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Abstract

In soil, where trees and crops grow, heavy vehicles shear and compact the soil,
leading to reduced plant growth and diminished nutrient recycling. Computer sim-
ulations offer the possibility to improve the understanding of these undesired phe-
nomena.

In this thesis, soils were modelled as large collections of contacting spherical
particles using the Discrete Element Method (DEM) and the physics engine AGX
Dynamics, and these entities were analyzed.

In the first part of the thesis, soils, which were considered to be continua, were
subjected to various controlled deformations and fields for quantities such as stress
and strain were visualized using coarse graining (CG). These fields were then com-
pared against analytical solutions. The main goal of the thesis was to evaluate the
usefulness, accuracy, and precision of this plotting technique when applied to DEM-
soils. The general behaviour of most fields agreed well with analytical or expected
behaviour. Moreover, the fields presented valuable information about phenomena
in the soils. Relative errors varied from 1.2 to 27 %. The errors were believed
to arise chiefly from non-uniform displacement (due to the inherent granularity in
the technique), and unintended uneven particle distribution. The most prominent
drawback with the technique was found to be the unreliability of the plots near the
boundaries. This is significant, since the behaviour of a soil at the surface where it
is in contact with e.g. a vehicle tyre is of interest.

In the second part of the thesis, a vehicle traversed a soil and fields were visualized
using the same technique. Following a limited analysis, it was found that the stress
in the soil can be crudely approximated as the stress in a linear elastic solid.
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1 Introduction

Soil mechanics is an important discipline in several scientific fields. In civil engineering,
for example, structures rest on soil [1]. Trees and crops grow in soil. In agriculture and
forestry, heavy vehicles shear and compact the soil, which leads to reduced plant growth
and diminished nutrient recycling [7]. Experiments that increase the knowledge of soil
mechanics carry the potential to e.g. mitigate compaction due to a heavy machine.
Physical experiments with real vehicles, however, are cumbersome and expensive. On
the other hand, computer-based simulations offer the possibility to carry out a large
number of experiments with e.g. different types of terrain. In this thesis, soils were
modelled as large collections of contacting spherical particles using the Discrete Element
Method (DEM) and the physics engine AGX Dynamics.

Soils are distinct from other materials due to their special properties [1]. Key quan-
tities and terms include stress, strain, shear, deformation, and dilatancy [2]—these will
be explained later. When a heavy vehicle traverses a soil, it is of interest to be able to
study a system of plots of quantities such as stress and strain. Such a system offers the
possibility to quickly visually identify important phenomena (such as compaction), an
identification that can be harder, more time-consuming, and less intuitive by studying
numerical data from a simulation.

This thesis is composed of two parts. In the first part, the author evaluates a plotting
technique based on coarse graining (CG) in which—due to the complexity of a particle-
based soil—a simplified representation of the system of particles is generated. CG has
several applications, one of which is that it is possible to obtain continuous fields (even
though the particles are discrete) which describe e.g. the stress or strain in the soil,
and these fields can be visualized. In order to investigate this CG plotting technique,
cubical pseudo-solids, which we considered to be continua, were created using DEM. The
difference between pseudo-soils and properly modelled soils is that the former carries zero
friction, zero rolling resistance, and zero cohesion, while these quantities are non-zero
for the latter. This simplified the analysis. The pseudo-soils were subjected to various
deformations, and scalar and vector fields were plotted. These plots—and the numerical
data which underpins the plots—were compared against analytical solutions and were
examined, chiefly in terms of their general behaviours and errors*, and a conclusion was
drawn regarding the usefulness and applicability of the technique. This was the main
goal of the thesis. Although the evaluation of the technique applies to soils and granular
materials in general, the focus was on soils stressed by heavy vehicles, and, as such,
quantities that are key within that domain were prioritized. Two such key quantities
are stress and strain.

In the second part, a vehicle traversed a soil, and plots were created in the same way
as in the first part. A brief analysis of the fields is presented. This time, the soil had
non-zero values for friction, rolling resistance, and cohesion in order to mimic real soil.

The purpose of the thesis was to improve the analysis of soil dynamics and deforma-
tions. Hopefully this can be of use to the research community and ultimately lead to a
more sustainable agriculture and forestry, and the innovations of machines with lesser

*If we say that the general behaviour agrees well with the analytical solution, the qualitative agree-
ment is good (high accuracy). If the error is low, the quantitative agreement is good (high precision).
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environmental impact.

2 Theory

2.1 Properties of Soil

Soils are distinct from other materials due to their special properties [1]. We consider soil
to be the weathered material in the upper layers of the earth’s crust, for example, sand,
silt, clay, or a mixture of these material. In the sections below, these special properties
are explained briefly.

2.1.1 Stiffness

−∆V/V

P

Figure 1 – Solid line: The pres-
sure P as a function of the neg-
ative volume strain ∆V/V for a
soil. Figure adapted from [3].
Dashed line: Hooke’s law.

Materials that regain their shape after a deformation
are denoted elastic. One example is rubber, provided
that the deformation is not too large (a rubber band
snaps when pulled too far). Materials that deform ir-
reversibly after a deformation are denoted plastic. One
example is clay. Soils have both elastic and plastic
behaviour and are thusly often denoted elasto-plastic.
Sometimes a soil behaves like a solid, sometimes like a
fluid.

Many material, such as metals, concrete, and wood,
are linear elastic and satisfy Hooke’s law (up to a certain
stress level). Soils do not satisfy this law and become
gradually stiffer in compression, see Fig. 1. As a soil
is compressed, the particles are brought closer. This
increases the contacting areas, and so also the forces
between the particles. For example, a coffee* package under vacuum, i.e. under high
compression, is very stiff, while it becomes loose when opened.

2.1.2 Shear

φ

Figure 2 – The angle of repose for a
heap of sand is approximately φ = 35°.

Shear strain is a deformation in which parallel sur-
faces slide past one another. In contrast to com-
pression, in which soils become stiffer, shear softens
soil [1]. At a great enough shear in relation to pres-
sure, a soil fails. For example, the slope of a heap
of sand can not exceed around 35°. This angle is
known as the angle of repose, see Fig. 2.

*Ground coffee is obviously not a soil, but has soil-like properties. Actually, ground coffee is a
granular material, which is a conglomerate for collections of distinct macroscopic particles, to which
soils belong.
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2.1.3 Dilatancy

Dilatancy is defined as the volume change in a granular material (such as a soil) due to
shear deformation. Loose sand has a propensity to contract, and densely packed sand
can usually deform only if there is a volume expansion, see Figs. 3 and 4. This property
is why the densely packed soil around a human foot on a beach dries. The weight of
the foot causes shear deformation and thus volume expansion. Water is drawn into the
empty region between the particles, drying the surface. Understanding of dilatancy is
crucial when building heavy structures that rest of soil.

Figure 3 – Soil with particles modelled
as spheres in a tightly packed state.

F

Figure 4 – Dilatancy. The load results in
a shearing deformation: particle layers slide
over each other, and the volume is increased.

2.2 Discrete Element Method

2.2.1 Introduction

In the Discrete Element Method (DEM), a solid is modelled using a large collection of
small contacting particles. To model soil using DEM is a promising and versatile option
[8]. In this paper, soils are modelled using DEM and small spherical rigid particles.
It is computationally intractable to use true particle size, so instead, pseudo-particles
are used. Such particles are larger than the real particles in a soil, so the microscopic
properties of the soil are lost. The upshot is that—if the pseudo-particles are small
enough, and particle parameters such as friction and rolling resistance are calibrated—
the macroscopic properties of the desired soil (such as bulk cohesion and internal friction)
can be obtained [9].

2.2.2 Equations of Motion

If all forces acting on particle i is known, the problem is reduced to integrating the
Newton-Euler equations of motions [10]:{

mir̈i =
∑

c f ci + fext,

Iiϕ̈i = ti =
∑

c (lci × f ci + qci ) ,

where mi is the mass of particle i and ri ∈ <D its position vector, see Fig. 5. f ci are
contact forces from other particles or e.g. walls, and fext is the sum of the external forces,
e.g. gravity. Ii is the moment of inertia, ϕi ∈ <D is the angular position vector, ti is
torque, lci is the vector from particle i to the particle (or object) from which f ci arises,
and qci are torques/couples at contacts other than due to a tangential force, for example
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rolling or torsion. Since the particles are spherical the gyroscopic force is zero and needs
not be included.

The equations of motion are thus a system of D + D (D − 1) /2 coupled ordinary
differential equations to be solved in D dimensions.

δ

ri

rj

ϕi

ϕj
ϕ̇i

ϕ̇j

ṙi

ṙj

Figure 5 – Particles i and j in contact
(with a contact overlap δ) and selected
particle variables illustrated.

friction µ

fni f ti

Figure 6 – Same as Fig. 5, but now the parti-
cles have been separated for a visual represen-
tation of the contact force on i due to j, which
includes the normal force fni (represented to
arise from spring) and the tangential force f ti
(represented to arise from a spring and the
friction between two surfaces).

2.2.3 Normal and Tangential Force

The spherical particles are rigid, but can overlap, which results in normal and tangential
forces. These forces can be modelled in a number of ways. The models of interest are
[19]: f

n = knδ
3/2 + kncd

√
δδ̇,

f t = min (µfn, ktδt) = min
(
µfn, kt

∫
δ̇tdt

)
, f t ≤ µfn,

where the normal force fn is a non-linear Hertz-Mindlin model with contact overlap
δ, and the tangent force f t is a linear spring-force with Coulomb condition (friction
coefficient µ) and tangential slip rate δ̇t, wherekn = E

√
2d

3(1−ν2)
,

cd =
4(1−ν2)(1−2ν)η

15Eν2
,

where E is the Young modulus, ν is the Poisson ratio, η is the material viscosity constant,
and d is the particle diameter.

2.2.4 Rolling Resistance, Cohesion, and Cohesive Overlap

Particles in contact subject each other to torques through friction. In modelling soil,
a rolling resistance is often introduced. It usually takes the form of an inequality con-
straint: if the torque does not exceed a certain magnitude, determined by a rolling
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resistance coefficient µr, no rolling occurs. A greater µr implies a stronger tendency to
resist rolling.

Particles in a soil tend to stick together due to cohesion. This phenomenon is usually
implemented as an inequality constraint, governed by a cohesion coefficient cp. A greater
cp implies stronger forces between the particles and a stronger soil. The cohesive overlap
δc determines the required particle overlap for cohesion to occur.

2.3 Continuum Mechanics

2.3.1 Overview

In continuum mechanics, matter is distributed continuously in a continuum. Quantities
such as density, displacement and velocity vary continuously such that their derivatives
exist and are continuous. For example, in general, mass density is defined as mass m
divided by volume V . In continuum mechanics, due to the assumed continuity of matter,
mass density is defined by [12]:

ρ ≡ lim
∆V→ε3

∆m

∆V
,

where we take the limit ε → 0. This limit enables us to specify the density (and other
quantities) at a point in a continuum.

