stored
to files and count data are calculated from the tick-by-tick data using Matlab
programs.
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3 The INMA, BINMA and VINMA Models

The INMA model is a special case of the INARMA model. The INMA model of
order q, INMA(q), is introduced by Al-Osh and Alzaid (1988) and in a slightly
different form by McKenzie (1988). The single thing that most visibly makes
the INMA model different from its continuous variable MA counterpart is that
multiplication of variables with real valued parameters is no longer a viable
operation, when the result is to be integer-valued. Multiplication is therefore
replaced by the binomial thinning operator

α ◦ u =
uX
i=1

vi, (1)

where {vi}ui=1 is an iid sequence of 0− 1 random variables, such that Pr(vi =
1) = α = 1 − Pr(vi = 0). Conditionally on the integer-valued u, α ◦ u is
binomially distributed with E(α ◦ u|u) = αu and V (α ◦ u|u) = α(1 − α)u.
Unconditionally it holds that E(α ◦ u) = αλ, where E(u) = λ, and V (α ◦ u) =
α2σ2+α(1−α)λ, where V (u) = σ2. Obviously, α ◦ u takes an integer-value in
the interval [0, u].
Employing this binomial thinning operator, an INARMA(p, q) model can

be written

yt − α1 ◦ yt−1 − . . .− αp ◦ yt−p = ut + β1 ◦ ut−1 + . . .+ βq ◦ ut−q. (2a)

with αj , βi ∈ [0, 1], j = 1, . . . , p − 1 and i = 1, . . . , q − 1, and αp, βq ∈ (0, 1].
Setting all αj = 0 we obtain the INARMA(q) model

yt = ut + β1 ◦ ut−1 + . . .+ βq ◦ ut−q (2b)

Brännäs and Hall (2001) discuss model generalizations and interpretations re-
sulting from different thinning operator structures, and an empirical study and
approaches to estimation are reported by Brännäs et al. (2002). McKenzie
(1988), Joe (1996), Jørgensen and Song (1998) and others stress exact dis-
tributional results for yt, while we emphasize in paper [1] only the first two
conditional and unconditional moments of the model. Moreover, we discuss
and introduce more flexible conditional mean and heteroskedasticity specifica-
tions for yt than implied by the above equation. There is an obvious connection
between the introduced count data model and the conditional duration model
of, e.g., Engle and Russell (1998) in the sense that long durations in a time
interval correspond to a small count and vice versa. Hence, a main use of the
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count data models discussed here is also one of measuring reaction times to
shocks or news.
In paper [2], we focus on the modelling of bivariate time series of count

data that are generated from stock transactions. The used data are aggregates
over five minutes intervals and computed from tick-by-tick data. One obvious
advantage of the introduced model over the conditional duration model is that
there is no synchronization problem between the time series.1 Hence, the spread
of shocks and news is more easily studied in the present framework. Moreover,
the bivariate count data models can easily be extended to multivariate models
without much complication. The introduced bivariate time series count data
model allows for negative correlation between the counts and the integer-value
property of counts is taken into account. The model is employed to capture
covariance between stock transactions time series and to measure the reaction
time for news or rumors. Moreover, this model is capable of capturing the
conditional heteroskedasticity.
In paper [3], we extend the INMAmodel to a vector INMA (VINMA) model.

The VINMA is more general than the BINMA model in paper [2] and enables
the study of the spillover effects of transactions from one stock to the other.
A large number of studies have considered the modelling of bivariate or mul-

tivariate count data assuming an underlying Poisson distribution (e.g., Gourier-
oux, Monfort and Trognon, 1984). Heinen and Rengifo (2003) introduce mul-
tivariate time series count data models based on the Poisson and the double
Poisson distribution. Other extensions to traditional count data regression
models are considered by, e.g., Brännäs and Brännäs (2004) and Rydberg and
Shephard (1999).

