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Abstract. Explainability has been a core research topic in AI for decades
and therefore it is surprising that the current concept of Explainable AI
(XAI) seems to have been launched as late as 2016. This is a problem
with current XAI research because it tends to ignore existing knowledge
and wisdom gathered over decades or even centuries by other relevant
domains. This paper presents the notion of Contextual Importance and
Utility (CIU), which is based on known notions and methods of Deci-
sion Theory. CIU extends the notions of importance and utility for the
non-linear models of AI systems and notably those produced by Ma-
chine Learning methods. CIU provides a universal and model-agnostic
foundation for XAI.

Keywords: Explainable AI · Decision Theory · Contextual Importance
and Utility · Multiple Criteria Decision Making.

1 Introduction

It seems like the term Explainable AI (XAI) dates back to a presentation by
David Gunning in 2016 [13] and much recent work tends not to look at or cite
research papers that are older than so. It has also been pointed out that XAI as
a domain currently tends to propose methods that mainly can help experts to
validate that an AI system built using Machine Learning (ML) makes sense to
some extent [6]. It is rare to see methods and results that are meant to explain
and justify results and actions of ML models to ‘real’ end users, such as the
pedestrians who might be hit by an autonomous vehicle or the applicant of a
mortgage whose request is refused by an AI system. As pointed out e.g. by Miller
[20] and others [33], it is fair to say that most XAI work uses only the researchers’
intuition of what constitutes a ‘good’ explanation, while ignoring the vast and
valuable bodies of research in philosophy, psychology, and cognitive science of
how people define, generate, select, evaluate, and present explanations.

One truly relevant domain that seems to have been neglected in current
XAI work is Decision Theory and related sub-domains such as Multiple Criteria
Decision Making (MCDM). The Merriam-Webster dictionary defines Decision
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2 K. Främling

Theory as ‘a branch of statistical theory concerned with quantifying the pro-
cess of making choices between alternatives’. However, Decision Theory is also
by definition tightly connected with the domains mentioned above (philosophy,
psychology, and cognitive science) because methods of Decision Theory are in-
tended to produce Decision Support Systems (DSS) that are understood and
used by humans when taking decisions. Decision Theory and MCDM provide
clear definitions of what is meant by the importance of an input, as well as what
is the utility of a given input value towards the outcome of a DSS. A simple
linear DSS model is the weighted sum, where a numerical weight expresses the
importance of an input and a numerical score expresses the utility of the current
value of that input.

This paper extends the linear definition of importance and util-
ity towards non-linear models such as those produced by typical ML
methods. This non-linear extension is called Contextual Importance and
Utility (CIU)3 because in many (or most) real-life situations the importance
of an input and the utility of different input values changes depending on values
of other inputs. For instance, the outdoor temperature has a great importance
on a person’s comfort level as long as the person is outdoors. When the person
goes inside, the situation (context) changes and the outdoor temperature may
then have a very small importance for the comfort level. Similarly, both a very
cold and a very warm outdoor temperature might have a low utility for a per-
son’s comfort level but the level of utility can be modified by adding or removing
clothes.

After this Introduction, Section 2 builds up the theoretical background as
a combination of Decision Theory and XAI. Section 3 presents the background
and definition of CIU, supported by examples and an experiment using the Iris
data set, followed by conclusions in Section 4.

Source files for producing the results and Figures of this paper can be found
at https://github.com/KaryFramling/EXTRAAMAS 2020.

2 Background

The rationality of human decisions (or lack of it) might be one of the oldest
challenges addressed by philosophers. For instance, Socrates’ method for solving
a problem in a rational way consisted in braking the problem down into a series
of questions, the answers to which gradually distill the answer a person would
seek. This can be thought of as ‘solve a problem by explaining your reasoning to
yourself and/or someone else by starting from a high abstraction level and brake
it into smaller sub-problems’. The concept of bounded rationality as proposed
by Herbert Simon [29], [28] can be considered a cornerstone regarding modern
theories of human decision making. The fundamental concepts and methods of
Decision Theory are much older than Simon’s work. But Simon’s work can be
considered to be based on Decision Theory and provides a connection from there
to Artificial Intelligence and, by consequence, to Explainable AI.