Obviously, real materials are discontinuous, since the mass density in a small volume
enclosing a molecule is higher than between molecules (where, in fact, the density is zero,
discounting quantum mechanics), but in the macroscopic domain continuum mechanics
can be a useful approximation. In this thesis, soils were modelled as collections of small
spherical particles using DEM, and these samples were approximated as continua.

2.3.2 Fundamental Quantities

Consider an arbitrary body B of known geometry in three-dimensional Euclidean space
<3 in an arbitrary reference configuration κ0 at time t = 0, see Fig. 7. We let the body
undergo a deformation, which results in the configuration κ at some later time t > 0. The
mapping χ is the deformation mapping of B from κ0 to κ, which describes the motion of
B. X = (X1, X2, X3) is the position vector for a particle in the reference configuration,
where Xi are material coordinates and x = (x1, x2, x3) is the position vector in the
deformed configuration, where xi are spatial coordinates [13]. The separation vector
between two particles, known as a material line, is in κ0 given by dX, and in κ by dx.
The displacement vector for a particle is defined by u ≡ x−X.
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XP

XQ

xP ′

xQ′
dX

dx

uP

uQ

P

Q

P ′

Q′
κ0 (t = 0)

κ (t > 0)χ(X)

x2

x1

x3

Figure 7 – A body B in a reference configuration κ0 at time t = 0, and in a deformed
configuration κ at some later time t > 0. Two particles P and Q in B are highlighted. In
κ0 they are indicated in red, and in κ, the same two particles are indicated in blue.

In the Lagrangian description, the motion of the body is referred to the reference con-
figuration κ0 and consequently current coordinates (x ∈ κ) are expressed in terms of
the reference coordinates (X ∈ κ0), and in the Eulerian description, the the motion is
referred to the current configuration κ [14]. We let λ be some scalar or vector function
of interest (perhaps the scalar field of the temperature in B). Then,{

Lagrangian description : x = χ(X, t), x = x(X, t), λ = λ(X, t),

Eulerian description : X = χ−1(x, t), X = X(x, t), λ = λ(x, t).

2.3.3 Velocity

Velocity in continuum mechanics is defined in a straight-forward manner:

v ≡ dx

dt
. (1)

2.3.4 Displacement

The displacement field for the two different descriptions are{
Lagrangian description : u(X, t) = x(X, t)−X, (2a)

Eulerian description : u(x, t) = x−X(x, t). (2b)

So, if we desire to know the displacement at some time t = t1, we can either use Eq.
(2a) and plug in the position vector at t = 0, i.e. X, or use Eq. (2b) and plug in the
position vector at t1, i.e. x.
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2.3.5 Deformation Gradient

In continuum mechanics, two key quantities are the material line and its transformation
dX→ dx (in rigid-body mechanics, dX = dx for any motion). The deformation gradient
F of κ relative to the original configuration κ0 gives the relationship between dX and
dx [15]:

dx = F · dX = dX · FT . (3)

From this, we obtain

F =

(
∂χ

∂X

)T
=

(
∂x

∂X

)T
≡ (∇0x)T , Fij =


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 ,

where ∇0 is the gradient operator with respect to X. The deformation gradient, a second
order tensor, can also be expressed in terms of the displacement vector:{

F = (∇0x)T = (∇0u + I)T , (4a)

F−1 = (∇X)T = (I−∇u)T , (4b)

where I is the identity matrix, and ∇ is the gradient operator with respect to x.

2.3.6 Strain

Strain is the deformation in a continuous body with respect to the relative displacement
of particles (and is thus independent of translation and rotation). Expressions for strain
are obtained by considering the materials lines. We have, by Eq. (3):{

(ds)2 = dx · dx,
(dS)2 = dX · dX = dx ·

(
F−T · F−1

)
· dx ≡ dx · ˜̃B · dx,

where ˜̃B is the Cauchy strain tensor. Moreover, we can write (ds)2−(dS)2 = 2dx ·e ·dx,
where e is the Euler strain tensor [16]:

e =
1

2

(
I− F−T · F−1

)
.

Then, by Eqs. (4a) and (4b):

e =
1

2

[
∇u + (∇u)T − (∇u) · (∇u)T

]
. (5)

2.3.7 Infinitesimal Strain Tensor

If |u| � 1, we can neglect the second order term in Eq. (5). This yields the infinitesimal
strain tensor :

ε =
1

2

[
∇u + (∇u)T

]
, εij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, |u| � 1. (6)
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In expanded form:

ε =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


∂u1
∂X1

1
2

(
∂u1
∂X2

+ ∂u2
∂X1

)
1
2

(
∂u1
∂X3

+ ∂u3
∂X1

)
1
2

(
∂u2
∂X1

+ ∂u1
∂X2

)
∂u2
∂X2

1
2

(
∂u2
∂X3

+ ∂u3
∂X2

)
1
2

(
∂u3
∂X1

+ ∂u1
∂X3

)
1
2

(
∂u3
∂X2

+ ∂u2
∂X3

)
∂u3
∂X3

 .

We note that no distinction is made between the material coordinates X and the spatial
coordinates x in the infinitesimal strain tensor. The normal strain εij (i = j) is the ratio
of change in length of a line element that was parallel to the xi-axis in the undeformed
body to its original length. The shear strain εij (i 6= j) corresponds to the change in
angle between line elements that were perpendicular to each other in the undeformed
body. In Fig. 8 the infinitesimal strain tensor is visualized.

X1

X2

X3

ε11 ε12

ε13

ε21
ε22

ε23

ε31 ε32

ε33

Figure 8 – The infinitesimal strain tensor visualized. The component εij acts on a surface
perpendicular to the i-axis. The surfaces at Xi > 0 represent planes that goes through a
point, and εij pertains to that point.

The total volume strain, i.e. total change in volume, is given by the trace of the in-
finitesimal strain tensor [4]:

∆V

V
= tr ε. (7)

tr ε > 0 indicates expansion, while tr ε < 0 indicates compression.

2.3.8 Stress

Stress is force per unit area. Consider an arbitrary continuous body subjected to some
contact (or external) force field F, see Fig. 9. Following Euler’s equations of motions,
internal forces are transmitted from point to point in the body, yielding the internal
force field f . We let ∆f(n̂) denote the force on a small area ∆a inside the body with
arbitrary orientation and unit normal n̂. We define the stress vector:

t(n̂) ≡ lim
∆a→0

∆f(n̂)

∆a
.
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n̂

∆f

F

F

f

f

∆a

Figure 9 – An arbitrary continuous
body, illustrating the force ∆f on a small
area segment ∆a. For visual clarity, the
body has been split into two at a plane
in which ∆a lies.

X1

X2

X3

σ11 σ12

σ13

σ21
σ22

σ23

σ31 σ32

σ33

t1 t2

t3

Figure 10 – The Cauchy stress tensor vi-
sualized. The component σij acts on a sur-
face perpendicular to the i-axis, and is due
to some force ti. The surfaces at Xi > 0
represent planes that goes through a point,
and σij acts on that point.

According to Cauchy’s Fundamental Lemma (or, equivalently, according to Newton’s
third law): −t(n̂) = t(−n̂). The state of stress at a point in the body is defined by the
stress vectors t(n̂) associated with all planes that pass through that point. According
to Cauchy’s stress theorem, there exists a second-order tensor field σ(x, t), the Cauchy
stress tensor (see Fig. 10), that is independent of n̂, and which can be related to t(n̂)

such that t(n̂) is a linear function of n̂ [17]:

t(n̂) = σ · n̂, T
(n)
ij = σijn̂i.

In expanded form: t1t2
t3

 =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


n̂1

n̂2

n̂3

 .

Using the Cauchy stress tensor, we define pressure (or mean normal stress):

P ≡ −1

3
tr (σ) .

2.3.9 Constitutive Equations

A constitutive equation describes the relation between quantities that is specific to a
material. One such equation is Hooke’s law, which describes the stress-strain relationship
for a particular material. The generalized Hooke’s law, applicable for linear elastic solids,
is given by [18]:

σij = Cijklεkl,

where Cijkl = ∂2U0/∂εmn∂εij , and U0 is the strain energy density function such that
σij = ∂U0/∂εij . In the one-dimensional case, the equation reduces to the more common
form F = −kx.

Soil, however, do not in general obey Hooke’s law, as described in Section 2.1.1.
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2.3.10 Relationship Between Stress and Strain

The Young modulus is a measure of the stiffness of a material. It is defined as

E ≡ σ

ε
,

where σ is uniaxial stress, and ε is strain (change in length divided by original length).

2.3.11 Stress in a Linear Elastic Material

Consider a homogeneous isotropic linear elastic half space (−∞ < x, y <∞,
−∞ < z < 0). Gravity points in the negative z-direction. If we place a circular plate at
the origin with its axis parallel to the z-axis, the static normal vertical stress at a point
z is given by [6]

σzz = P

[
1−

(
|z|

A− z2

)3
]
, x = y = 0,

where P is the pressure exerted on the material from the plate, and A is the area of the
plate.

This stress was compared against the experimental stress for the vehicle on soil.

2.3.12 Analytical Expressions for Deformations

For the investigation of the CG plotting script, cubical pseudo-solids were modelled as
collections of spherical particles, and the solids were considered to be continua. These
solids then underwent four different types of deformations—deformations that increase
linearly with time, with the exception of deformation due to gravity, which is non-linear
with respect to time. These deformations are described analytically in this section, using
the Lagrangian description. Isotropic compression is described in Fig. 11.

L x

z

y

(a) Initial state.

L′ x

z

y

(b) Final state.

x

z

y

(c) Displacement vector field.

Figure 11 – Isotropic compression of a cubical solid (represented by a grid) in 3D. Plots
in the xz-plane. The final compression is 15% in the x-, y-, and z-directions.

In Fig. 11.a, the initial state is given in which the solid is undeformed. The red dots
indicate the position of a few material elements in the undeformed solid. In Fig. 11.b,
the final state is given in which the solid is deformed. The blue dots indicate the
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positions of the same material elements in the deformed solid.For reference, the positions
of the elements in the undeformed body is also given. The black vectors indicate the
displacement for these elements. In Fig. 11.c, the blue vectors give the displacement for
the deformation over the entire solid.

Triaxial deformation is described in Fig. 12.

L

L′x

x

z

y

(a) Initial state.

L′z

L′x

x

z

y

(b) Final state.

L′x

x

z

y

(c) Displacement vector field.

Figure 12 – Triaxial deformation. Plots in the xz-plane. In the x-direction the final
expansion is 15%, and in the y- and z-directions the final compression is 15%.