4 Long Memory and the INARFIMA Model

Hurst (1951, 1956) considered first the long memory phenomenon in time se-
ries. He explained the long term storage requirements of the Nile River. He
showed that the cumulated water flows in a year had a persistent impact on
the water flows in the later years. By employing fractional Brownian motion,
Mandelbrot and van Ness (1968) explain and advance the Hurst’s studies. In
analogy with Mandelbrot and van Ness (1968), Granger (1980), Granger and
Joyeux (1980) and Hosking (1981) develop Autoregressive Fractionally Inte-
grated Moving Average (ARFIMA) models to account for the long memory in

1For a bivariate duration model the durations for transactions typically start at different
times and as a consequence measuring the covariance between the series becomes intricate.
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time series data. According to Ding and Granger (1996), a number of other
processes can also have the long memory property. In a recent empirical study,
Bhardwaja and Swanson (2005) found strong evidence in favor of ARFIMA in
absolute, squared and log-squared stock index returns.
Granger and Joyeux (1980) and Hosking (1981) independently propose

ARFIMA processes to account for long memory in continuous variables. We
say that {yt, t = 1, 2, . . . , T} is an ARFIMA (0, d, 0) process if

(1− L)dyt = at (3)

where L is a lag operator and d is any real number. The {at} is a white noise
process of random variables with mean E(at) = 0 and variance V (at) = σ2a.
Employing binomial series expansion, we can write

(1− L)d = ∆d = 1−
∞X
i=1

(i− 1− d)!

i!(−d− 1)!L
i = 1−

∞X
i=1

Γ(i− d)

Γ(i+ 1)Γ(1− d)
Li (4)

and correspondingly

∆−d = 1 + dL+
1

2
d(1 + d)L2 +

1

6
d(1 + d)(2 + d)L3 − . . .

= 1 +
∞X
i=1

(i+ d− 1)!
i!(d− 1)! Li = 1 +

∞X
i=1

Γ(i+ d)

Γ(i+ 1)Γ(d)
Li (5)

where Γ(n + 1) = n! and i = 1, 2, . . .. The ∆d is needed for AR(∞) and the
∆−d is needed for MA(∞) representations of the ARFIMA (0, d, 0) model or for
more general ARFIMA(p, d, q) models. If d < 1/2, d 6= 0, the ARFIMA(0, d, 0)
process is called a long memory process, while the process has mean reversion
but is not covariance stationary when d > 1/2. A survey of the ARFIMA
literature can be found in Baillie (1996). Note, for instance, that the AR and
MA parameters of an ARFIMAmodel are less restricted than the corresponding
parameters of the INARFIMA model.
In paper [4], we focus on modelling the long memory property of time

series of count data and on applying the model in a financial setting. Com-
bining the ideas of the INARMA model (2a) with fractional integration is not
quite straightforward. Direct use of (4) or (5) will not give integer-values since
multiplying an integer-valued variable with a real-valued d can not produce an
integer-valued result and this alternative is hence ruled out. Instead, we depart
from the binomial expansion expression and propose in analogy with Granger
and Joyeux (1980) and Hosking (1981) INARFIMA models that accounts for
integer-valued counts and long memory. We apply the INARFIMA models to
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stock transactions data for AstraZeneca and Ericsson B. We found evidence for
long memory for the AstraZeneca series while the series for Ericsson B indicates
a process indicates a process that has a mean reversion property.

5 Summary of the Papers

Paper [1]: Integer-Valued Moving Average Modelling of the Number
of Transactions in Stocks

The integer-valued moving average model is advanced to model the number of
transactions in intra-day data of stocks. The conditional mean and variance
properties are discussed and model extensions to include, e.g., explanatory vari-
ables are offered. Least squares and generalized method of moment estimators
are presented. In a small Monte Carlo experiment we study the bias and MSE
properties of the CLS, FGLS and GMM estimators for finite-lag specifications,
when data is generated according to an infinite-lag INMA model. In addition,
we study the serial correlation properties of estimated models by the Ljung-
Box statistic as well as the properties of forecasts one and two steps ahead.
In this Monte Carlo study, the feasible least squares estimator comes out as
the best choice. However, the CLS estimator which is the simplest to use of
the three considered estimators is not far behind. The GMM performance is
weaker than that of the CLS estimator. It is also clear that the lag length
should be chosen large and that both under and overparameterization give rise
to detectable serial correlation.
In its practical implementation for the time series of the number of trans-