3 https://github.com/KaryFramling/ciu
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2.1 Decision Theory

Decision Theory as a domain is too vast for the purposes of this article. Excellent
introductions to the domain can be found for instance in [14], [24], [18] and [32],
which notably focus on the sub-domain of Multiple Criteria Decision Making
(MCDM). The Analytic Hierarchy Process (AHP) [26] that was originally de-
veloped in the 1970’s seems to have become the most popular MCDM method
in research and practice [17], [16].

AHP is essentially based on a weighted sum, where the main selection task
can be broken into sub-tasks in a hierarchical manner. The weights are typically
acquired from experts using a pair-wise comparison procedure that produces
a comparison matrix, which is then transformed into weights by a normalized
principal Eigen vector. The utility (how good or favorable a value is for the
selection) of the possible values for each leaf of the hierarchy is specified and
calculated using the same principle.

MCDM problems require finding a model of the decision maker’s preferences,
which may be called his or her preference function. However, the decision maker
is quite often a group of people or an abstract person (society, nature, economy,
...). This makes it difficult to explicitly express the preference function, which is
the reason for using machine learning methods instead. If a training set exists
with labeled data on correct decisions, then it is possible to learn the prefer-
ence function, no matter if the output of the model is a numerical score or a
probability for one or many possible classes. A true preference function is usu-
ally non-linear and continuous, which makes its mathematical expression quite
complex. Such non-linear and continuous models are mainly studied in the ML
domain, which would be attractive also for MCDM if those ML methods would
provide sufficient explainability.

In MCDM methods, the importances of the selection criteria are expressed by
weights, while the transformation of the values of the criteria into utility values
is done with utility functions. For a car selection problem, these concepts may be
used for giving explanations such as ‘The car is good because it has a good size,
decent performances and a reasonable price, which are very important criteria’,
where words indicating utilities are underlined and only the most important
criteria are presented. The fact of using a linear model makes the definition of
importance and utility quite easy. However, when using non-linear models like
neural nets, the task becomes challenging.

Rule-based expert systems (including fuzzy or rough rules) are a way of
overcoming the linearity limitation. However, then we encounter the challenges
of explainability that are known in the AI domain since its very beginnings.

2.2 Explainable Artificial Intelligence

Contrary to what many papers seem to claim, the need for explainability in Ar-
tificial Intelligence (AI) and Machine Learning (ML) has been known for about
as long as AI has existed, even though the term Explainable AI (XAI) seems
to have been launched only in 2016 [13]. For instance, Shortliffe et al point out
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already in 1975 that ‘It is our belief, therefore, that a consultation program will
gain acceptance only if it serves to augment rather than replace the physician’s
own decision making processes. Gorry has reached a similar conclusion stating
that one reason for the limited acceptance of Bayesian inference programs has
been their inability to explain the reasoning behind their decisions’ [27]. The sys-
tem described in that paper was MYCIN, an expert system that was capable of
advising physicians who request advice regarding selection of appropriate antimi-
crobial therapy for hospital patients with bacterial infections. Great emphasis
was put into the interaction with the end-user, in this case a skilled physician.

As pointed out by Shortliffe et al in 1975, it is even more challenging to
explain and understand the reasoning of numerical models, such as Bayesian in-
ference programs. When numerical ML methods such as neural networks gained
in popularity in the end of the 1980’s due to significant technological progress
(e.g. in [25] and [15]), the explainability challenge was immediately identified.
During the 1990’s there was extensive activity around how to make results of
neural networks explainable. However, a vast majority of the work performed
then was focusing on so-called intrinsic interpretability or interpretable model
extraction [6], i.e. extract rules or other interpretable forms of knowledge from
the trained neural network and then use that representation for explainability
[5], [31], [30], [2].