Simple shear deformation is described in Fig. 13.

L x

z

y

(a) Initial state.

θ

θ

x

z

y

(b) Final state.

x

z

y

(c) Displacement vector field.

Figure 13 – Simple shear deformation, with final angle θ = 15°. Plots in the xz-plane.
The lines in the body remain parallel (and the distance between them are constant) during
the deformation, but they are translated. (If a small angle is used, this test is linear, since,
in the Maclaurin expansion of tan θ to the first non-zero term: tan θ ∼= θ.)

Deformation due to gravity is described in Fig. 14.
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L x

z

y

(a) Initial state.

L′
x

z

y

(b) Final state.

x

z

y

(c) Displacement vector field.

Figure 14 – Deformation due to gravity. Plots in the xz-plane.

In Fig. 14, we assume that stress and strain are linearly proportional for the material of
the solid. Material elements near the bottom experience a large stress and strain, while
elements near the top experience a small stress and strain. Then, the compression is
linearly proportional to z, in accordance with Archimedes’ principle.

The analytical displacements, strain tensors and volume strains for these four defor-
mations are detailed in the Appendix, see Section A.1.

2.4 Coarse Graining

2.4.1 Introduction

At the bulk level, a particle based material appears solid and it is therefore meaningful
to estimate continuous fields such mass density, displacement, stress, etc. [20], and to
plot these fields. Coarse graining (CG) is a projection process in which a macroscopic
description is obtained from the microscopic description of the pseudo-particles. CG has
several applications, one of which is that it enables plotting of continuous fields. The
macroscopic scale is defined by a CG scale R, usually related to the particle diameter d*.
The macroscopic fields are computed with the aid of a CG function. There are several
alternatives for this function. The selected one is Gaussian�, defined by [21]

φ(x) ≡ 1(√
2πR

)3 exp
(
−|x|2/2R2

)
,

∫
all space

φ(x)dx = 1,

where x ∈ <3 is the coordinate point. Using the CG function and the variables of the
particles (e.g. position and velocity) in a neighbourhood of x, we can define fields.

2.4.2 Definition of Fields

We define the mass density scalar field

ρ(x, t) ≡
∑
a

maφ (x−Xa) , (8)

*If particles have different radii, a weighted average can be used for d.
�A Gaussian function results in smooth fields and is infinitely differentiable. Another possibility is

to use Lucy polynomials.
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where ma and Xa are the mass and position, respectively, of the particles in the neigh-
bourhood. The coordinate point x is a continuous variable so ρ is a continuous field (as
are all fields presented below).

We define the velocity vector field

v(x, t) ≡ p(x, t)/ρ(x, t),

where p =
∑

am
aVaφ (x−Xa) is the momentum density vector field, and Va are the

velocities of the particles.
In the quasi-static regime, the stress tensor is approximately equal to the contact

stress tensor [21]

σαβ (x, t) ∼= −
∑
a

fabα,nx
ab
β

1∫
0

φ
(
x−Xa(t) + sxab(t)

)
ds, (9)

where the summation is over the set of contacts, fabn is the contact force between particles
a and b, with branch vector xab ≡ Xb − Xa. The spatial components of the tensor is
indexed by α, β, . . . , ranging 1, 2, 3 = x, y, z (using the Einstein summation convention).

Pressure, or mean normal stress, is given by

P (x, t) = −1

3
tr (σαβ) .

The displacement vector field is given by

u(x, t) ≡
∑

am
aUaφ(x−Xa(t))

ρ(x, t)
,

where Ua ≡ Xa(t)−Xa(0).
The linear strain tensor is given by

εαβ(x, t) ≡ 1

2
(Fαβ + Fβα) ,

where the deformation gradient is [22]

Fαβ ≡
∂uα
∂xβ

=

∑
a

∑
bm

amb
(
uaα − ubα

)
(∂βφ

a)φb

ρ(x, t)2
,

where φa ≡ φ (x−Xa(t)), and φβφ
a ≡ ∂φa/∂xβ.

The rate of strain tensor is given by

ε̇αβ(x, t) =
1

2

( ˜̃Fαβ + ˜̃F βα) ,
where ˜̃Fαβ is the gradient of the velocity vector field:

˜̃Fαβ ≡ ∂vα
∂xβ

=

∑
a

∑
bm

amb
(
vaα − vbβ

)
(∂βφ

a)φb

ρ(x, t)2
.

We define the power density scalar field

S(x, t) ≡ σαβ ε̇αβ,

which yields the time rate of energy transfer (power) per unit volume.
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2.4.3 Implementation

The fields in Section 2.4.2 are continuous. However, it is computationally intensive to
calculate the fields at a vast number of points. Therefore, we place the system of par-
ticles in a three-dimensional voxel grid, see Fig. 15. At the center of each voxel, the
value of the field of interest is calculated. Consider voxel i. All particles within radius
|x| = 3R, i.e. three times the CG scale, contribute to the field (light blue spheres),
while all the particles outside this sphere do not (light gray spheres), in order to im-
prove computational time (the contributions from the particles outside this radius are
negligible). Thus, to each voxel, there is a list in which the particles within radius 3R
and their contact points are stored. This yields discretized fields, with field values at
a reasonable number of points from a computational standpoint. For a scalar field, we
obtain a dataset in which there is value associated with the center of each voxel, see Fig.
16 (for a vector field, a set of components is associated with each voxel center).

To acquire smooth plots, interpolation is applied to the datasets. Methods include
bilinear, bicubic, and nearest neighbour interpolation. Bicubic interpolation is selected
since it carries greater smoothness and less interpolation distortion, although the method
is slower [23].

The program that implements the CG fields and produces these plots is denoted
the CG plotting script*. A typical relation between the CG scale R, voxel size L, and
particle diameter d is R = 2L = 1.5d.

i

3R

L

L

Figure 15 – A voxel grid with voxel width
and height L over a system of spherical par-
ticles. At the center of each voxel, the field
value is calculated. At each voxel center,
only the particles inside a sphere of radius
3R contribute to the field.

1372.64 1378.90 1381.77

1374.38 1385.54 1389.53

1371.61 1375.32 1334.64

i

Figure 16 – A value (perhaps the mass
density) assigned to the center of each
voxel for a scalar field.

*Developed chiefly by M. Servin, E. Wallin, and T. Berglund, with minor contributions from the
author.
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The evaluation of the stress, Eq. (9), is simplified by using a Heaviside kernel function
and only considering the contact points within a cube of side 2L, but this function will
not be detailed.

2.5 Statistics

We let the true value of some quantity be xtrue, and the measured value be xmeas. Then,
the absolute and relative errors are defined as [27]:

εabs ≡ xmeas − xtrue, (10a)

εrel ≡
xmeas − xtrue

xtrue
. (10b)

We define the standard deviation s as

s ≡

√√√√ 1

N − 1

N∑
i=1

|Ai − µ|2, µ ≡ 1

N

N∑
i=1

Ai,

where N are the number of observations Ai, and µ is the arithmetic mean.

3 Method

3.1 Cubical Tests

3.1.1 Creation of Test Samples

For the creation of the test samples, collections of pseudo-particles were created within
the confines of six walls that overlapped and met at right angles, see Figs. 17* and 18�

(the walls could only collide with the particles and not with each other). These samples
were created in a gravity-free environment, and there was no friction, cohesion, or rolling
resistance, neither for the walls nor the particles. For more details, see the Appendix,
Section A.2.

*A modified version of a sample creation program created by V. Wiberg.
�Sample creation program created by V. Wiberg.
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Figure 17 – A cubic test sample of di-
mensions 1.0× 1.0× 1.0 m, centered at
the origin, consisting of 15625 particles
of radius 2 cm in a primitive cubic for-
mation. Pressure at walls is 0 kPa.

x

z

y

Figure 18 – A cubic test sample of di-
mensions 0.86× 0.86× 0.86 m, centered
at the origin, consisting of 24764 parti-
cles in a randomised configuration. The
particles have three different radii: 2.0,
1.7, and 1.2 cm. Pressure at walls is 1.0
kPa.

These two different test samples served different purposes. The sample with randomised
configuration and different radii was modelled to resemble soil*, so the tests of that
sample resembled tests of a soil and was thus the most important test sample. However,
due to the random configuration, it is difficult to control the dynamics of the particles
during a test, which in turn imposes challenges when interpreting the results. Now, the
sample with the simple cubic formation was not modelled to mimic soil. However, the
dynamics of the particles in that sample are easier to control (provided that the cubic
formation is maintained). Consequently, tests on that sample yielded results which were
easier to compare with e.g. analytical results, and were useful to determine numerical
precision.

3.1.2 Tests of Samples

The test samples were then subjected to various tests�, for example isotropic compression
(in which all six walls move towards the center of the sample, compressing it), or a
gravitational test (in which gravity is activated for the particles, but not the walls,
compressing the sample). All tests are listed in the next section. The CG plotting
script, see Section 2.4, was appended to the tests and plots of e.g. density, strain, and
stress were created every 10th timestep (250 times/s). These plots and the underlying
numerical data were then evaluated, chiefly in terms of general behaviour and numerical
precision. The setup for the voxel grid is given in Fig. 19. The evaluation was focused
on comparing obtained results and expected results. For example, to evaluate the result
for pressure plot, the applied forces from the AGX motors were studied; to evaluate the
result for the mass density plot, the mass and volume of the sample were inspected.

*The authors in the following article use the same approach to model soil: [8].
�Modified versions of a program created by V. Wiberg.
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The number of comparisons were more than a few and they were diverse, so they are
detailed in connection with the pertinent results in order to prevent disorientation, i.e.
in Sections 4 and A.

y

x

z

outline of sample

voxel-grid

plotting plane plotting data

sample

Figure 19 – A cubical test sample in a voxel-grid. The number of voxels in the x-, y-, and
z-direction are {N, 3, N}, where e.g. N = 50. The plotting plane is the xz-plane (y = 0),
and the data used for the plots lies in the region indicated in violet (i.e. the center y-voxel,
and all voxels in the x- and z-directions). Three voxels (and not more) are used in the
y-direction to reduce computational time. A single voxel in the y-direction would entail
an undesired inclusion of empty space, since the voxel grid extends beyond the sample.

3.1.3 List of Tests

A total of six tests were carried out:

(i) Isotropic compression—particles in random configuration: all six walls move to-
wards the center of the sample, compressing it.

(ii) Isotropic compression—particles in cubic formation.

(iii) Gravitational test—particles in random configuration: gravity is activated for the
particles, but not the walls, compressing the sample.

(iv) Gravitational test—particles in cubic formation.

(v) Triaxial test—particles in random configuration: the top and bottom walls com-
press the sample, while the other four walls move away from the sample.

(vi) Simple shear test—particles in random configuration: the left and right walls rotate
about their centers, shearing the sample.

