
http://www.diva-portal.org

This is the published version of a paper published in IEEE Access.

Citation for the original published paper (version of record):

Babou, C S., Fall, D., Kashihara, S., Taenaka, Y., Bhuyan, M H. et al. (2020)
Hierarchical Load Balancing and Clustering Technique for Home Edge Computing
IEEE Access, 8: 127593-127607
https://doi.org/10.1109/ACCESS.2020.3007944

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-173907

Received May 27, 2020, accepted July 2, 2020, date of publication July 8, 2020, date of current version July 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007944

Hierarchical Load Balancing and Clustering
Technique for Home Edge Computing
CHEIKH SALIOU MBACKE BABOU 1,2, DOUDOU FALL2,
SHIGERU KASHIHARA 3, (Member, IEEE), YUZO TAENAKA2, (Member, IEEE),
MONOWAR H. BHUYAN 4, (Member, IEEE), IBRAHIMA NIANG1,
AND YOUKI KADOBAYASHI2, (Member, IEEE)
1Faculty of Science and Technology, Cheikh Anta Diop University, Dakar 5005, Senegal
2Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
3Faculty of Information Science and Technology, Osaka Institute of Technology–Hirakata, Hirakata 573-0196, Japan
4Department of Computing Science, Umeå University, 901 87 Umeå, Sweden

Corresponding author: Cheikh Saliou Mbacke Babou (cheikhsalioumbacke.babou@ucad.edu.sn)

This work was supported in part by the Industrial Cyber Security Center of Excellence (ICS-CoE) Core Human Resources Development
Program, and in part by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP18H03234.

ABSTRACT The edge computing system attracts much more attention and is expected to satisfy ultra-low
response time required by emerging IoT applications. Nevertheless, as there were problems on latency such
as the emerging traffic requiring very sensitive delay, a new Edge Computing system architecture, namely
Home Edge Computing (HEC) supporting these real-time applications has been proposed. HEC is a three-
layer architecture made up of HEC servers, which are very close to users, Multi-access Edge Computing
(MEC) servers and the central cloud. This paper proposes a solution to solve the problems of latency on
HEC servers caused by their limited resources. The increase in the traffic rate creates a long queue on these
servers, i.e., a raise in the processing time (delay) for requests. By leveraging, based on clustering and load
balancing techniques, we propose a new technique called HEC-Clustering Balance. It allows us to distribute
the requests hierarchically on the HEC clusters and another focus of the architecture to avoid congestion on
a HEC server to reduce the latency. The results show that HEC-Clustering Balance is more efficient than
baseline clustering and load balancing techniques. Thus, compared to the HEC architecture, we reduce the
processing time on the HEC servers to 19% and 73% respectively on two experimental scenarios.

INDEX TERMS HEC-clustering balance, resource allocation, processing time, delay, clustering, load
balancing, hierarchical resource management, home edge computing (HEC), edge computing, graph theory.

I. INTRODUCTION
Edge Computing has been adopted at the expense of a central
cloud to allow mobility and proximity of the users. Besides,
with this extension of the cloud system, users’ requests will
be processed within the users vicinities. At the same time,
a major problem will be solved, concerning certain types of
applications that are very sensitive to latency.

However, the explosive emergence of Big Data and the
advent of certain real-time applications, which require a
response time of less than 1 ms [1], [2], have marked
the world of Information and Communication Technologies
(ICT). Consequently, the problems of resource management
and delay for these applications are becoming more and

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Arafatur Rahman .

more recurrent. In addition, on Edge Computing architecture,
the distance between the user equipment and the base station
was not in step with the requirements of these real-time
applications [3]. This posed a problem for applications ultra-
low latency compared to network communication, because
the equipment where these real-time applications are stored
can be very far from the base station.

Hence, several types of architecture related to that of
the edge computing have been proposed. Among them,
Home Edge Computing (HEC) [3], which is a three-tier
architecture-consisting of the central cloud, Multi-access
Edge Computing (MEC) server, and HEC server. Compared
to other existing Edge Computing architectures, the HEC
can significantly reduce network latency and thus meet
the requirements of certain types of real-time applications
(e.g. Virtual Reality, Augmented Reality, etc.). However, the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 127593

https://orcid.org/0000-0001-7614-2644
https://orcid.org/0000-0001-9603-8297
https://orcid.org/0000-0002-9842-7840
https://orcid.org/0000-0002-8221-6168

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

processing time on the HEC architecture increases consid-
erably, which will pose a real problem for these real-time
applications [3]. This is due to the limitation of resources
(CPU, RAM and Storage) in the Home Edge Computing
(HEC) servers or local servers which constitute the third
level of architecture that interact directly with applications.
Besides, with the overload of HEC servers which is caused
by the poor distribution of workloads on the architecture
during peak hours or in areas where traffic is very high,
certain tasks, sensitive to latency, cannot be accepted all the
time or will take a long time to be executed. This situa-
tion causes a load balancing problem on the HEC architec-
ture. Indeed, the proposal of this new architecture of the
Edge Computing, i.e., HEC, allows a considerable amount of
reduction in network delay due to the proximity of the HEC
servers but create on these servers a very high processing
time [3]. Moreover, this increases queue size caused by this
limitation of resources on HEC servers promotes an increase
in the processing time of the applications, especially those
which are very sensitive to latency, even if the HEC server
is close to the users. We also note that in the architecture
of the HEC, there are some of the nodes which are used
less than the others according to the density of the users.
This creates a poor load distribution on the whole HEC
architecture.

From this fact, we propose our method called HEC-
Clustering Balance technique that significantly reduce the
processing time of requests sent by users while efficiently uti-
lizing resources of HEC server, MEC server, and the central
cloud on the three-tier architecture of HEC. Our technique
also allows to use the HEC-Servers which are not solicited all
the time. The proposedmethod handles the Cloud-MEC-HEC
structure as a graph. Each MEC, called cluster-head, manage
a sub-graph, i.e., cluster. Upon each cluster (3-TIER), there
is a cluster-head that constitutes the upper layer or 2-TIER of
the HEC architecture. Then the cluster-heads are connected
together on the one hand and with the central cloud on the
other hand.

In this paper, our proposedmethods, namely, clustering and
hierarchical resource allocation technique, allow to simulta-
neously solve two problems encountered on the HEC archi-
tecture. First, the limitation of resources on these HEC servers
which causes an increase in latency and possibly a long
queue, consequently, the requirements of latency-sensitive
applications are not met. Then, a poor load distribution is
noticed on the HEC architecture because, when some servers
are overloaded, others synchronously remain almost unused.
Hence, we need to balance the workload on the overall archi-
tecture of the HEC. Thus, the combination of these two tech-
niques increases the performance of HEC architecture on the
hierarchical and distributed processing of requests. Besides,
we use RAM, MIPS, CPU and storage as performance evalu-
ation parameters in this proposed method. Thus, we validate
our proposed technique using simulation and compared with
existing techniques about clustering on the one hand and load
balancing on the other hand.