Post-hoc interpretability was actually proposed as early as in 1995 [9]. How-
ever, the utility of post-hoc interpretability was not recognized by the AI com-
munity back then, as shown by the reactions of the audience at the International
Conference on Artificial Neural Networks in 1995. Post-hoc interpretability was
neglected to the extent that most XAI survey articles erroneously date the first
post-hoc explanations much later, such as output explanation in 2006 and model
inspection approach in 2002 [12]. Another example that presents outcome expla-
nation and the use of counterfactual explanations is the article from 2002 in the
Neural Networks journal [11] that is currently only cited 128 times according to
Google Scholar. However, the objective of this paper is not to provide a com-
plete overview of the history of XAI. A comprehensive survey on current trends
in XAI is provided for instance in [4].

The Local Interpretable Model-agnostic Explanations (LIME) method pre-
sented in 2016 [22] might be considered a cornerstone regarding post-hoc inter-
pretability. It emphasizes the need for outcome explanations in many real-world
situations and shows good results also when applied to image recognition by
deep neural networks. LIME implementations are available in several different
programming languages, which has certainly increased its popularity. LIME be-
longs to the family of additive feature attribution methods [19] that are based on
the assumption that a locally linear model around the current context is suffi-
cient for explanation purposes. As shown in the following Section, even though
such methods allow producing outcome explanations (but not model inspection
explanations), they are not theoretically correct when studied from a Decision
Theory point of view.



Decision Theory meets Explainable AI 5

3 Contextual Importance and Utility (CIU)

Contextual Importance and Utility (CIU) were initially developed during Kary
Främling’s PhD thesis [8]. The thesis is written in French but the method is also
described in [9] and [7]. After the PhD thesis was finished, the topic was dropped
for professional reasons. The popularity of neural networks and the question
about their explainability also started declining at the same time. However, the
recent rise in popularity of AI and the re-emergence of XAI as a research area
are the reasons for the recent re-launch of the work on CIU.

The work on CIU started by a practical problem that consisted in selecting
a waste disposal site for ultimate industrial waste in the region of Rhône-Alpes,
France [10]. Fifteen selection criteria had been specified by experts and regional
decision makers, which characterized the sites from geological, financial, social,
ecological and logistic points of view. Over 3000 potential sites had been iden-
tified, together with their respective values for the 15 criteria. Tens of decision
makers involved in the selection process all had their own opinions on how impor-
tant different criteria are. What comes to the utility functions, there are many
subjective opinions, such as how to assess recreational impact and when such an
impact should be ‘too big’, ‘acceptable’, ‘negligible’ or something else.

Three methods were applied in parallel: AHP, Electre I [23] and a rule-based
expert system using the tool Nexpert Object v.2.0. The weights of the 15 criteria
were identified as a group work using the AHP pair-wise comparison functional-
ity mentioned in Section 2.1. The same weights and utility functions were used
for AHP and Electre I. For the rule-based system, the problem was divided into
sub-categories, i.e. ‘Global geology’, ‘Hydrology’, ‘Access’, ‘Nuisance to popu-
lation’, ‘Aesthetic values’ and ‘Agricultural value’. Explainability functionality
was developed that was specific for each of the three methods, where the men-
tioned sub-categories were used for providing explanations with a higher level
of abstraction than using the 15 selection criteria directly. Explainability of the
results was a core criterion for the decision makers when they took their decision
on which method to choose for taking the decision4. Since the output of all the
three methods was a numeric score per potential site, what needed to be ex-
plained was why every individual site had been selected (high score) or rejected
(lower score).

The waste disposal site selection problem reveals many crucial challenges
related both to MCDM and XAI, such as:

– It is challenging even for one person to specify what is the importance of
different selection criteria (inputs of the model) and how favorable (or not)
the values of different criteria are, i.e. their utility.

– It it difficult to choose what MCDM method to use and what that choice
means in practice regarding results and explainability.

– The choice of MCDM model and parameters remains subjective. It would
be preferable if a ML model could learn the ‘correct’ model based on data
from existing sites.

4 Electre I was the selected method.
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– Since explainability is a key requirement, a typical ML black-box approach
is not acceptable.

– ML models, such as the ones learned by neural networks can not be supposed
to be linear.

Three different kinds of MCDM models are illustrated in Figure 1:

1. Figure 1a shows the function z = 0.3x+ 0.7y. This is a weighted sum model
with weights (importances) 0.3 and 0.7.

2. Figure 1b shows the result of several if-then rules that determine the z-value
as a function of x- and y-values. This kind of a model is highly non-linear
and is not differentiable.