3.2 Vehicle on Soil

In the second part of the thesis, a vehicle traversed a soil, and fields were visualized using
CG*. This soil was created in the same way as the test soil in random configuration was

*The vehicle and the soil used are the same as those used and/or created by the authors in the
following article: [8].
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created, but here, the particles had friction, rolling resistance, and cohesion, in order for
the soil to mimic real soil.

For the plotting, we placed the plotting grid directly below the front wheel at each
timestep, letting the grid follow the vehicle. In Fig. 20, the vehicle at some time t0 is
shown. The red and blue rectangles indicate plotting grids. In Fig. 21, the vehicle at
some later time t1 > t0 is shown. So the fields were constantly plotted directly under the
front wheel. In the horizontal dimensions, the centers of the plotting grids were located
at the mass center of the front wheel. To mitigate fluctuations in the fields, we then took
the average of the fields. The plots from the beginning and the end of the run, where
the vehicle was close to the vertical boundaries, were not included in the averaging.

The fields were then briefly analyzed. In particular, we evaluated how well the normal
stress in the vertical direction agrees with the analytical stress in a linear elastic solid.

Figure 20 – The vehicle as some time
t0. The red and blue rectangle indicates
the plotting grid in the xz and yz-plane,
respectively.

Figure 21 – The vehicle as some time
t1 > t0.

3.3 AGX Dynamics

3.3.1 Overview

As described in Section 2.2.2, DEM yields a system of equations to be solved in order to
obtain the equations of motions. In this thesis, the numerical integration and simulations
of the particle systems were carried out by the physics engine AGX Dynamics, which
implements a hybrid solver (a combination of direct and iterative solvers) [24]. The
direct one is a Mixed Linear Complementarity Problems (MLCP) solver. The iterative
one is a block sparse projected Gauss-Seidel (GS) solver, and also MLCP. The GS solver
is fast on large contact systems [25], making it an appropriate choice, since there is
a vast number of particle contacts in a large DEM-system. DEM is computationally
intensive, so AGX implements the Nonsmooth Discrete Element Method (NDEM), in
which collisions and stick-slip transitional events are approximated as instantaneous,
allowing for a larger timestep, yielding less computational time [26]. Technical details
will be omitted.

3.3.2 Size of Timestep and Number of Iterations

In the quasi-static regime, for an error tolerance ε, the timestep should be chosen such
that the following holds [8]:

∆t .
√

2εd/v̇n,

where d is the particle diameter, v̇n ≈ σAp/mp is the acceleration of the particle, where
σ is the characteristic stress, Ap the particle great circle cross-sectional area, and mp the
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particle mass. Also, for the same error tolerance ε, the number of iterations should be
selected such that the following holds:

Nit & 0.1n/ε,

where n is the length of the contact network (number of particles) in the direction in
which the dominant stress acts.

4 Results

4.1 Sample Testing

In this section, the result from the CG plotting script for an isotropic compression test
with particles in a random configuration are presented. For all tests, the setup for the
voxel grid and plotting plane is given in Fig. 19. Also, the relation R = 2L = 1.5d
was used consistently, see Section 2.4.3. For solids with different radii, the weighted
average was used for d. The timestep and number of iterations were selected such that
the numerical error should not exceed 0.01.

In the Appendix, the results from five more tests are given: an isotropic compression
test with particles in a simple cubic formation (Section A.4.5); a gravitational test with
particles in simple cubic formation (Section A.4.6); a gravitational test with particles
in primitive cubic formation (Section A.4.6); a triaxial test with particles in a random
configuration (Section A.4.8); a shear test with particles in random configuration (Sec-
tion A.4.9). For technical details of the tests, such as particle radii, values for the Young
moduli, etc., see the Appendix, Table 2.

4.1.1 Isotropic Compression Test—Particles in Random Configuration

In this test, the test sample was first loaded into the test-script, see Fig. 22, and the
walls were held static for 0.5 s, allowing for any motion of the particles in the test
sample to subside. Subsequently, all six walls were accelerated slowly towards the origin
using virtual motors which could supply an (essentially) infinite amount of force. The
speed was increased linearly with 0.01 cm/s each timestep. The left and right walls
were constrained to have only translational motion along the x-axis (similarly, the back
and front walls moved along the y-axis, and the top and bottom walls moved along the
z-axis). Thus the right angles between the walls were maintained. When a wall moving
in direction i (i = x, y, z) reached the speed 2.5 cm/s (at t = 0.6 s) that speed was
maintained until the compression reached 3% along direction i, upon which that wall
was set static. When the compression criterion was reached for all three directions, the
test finished, see Fig. 23.
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Figure 22 – The test sample at t = 0 s
(same as Fig. 18).

x

z

y

Figure 23 – The test sample at
t = 1.076 s (compression complete).
The red horizontal reference lines facili-
tate the recognition of the compression.

Throughout this section, bicubic interpolation is used for the scalar field plots. The
results for the mass density are given in Fig. 24.

t1 = 0.004 s tend = 1.076 s
0.4

0.0

−0.4

−0.4 0.0 0.4

0 200 400 600 800 1000 1200 1400 1600

(kg/m3)

x (m)

z (m)

Figure 24 – The mass density at time t1 (the beginning) and at tend (compression com-
plete). The black square indicates a region in which an average was calculated.

At the start of the test, the average mass density for the sample was kg/m3, which
seems to be in agreement with Fig. 24. At the end of the test, the plot is of a slightly
darker blue and slightly smaller, indicating an expected increase in density and decrease
in volume. Notice the fadings near the boundaries, indicating a smooth decrease in
density. This is a boundary effect due to the averaging nature of the CG technique.
In reality, the density obviously decreases sharply at the boundary, since there are no
particles outside the walls. Now, a narrower interval for the density would reveal existing
fluctuations in the density, but this would introduce stronger boundary effects, see the
Appendix, Section A.4.4. A way around this is to use contour lines, which are used for
the Vehicle on Soil, see Section 4.3.

Boundary effects can be handled by adding correction terms [29]. Such terms will
not be covered in this thesis.

Now, by consulting the data produced by AGX (the mass of the sample, and the
positions of the walls), we calculated the expected density as a function of time. We
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denote this function ρAGX. Moreover, we let ρCG denote the average* of the density,
based on the numerical data underlying the CG plots. The two functions are compared
in Fig. 25. By assuming that ρAGX is the true density, we obtain, by Eqs. (10a) and
(10b), the absolute and relative errors for ρCG as functions of time. These errors are
given in Figs. 26 and 27.

Figure 25 – Mass densi-
ties ρAGX and ρCG.

Figure 26 – Estimated
relative error εrel (ρCG) for
ρCG.

Figure 27 – Estimated
absolute error εabs (ρCG)
for ρCG.
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The average of the magnitude of the relative errors is

ε̄rel (ρCG) = 0.049± 0.001, t > 0.6 s,

where the value after ± is the standard deviation of the relative errors.
We note that the general behaviour of ρCG follows that of ρAGX very well. Also,

the relative error is considered small. Actually, since we average over a region inside
the walls, we expect ρCG to be slightly higher than ρAGX, since, at the boundaries, the
particles were less densely packed than in the averaged region.

Results for the particle displacement u and its components are given in Fig. 28.

ux uy uz u
0.4

0.0

−0.4

−0.4 0.0 0.4

−0.015 −0.010 −0.005 0.000 0.005 0.010 0.015

ui (m)

Figure 28 – The magnitude and the components of the particle displacement u at
t = 1.076 s (compression complete). Horizontal axis: x (m), vertical axis: z (m).

*By average, we consistently indicate arithmetic mean. The averaged volume is centered about the
center of the sample, and is indicated with a black square in Fig. 24. To avoid boundary effects, we stay
away from the boundaries. Whenever a variable carries the subscript “CG”, the average is always taken
over such a black square, unless otherwise specified.
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By studying Eq. (11a), and the analytical vector function in Fig. 11, we see that the
plots in Fig. 28 agree with the expected behaviour quite well. Since the plotting plane
is the xz-plane, we expect uy to be zero.

Results for the particle velocity v and its components are given in Fig. 29.

vx vy vz v
0.4

0.0

−0.4

−0.4 0.0 0.4

−0.02 −0.01 0.00 0.01 0.02

vi (m/s)

Figure 29 – The magnitude and the components of the particle velocity v at t = 1.076 s
(compression complete). Horizontal axis: x (m), vertical axis: z (m).

By Eq. (12a), v should have the same linear behaviour as u. Overall, the plots in Fig.
29 exhibit expected behaviour, but there are distinct fluctuations.

By Eq. (11a) we constructed the analytical expression for ux as a function of x
and denote this function ux,ana. Also, we compute the average* of ux, given by the CG
data, and denote this function ux,CG. We plot ux,ana and ux,CG in Fig. 30. In a similar
manner, by Eq. (12a), we constructed vx,ana and vx,CG and plot these functions in Fig.
31. By assuming that ux,ana and vx,ana are the true functions, we compute the relative
errors for ux,ana and vx,ana and plot these errors in Fig. 32.

Figure 30 – Displace-
ment components ux,ana
and ux,CG at t = 1.076 s.

Figure 31 – Velocity
components vx,ana and
vx,CG at t = 1.076 s.

Figure 32 – Estimated
relative errors εrel (ux,CG)
and εrel (vx,CG) for ux,CG

and vx,CG, respectively.

−0.01

0.00

0.01

(m)

−0.4 0.0 0.4

x (m)

ux,ana

ux,CG

x=−0.37

x=0.37

−0.02

0.00

0.02

(m/s)

−0.4 0.0 0.4

x (m)

vx,ana

vx,CG

x=−0.37

x=0.37

−1.0

−0.5

0.0

0.5

1.0

−0.2 0.0 0.2

x (m)

εrel
(
ux,CG

)
εrel

(
vx,CG

)

If Figs. 30 and 31, the boundary effects are apparent. We consider the intervals between
the blue circle and square to be largely devoid of boundary effects. The average of the

*The width (along z) of the averaged section is the same as given in Fig. 24.
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magnitude of the relative errors* are{
ε̄rel (ux,CG) = 0.025± 0.030, −0.37 < x < 0.37 (m),

ε̄rel (vx,CG) = 0.12± 0.08, −0.37 < x < 0.37 (m).

ux,CG agrees with ux,ana quite well, and its relative error is small. vx,CG does not agree
with vx,ana equally well, and its relative error is larger.

The distance from the blue circle (or square) to the boundary is 4.8 cm, which
corresponds to 2.7r, where r is the weighted average radius of the particles, indicating
that results are unreliable within that distance from a boundary.

Results for the components of the stress tensor σij and the pressure P are given in
Fig. 33.
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Figure 33 – The components of the stress tensor σij , and the pressure P , at t = 1.076
s (compression complete). Horizontal axis is x (m), vertical axis is z (m).