In summary, our research objectives were describe as fol-
low:

1) Present and discusses different resource manage-
ment techniques in the Edge Computing environment,
namely, resource discovery technique, Benchmarking
technique, data placement technique, computing tech-
nique, clustering and load balancing techniques.

2) Present a resource management framework and per-
formance evaluation for the new architecture of Home
Edge Computing (HEC).

3) Proposes a clustering method to pool resources at the
level of HEC servers to remedy the problems in [3].

4) Proposes a hierarchical Load Balancing technique in
this HEC architecture at three levels to meet the
requirements for certain real-time applications.

This paper is organized as follows. In Section II, we explain
the related works. In section III, we talk about the architecture
we want to work on, namely, the HEC, with more details, and
we propose a framework for the HEC architecture allowing
us to have a global view on resource management techniques.
Section IV discusses the Hierarchical resource allocation
proposal. In the section V, we describe the Simulation results.
Finally, in Section VI, we discuss the conclusion and future
works.

II. RELATED WORK
In the Edge Computing system, several resource management
algorithms (techniques) have been proposed to reduce the
communication delays (latencies) between the user and the
Edge System [7]. Thus, these resource allocation techniques
on the Edge system can be classified into five categories:
Resource Discovery, Benchmarking, Data Placement, Com-
puting, Clustering and Load Balancing. We have catego-
rized these techniques based on certain criteria for resource
allocation in Edge Computing networks such as: identifying
available resources (Resource Discovery), defining resource
performance for decision making to maximize performance
in deployments (Benchmarking), identification of appropri-
ate resources for deploying a workload (Data Placement), cal-
culation decisions based on scheduler performance and traffic
type priority (Computing), reuse of residual resources thanks
to the pooling of nodes (Clustering), and the distribution of
workloads between resources (Load Balancing).

Thus, several authors have made publications to solve
the issues related to the reduction of the execution costs on
the latency about communication (network) and processing
(server). These problems were more and more recurrent with
the advent of Edge Computing. In addition to the overload,
we are seeing, with these edge servers, an inequality related
to the utilization rate of these edge servers as a function of
their location [6].

Thus, in this section, we will talk about different resource
allocation techniques in the edge computing according to the
classification mentioned below but also corresponding to the
problems that we try to solve.

127594 VOLUME 8, 2020

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

A. RESOURCE DISCOVERY TECHNIQUES
These types of algorithms make it possible to identify the dif-
ferent resources available on the Edge Computing systems in
order to perform the distributed calculation [7]. Furthermore,
it is a big challenge to identify an available resource on edge
systems [8], [9], [11].

Do et al. [12] proposed a distributed solution for joint
resource allocation and minimizing carbon footprint prob-
lem [13]. They formulated the problems as a general con-
vex optimization, where the location diversity of requested
video streaming utility and costs are modeled. Unfortunately,
the carbon footprint formulated proposal does not provide
solutions in case of overload of this centralized Data Cen-
ter or if Fog Computing Nodes (FCN) are out of service.

Hassan et al. [14] proposed an approach for the secure
uploading of applications dynamically. Their approach takes
into account the availability and proximity of resources.
Moreover, the execution costs (delay) of applications will be
uploaded on these edge servers. They explore the potentials of
the fog computing system for offloading and storage expan-
sion. However, their solution cannot guarantee anytime avail-
able resources in the case where the fog server is overload.
That means, the performance goes down slowly.

B. BENCHMARKING TECHNIQUES
The resource allocation management of the Edge Computing
system using the Benchmarking technique is very difficult to
implement. It is essentially based on the evaluation of power,
CPU, and memory on Edge system resources. Edge Comput-
ing Benchmarking is divided into three classes: an analysis
based on functional properties assessments, applications, and
integrated Benchmarking. Thus, the challenge at the Edge
Computing system in parallel with the performance analysis
using the Benchmarking technique can be seen under three
levels, namely, the performance test of specific using Enos
[15] approach to collect a performance metric, the execu-
tion of additional applications, which take much more time
and the integration of the Cloud system with that of Edge
Computing on the evaluation of resources. However, there is
still a lack of research for performance evaluation based on
Benchmarking techniques. As mentioned in [16], authors are
not able to provide techniques to perform the live container
migrations between entities (server) in case of overload. That
means, the network based on the Benchmarking method will
still be efficient. Moreover, the mobility of edge entities in
several IoT/Edge use cases is not taken into account in this
method. Such a scenario will impact latency during commu-
nication between the user equipment and edge server [17].

C. DATA PLACEMENT TECHNIQUES
One of the challenges in the Edge Computing system is the
management and location of the data from the user. Unlike the
traditional central cloud system, the Edge System is resource-
constrained. The existing data placement techniques take into
account limited resources on the Edge System [21] but do

not consider certain criteria namely, mobility. That is why
authors have tried to solve the aforementioned issue by clas-
sifying existing techniques into dynamic techniques sensitive
to certain conditions, and iterative techniques. Thus, the iter-
ative techniques are subdivided into a hierarchical iterative
method that performs allocation based on resources (CPU,
memory, and bandwidth) and, iterative method according
to several constraints namely, resources, quality of service
(QoS), latency, type of applications, etc. [23], [24]. However,
Taneja [24] proposed a module mapping algorithm for the
efficient utilization of resources in the network infrastructure
for IoT applications. Unfortunately, the efficiency of this
technique is only for the static part of network performance,
the dynamic network characteristics (network connectivity,
failure of nodes, etc.,) and scheduling policies of resources
remain to be improved.

D. COMPUTING TECHNIQUES
Due to the limited resources available to Edge Network
servers, the recurring problem in system is resource man-
agement. To this end, several research projects have been
oriented in this direction to improve these techniques at the
Edge Computing level. These algorithms make it possible to
perform resource sharing calculations in the edge computing
system. Thus, they can be subdivided into 3 types of algo-
rithms namely, Resource sharing, Task Scheduling, Offload-
ing and Load Redistribution [10]. Authors [30] try to solve
task offloading problems in the edge network based on the
Heuristic offloading decision algorithm. However, they still
did not solve the issue of joint optimization of communication
and computation resources in the edge networks.