3. Figure 1c shows the function z = (x0.5 + y2)/2. This is a simple non-linear
model that could have been learned by a neural net.
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(a) Weighted sum.
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(b) Rule-based.
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(c) Non-linear model.

Fig. 1: Examples of linear, rule-based (crisp rules, not fuzzy rules or rules involv-
ing certainty factors) and non-linear MCDM models.

For the weighted sum in Figure 1a it is obvious that the importance if each
criterion is directly expressed by the corresponding weight and the utility of x
and y equals their value. If such a linear model would have been learned by a
ML black-box, then additive feature attribution methods should give these exact
importances 0.3 and 0.7 for any point z = f(x, y) because the locally linear
model corresponds to the global model. Additive feature attribution methods
only speak about feature importance, whereas they do not have any notion of
utility.

For a stepwise model such as the one in Figure 1b it does not make sense
to apply a locally linear approximation, for two reasons: 1) the model is not
differentiable and 2) the model is non-monotonic, so a local gradient does not
say much about the actual importance of a feature.

The non-linear model in Figure 1c is the most interesting to study further
in the context of XAI because the main reason for using neural networks and
similar ML models is to deal with non-linear but differentiable models. The next
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section formally describes Contextual Importance and Utility and provides the
justification for why they are theoretically valid concepts for XAI. It also shows
why methods based on locally linear models are not sufficiently expressive for
many XAI requirements, nor theoretically sound compared to CIU.

3.1 CIU of one input

CIU is inspired from trying to analyze how humans explain their decisions and
reasoning to each other. After all, the human brain is probably the most complex
black-box model on earth. But humans are still usually capable to retrospectively
produce an explanation for their decisions and behaviour, even though humans
do suffer from the limitations of so-called bounded rationality [29]. Bounded ra-
tionality is the idea that rationality of human individuals is limited when making
decisions, by the tractability of the decision problem, the cognitive limitations of
the mind, and the time available to make the decision. Humans also tend to take
into account the reactions, background etc. of the audience of the explanation 5.
Humans would typically identify which features were the most salient for taking
a decision and start the explanation with those features. In addition to explain-
ing why a decision was taken, humans may also be asked to explain why another
decision was not taken, both independently and in comparison with each other.
Counterfactual ”what-if” explanations are frequent when humans justify their
decisions. Depending on the reactions of the audience, humans can also change
the vocabulary that is used, the level of abstraction and the kind of interaction
(for instance create a drawing if verbal explanation is not sufficient).

Many of these explanation capabilities are contextual . One feature might
be important for taking a decision in one situation but irrelevant in another
situation, as illustrated by the example mentioned in the Introduction, where
the importance of the outdoor temperature depends on whether the black box
(human brain and body) is indoors or outdoors.

In this paper, we will not attempt to provide a new definition of context. One
definition is e.g. “Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user
and the applications themselves”[1]. The same source defines context-awareness
as follows: “A system is context-aware if it uses context to provide relevant in-
formation and/or services to the user, where relevancy depends on the user’s
task”[1]. Similar definitions are provided elsewhere, as in [21]. In general, con-
text adds knowledge about what inputs/features/characteristics of a situation
are important for the concerned entity, which in our example would be the person
who is indoors or outdoors.

In order to specify Contextual Importance (CI) and Contextual Utility (CU)
formally, we will study the non-linear model in Figure 1c further. The red dot in

5 Human interaction and social life of course also involves intentional lying, desires to
please or hurt the target of the explanation, to impress other humans etc. However,
those considerations go beyond the scope of CIU and this paper.
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Figure 1c is located at (x, y) = (0.1, 0.2), which gives a result value z = 0.178.
Here the context is specified by the input values (x, y) = (0.1, 0.2), which we

denote
#»

C . What we want to find out is the contextual importance CIj(
#»

C, {i})
of a given set of inputs {i} for a specific output j in the context

#»

C . The definition
of CI is

CIj(
#»

C, {i}) =
Cmaxj(

#»

C, {i})− Cminj(
#»

C, {i})
absmaxj − absminj

(1)

where absmaxj is the maximal possible value for output j and absminj is

the minimal possible value for output j. Cmaxj(
#»

C, {i}) is the maximal value of
output j observed when modifying the values of inputs {i} and keeping the values

of the other inputs at those specified by
#»

C . Correspondingly, Cminj(
#»

C, {i}) is
the minimal value of output j observed.