*Since the relative error is infinite at x = 0, we use max(ux,ana) and max(vx,ana) for ε̄rel (ux,CG) and
ε̄rel (vx,CG), respectively, in the denominator in Eq. (10b), i.e. as references.
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Since each compressing wall was constrained to move along the x-, y-, or z-direction, we
expect σij (i = j) to be uniform, and σij (i 6= j) to be zero, see Fig. 10. This is largely
also what is seen in Fig. 33.

By consulting the data produced by AGX, we calculated the expected pressure within
the sample as a function of time and denote this function PAGX (for the derivation, see
the Appendix, Section A.4.1). Moreover, we let PCG

* denote the magnitude of the
average pressure within the sample based on the numerical data underlying the CG
plots. In Fig. 34 we plot these two functions against each other. We assume that PAGX

gives the true value for the pressure. We thus obtain estimated absolute and relative
errors for PCG, see Fig. 35 and 36.

Figure 34 – Pressures
PAGX and PCG.

Figure 35 – Estimated
relative error εrel(PCG) for
PCG.

Figure 36 – Estimated
absolute error εabs(PCG)
for PCG.
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Figure 37 – Components σij,CG

(i 6= j) with a reference line at 0 Pa.

We take the average of the magnitude of the rela-
tive errors at t > 0.6 and obtain

ε̄rel (PCG) = 0.085± 0.025, 0.6 s < t.

We note that PCG follows the behaviour of
PAGX quite closely, and the relative error is quite
low. Plots for the average of σxy, σxz and σyz are
given in Fig. 37. In the analytical case, these quan-
tities are zero. In Fig. 37, they are non-zero. How-
ever, the experimental magnitudes are not large,
compared to σij (i = j). The magnitudes of σij
(i 6= j) are a few percent of the magnitudes of σij (i = j).

The results for the infinitesimal strain tensor εij are given in Fig. 38.

*As before, the black square in Fig. 24 indicates the averaged region.
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Figure 38 – The components of the infinitesimal strain tensor εij , and the mean of εij
(i = j), i.e. tr (ε) /3, at t = 1.076 s (test complete). Horizontal axis is x (m), vertical axis
is z (m).

We note that the plots in Fig. 38 agree quite well with Eq. 13a. However, compared
to the results for the stress tensor, the non-diagonal components present larger values
(relative to the diagonal components).

We let tr (ε)CG denote the average of tr (ε) based on the data from CG. By storing
the positions of the walls (given by AGX) at each timestep, we computed the volume of
the sample as a function of time and thus also the total volume strain. We denote this
volume strain tr (ε)AGX, see Eq. (7). tr (ε)CG and tr (ε)AGX are plotted in Fig. 39. By
assuming that tr (ε)AGX is the true volume strain, we compute estimated absolute and
relative errors for tr (ε)CG, see Figs. 40 and 41.
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Figure 39 – tr (ε)AGX

and tr (ε)CG.
Figure 40 – Estimated
relative error εrel for tr (ε).

Figure 41 – Estimated
absolute error εabs for
tr (ε).
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Figure 42 – Components εij,CG with
a reference line at 0.

As before, we take the average of the magnitude of
the relative error at t > 0.6 and obtain*

ε̄rel (tr (ε)CG) = 0.036± 0.026, 0.6 s < t.

We note that tr (ε)AGX follows tr (ε)CG very closely.
Moreover, the relative error is small.

Plots for the average of σxy, σxz and σyz are
given in Fig. 42.

Results for the mean normal strain rate, i.e.
tr (ε̇) /3, are given in Fig. 43.

*At t < 0.5 s, (∆V/V )AGX = 0 since the walls were held static during that time (yielding an infinite
relative error). Moreover, at 0.5 s < t < 0.6 s, both (∆V/V )AGX and tr (ε)CG are very small, yielding a
large, ambiguous relative error. Hence we settle for the average at t > 0.6 s.
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Figure 43 – The mean normal strain rate, i.e. tr (ε̇) /3, at regular time intervals (s),
from t = 0.5 s to the end of the test. Horizontal axis is x (m), vertical axis is z (m).
Notice the small regions near the boundaries with positive strain rates.

We let tr (ε̇)CG denote the average of tr (ε̇), based on the numerical CG data. We
let the estimated function for tr (ε̇) be denoted tr (ε̇)AGX (for its derivation, see the
Appendix, Section A.4.2). tr (ε̇)AGX and tr (ε̇)CG are compared in Fig. 44. We assume
that tr (ε̇)AGX is the true function, and thereby estimate relative and absolute errors for
tr (ε̇)CG, see Figs. 45 and 46.

Figure 44 – tr (ε̇)AGX

and tr (ε̇)CG.
Figure 45 – Esti-
mated relative error
εrel (tr (ε̇)CG) for tr (ε̇)CG.

Figure 46 – Esti-
mated absolute er-
ror εabs (tr (ε̇)CG) for
tr (ε̇)CG.
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We take the average of the magnitude of the relative errors at t > 0.6 s and obtain

ε̄rel (tr (ε̇)CG) = 0.062± 0.074, 0.6 s < t.

We note that tr (ε̇)CG agrees quite well with tr (ε̇)ana, although, at t > 0.6 s, there
are substantial fluctuations. These fluctuations seems to be centered roughly around
the analytical value. The red regions near the boundaries in Fig. 43 may be due to
boundary effects. Another possible reason is that the conditions for the particles near
a wall are different than in the bulk—particles near a wall are in contact with both the
wall and particles, while particles in the bulk are in contact only with particles.

The results for the power density are given in Fig. 47.
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Figure 47 – The power density at regular time intervals (s), from t = 0.5 s to the end
of the test. Horizontal axis is x (m), vertical axis is z (m).

We let SCG denote the average of the power density as a function of time, based on
the numerical CG data. By consulting the data produced by AGX, we constructed the
function SAGX (for its derivation see the Appendix, Section A.4.3). SAGX and SCG are
compared in Fig. 48. We assume that SAGX is the true power density and calculate
relative and absolute errors for SCG, see Figs. 49 and 50.
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Figure 48 – Power densi-
ties SAGX and SCG.

Figure 49 – Estimated
relative error εrel (SCG)
for SCG.

Figure 50 – Estimated
absolute error εrel (SCG)
for SCG.
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The average of the magnitude of the relative error is

ε̄rel (SCG) = 0.090± 0.075, 0.6 s < t.

We see that SCG agree quite well with SAGX, although there are some fluctuations.
Moreover, SCG seems most often to yield a larger magnitude than SAGX.

4.2 Deviations from Analytical or Expected Results

All analytical and expected results were based on the assumption that the particles were
distributed evenly in the sample. This was not the case, see the Appendix, Section A.4.4.
Also, the solids were composed of a finite number of particles, so the dynamics over a re-
gion no larger than the sample itself were not perfectly uniform due to granularity. This
yielded non-uniform displacement. These two factors obviously introduced deviations.
Quite large deviations are seen in the velocity plots. It is not unreasonable that strong
normal force chains built up during a test. As these chains broke, the result was un-
predictable velocities. Also, for example, displacement—which carried a smaller relative
error than velocity—is measured against a reference configuration (perhaps a thousand
timesteps prior), while velocity is measured against the configuration one timestep prior.
This makes velocity more prone to exhibit fluctuations. However, for the isotropic test
with particles in perfect cubic formation, see the Appendix, Section A.4.5, the exper-
imental velocity agrees very well with the analytical velocity, indicating that the CG
plots reflect true behaviour.

The analytical off-diagonal components σij (i 6= j) and εij (i 6= j) are zero for the
isotropic compression test, while they are experimentally non-zero. Consider the strain
tensor. If, for example, the strain in x-direction is dependent on y or z, then by Eq.
(6), non-zero off-diagonal components are yielded. Given the random configuration of
the particles, and the inhomogeneity described above, it is not improbable that this
dependency existed in some places. Moreover, for the isotropic test with particles in
cubic formation, σij (i 6= j) and εij (i 6= j) are zero, as expected, indicating again that
the CG plots reflect true behaviour.

There were also errors introduced by the size of the timestep and the number of
iterations. However, these parameters were set so that numerical errors should be around
0.01, so these parameters were not likely to be the major source of the deviations.
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The implemented strain tensor is of first order. The compression was 3% for the
isotropic test, with good results for εij (i = j), indicating that compressions of at least
3% is unproblematic. Thus, the strain tensor being of first order is unlikely to be a
major source of errors. Moreover, for the triaxial test, see the Appendix, Section A.4.8,
εzz agrees very well with expected behaviour, and the compression was 10% in the z-
direction in that test.

4.3 Vehicle on Soil

The results for the vehicle on soil in the xz-plane are given in Fig. 51. In this section,
contour lines are used consistently for the scalar fields. See Table 3 for technical details,
such as particle radii, values for Young moduli, etc.
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Figure 51 – Selected time-averaged quantities in the xz-plane (y = 0) for the vehicle
on soil. See Table 1 for variable explanations. The transparent green band indicates
the thread, and the transparent yellow band indicates the part of the tyre (with varying
radius) to which the thread is attached. Horizontal axis is x (m), vertical axis is z (m).

The results for the vehicle on soil in the yz-plane are given in Fig. 52.
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Figure 52 – Selected time-averaged quantities in the yz-plane (x = 0) for the vehicle
on soil. The vehicle moves out of the screen. See Table 1 for variable explanations. The
transparent green band indicates the thread, and the transparent yellow band indicates
the part of the tyre (with varying radius) to which the thread is attached. Horizontal axis
is y (m), vertical axis is z (m).
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Figure 53 – σzz,CG and σzz,ana. The
capital letters refer to different con-
tact areas of the tyre: {A,B,C,D} =
{0.29, 0.23, 0.16, 0.10} m2. The estimated
contact area is B. The interval between the
blue circle and square is considered to be
devoid of boundary effects.

Magnifications for ρ, u in Figs. 51 and 52 are
given in the Appendix, Section A.4.10.

By studying the mass density ρ in Fig. 51,
we note that the density is lower to the left
of the tyre than in front of it. Moreover, the
same field in Fig. 52 indicates a lower density
under the tyre than to the left and right of it.
This indicates that the soil expanded under
the tyre. Volume expansion is often a result of
shearing, see Fig. 4, so we expect εxz in Fig.
51 to be non-zero, which is also the case.

In [30] the authors analyzed the stress in a
DEM-soil under a heavy vehicle and produced
experimental plots. The general behaviour of
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their plots agree quite well with σxx and σzz in Fig. 51.
In both Fig. 51 and 52, the volume strain tr (ε) indicates expansion near the tyre-soil

interface. This might reflect particle detachment from the surface of the soil due to the
tyre, but this is near a boundary, where plots are unreliable. In both figures, down in
the soil, εzz indicates compression in the z-direction, which is expected. Also, in both
figures the power density S indicates that, down in the soil, energy was transferred to
the soil, while at the surface (near the boundary) energy was released from the soil.
The energy transfer to the soil is expected, since compression increases the amount of
elastically stored energy.