E. CLUSTERING TECHNIQUES
Several techniques for allocating resources based on the cloud
federation (Cluster) in the Edge Computing system have been
proposed to minimize execution times.

This Paper, Chen et al. [37] proposed a clustering tech-
nique to group the proximate user devices to minimize com-
puting latency. For that, they exploit computing and storage
resources via joint task offloading and proactive caching.
These results show that this method can gain up to 65%
about performance delay but still improve the traffic intensity
to local computing like in the cloudlet. From that point,
the delay can be improved by processing the task close to the
user like in the cloudlet cluster.

Bouet et al. [32] proposed an optimization technique using
the Geo-Clustering approach with the concept of the Mixed
Integer Linear Programming (MILP) formulation. For that,
they proposed an algorithm that, based on the spatial distri-
bution of the communications, satisfies the request according
to their requirement according the types of application on the
MEC server. In addition, the algorithm takes into account
the maximum capacity of the server expressed in terms of
resources (CPU, storage, . . .). To evaluate these methods like
clustering and MILP, they use the dataset of mobile commu-
nication. They show that the clustering takes into account

VOLUME 8, 2020 127595

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

the spatial distribution of the communications and enables
to largely offload the core. They evaluate the MEC partition
and show that there is no saturation in the MEC server by
using in the latter both techniques clustering and balance in
the MEC server. However, they still exploit several aspects
thus as group communication and latency according the types
of applications.

F. LOAD BALANCING TECHNIQUES
Load distribution algorithms allow us to balance the overall
workloads of the edge computing. These algorithms also
allow networks that implement QoS to be able to distribute
workloads based on certain criteria such as traffic priority,
etc.

To ensure high availability on the network side but also
on the system of the Cloud Computing system, load balanc-
ing mechanisms must imperatively be implemented. These
mechanisms constitute a real challenge to take into account
the techniques of resource allocation. However, load balanc-
ing algorithms use primarily four techniques: Particle swarm
optimization [19], Cooperative load balancing [6], Graph-
based balancing [18], and the use of Breadth-based searching
[20].

Beraldi et al. [32] proposed a cooperative schema between
data centers, called CooLoad. This technique allows the
collaboration of two data centers at the edge of the net-
work concerning the processing of requests. In other words,
the CooLoad allows an overloaded data center to be able to
transfer future requests to the other data center that has more
resources based solely on CPU usage. For this, they defined
a mathematical model to propose an effective cooperation
strategy to show how the blocking probability and the service
time can be reduced at the same time.

Xu et al. [31] proposed a method of dynamic resource allo-
cation for load balancing called DRAM in an edge computing
environment. This method allows achieving a very high level
of load balancing for all types of computing nodes in the fog
computing platform according to its capacity and type of ser-
vices. For this, their method has been classified into four main
steps. unfortunately, this method can’t analyze the negative
impact of the service migration like the traffic for different
types of computing nodes, the cost for service migration,
the performance degradation for the service migration, and
the data transmission cost.

Liu et al. [22] proposed the Particle Swarm Optimization
(PSO) algorithm in order to reduce the energy consumption
and improve the computing resource allocation in the Edge
systems. This Computing resource allocation include two
parts. The first one is the power control scheme based on
the potential game theory which will allow to reduce the
energy consumption of MEC networks. The second one is
the computing resource allocation scheme based on linear
programming. The latter allows them to improve the average
computing resource coefficient of MEC networks.

Li et al. [25] proposed an Edge Computing IoT (ECIoT)
Architecture to address challenges like mass connections,

big data processing, huge power consumption about IoT
Platform. Also, in order to improve the performance in the
ECIoT Architecture, they developed, an approach based on
the Lyapunov stochastic optimization. For more flexibility
and scalable in the ECIoT, they make in the network architec-
ture the Software Defined Network Technology. Moreover,
by utilizing SDN-Based architecture, the network can be eas-
ily managed and also the network capacity can be increasing
(With service management).

Alsaffar et al. [26] proposed a collaborative platform likes
resource allocation methods with 2 levels, Fog and cloud
paradigms. This proposed algorithm depend of linearized
decision based on tree conditions like VM capacity branches
(enough or not), the completion time (now or later) and
the service size (small or large). With this methods, they
were considerably reduced the total overhead for big data
processing in the fog-cloud system. They also proposed
resource allocation algorithm based on Service Level Agree-
ment (SLA) andQuality of Service (QoS) in order to optimize
the big data distribution and in fog and Cloud systems.

Kelaidonis et al. [27] offer an architecture called Edge
Cloud-IoT to bring innovation in 5G infrastructure with the
multilayered approach for managing services in the dis-
tributed cloud environment. Thus, the proposed solution
brings a new wave of technological innovation depending on
the services and applications but presents certain shortcom-
ings such as the migration of services and the aggregation of
data in environments close to the user (clustering).

Maheshwari et al. [28] present an analysis of the evolu-
tion of the performance of a decentralized cloud system on
very latency-sensitive applications in order to have a better
understanding of the basic parameters for a good local cloud
design such as resource management, bandwidth, latency,
and the distance between the central and the edge cloud.
However, authors did not consider the impact of mobility and
the distribution of tasks on the Edge cloud.

Pahl et al. [29] proposed a clustered architecture using the
Raspberry Pi as a local server. Thus, the main objective is
to set up a gateway between the terminals (IoT devices) and
the central cloud for certain types of the application whose
processing do not require to be performed in the central cloud.
In addition, they proposed an analysis of a container and
cluster management system on Raspberry Pi. However, their
evaluation shows that effective data and networkmanagement
still needs to be improved.

III. OVERVIEW ON HOME EDGE COMPUTING
A. HOME EDGE COMPUTING CONCEPT
Home Edge Computing (HEC) [3] is an architecture for
having a storage and data processing device near the users
(HEC Server); it also allows us to set up a micro-cell at
the user to reduce the workload at the base station located
in the MEC and improve system performance. The HEC
architecture comprises three levels of cloud namely local
cloud or Home Server (3-TIER), edge cloud (2-TIER), and

127596 VOLUME 8, 2020

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

central cloud (1-TIER) (Fig. 1). The term ‘‘Home’’ in Home
Edge Computing does not restrain our work to the homes of
the users, we take into account other places where the users
could connect to the Internet such as: Building, shopping
malls, hospitals, etc. Thus, HEC is a new architecture of
the edge computing system that is more in proximity to
the users compared to Cloudlet, Fog Computing and Multi-
access Edge Computing. HEC is a concept proposed to solve
the latency problem still present in MEC for certain types of
applications that have very high needs in term of resources
and have to be processed with relatively reduced delays. With
this concept, we will no longer need to go to the MEC or the
central cloud for some queries that do not require a lot of
computing resources for their processing. For instance, Smart
Health allowing us to have real-time information from the
patient on the variation of his heart rate to detect possible
anomalies. However, thanks to the synchronization with the
edge computing and that of the central cloud, in case of
unavailability of the resources on the Home Server, the latter
will automatically launch a request, in a hierarchical way,
to these two systems which potentially possess resources for
satisfying the computational needs of the task.