The estimation of Cmaxj(
#»

C, {i}) and Cminj(
#»

C, {i}) is done for limited value
ranges of inputs {i}. The value range to be used can be defined by the task pa-
rameters or by the input values present in the training set. The ‘safest’ option
is typically to use input value ranges that are defined by the minimal and max-
imal values found in the training set because the behaviour of many ML models
outside of that range tends to be unpredictable. It is also worth mentioning that
the ‘valid’ input ranges may depend on the context C. The current implementa-
tion for estimating Cmaxj(

#»

C, {i}) and Cminj(
#»

C, {i}) uses Monte-Carlo simula-
tion with uniformly distributed, randomly generated values within the provided
value ranges of inputs {i}. More efficient methods probably exist for estimating

Cmaxj(
#»

C, {i}) and Cminj(
#»

C, {i}) if information about the black-box model or
the learned function is available.

The definition of CU is

CUj(
#»

C, {i}) =
outj(

#»

C)− Cminj(
#»

C, {i})
Cmaxj(

#»

C, {i})− Cminj(
#»

C, {i})
(2)

where outj(
#»

C) is the value of the output j for the context
#»

C .
The calculations of CI and CU are illustrated in Figure 2 for the non-linear

function in 1c. The values are absmin = 0, absmax = 1, Cmin1(
#»

C, {1}) =

0.02, Cmax1(
#»

C, {1}) = 0.52, Cmin1(
#»

C, {2}) = 0.158, Cmax1(
#»

C, {2}) = 0.658,

out1(
#»

C) = 0.178, when inputs and outputs are numbered from one upwards. This

gives CI1(
#»

C, {1}) = 0.5 and 1(
#»

C, {2}) = 0.5, which signifies that both inputs

are exactly as important for the output value. For the utilities, CU1(
#»

C, {1}) =

0, 316... and CU1(
#»

C, {2}) = 0.04, so even though the y value is higher than the
x value, the utility of the x value is higher than the utility of the y value for the
result z.

It is worth pointing out that an additive feature attribution method such as
LIME would presumably correspond to the partial derivative, which would give
importances of 0.8 and 0.26. Importances of 0.8 and 0.2 are radically different

6 Partial derivative for x is 0.25/
√
x and for y it is y
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Fig. 2: Illustration of calculations of CI and CU for simple non-linear model.

from CI = 0.5 and illustrates to what extent CIU differs from additive feature
attribution methods in the case of non-linear models. A locally linear model
will provide an estimate of how much small changes in an input value affect the
output value but they will not take into account what happens when modifying
the input value even slightly more. Finally, additive feature attribution methods
do not provide any utility concept. Such methods might produce an explanation
such as ‘z has a bad value (0.18 of one), mainly because of input x (importance
0.8), whereas input y has much less importance (0.2)’.

Based on CIU values, the explanation could be of the kind ‘z has a bad value
(0.18 of one), where input x and input y are both quite important (0.5). The
x value of 0.1 is relatively bad (CU=0.32), while the y value is extremely bad
(CU=0.04). As a conclusion, the main reason for the bad output value is that the
y value is bad ’. This kind of verbal explanations are relatively straightforward to
produce programmatically by dividing the maximal CI interval [0, 1] into labeled
intervals with labels such as ‘insignificant’, ‘not important’, ‘some importance’,
etc. The same can be done for the the maximal CU interval [0, 1]. Different inter-
vals and vocabularies can and should be used depending on the application area
and on the actual semantics and meaning for the different inputs and outputs of
the black box. Examples of such programmatically generated explanations can
be found in [9], [8], [7] and [3]. R and Python implementations of CIU7 also
produce graphical plots as explanations, such as the one in Figure 6 for the Iris
classification task described in Section 3.2.