We conclude by comparing σzz in Fig. 52 with the analytical σzz for a linear elastic
solid, see Eq. (2.3.11), which we denote σzz,ana. We let σzz,CG

* denote the value at z,
based on the CG data. σzz,ana and σzz,CG are plotted in Fig. 53. In this figure, the
distance from the blue circle to the estimated tyre-soil interface is 4.8r, where r is the
average particle radius. The distance from the blue square to the lower boundary is
3.7r. The general agreement between σzz,ana and σzz,CG is decent, but far from perfect.
This is expected due to a number of reasons. Firstly, σzz,ana is valid for an elastic solid,
while the soil was elastoplastic. Secondly, σzz,ana is valid for a stationary circular plate,
while a rotating tyre stressed the soil. Thirdly, σzz,ana assumes a half-space (of infinite
depth), while the soil had a finite depth.

5 Summary and Conclusions

In summary, the CG plotting technique offers a powerful and useful tool for investigating
the dynamics of soil. The system of plots offers quick analysis. The general behaviour
of most plots agreed well with expected behaviour. Relative errors ranged from 1.2 to
27%. Fields that are considered to agree best with expected behaviour are mass density,
displacement, pressure, and volume strain (the trace of the strain tensor). For most
parts, these fields also carried small relative errors in the tests. In particular, the pres-
sure was tested quite extensively. Its behaviour with respect to isotropic compression,
increasing/decreasing pressure (the evolution of the pressure during the gravity test),
and hydrostatic pressure agreed very well with expected result. Individual components
of the stress and strain tensors agreed less well with expected results, but this was not
entirely unexpected due to particle fluctuations in the sample. Such fluctuations are
mitigated by taking the trace of the tensors. Moreover, the non-diagonal components
for the stress and strain tensors were consistently zero for the tests with particles in
cubic formation, as expected. A short analysis was performed for the non-diagonal com-
ponents of the strain tensor in which the expected result was non-zero. The behaviour
agreed well with expected behaviour, although its relative error was quite high.

The greatest disadvantage with the technique was found to be the unreliability near
the boundaries. This was not unexpected due to the technical averaging nature of the
CG. However, it is disadvantageous, since the behaviour of the soil at the contact between
the soil and the tyre is of interest. Based on the tests, the results are unreliable within
a distance of 2.7r from a boundary, where r is the average particle diameter. However,
based on the results from the vehicle on soil, the same distance is 3.7r or 4.8r although

*the average is taken over four voxels in the y-direction, centered about the tyre.
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that analysis was based partially on the assumption that the soil is linearly elastic (which
it is not). Boundary effects can be managed by adding correction terms, and a complete
CG treatment should include such terms.

The phenomenon of compaction or expansion can be studied by analyzing the mass
density or trace of the strain tensor. It is not recommended to use bicubic interpolation
and a small interval for the mass density since this introduces strong boundary effects.
However, by using a large interval and contour lines, compaction or expansion can be
revealed successfully.

For vehicle-soil dynamics, time averaging is recommended to mitigate fluctuations
in the fields. Also, for such averaging, it is advised to use only plots in which local soil
conditions are unchanged, and discard plots in which e.g. the vehicle is near a boundary.

Also, for the vehicle on soil, the results for σxx and σzz in Fig. 51 agreed quite well
with the experimental results from the authors of [30]. Moreover, the behaviour of σzz
agreed quite well with the analytic behaviour of σzz in an elastic solid, indicating that
the stress in the soil can be crudely approximated as the stress in a linear elastic solid.
However, it is far from a perfect match. This is also expected, since, among other things,
a soil is elasto-plastic, while the analytical function assumes an elastic solid.

In Table 1, a summary of the results from the tests is given.
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Table 1 – Summary of the results for the tests. The adjectives describe the agree-
ment between the general behaviour of the plot and the analytical/expected general be-
haviour. In descending order for the grade, the adjectives are: “excellent”, “very good”,
“good”,“okay”, and “poor”. The numbers refer to the average of the magnitude of the
relative errors.

Iso, R Iso, C Grav, R Grav, C Triax, R Shear, R

ρ
excellent

4.9%

ui
very good excellent

very good
excellent

very good good
2.5% 2.9% 2.1%

u good excellent very good excellent very good good

vi
okay excellent

12% 1.2%

v okay excellent

P
very good very good

8.5% 6.5, 5.9%

σii very good very good

σij good excellent very good excellent

tr ε
excellent

good good excellent good good
3.6%

εii good good poor excellent
very good

poor
25, 7.3, 2.1%

εij okay excellent poor excellent good
okay

27%

ε̇ii
very good

good
6.2%

S
good

good
9.0%

Iso isotropic com-
pression test

Shear simple shear
test

v velocity vector εii normal strain ten-
sor components

R random con-
figuration

ρ mass density P pressure εij shear strain tensor
components

C cubic forma-
tion

ui displacement
component i

σii normal stress ten-
sor components

ε̇ii time derivative of εii

Grav gravitational
test

u displacement
vector

σij shear stress ten-
sor components

S power density

Triax triaxial test vi velocity
component i

tr ε trace of strain
tensor
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A Appendix

A.1 Analytical Solutions: Displacement, Velocity, Strain Tensor and
Volume Strain

The displacement vector fields for the deformations in Figs. 11, 12, 13 and 14 are

u =



∆L

L

t

tend
(x, y, z) , (isotropic compression) (11a)

t

tend

(
∆Lx
L

x,
∆Ly
L

y,
∆Lz
L

z

)
, (triaxial test) (11b)(

L

2
tan

(
t

tend
θ

)
z, 0, 0

)
, (simple shear) (11c)(

0, 0,
t

tend
[K1z +K2]

)
, (gravitational compression) (11d)

where 

u ≡ (ux, uy, uz) ,

∆L/L ≡ (L′ − L)/L,

∆Lx/L ≡ (L′x − L)/L,

∆Lz/L ≡ (L′z − L)/L,

K1,K2 > 0.

The velocity displacement fields are, by Eq. (1) and u ≡ x−X, where X is independent
of time:

v =



∆L

L

1

tend
(x, y, z) , (isotropic compression) (12a)

1

tend

(
∆Lx
L

x,
∆Ly
L

y,
∆Lz
L

z

)
, (triaxial test) (12b)(

L

2

θ

tend
sec2

(
t

tend
θ

)
z, 0, 0

)
, (simple shear) (12c)(

0, 0,
K1

tend
z

)
. (gravitational compression) (12d)
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By Eq. (6), the linear strain tensors are

e =



∆L

L

t

tend

1 0 0

0 1 0

0 0 1

 , (isotropic compression) (13a)

t

tend

∆Lx/L 0 0

0 ∆Ly/L 0

0 0 ∆Lz/L

 , (triaxial test) (13b)

L

2
tan

(
t

tend
θ

)0 0 1

0 0 0

1 0 0

 , (simple shear) (13c)

K1
t

tend

0 0 0

0 0 0

0 0 1

 . (gravitational compression) (13d)

By Eq. (7), the volume strains are

∆V

V
=



3
∆L

L

t

tend
, (isotropic compression) (14a)

t

tend

(
∆Lx
L

+
∆Ly
L

+
∆Lz
L

)
, (triaxial test) (14b)

0, (simple shear) (14c)

K1
t

tend
. (gravitational compression) (14d)

A.2 Details for Test Sample Creation

For the test sample in Fig. 17, the particles were simply placed in a primitive cubic
formation such that the inner surfaces of the six walls just grazed the layers of particles
that were nearest the walls.

For the test sample in Fig. 18, the particles were spawned at random locations
within the walls during 0.5 s (such that the number of particles increased with time).
Particles were spawned with zero velocity, but they collided with each other during the
creation, giving them small velocities. After all particles had spawned, a relaxation time
of 0.5 s followed during which the particles distributed themselves more evenly. After the
relaxation time, all walls were driven towards the origin with motors. The left and right
walls were constrained to have only translational motion along the x-axis. Similarly,
the back and front walls moved along the y-axis, and the top and bottom walls moved
along the z-axis. Consequently, the right angles between the walls were maintained. The
target velocity for the walls was 2.5 cm/s, but the set maximum force of the motors was
such that the pressure at the walls could not exceed 1.0 kPa (more precisely, the force
applied on wall i was at maximum 1.0 kPa times the side area of the sample in contact
with wall i). Thus, as the walls moved inwards, the pressure inside the sample increased,
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and the motors needed to apply greater and greater forces. When the pressure reached
1.0 kPa, the walls were no longer allowed to compress the sample further. When the
actual forces applied by the motors (as determined by AGX) were such that the pressure
was within 5% of 1.0 kPA for 250 timesteps, the state of the particles was saved into a
test sample with an internal pressure 1.0 kPa.

Table 2 – Parameters for the creation of the test samples, and for the tests.

Parameter Applies to Fig. 17? Applies to Fig. 18? Value

Timestep (simulation) X X 1/2500 s

No. iterations (simulation) X X 500

Particle mass density X X 2× 103 kg/m3

Wall mass density X X 104 kg/m3

Particle radius X 2 cm

Particle radii X (2, 1.7, 1.2) cm

Mass contribution† X (0.5, 0.3, 0.2)

Young Modulus (particle) X X 108 Pa

Young Modulus (wall) X X 1011 Pa

Friction coefficient X X 0

Rolling resistance X X 0 N

Cohesion X X 0

Cohesive overlap X X 0.1 cm

Sample pressure X 1.0× 103 Pa

† Normalized contribution to total sample mass by particle radii (in same order as radii are given)
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A.3 Details for Vehicle on Soil

Table 3 – Parameters for the vehicle on soil.

Parameter Value

Timestep (simulation) 0.0003 ≈ 1/3333 s

No. iterations (simulation) 1500

Particle mass density 2× 103 kg/m3

Wall mass density 104 kg/m3

Particle radii (2, 1.7, 1.2) cm

Mass contribution† (0.5, 0.3, 0.2)

Young Modulus (particle) 108 Pa

Young Modulus (wall) 1011 Pa

Young Modulus (tyre) 1011 Pa

Friction coefficient (particle) 0.15

Friction coefficient (tyre) 0.6

Rolling resistance 0.025 N

Cohesion 20

Cohesive overlap 0.001 cm

Total vehicle mass 3600 kg

Outer Tyre Radius 0.75 m

Tire tread depth ∼ 5 cm

Sample pressure 1.0× 105 Pa

† Normalized contribution to total sample mass by
particle radii (in same order as radii are given)

A.4 Results

A.4.1 Isotropic Compression—Random Configuration: Derivation of PAGX

As the sample got increasingly compressed, the pressure within the sample increased. In
order for the walls to continue to compress the sample, greater and greater forces had
to be exerted on them. This increased the pressure at the surfaces of the sample, which,
by diffusion, should equal the pressure inside the sample—particularly at high pressure
when forces are readily transmitted between the particles. To obtain the pressure inside
the sample, we stored the applied forces by the virtual AGX motors at each timestep,
and also the sample dimensions. We define PAGX as the sum of all motor forces divided
by the total surface area of the sample. Now, as the walls accelerated, parts of the motor
forces were devoted to overcome the inertia of the walls, but at 0.6 s the final constant
speed was reached, i.e. at t > 0.6 s, the motor forces were dedicated to only compress
the sample so then PAGX should have been equal to the pressure within the sample.