The architecture for Home Edge Computing is depicted
in Fig. 1. It is composed of three levels: HEC Server
(3-TIER), MEC Server (2-TIER) and Central Cloud
(1-TIER). In the environment of the HEC, all equipment
will be wired or wirelessly connected to the local cloud.
The Home Server serves, at the same time, as a gateway
for this equipment outside the local network because it will
be installed and managed by the Internet service provider.
Thanks to the proximity of the HEC, the latency-sensitive
queries will be rapidly processed. Moreover, for its connec-
tion to the rest of the network, we will have to use the system
FTTx (Fiber To The xHome, Office, etc.) because it has an
ultra-low latency and its flow can reach up to 1Gbps, which a
bandwidth of latency requirements of potential 5G use cases,
like latency-sensitive applications [3]. Thus, for its operation
(Fig. 2), if a request leaves the user’s equipment, it is loaded
in the box provided by the Internet provider. The HEC Server
inside the box will handle the customer’s request. On this
HEC server, if the request cannot be processed, the system
will hierarchically transfer the request to the cloud (MEC
Server or Cloud) [4], [5]. In addition to lightening the load
of the MEC, HEC allows having micro-cells which can also
help process latency-sensitive applications. With the Home
Edge Computing (HEC) architecture, we can see that the
only difference with MEC is the Home Server hosted by the
customer. The Home Server has to be tiny, non-cumbersome
and transparent to the customer. It must be able to fit within
the box that the customer received from the internet service
provider i.e. it has to be a mini computer e.g. Raspberry Pi.

B. HOME EDGE COMPUTING SYSTEM FRAMEWORK FOR
MANAGEMENT
In this subsection we propose the framework (Fig. 5) provides
a global view of the different ways of allocating resources in

FIGURE 1. Overview on Home Edge Computing (HEC) architecture.

FIGURE 2. Resources allocation on HEC architecture.

HEC architecture. Thus, this framework consists essentially
of three parts namely the architecture layer, the data flow
control layer and the software control layer. Each time a
request is received on the architecture layer, it will either
be processed on one of these three types of servers (HEC,
MEC or Cloud). This is possible thanks to the control layer
which transfers data flows from the 3-TIER level to the 1-
TIER level according to the availability of resources. Finally,
the software layer is responsible for centralizing and automat-
ing themanagement of these data flowswith the virtualization
of the entire HEC architecture. We talk in detail about the
different features that make up each layer of this framework.

1) Dataflow Control layer
a) HEC Dataflow: On the HEC architecture,

the movement of workloads is from the user to the
central cloud, passing of course respectively by
the HEC and theMEC. In other words, if a request
is sent by the user, it will be received first by
the HEC (or HEC cluster). If the capacity on this
HEC is sufficient, the task will be processed on it.
In case of insufficiency, the request will be trans-
ferred to the MEC level. In this case, the same
treatment as that at the HEC will be performed.
Thus, if the task cannot be processed on theMEC,
it will be transferred directly to the central cloud
where it will be processed because it is assumed
that these resources are unlimited (Fig. 2). In

VOLUME 8, 2020 127597

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

the same way as with existing Edge Comput-
ing systems, HEC workloads can be aggregated,
shared, or offloaded. For each of these techniques,
several solutions have been proposed.

b) HECControl: This is the general resource control
of the three-tier architecture of the decentralized
cloud system but in particular that of the HEC.
Control can be established either centrally (using
a controller) or decentralized (e.g. using game
theory, blockchain, etc.). Thus, the resource con-
trol of this architecture will be at the third level,
that is, the level closest to the HEC server. There-
fore, it will be responsible, for example, to man-
age the resources available on each cluster in
order to satisfy the tasks sent by the client, to be
able to automatically update the system each time
a request is satisfied, to take into account the
constraints (i.e. QoS, real-time applications) for
each traffic type, etc.

c) HEC Tenancy: This architecture allows us to bet-
ter know how the applications are spread over the
entire HEC architecture. In other words, depend-
ing on available resources, an entity or application
can use some or all of it. Thus, the tenant-based
resource management architecture can be classi-
fied into two types (similarly defined on the Edge
system), namely the single-tenant system or the
multi-tenant system. These systems are respec-
tively defined as the exclusive use of resources by
an entity and the use of multiple entities for the
same resource. For the HEC architecture, which
is considered a distributed architecture where all
types of applications can be hosted, the Multi-
tenant method is best suited as an architectural
classification method for resource management.

2) Software Control layer
The software part for resource management can be
classified on the HEC architecture in two parts, namely
the Middleware and the Software.

a) Virtualization systems: The virtualization that is
the main method of resource management has
revamped the world of cloud computing because
it is thanks to this technique that several machines
can be created on the same virtual machine. Thus
on the HEC infrastructure, we have the virtu-
alization system, which will allow the creation
of virtual machines on physical machines. Then
we have the virtualization system based on con-
tainers. It plays a similar role that VMs has the
difference, it offers a slight treatment during vir-
tualization. Besides, it facilitates the adoption of
the performance of architectures whose resource
is limited (for example that of HEC).

b) Network virtualization systems: Thus, the net-
work virtualization system is a major asset on

the cloud compared to the allocation of VMs
but also concerning the centralized management
of resources. Thus, several techniques have been
developed for the control listed resources but also
listed network. Among them, the two most used
are Software Defined Network (SDN) and Net-
work FunctionVirtualization (NFV). Thesemeth-
ods allow you to manage and control the network
and these features.

c) Middleware: It is a complementary service to the
software platform. It allows them to have a vision
of performance on the machine where it is hosted.
It also allows to provide operating systems hosted
on these servers with additional services. Also,
he is responsible for coordinating the calculations
distributed on the servers, orchestrating installa-
tions (communications, protocols) and deploying
virtual machines on the nodes of the edge com-
puting network.