actions in Ericsson B, we found both promising and less advantageous features
of the model. There is evidence of asymmetric effects of news about prices
on the number of transactions. With the CLS estimator it was relatively easy
to model the conditional mean in a satisfactory way in terms of both inter-
pretation and residual properties. It was more difficult to obtain satisfactory
squared residual properties for the conditional variance specifications that were
tried. The FGLS estimator reversed this picture and we suggest that more em-
pirical research is needed on the interplay between the conditional mean and
heteroskedasticity specifications for count data. Depending on research inter-
est the conditional variance parameters are or are not of particular interest.
For studying reaction times to shocks or news it is the conditional mean that
matters, in much the same way as for conditional duration models. In addition,
the conditional variance has no direct ties to, e.g., risk measures included in,
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e.g., option values or portfolios.

Paper [2]: Bivariate Time Series Modelling of Financial Count Data

This study introduces a bivariate integer-valued moving average (BINMA)
model and applies the BINMA model to the number of stock transactions
in intra-day data. The BINMA model allows for both positive and negative
correlations between the count data series. The conditional mean, variance and
covariance are given. The study shows that the correlation between series in the
BINMA model is always smaller than one in an absolute sense. Applying the
BINMA model for the number of transactions in Ericsson B and AstraZeneca,
we find promising and less promising features of the model. The conditional
mean, variance and covariance have successfully been estimated. The stan-
dardized residuals based on FGLS are serially uncorrelated. But the model
could not eliminate the serial correlation in the squared standardized residual
series that is not of particular interest in this study. Further study is required
to eliminate such serial correlation. One way of eliminating serial correlation
may be to use extended model by letting, e.g., λj or σj be time-varying.

Paper [3]: A Vector Integer-Valued Moving Average Model for High
Frequency Financial Count Data

This paper introduces a Vector Integer-Valued Moving Average (VINMA) model.
The VINMA is developed to capture covariance between stock transactions time
series. The Model allows for both positive and negative correlation between
the count series and the integer-value property of counts is taken into account.
The model is capable of capturing the covariance between and within intra-day
time series of transaction frequency data due to macroeconomic news and news
related to a specific stock. The conditional and unconditional first and second
order moments are obtained. The CLS and FGLS estimators are discussed.
The FGLS estimator performs better than CLS in terms of eliminating serial
correlation. The VINMA model performs better than the BINMA of paper [3]
in terms of goodness of fit. Empirically, it is found that the spillover effect from
Ericsson B to AstraZeneca is larger than that from AstraZeneca to Ericsson B.

Paper [4]: Long Memory, Count Data, Time Series Modelling for
Financial Applications

This paper introduces a model to account for the long memory property in a
count data framework. The model emerges from the ARFIMA and INARMA
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model classes and hence the model is called INARFIMA. The unconditional
and conditional first and second order moments are given. Moreover, we in-
troduce another process by employing an idea introduced by Granger, Joyeux
and Hosking but in a different setting. The model is successfully applied to
estimate the fractional integration parameter for high frequency financial count
data for two stock series for Ericsson B and AstraZeneca.
In order to study residual properties for standardized residual we estimate

several INARFIMA models and truncated INMA models. The INMA(70) and
INMA(50) for Ericsson B and AstraZeneca, respectively, turns out to be the
best in terms of eliminating serial correlation for standardized residuals while
INARFIMA(0, δ, 0) comes in as second best for both series and the estimated
parameters are positive. The INARFIMA(0, δ, 0) is the most parsimonious
model in terms of number of parameters. For AstraZeneca, we find evidence of
long memory, while the estimated δ for Ericsson B indicates a process that has
a mean reversion property. CLS and FGLS estimators perform equally well in
terms of residual properties. We also find that the trading intensity increases
for both stocks when the macro-economic news or rumors break out and the
impact of the macro-economic news remains over a long period and fades away
very slowly with time. The reaction due to the macro-economic news on the
AstraZeneca series is faster than that of the Ericsson B series.
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