A.4.2 Isotropic Compression—Random Configuration: Derivation of tr (ε̇)

We have

tr (ε)AGX =

∫ tend

0
tr (ε̇)est dt,
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where tr (ε)AGX is the experimental volume strain provided by the AGX software (same
quantity as in Fig. 39). Now, the walls moved with the following speed

vwalls =


0, 0 < t < 0.5 s,

k(t− 0.5) 0.5 s < t < 0.6 s,

0.1k 0.6 s < t < tend,

where k is a real constant such that vwalls = 2.5 cm/s at t > 0.6 s. Then, since the time
derivative of the volume strain is linearly proportional to the speed of the walls, we have

tr (ε̇)est =


0, 0 < t < 0.5 s,

K(t− 0.5) 0.5 s < t < 0.6 s,

0.1K 0.6 s < t < tend.

where K is some real constant. To find tr (ε̇)est, it remains to determine K, which is
done by integrating tr (ε̇)esta:

tr (ε)AGX = 0

∫ 0.5

0
dt+K

∫ 0.6

0.5
(t− 0.5) dt+ 0.1K

∫ tend

0.6
dt.

A.4.3 Isotropic Compression—Random Configuration: Derivation of SAGX

We let the force applied by each of the six motors that moved the walls be denoted
Fi,motor(t) > 0, i = 1, . . . 6, and the distance each wall travelled during one time
step be denoted ∆Li(t). Then, the energy spent by each motor each time step was
Fi,motor(t)∆Li(i). All of this energy went into the sample as elastically stored energy,
except for the increase in kinetic energy in the walls. We let the increase in kinetic energy
for each wall during one time step be denoted ∆Ei,kin(t). Then, each wall contributed
during one time step with the energy Fi,motor(t)∆Li(t) −∆Ei,kin(t) to the sample. By
summing the contributions from each motor, dividing by the volume V (t) of the sample,
dividing by the time step ∆t, and supplying a minus sign, we obtain the expected power
density for the test:

SAGX(t) =
1

V (t)∆t

6∑
i=1

[Fi,motor(t)∆Li(t)−∆Ei,kin(t)] .

A.4.4 Uneven Particle Distribution in Sample

0.4

0.0

−0.4

−0.4 0.0 0.4

(kg/m3)
1400

1370

1330

Figure 54 – Mass density at t = 0.004
s, i.e. at the start of a test (random
configuration).

By selecting a small interval for the mass density
that is centered around the average density, the
sample near the boundaries disappear from the plot
due to the averaging nature of the CG, see Fig. 54.
For example, for a voxel centered at a point on
the boundary, half of the volume of the voxel re-
sides inside the sample, where particles contribute
to the density. Half of the volume of the voxel, how-
ever, resides in empty space, reducing the value of
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the density. Also, we note that the density is not
uniform, neither at the boundaries nor within the
sample.

A.4.5 Isotropic Compression Test—Particles
in Simple Cubic Formation

This is the same test as in Section 4.1.1, but here the test sample in Fig. 17 was used.

Figure 55 – The test sample at t = 0 s
(same as Fig. 17).

x

z

y

Figure 56 – The test sample at
t = 1.148 s, when the compression is
complete. Note that the simple cubic
formation is retained.

In Fig. 57, the results for the displacement u and its components are shown.

ux uy uz u
0.4

0.0

−0.4

−0.4 0.0 0.4

−0.015 −0.010 −0.005 0.000 0.005 0.010 0.015

ui (m)

Figure 57 – The displacement u and its components at t = 1.148 s (compression com-
plete). Horizontal axis is x (m), vertical axis is z (m).

In Fig. 58, the results for the velocity v and its components are given.
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Figure 58 – The magnitude and the components of the velocity v at t = 1.148 s (com-
pression complete). Horizontal axis: x (m), vertical axis: z (m).

Using the approach as in Section 4.1.1 for the x-component of u and v, we obtain Figs.
59, 60, and 61.

Figure 59 – Displace-
ment components ux,ana
and ux,CG.

Figure 60 – Velocity
components vx,ana and
vx,CG.

Figure 61 – Estimated
relative errors εrel (ux,CG)
for εrel (vx,CG).
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Using the intervals between the blue circle and square in Figs. 60 and 60, the average
of the magnitude of the relative errors are*{

ε̄rel (ux,CG) = 0.029± 0.033, −0.42 < x < 0.42 (m),

ε̄rel (vx,CG) = 0.012± 0.014, −0.42 < x < 0.42 (m),

The results for the stress tensor are given in Fig. 62.

*Since the relative error is infinite at x = 0, we use max(ux,ana) and max(vx,ana) in the denominator
in Eq. (10b), i.e. as reference.
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Figure 62 – The components of the stress tensor σij at t = 1.484 s (compression complete).
The horizontal axis is x (m), and the vertical axis is z (m). Note the streaks in the plots.

We note horizontal and vertical streaks in the plots in Fig. 62. These are likely the result
of the stress being evaluated over Heaviside cubes and the particles being arranged in a
primitive cubic formation—the number of horizontal or vertical particle layers included in
a horizontal or vertical Heaviside cube layer varied over the sample, markedly increasing
the stress in some rows and columns in the plots. This is not a problem for properly
modelled soil due to the granularity of such soil.

In Fig. 62, we note that all non-diagonal components are zero, as expected, since
the primitive cubic formation of the sample was preserved throughout the test.

The results for the infinitesimal strain tensor are given in Fig. 63.
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Figure 63 – The components of the infinitesimal strain tensor εij , and the mean of its
trace, at t = 1.484 s (compression complete). The horizontal axis is x (m), and the vertical
axis is z (m).

In Fig. 63, we note that all non-diagonal components are zero, as expected.

A.4.6 Gravity Test—Particles in Simple Cubic Formation

Using the test sample from Fig. 17, gravity was activated for the particles (but not
the walls). The sample was consequently compressed under its own weight, see Fig.
65. By visually studying the simulation, one notices that the particle layers parallel to
the xy-plane bounced like bouncing balls—the maximum height reached decreased after
each bounce as a result of the dissipation of energy due to the damping of the normal
forces. Due to the confining side walls the simple cubic formation was preserved during
the test.
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Figure 64 – The test sample at t = 0 s
(same as Fig. 17).

x

z

y

Figure 65 – The test sample at t = 2.4
s (equilibrium).

After a relaxation time of 2 s, we set the mass of the top wall to 0.1 kg and accelerated the
wall slowly towards the sample, with an allowed maximum force of 0.1 N.* When the wall
reached the sample it was unable to move farther because of the force constraint, unless
the sample continued to be compressed due to gravity. When the top wall had moved
no more than 0.1 cm (1/20 of the particle radius) during 500 timesteps, equilibrium was
considered to have been reached and the test was finished. The function of the top wall
was to determine when equilibrium was reached and to measure the compression of the
sample.

Results for the particle displacement u and its components is given in Fig. 66.

ux uy uz u
0.4
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−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

(m)

Figure 66 – The components of the particle displacement u at t = 2.4 s (at equilibrium).
The horizontal axis is x (m), and the vertical axis is z (m).

We note that the plots in Fig. 66 agree well with Eq. (11d).
At the start of the test, the top wall just grazed the top particle layer in the sample.

At the end of the test, the top wall also just grazed the top layer of the sample. Thus,
the top wall moved the same distance as the top layer. By storing the position of the
top wall at the first and last timestep, we could determine the distance the top layer had
travelled (according to the AGX software), which we denote uz,AGX. Also, by analyzing

*Since the mass and force were very low, the increased pressure on the sample due to the top wall
was surely negligible.
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the numerical CG data, we obtain the same distance, as estimated by CG, which we
denote uz,CG. We assume that uz,AGX is the true distance travelled. We then obtain the
following absolute and relative errors for the displacement in the z-direction:{

εabs (uz,CG) = −5.5× 10−4 m,

εrel (uz,CG) = −0.021.

The results for the components of the stress tensor σij are given in Fig. 67.
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Figure 67 – The components of the stress tensor σij at t = 2.4 s. Horizontal axis is x
(m), vertical axis is z (m). Notice the horizontal streak in σzz.

Notice the streak in σzz in Fig. 67. See the text below Fig. 62 for a comment on this.
The results of the infinitesimal strain tensor εij are given in Fig. 68.
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Figure 68 – The components of the infinitesimal strain tensor εij at t = 2.4 s. Horizontal
axis is x (m), vertical axis is z (m).

The plots in Fig. 68 are expected. The compression is a function of only z, and only in
the z-direction—all components should therefore be zero except εzz, see Eq. (13d).

A.4.7 Gravity Test—Particles in Random Configuration

This is the same test as in Section A.4.6, but now the test sample in Fig. 18 was used.
As with the test with the simple cubic formation, the particles bounced somewhat like
bouncing balls, but this time—due to the random particle configuration—the movement
of the particles was obviously more irregular.
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Figure 69 – The test sample at t = 0 s
(same as Fig. 18).
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Figure 70 – The test sample at t = 2.4
s (at equilibrium).

The results for the particle displacement u and its components are given in Fig. 71.
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Figure 71 – The components of the displacement u at t = 2.4 s (at equilibrium). Hori-
zontal axis is x (m), vertical axis is z (m).

We see that the plots in Fig. 71 agree quite well with Eq. (11d). Expectedly—due to
the random configuration—they do not agree with the equation as well as the plots in
Fig. 66 do.

The result for the stress tensor σij and the pressure P are given in Fig. 72.
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Figure 72 – The components of the stress tensor σij and the pressure P at t = 2.4 s.
Horizontal axis is x (m), vertical axis is z (m).

The hydrostatic pressure generated within a liquid of uniform mass density by its own
weight is given by [28]:

P = ρgh, (15)

where ρ is the mass density of the liquid, g the gravitational acceleration, and h the
vertical distance from the point of interest to the surface of the liquid.