3) Architecture layer
This is the part of the hardware components of the
HEC architecture. It is composed of three types of
server. First, we have HEC (3-TIER) type servers that
are directly connected to IoT devices, thus solving
latency problems for real-time applications. Then these
HEC servers are directly connected with the MEC
servers (2-TIER). Finally, the MEC is directly con-
nected on with the central cloud (1-TIER). Besides,
users are directly connected to HEC servers with wire-
less technology and MEC servers (level 2) for equip-
ment in motion. Thus, the processing of requests from
users is more efficient in terms of execution cost
(latency) than when it is performed on the server being
as close as possible to the user (especially for applica-
tions very sensitive to latency).

C. HOME EDGE COMPUTING PERFORMANCE
EVALUATION
Based on our experiment, the results of which are described
in Fig. 3, we were able to show that the three-level archi-
tecture of the HEC makes it possible to considerably reduce
the network latency. This low latency is gained due to the
reduced distance between end-users devices and local data
center (home server). In other words, Thanks to our method
and the help of our simulation platform, we were able to
considerably reduce the transmission time of requests using
HEC, i.e., the Home Server. Thus, the average delay, under
the same conditions, went from 94.82% on theMEC to 5.17%
at the HEC level (Fig. 3).

Moreover, as the response time does not depend solely
on the network delay, we have also taken into account the
service time and the processing time. According to Fig. 3,
it was possible to significantly reduce the latency between
the MEC and the HEC based on the requests launched by the
mobile equipment. In Fig. 4, we have a visualization of the

127598 VOLUME 8, 2020

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

processing time and the service time of the two data centers:
the home server and the edge server. Thus, after analysis
of the information, we found that, on average, the service
and the processing time of the HEC are higher than those of
the MEC unlike the situation in Fig. 3. Unsurprisingly, this
can be easily explained by the fact that the resources at the
MEC level are more important than those of the Home Server
according to the MIPS, the number of cores, the RAM, etc.

FIGURE 3. Network delay.

FIGURE 4. Latency between HEC and MEC.

FIGURE 5. Framework proposal on HEC system for resource management.

IV. HIERARCHICAL RESOURCE ALLOCATION PROPOSAL
IN HEC ARCHITECTURE
In this section, we describe our proposed solution based
on HEC architecture. In subsection IV.A, we model the
HEC architecture using graph theory. In the subsection IV.B,

we talk about the proposed resource allocation solution in a
hierarchical environment.

FIGURE 6. Home Edge Computing (HEC) architecture proposal based on
clustering.

FIGURE 7. Hierarchical task processing model in HEC clustering
architecture.

A. SYSTEM MODEL
We model HEC servers as a multi-flow system. For each
vertex (HEC server), we associate at least a request di as being
the quantity of data of the request. Thus, we consider the HEC
architecture (Fig. 6) as being a complete non-oriented graph
G = (X ,A,C), where i ∈ X corresponds to the vertex (HEC-
Server andMEC-Server) and a ∈ A define the different edges
between the pairs of nodes (x, y), with (x, y) ∈ A. Also, X
contains all servers, A is set of fiber link interconnecting them
and C represents the maximum capacity of each link. Thus,
the number of edges a that can be defined in this interval is
determined as follows:

i− 1 ≤ a ≤
i(i− 1)

2
(1)

Besides, each edge a has a capacity C such that:

Ca ≥ 0, with a ∈ A (2)

With each vertex i ∈ X , we associate a traffic demand
denoted di. Let ϕ, the data flow from vertex i. We define ϕka
as data flow crossing an edge a with k ∈ (1,, n). Thus,

VOLUME 8, 2020 127599

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

Algorithm 1 :HEC-Clustering Algorithm
Result: Updating the local database on the nodes of the

HEC-Cluster after receiving a HELLO message
(node id, CPU, RAM, Status, Storage)

1 while HELLO message ∃ do
2 if message is from new HEC-Server then
3 Add a new instance from HELLO message to

the HEC-Server database.;
4 Send ACK to the new node. ;
5 else if message is from cluster head then
6 Remove the node instance in the local database.

;
7 else
8 Update the information about an instance of the

local database of the corresponding node. ;
9 end
10 end

the total flow of data ϕa passing through in edge a is defined
as follows:

ϕa =

n∑
k=1

ϕka ≤ Ca (3)

We then assume that there is no waiting queue if :

ϕa ≤ Ca (4)

Let τa be the cost of the network communication edge a:

τa =
da
Ca

, where da is current workflow in edge a (5)

FIGURE 8. Clustering process in HEC architecture.

B. HIERARCHICAL CLUSTER-BALANCE PROPOSAL ON
HEC ARCHITECTURE
Algorithm 1 describes the clustering process in the architec-
ture of HEC. The oncoming HELLO message is triggered
either by adding/removing a new node in the cluster or for
updating after processing a new task as show in Fig. 7. In case
2 of Fig. 8, after executing the task, the node sends a HELLO
message to all the nodes of the cluster to allow them to update
their local database. In other words, the nodes compare the

Algorithm 2 : Hierarchical Cluster-Balanced Algo-
rithm on HEC Architecture
Result: Execution delay Di of the task from user(s)

1 while Task Ti ∃ do
2 if local HEC-Server has enough resource then
3 Process to create VM for Task Ti in local

HEC-Server;
4 Di← Tproc ;
5 Algorithm 1 (Send updating HELLO message)

;
6 else

goto Cluster Scheduler ;
7 end
8 if HEC-Cluster has enough resource then
9 Process to create VM for Task Ti in the

HEC-Cluster;
10 Di← (n× Tproc + Tcl) ;
11 Algorithm 1 (Send updating HELLO message)

;
12 else

goto Cluster-Head Scheduler ;
13 end
14 if Resources are available on neighboring

HEC-Clusters then
15 Process to create VM for Task Ti in the

neighboring HEC-Cluster;
16 Di← (n× Tproc + TMEC) ;

Algorithm 1 (Send updating HELLO message)
;

17 else
18 goto Central-Cloud Scheduler ;

Process to create VM for Task Ti in the Central
Cloud;
Di← (Tproc + TCloud) ;

19 end
20 end

FIGURE 9. Possible outcomes of computation decision according to the
available resources in HEC cluster.

information received from the HELLO message with that of
the local database of the HEC server. In addition, this local
database contains all of the neighboring states, namely idi,
idcl , RAM , CPU , Status, and Storage.

127600 VOLUME 8, 2020

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

Note that the cluster head (MEC server) ID (idcl) always
takes the lowest cluster number and each time the node is
added, the ID is incremented. Each time a node is added
via a wired link (fiber optic), the MEC gives it an ID by
incrementing the ID from the last node added.
Then, if there is a new node in the cluster as show in case

1 in Fig. 8, the cluster head sends to the new node a copy
of its local database which has all node parameters (idi, idcl ,
RAM , CPU , Status, and Storage). As a result, the new node
send a HELLO message to all the nodes of its cluster. Hence,
all cluster nodes update their local database by adding an
entry about this new node, e.g. the parameters from HELLO
message.