In most existing XAI literature, the focus seems to be on answering questions
such as ‘why is this a cat?’ or ‘why is this a good choice?’ but rarely answering

7 https://github.com/KaryFramling/ciu, https://github.com/TimKam/py-ciu. A
Matlab implementation also exists at https://github.com/shulemsi/CIU
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questions such as ‘why is this not a tomato?’ or ‘why is this a bad choice?’.
Classification tasks with one black-box output per possible class seem to be
the most commonly used architecture in literature. However, as pointed out
earlier, humans do not only explain why they choose one option. Humans are also
often asked to explain why they do not choose other options. Additive feature
attribution methods do not make any conceptual difference between ‘good’ and
‘bad’, so the explanations would presumably be quite similar no matter if they
are for answering the question ‘why?’ or for answering the question ‘why not?’.
With CIU, ‘why?’ and ‘why not?’ explanations can be quite different because
the utility concept (CU) identifies which features are favorable or not for each
class.

Figure 3 shows what non-linear classification models could look like for an
‘AND’ / ‘not AND’ classifier, with two inputs x, y and two outputs. The first
output corresponds to the class ‘not AND’ and the second output corresponds
to the class ‘AND’. The red dot in Figure 3 shows the context to be studied,
i.e.

#»

C = (x, y) = (0.5, 0.1). It is easy to see from Figure 3 that modifying x
will not affect the result z much and the CI of x is indeed only 0.07 for both
classes, whereas the CU of x is 0.50 for both classes, which is expected. However,
modifying y will modify the result z much more, which is also reflected by a CI
of y of 0.50 for both classes. The CU of y is 0.93 for the class ‘not AND’ and
0.07 for the class ‘AND’, which is also expected.

A simple explanation to the question ‘Why is this “not AND”?’ based on
CIU would be something like ‘It is a “not AND” mainly because y is important
(CI=0.5) and has an excellent value (CU=0.93). x is not important (CI=0.07)
but has an average value (CU=0.5)’.

An explanation to the question ‘Why is this NOT “AND”?’ based on CIU
would be something like ‘It is NOT “AND” mainly because y is important
(CI=0.5) and has an very bad value (CU=0.07). x is not important (CI=0.07)
but has an average value (CU=0.5)’.

This simple classification example is mainly intended to illustrate how CIU is
used for classification tasks. However, the semantics of the ‘not AND’, ‘AND’, not
‘AND’ and not ‘not AND’ might not be the easiest ones to follow. Furthermore,
it might be more interesting to study the joint behaviour of x and y. But since
there are only two inputs in this case, the CI of both would be one because
modifying both simultaneously would produce all possible z-values in the range
[0, 1]. It is indeed useful to study the behaviour of the black-box also by getting
CIU for all inputs at a time. However, for XAI purposes it might be more useful
to calculate CIU for more than one input, as shown in the next Section.

3.2 CIU of more than one inputs

The definition of CI and CU is not restricted to one input. They can be calculated
(or at least estimated) for any combination of inputs, as well as for all inputs
simultaneously. This is useful for XAI purposes because it makes it possible
to provide explanations at any level of abstraction. In a car selection case, for
instance, the concept ‘Performances’ could be used to group together basic input



Decision Theory meets Explainable AI 11

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2
0.4
0.6
0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2
0.4
0.6
0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Classification model learned by neural network, first output is ‘not AND’,
second is ‘AND’.

features such as ‘Maximum power’, ‘Weight’, ‘Top speed’ and ‘Acceleration’ as
in [7]. Any number of such intermediate concepts can be specified and used for
explanation purposes depending on who the explanation is intended for or what
level of detail is needed. There could even be different explanation vocabularies
that target different audiences, such as a domain expert versus a domain novice8.

CIU for more than one input will here be studied using the simple and well-
known Iris data set. The Iris set contains 150 Iris flowers, where there is 50
samples of the three different Iris species Setosa, Versicolor and Virginica. Four
values are indicated for each flower: Sepal length, Sepal width, Petal length and
Petal width, all measured in centimeters.