By considering the mass and dimensions of the sample, and treating it like a liquid,
we obtain, by Eq. (15), an analytical function for the pressure as a function of z (at
equilibrium), denoted Pz,ana. Also, we compute the average* pressure given by the CG
data as a function of z, and denote this function Pz,CG. In Fig. 73, Pz,ana and Pz,CG

are compared. Moreover, at z = −0.34 m, we compute the analytic static pressure and
denote this pressure Pt,ana. Furthermore, at z = −0.34, we compute the average pressure

*The width (along x) of the averaged section is the same as the width of the black square in Fig. 24.
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from the CG data as a function of time and denote this function Pt,CG. In Fig. 74, we
compare Pt,ana and Pt,CG. The relative error for Pz,CG, using the interval between the
blue circle and square in Fig. 73, is given in Fig. 75.

Figure 73 – Pressures
Pz,ana and Pz,CG at t = 2.4
s.

Figure 74 – Pressures
Pt,ana and Pt,CG, both at
z = −0.34, the latter of
which is a function of time.

Figure 75 – Estimated
relative error for εabs for
Pz,CG.
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In Figs. 73 and 74, we note that the CG-functions follow the analytical functions quite
close.

Using the interval between the blue circle and square in Fig. 73, The average of the
magnitude of the relative errors for Pz,CG is

ε̄rel (Pz,CG) = 0.065± 0.060, −0.34 < z < 0.34 (m).

At t = 2.4 s, the relative error for Pt,CG is

εrel (Pt,CG(−34)) = 0.059.

The results for the infinitesimal strain tensor εij and the mean of εij (i = j) are given
in Fig. 76.
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Figure 76 – The components of the infinitesimal strain tensor εij , and the mean of εij
(i = j), i.e tr (ε) /3, at t = 2.4 s. Horizontal axis is x (m), vertical axis is z (m).

By Eq. (13d), all components εij in Fig. 76 should be zero, except for εzz. We see that
this is not the case. The components εij (i, j 6= z) being non-zero is likely due to the
disordered movement of the particles during the gravitational compression.

The result for the mean normal strain rate tr (ε̇) /3 is given in Fig. 77.
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Figure 77 – The mean normal strain rate, i.e. tr (ε̇) /3, at various time (s). Horizontal
axis is x (m), vertical axis is z (m).

The results for the power density, with velocity vector fields superimposed, are given in
Fig. 78.
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Figure 78 – The power density at the same times (s) as in Fig. 77. The shaded arrows
are the velocity vector fields. Horizontal axis is x (m), vertical axis is z (m).
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Figure 79 – SCG with a reference line
at 0 W/m3.

The plots in Fig. 77 are quite similar to those in
Fig. 78. Also, the plots in both these figures makes
sense. At times t2 and t3, the velocities were in
the downward direction. Thus, at those times, the
sample was being compressed, and consequently
energy was added to the sample. As expected, at
those times, a negative mean normal strain rate is
seen in 77 (indicating compressing) and a negative
power density is seen in 78 (indicating the addition
of energy to the sample). At t5 and t6, the veloc-
ities were in the upward direction, so at those times, the sample expanded and energy
was being released from the sample. This is also reflected in the plots. Finally, at t8 and
t9, the sample was being compressed again.

We let SCG be the average of the power density, based on the CG-data, see Fig. 79.
By integrating SCG numerically from t = 0 to t = tend, and dividing by the volume* of
the sample, we obtain the energy transferred to the sample due to the compression due
to gravity. We denote this energy ES . Now, we consider the bottom of the sample to
have been located at z = 0. Also, at the start of the test, we let the height of the sample

*We take the average of the initial volume and the estimated final volume. The change in volume is
very small.
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be h0. Thus, at that time, the mass center of the sample was approximately located at
z = h0/2. At the end of the test, the average height of the sample had decreased by
some distance ∆ztop. Thus, at that time, the mass center of the sample was located at
z = (h0 −∆ztop)/2. So, the mass center had moved by the distance ∆zmass = ∆ztop/2
during the test. So, by assuming that all particles had zero velocity at the end, we have

mgztop

2
= ES + ∆EE ⇐⇒ ∆ztop =

2 (ES + ∆EE)

mg
,

where ∆EE is the increase in elastic energy in the particles due to the increased com-
pression. If ∆EE = 0, then

∆ztop = −0.98Rparticle,

where Rparticle is the largest particle radius. By visually inspecting Figs. 69 and 70, we
see that this seems a little low: the top of the sample moved perhaps twice this distance.
However, not all the energy dissipated, so ∆EE < 0, yielding ∆ztop < −0.98Rparticle.

The simulations images, corresponding to the times in Figs. 77 and 78, are given in
Fig. 80.

t1 = 0.004 t2 = 0.024 t3 = 0.044

t4 = 0.068 t5 = 0.088 t6 = 0.108

t7 = 0.020 t8 = 0.132 t9 = 0.148

Figure 80 – The simulation images for the gravitational test with particles in random
configuration at various times (s). Horizontal axis is x (m), vertical axis is z (m).
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Although barely visible, we note in Fig. 80 that the sample was compressed from time
t1 to t3.

A.4.8 Triaxial Test—Particles in Random Configuration

In this test, the test sample was first loaded into the test-script and the walls were held
static for 0.5 s, allowing for any motion of the particles in the test sample to subside.
Subsequently, all six walls accelerated slowly towards the origin, as in the isotropic
compression test. However, the maximum allowed force for the motors moving the top
and bottom walls was essentially infinite, while the motors for the left, right, back, and
front walls were constrained to apply a maximum force such that the pressure on the left,
right, back, and front surfaces did not exceed 1 kPA (more precisely, the force applied
on such a wall was at maximum 1 kPa times the side area of the sample in contact with
that wall). The instruction was that, if the constraint was satisfied, the speed of the
walls was increased linearly each timestep with 0.01 cm/s until the speed 2.5 cms/s was
reached at which point that speed was maintained. As the top and bottom walls had
no constraint with respect to sample pressure, they compressed the sample, increasing
the pressure. In order for the other walls to also compress the sample, they would have
had to apply a force such that the pressure exceeded 1 kPA. Since this was not allowed,
these walls moved away from the origin, expanding the sample in the x- and y-directions.
When the decrease in sample length in the z-direction was 10 % the test was finished.

This is known as a triaxial test, and its physical equivalent is used to investigate the
failure of soil under shear [5].

Figure 81 – The test sample at t = 0 s
(same sample as Fig. 18).

x

z

y

Figure 82 – The test sample at
t = 2.264 s (test complete).

Results for the particle displacement u and its components are given in Fig. 83.
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Figure 83 – The magnitude and the components of the particle displacement u at
t = 2.264 s (test complete). Horizontal axis: x (m), vertical axis: z (m).

The plots in Fig. 83 are consistent with Eq. (11b).
Results for the infinitesimal strain tensor are given in Fig. 84.
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Figure 84 – The components of the infinitesimal strain tensor εij , and the mean of εii at
t = 2.264 s (compression complete). The horizontal axis is x (m), and the vertical axis is
z (m).

Since there was expansion in the x- and y-direction, we expect εxx and εyy to be positive,
and since there was compression in the z-direction, we expect εzz to be negative. This
is also what is seen in Fig. 84. We let εii,AGX (i = x, y, z) be the tensor components
based on the AGX-data. Also, we let εii,CG (i = x, y, z) be the corresponding averaged
components based on the CG-data. Assuming that εii,AGX are the true components, we
obtain Figs. 85, 86, 87.
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Figure 85 – Strain ten-
sor components εxx,AGX,
εyy,AGX, and εxx,CG,
εyy,CG.

Figure 86 – εzz,AGX and
εzz,CG.

Figure 87 – Estimated
relative errors for εii,CG.
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The average of the magnitudes of the relative errors are
ε̄rel(εxx,CG) = 0.25± 0.08, t > 0.7 s,

ε̄rel(εyy,CG) = 0.073± 0.122, t > 0.7 s,

ε̄rel(εzz,CG) = 0.021± 0.011, t > 0.7 s.

We note that ε̄rel(εxx,CG) is markedly larger than ε̄rel(εyy,CG) even though the expansion
in the x-direction is very similar to the expansion in the y-direction. The discrepancy is
related to the voxel-grid—in the x-direction, the number of voxel is far greater than in
the y-direction, i.e. N � 3, see Fig. 19.

A.4.9 Shear Test—Particles in Random Configuration

In this test, we affixed cylindrical rigid bodies (yellow) at the center of the left and right
walls (purple), see Fig. 88. The cylinders and walls could not collide with each other.
All walls were held static except for the left and right walls. After a relaxation time of
0.5 s, the left and right walls started to rotate clockwise about an axis going through
the cylinders. The angular speed increased linearly each timestep by 2 × 10−4 rad/s.
When a wall obtained the angular speed 0.05 rad/s that speed was maintained until the
rotation was 3°, upon which that wall was set to static. When both walls reached a
rotation of a 3°, the test finished, see Fig. 89.
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Figure 88 – The test sample at t = 0 s
(same sample as Fig. 18), with the left
and right walls coloured purple.

x

z

y

Figure 89 – The test sample at t = 1.6
s (test complete).

Results for the particle displacement u and its components are given in Fig. 83.
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Figure 90 – The magnitude and the components of the particle displacement u at t = 1.6
s (test complete). Horizontal axis is x (m), vertical axis is z (m).

The plots in 90 agree quite well with Eq. (11c), although the components that are
analytically zero are experimentally non-zero.

Results for the infinitesimal strain tensor is given in Fig. 91.
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Figure 91 – The components of the infinitesimal strain tensor εij , and the mean of its
trace, at t = 1.6 s (shearing deformation complete). The horizontal axis is x (m), and the
vertical axis is z (m).

As for the displacement, the agreement between the plots in 91 and Eq. (13c) is quite
good. Components that are analytically zero are experimentally non-zero, however.

We let εxz,AGX be the tensor component based on the AGX-data, and we let εxz,CG

be the averaged component based on the CG-data. Assuming that εxz,AGX is the true
quantity, we obtain Figs. 92, 93, and 94.
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Figure 92 – Infinitesimal
strain tensor components
εxz,AGX and εxz,CG.

Figure 93 – Estimated
relative error for εxz,CG

Figure 94 – Estimated
absolute error for εxz,CG
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The average magnitude of the relative error is

ε̄rel (εxz,CG) = 0.27± 0.10, t > 0.6 s.

A.4.10 Vehicle on Soil—Density and Displacement

Figure 95 – The time-averaged mass density scalar field and displacement vector field in
the xz-plane (y = 0) for the vehicle on soil, i.e. a magnification of the top-left plot in Fig.
51.
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Figure 96 – The time-averaged mass density scalar field and displacement vector field in
the yz-plane (x = 0) for the vehicle on soil, i.e. a magnification of the top-left plot in Fig.
52.
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