Finally, in case where a node is remove to the cluster
(case 3 in Fig. 8), the cluster head send an update message
to all the nodes of the cluster to notify the removal of the
node. Upon receipt of this HELLOmessage, each node in the
cluster know deleted node’s ID and update its database. Thus,
to ensure continuity of nodes’ ID, each node compares its ID
with that of the deleted node. If the ID of the deleted node is
greater than its ID, the node maintains its ID. Otherwise, its
ID should be decremented (ID = ID - 1).
In summary, according to Fig. 8, there are three types of

HELLO messages, namely updating HELLO message (case
2), adding HELLO message (case 1) and removing HELLO
message (Case 3).

In algorithm 2, we define the hierarchical load balancing
process using clustering according to algorithm 1. Thus,
on the arrival of a request in our clustered architecture of
HEC, as show in Fig. 7, the HEC server’s scheduler, close
to the user, receives the task. If the resources to execute
the task are available on this node (HEC server), the sched-
uler allow the execution of this request on this HEC server
(Fig. 9.a)). Therefore, we call algorithm 1 to update the avail-
able resources in the cluster node. Besides, if the necessary
resources are not available to execute the task on the local
server (HEC Server), the HEC server’s scheduler checks in
its local database the availability of resources on the nodes
of the cluster. In case resources are available on this cluster,
the request will be sent to the servers available to process
the request (See Fig. 9.b)). However, if the resources are not
available on the cluster, then the task will be forwarded to
the cluster head (MEC Server) as show in Fig. 9.c). On this
server, the MEC’s scheduler performs the same procedure,
by checkingwhether the neighboring cluster heads have suffi-
cient resources to execute the task by usingMEC. Thus, if the
resources are available on one of the neighboring clusters,
the request will be sent to the neighboring cluster via its
cluster head. If all the neighboring clusters cannot process
the request, it will be directly transferred at higher level
like the central cloud where it will be processed. We Note
that the status of a node is either a Cluster Head, a Passing
Node or aMember Node. Thus, the Cluster Head is the main
node of the cluster and its role is to organize and coordinate
communications within the cluster. Then, a Passing Node is
a node of the cluster that has the function of ensuring the

interconnection between two or more clusters. Finally, a node
within a cluster that is neither cluster-head nor passing node is
qualified as aMember Node, for example, HEC cluster nodes.
For the HEC Clustering architecture (Fig. 6), the MEC server
has both proprieties like Cluster Head and Passage Node.
Thus, sending the HELLOmessage for the presence of a new
node automatically triggers the clustering process. Besides,
upon arrival of each request on the HEC server, the scheduler
checks whether the resources necessary to execute the request
are available on this server. Thus, HEC scheduler execute the
task on its server as show in Fig. 7. Hence, the cost of execu-
tion Tproc being the processing/computing time necessary for
the servers to satisfy the requests sent by the users, and this
time is defined as follows:

Tproc =
1

Ccpu

∑
u∈U

Qu × Pu (6)

where Qu represents the amount of data sent by the user u,
CCPU the current processor capacity where the request will be
processed. Pu ∈ {0,1} is the binary associated with the user
for the need or not to send a task to the Tprodc and defined as
follows:

Pu =
{
P = 1, if user u receive task
P = 0, otherwise

}
(7)

The server can be the HEC, the MEC or the central cloud.
If the task can be executed on the nodes of the cluster, it will

be distributed on the available nodes, i.e. which verify the
equation (4). Therefore, the network execution cost is defined
as follows:

Tcl = 2×
n∑

a=1

τa (8)

where n is the number of available nodes. In actually, Tcl is
the round trip time of each link a ∈ (x, y) to send the task
from node x to node y and vice versa.
In this case, the execution delay D for the task i should be:

Di = n× Tproc + Tcl (9)

The scheduler of MEC checks whether this request can be
processed on other HEC-cluster via these neighbors Cluster-
Head. In this case, the network execution cost TMEC is:

TMEC = 2× (τMEC +
n+1∑
a=1

τa) (10)

where τMEC is the network latency between cluster heads.
Then, the execution time there is:

Di = Tproc + TMEC (11)

In other words, τMEC defines the cost of the round-trip
communication from the cluster network where the client
is located to the neighboring cluster having the resources
necessary to process the request (Fig. 6). Note that each

VOLUME 8, 2020 127601

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

time a request leaves a cluster to another it goes through the
passage node, i.e., the Head cluster. Actually, the passage
node constitutes the gateway between the cluster where it is
located towards other clusters on the one hand and towards
the higher level, i.e., the central cloud on the other hand.

So, if the resources to process the task from the users is not
available in all clusters, the request will be directly transferred
to the central cloud. And there, we assume that the resources
are always available to satisfy the user’s request (Fig. 7).
Hence the cost of network communication TCLOUD to the
central cloud is defined by:

TCLOUD = 2× (τa + τMEC−C) (12)

where τMEC−C is the network latency between MEC (cluster
head) and central cloud.
TCLOUD defines the round-trip communication delay

between the cluster node where the customer sent the request
and the central cloud (see Fig. 6).
If the request perform in the cloud central, the total execu-

tion delay is defined as follow:

Di = Tproc + TCloud (13)

Note that each time the request is transferred to a higher
level, there is a network communication that will add to
the cost of executing the request. For each case where the
task to be processed, namely on the cluster, on the cluster
head level or the central cloud, the network time is defined
respectively by Tcl , TMEC and TCLOUD.

TABLE 1. Abbreviations list.

V. SIMULATION RESULTS
In this paper, the proposed method is a combination of the
clustering technique and that of load balancing to respectively
reduce the limitation of resources and ensure high availability
in the architecture of the HEC. Thus, upon receipt of a request
by a node in the cluster, the system verifies whether the
resources on this node are sufficient to process the request.
If these resources are not available, the clustering method
shares the request on all the nodes where the resources are
available. If resources are not available on all the nodes of

the cluster, the request will be transferred to the other clusters
on the network or to the central cloud by the Load balancing
method. This method significantly reduces the delay on nodes
(servers). Thus, these two techniques combined solve the
latency issues in edge computing systems.

TABLE 2. Devices configuration.

Thus, in this section, we put into practice the new Clus-
tering Balance solution proposal on the HEC architecture.
To show that the proposed clustering balance solution namely
HEC-Clustering is better than among some existing methods
used in this part, we use a simulator calledWorkflowSim [34].
WorkflowSim has modules for experimenting with cluster
environments and also for comparing them with some of the
latest clustering techniques.