The neural network classifier used is an INKA (Interpolating, Normalising
and Kernel Allocating) network [8]. INKA is a Radial Basis Function (RBF)
network that is used here mainly because it tends to converge towards the average
output value when extrapolating towards infinity, which can be an advantage
for CIU calculations. However, since CIU is completely model-agnostic, it does
not really matter what is ‘inside’ the black-box being studied. INKA also has
excellent training results with the Iris data set.

For studying CIU, we will use a flower Iristest that is not included in the Iris
data set but that is quite a typical Virginica, so we have

#»

C = (7, 3.2, 6, 1.8) as

input values. The trained INKA network gives us out(
#»

C=(0.022, 0.117, 0.861)
for the three outputs (classes), so it is clearly a Virginica.

8 It is uncertain whether additive feature attribution methods could allow for inter-
mediate concepts. Partial derivatives are usually calculated only for one variable.
However, the author does not know if partial derivatives (and gradients) could also
be calculated for arbitrary combinations of variables.
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Figure 4 shows how the three outputs change as a function of each input.
Table 1 shows the corresponding CI and CU values. It is clear that the the flower
C is very far from being a Setosa and modifying any single input will not change
that classification. Figure 4 shows that the Petal length is the most important
feature and that the value 6 centimeters makes this flower a typical Virginica
(but defnitely not a Versicolor). The CI and CU values in Table 1 express the
same, so it is easy to provide an explanation that is clear and that corresponds
exactly to the learned model 9.

Table 1: CIU values for Iris classes versus input.
Input feature Setosa Versicolor Virginica

Sepal Length 0.0425279 0.2085747 0.2384596
Sepal Width 0.03972771 0.17254086 0.21204752 CI
Petal Length 0.3124243 0.7169677 0.7113022
Petal Width 0.04344366 0.24595074 0.28744096

Sepal Length 0.1171743 0.3690032 0.6596097
Sepal Width 0.0640272 0.0644939 0.9365688 CU
Petal Length 0.0456506224 0.0006167944 0.9995161501
Petal Width 0.01707707 0.26574443 0.77682899

Table 2: CIU values for combined concepts.
Input feature Setosa Versicolor Virginica

Sepal size and shape 0.07172334 0.30947848 0.36959064
Petal size and shape 0.3916285 0.9102021 0.9205347 CI
All input features 0.8240611 1.1038175 1.1122128

Sepal size and shape 0.1415141 0.4294574 0.6130286
Petal size and shape 0.04523376 0.15602016 0.82909669 CU
All input features 0.02717686 0.24984699 0.73618267

Table 2 shows CI and CU for the intermediate concepts ‘Sepal size and shape’
(inputs one and two) and ‘Petal size and shape’ (inputs three and four), as well
as CI and CU when calculated for all inputs. The CI values in Table 2 clearly
show that ‘Petal size and shape’ is the most important concept for the flower
studied. CI is about the same (0.91 and 0.92) for both Versicolor and Virginica
but the CU values in Table 2 say that the Petal values are clearly favorable for
Virginica but not favorable for Versicolor (and even less for Setosa). Figure 5
shows the probability of Virginica and Versicolor as a joint function of ‘Sepal
size and shape’ and ‘Petal size and shape’.

9 See [3] for examples of verbal explanations. In that paper, a deep neural network
and a CIU implementation in Matlab was used. The calculations, visualisations etc.
in this paper have been implemented in “R”.
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Fig. 4: CIU as a function of the four inputs for all classes.
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Fig. 6: Bar plot visualisation of CIU for Iris classes. Bar length corresponds to
CI value. CU values below 0.5 give red colour, otherwise green. The further away
from 0.5 CU is, the darker the colour.

When calculating CI for all input features combined, it should logically be
one. The CI values in Table 2 are ‘sufficiently’ close to one in the sense that the
Monte-Carlo simulation with 1000 samples for estimating Cmaxj(

#»

C, {i}) and

Cminj(
#»

C(C, {i}) only provide an estimation of the true values. However, CI for
all inputs can also be used as an indicator of how reliable the learned model
is. A small CI might be an indication that there are areas in the input feature
space that lack in training data. A CI value over one would typically indicate
that there are areas of the input space where the model is overshooting and/or

undershooting so that Cmaxj(
#»

C(C, {i}) > absmaxj and/or Cminj(
#»

C(C, {i}) <
absminj .