The main aim of this paper is to improve the latency for
processing requests from users in the architecture of theHEC-
Clustering and to compare it with processing time in the
traditional architecture of the HEC [3] defined in Fig. 3 and
Fig. 4.

For the validation of our proposedHEC-Clustering, wewill
compare with Heterogeneous Earliest Finish Time (HEFT)
[35], Horizontal Clustering and Vertical Clustering [37].

Thus, the reason why we chose these reference algorithms,
namely Vertical Clustering (VC), Horizontal Clustering (HC)
and Heterogeneous Earliest Finish Time (HEFT) for our sim-
ulation is based on the functioning of our HEC-Clustering
technique. In other words, the HEC-Clustering algorithm
combines the methods of VC and HC, respectively according
to the hierarchical choice of processing requests from the
HEC-Server to the central cloud and from HEC-cluster to
another HEC-cluster via the cluster-heads. This technique
allows us to have the functionality of load balancing towards
clusters where resources are available. Besides, the HC tech-
nique makes it possible to merge several tasks, like a job,
at the same level (HEC, MEC or Cloud) and to be able to
process themwithin the same available data center [37]. Thus,
thanks to the HC, our HEC-Clustering Balance technique will
search among the head clusters, those which are likely to pro-
cess the tasks (job) coming from the users in the case where
the resources of these users’ HEC-cluster are insufficient.
For the VC, the task’s processing is done within a pipeline
[37], from the server with the smallest capacity (HEC-Server)

127602 VOLUME 8, 2020

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

to the one whose capacity is undetermined (central cloud),
i.e., where we assume that these resources are always avail-
able. Thus, the choice of VC and HC makes it possible to
verify that their combination provesmore effective and allows
to solve certain problems in the Edge Computing system
according to the latency. Regarding the HEFT technique,
we compared it with our solution to show that we can manage
to reduce the latency of all types of tasks without applying
prioritization rules. Actually, the HEFT technique is based on
two fundamental phases, prioritization of tasks and selection
of processor (server) for the task. However, for our HEC-
Cluster technique, we do not need to prioritize or check if
there are available nodes for processing tasks according to
these requirements.

Thus, in this simulation, we prove that in addition to being
more efficient in terms of clustering, the HEC-Clustering
Balance also allows doing the hierarchical load balancing
technique and has a perfect efficiency according to the suc-
cessful processing of requests sent by the terminals.

To evaluate our proposed solution, we used two types of
traffic, namely the Montage data flow (Fig. 10 and Fig. 12)
and the CyberShake data flow (Fig. 11 and Fig. 13). TheMon-
tage data flow is an astronomy application used to build large
mosaics of sky images. In other words, it uses image data
streams. The CyberShake data flow is a seismology applica-
tion that calculates Probabilistic Seismic Hazard curves for
geographic sites in the Southern California region.

However, as our solution considers two techniques (i.e.
clustering and hierarchical load balancing methods) that were
offered separately, the simulation will be done in two parts.
Thus, we evaluate our clustering balance algorithm by com-
paring it among the existing clustering techniques namely
Vertical Clustering, Horizontal Clustering, and HEFT. On the
other hand, we evaluate our proposal with the basic load
balancing techniques namely First Come First Serve (FCFS),
MaxMin, MinMin, Round Robin (RR) and with the latest
load balancing techniques such as ALBOA, CooLoad.

For the Montage workflow, the system sent image-type
queries and the simulation repeated for 25 tasks, 50 tasks,
100 tasks and finally 1000 tasks to see the behavior of each
algorithm. Also for the CyberShake workflow, the simu-
lation was performed for four times for 30, 50, 100 and
1000 requests.

Thus, Tables 2, define the configurations of data centers,
Hosts and possible virtual machines (VM) in the Work-
FlowSim environment.

The results obtained in Fig. 10 and Fig. 11, show that the
HEC-Clustering Balance (Algorithm 2) offers better perfor-
mance in terms of latency for the clustering the reception of
a user task.

On these results, the proposed clusteringmethod is not only
more effective in terms of delay but also remains relatively
ascertained as the number of tasks increases. This is due to
the hierarchical load balancing technique that is considered
by HEC-Clustering Balance method in case of an overload
of the cluster nodes. Unlike other techniques, like Vertical

Clustering (in the yellow band in Fig. 10), with 25 tasks,
it gives a better response time, but as the tasks increase, we see
that the delay increases considerably. Finally, the proposed
method, which enables clustering and load balancing, reduces
the execution time of tasks. It also allows for a relatively
constant time regardless of the number of tasks that HEC
architecture must handle.

In Fig. 11, we can see the evolution of our HEC-Clustering
algorithm compared to other techniques using the Cyber-
Shake data flow. We find that our method offers much more
performance in terms of calculation time with the increase
in the number of tasks compared to other methods. Besides,
beyond 50 tasks, the computation time tends to decrease
with the evolution of the number of requests. Finally, for the
functionality of clustering, we can see that the efficiency of
our HEC-Clustering algorithm is independent of the type of
traffic used.

Moreover, in Table 3, we can see the effectiveness of each
clustering technique according to the number of requests
received by the system (in percentage). For example, about
100 requests sent for each technique, Horizontal Cluster-
ing processed 72 (with a loss rate of 28%), Vertical Clus-
tering 88 (with a loss rate of 12%). Additionally, HEFT
and HEC-Clustering offer perfect efficiency (0% loss).
It can be assumed that both techniques have the same effi-
ciency (100%) but the difference lies in the calculation time
(Fig. 10).

FIGURE 10. Measuring calculation time based on multiples clustering
methods with Montage.

FIGURE 11. Calculation time based on multiples clustering methods with
CyberShake.

VOLUME 8, 2020 127603

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

The results obtained in Fig. 12 and Fig. 13 based respec-
tively on the Montage and CyberShake data flows show that
the evaluation of HEC-Clustering offers better performances
compared with the other techniques load balancing in terms
of execution cost according to service time. In other words,
in Fig. 12, with the Montage workflow, there is a stabilization
of HEC-Clustering with an increase in the number of tasks
sent by users. This is explained by the fact that at a certain
occupancy rate of the HEC server, the tasks will be balanced
either towards the least saturated servers or else towards the
higher level.