On the other hand, CU for all input features combined should give a result
that is similar to the different output values. In this case, out(

#»

C=(0.022, 0.117,
0.861), which is well in line with CUall=(0.027, 0.250, 0.736).

Despite the solid theoretical foundations of CIU and the consistent results
presented here, there are also some challenges and topics for future research.
For instance, it will take more testing and experience to learn when it might be
better to use somehow normalised CI values rather than the absolute values. For
instance, when dealing with saliency maps as in [22] the CI values of individual
pixels will be very small so then it is only CI of each pixel relative to the other
pixels that counts.

Another challenge is if the input space is not sufficiently well covered by the
training set. Then the estimation of Cmax(C, {i}, j) and Cmin(C, {i}, j) might
go into areas of the input space where the black-box model can be completely
erroneous. Many neural networks have a tendency to go into extreme oscilla-
tions when extrapolating even slightly. However, such conditions can at least be
detected using CI for all input features.

Future topics of research include detecting challenges with stability, reliabil-
ity, robustness and lack of ‘self-insight’ about how certain the results of the black
box are. The current CIU-based explanation features address these challenges
only partially but might open new possibilities. Finally, as proposed in [8], CIU
plots such as those in Figure 4 could also be used by human experts for correct-
ing erroneous models by augmenting the training set with pseudo-examples that
would correct obvious errors in the trained model.
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As CIU is applied to an increasing number of data sets and applications, it
is expected that more insight will be gained into properties of the method that
still tend to be intuitive. For instance, does a CU value of 0.9 for an input value
indeed signify that the value is ‘as good’ as a CU value of 0.9 for an output, or
for an intermediate concept? Intuition says that it should be so but it remains
a topic for further research.

4 Conclusions

Despite all research efforts on explainability of AI systems since decades, the
emergence of a new name (XAI) for the domain as recently as 2016 is an in-
dication that XAI is still quite immature. Current XAI research notably on
outcome explanation also seems to ignore the wealth of knowledge accumulated
also by closely related domains for decades. This paper proposes extending the
traditional MCDM concepts of importance and utility from the linear models
towards the non-linear models produced by ML techniques. That extension is
called Contextual Importance and Utility (CIU).

This paper provides the mathematical definition of CIU and shows how CIU
is used in practice for XAI. An experiment with the Iris data set validates the
approach for real-world data. The Iris data has mainly been chosen for simplicity
of presentation and understanding the basics of CIU. Work is ongoing for more
complex data and use cases in order to show how CIU can be used for explaining
diagnostics in healthcare and machine failures, AI-performed credit assessments,
control actions taken by autonomous vehicles, . . . .

Theoretical and practical examples were provided for showing why methods
based on local linearity are not universally applicable for XAI. CIU provides the
kind of universal base for XAI that is needed in the future. However, more ex-
perimental work is still needed for understanding all the possibilities, challenges
and limitations of CIU.
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8. Främling, K.: Learning and Explaining Preferences with Neural Networks
for Multiple Criteria Decision Making. Theses, INSA de Lyon (Mar 1996),
https://tel.archives-ouvertes.fr/tel-00825854
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4765–4774. Curran Associates, Inc. (2017), http://papers.nips.cc/paper/7062-a-
unified-approach-to-interpreting-model-predictions.pdf

20. Miller, T.: Explanation in artificial intelligence: Insights from the
social sciences. Artificial Intelligence 267, 1–38 (February 2019),
https://arxiv.org/abs/1706.07269

21. Perera, C., Zaslavsky, A.B., Christen, P., Georgakopoulos, D.: Context aware
computing for the internet of things: A survey. CoRR abs/1305.0982 (2013),
http://arxiv.org/abs/1305.0982

22. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the
predictions of any classifier (2016)

23. Rogers, M.G., Bruen, M., Maystre, L.Y.: The Electre Methodology, pp. 45–85.
Springer US, Boston, MA (2000). https://doi.org/10.1007/978-1-4757-5057-7 3
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