Thanks to our solution, we have reduced over 73% on
the processing time of requests compared to the standard
architecture of HEC [3]. In Fig. 13, with the CyberShake
workflow, we have better performances than the other tech-
niques. In addition, in this figure, we have seen an increase in
treatment time for 30 and 50 tasks. From 100 tasks, the cost
of execution has relatively decreased. This is due to the
presence of the hierarchical load balancing functionality in
HEC-Clustering. Thus for this type of traffic, the response
time has also been reduced to 19%.

FIGURE 12. Execution cost based on load balancing techniques with
Montage workflow.

FIGURE 13. Execution cost based on load balancing methods with
CyberShake workFlow.

Fig. 12 and Fig. 13 allow us to compare the basic load
balancing methods with our technique (HEC-Clustering Bal-
ance). Even, if HEC-Clustering shows its efficiency on these
basic algorithms, it would be more judicious to compare
them with the most recent load balancing techniques. Thus,

FIGURE 14. Cumulative Distribution Function with Montage for clustering
methods.

FIGURE 15. Cumulative distribution function with Montage for load
balancing methods.

FIGURE 16. Cumulative distribution function with Cybershake for
clustering methods.

FIGURE 17. Cumulative distribution function with Cybershake for load
balancing methods.

in Fig.18, we compare the execution time on HEC-Clustering
with two of the latest load balancing techniques, namely
CooLoad [6] and ALBOA [37]. These results show that the
HEC-Clustering Balance remains effective in processing time
compared with CooLoad and ALBOA.

127604 VOLUME 8, 2020

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

FIGURE 18. Comparison of the different load balancing techniques in
distributed systems.

FIGURE 19. Average response time of workloads in the different types of
clouds.

Also, Fig.19, we show the efficiency of using a three-
tier distributed cloud (HEC) architecture regardless of
the type of traffic used. In other words, our system
(Cloud+Edge+HEC), whatever the type of traffic used,
reduces the delay compared to existing Edge systems
(Cloud+Edge) and centralized cloud (Cloud-Only).

However, in our simulation tool, i.e., the WorkflowSim,
we use Weibull distribution for the Cumulative Distribution
Function (CDF). Weibull’s distribution is used to analyze
the reliability of the simulation. In our simulation, using
the Weibull distribution technique, we can know, among the
numbers of requests sent (between 0 and 1,000 requests),
those that are processed most often. This also allows us to
conclude over which time interval most requests are pro-
cessed. According toWeibull’s distribution onWorkflowSim,
we calculate the CDF with the techniques used for our simu-
lation. With CyberShake and Montage data flows, simulation
is performed for clustering (Fig. 14, Fig. 16) And Balanc-
ing (Fig. 15, Fig. 17) techniques. In these figures, with the
use of Cybershake and Montage as data flow, the Weibull
distribution function allows us to know, in our simulation
with WorkflowSim, that the frequency of requests sent is
greater between 0 and 200 tasks out of the 1,000 tasks.
In other words, the distribution is greater, in this inter-
val out of a total capacity for sending 1,000 tasks users.
After an analysis done on Fig. 14, Fig. 15, Fig. 16 and
Fig. 17, we can see that the Weibull distribution follows a
rule which does not depend on the data used but on the
basic parameters of this function. Besides, through the results
of our simulation, with the Weibull distribution, the aver-

age execution time for the different techniques is between
0 and 40 ms.

In summary, thanks to our simulation, we see that
our solution showed its effectiveness compared with the
other techniques of clustering and also load balancing
techniques.

TABLE 3. Number of requests successfully processed according to the
clustering techniques used.

VI. CONCLUSION AND FUTURE WORK
In this paper, the main idea was to propose a clustering sys-
tem called HEC-Clustering Balance based on the new Edge
Computing architecture HEC to solve the latency problems
related to the limitation of HEC server resources [3]. More-
over, taking into account the overloading of these servers,
a hierarchical load balancing system has also been integrated
with this HEC-Clustering method, which allowed in this
simulation to have, whatever the number of tasks, a delay that
is approximately constant compared to integrated existing
techniques.

For the next step, we will ask the following question:
how to centralize and automate this resource management?
To answer this question, we will focus on the integration
of Software Defined Network (SDN) into the Home Edge
Computing (HEC) architecture.

REFERENCES
[1] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, ‘‘A survey

on low latency towards 5G: RAN, core network and caching solutions,’’
IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3098–3130, 4th Quart.,
2018.

[2] N. Akkari and N. Dimitriou, ‘‘Mobility management solutions for 5G
networks: Architecture and services,’’ Comput. Netw., vol. 169, Mar. 2020,
Art. no. 107082.

[3] C. S. M. Babou, D. Fall, S. Kashihara, I. Niang, and Y. Kadobayashi,
‘‘Home edge computing (HEC): Design of a new edge computing tech-
nology for achieving ultra-low latency,’’ in Proc. Int. Conf. Edge Comput.
Cham, Switzerland: Springer, 2018, pp. 3–17.

[4] C. S. M. Babou, B. O. Sane, and I. Niang, ‘‘A hierarchical method for
dynamic job execution in NREN-based cloud systems,’’ in Proc. 2nd Int.
Conf. Netw., Inf. Syst. Secur. (NISS), 2019, pp. 1–6.

[5] C. S.M. Babou, B. O. Sane, I. Diane, and I. Niang, ‘‘Home edge computing
architecture for smart and sustainable agriculture and breeding,’’ in Proc.
2nd Int. Conf. Netw., Inf. Syst. Secur. (NISS), 2019, pp. 1–7.

[6] R. Beraldi, A. Mtibaa, and H. Alnuweiri, ‘‘Cooperative load balancing
scheme for edge computing resources,’’ in Proc. 2nd Int. Conf. Fog Mobile
Edge Comput. (FMEC), May 2017, pp. 94–100.

[7] C.-H. Hong and B. Varghese, ‘‘Resource management in fog/edge com-
puting: A survey on architectures, infrastructure, and algorithms,’’ ACM
Comput. Surv., vol. 52, no. 5, pp. 1–37, Sep. 2019.

[8] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder,
‘‘Incremental deployment and migration of geo-distributed situation
awareness applications in the fog,’’ in Proc. 10th ACM Int. Conf. Distrib.
Event-Based Syst. (DEBS), 2016, pp. 258–269.

VOLUME 8, 2020 127605

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

[9] B. Varghese, N. Wang, J. Li, and D. S. Nikolopoulos, ‘‘Edge-as-a-service:
Towards distributed cloud architectures,’’ 2017, arXiv:1710.10090.
[Online]. Available: http://arxiv.org/abs/1710.10090

[10] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[11] R. Kolcun, D. Boyle, and J. A. McCann, ‘‘Optimal processing node dis-
covery algorithm for distributed computing in IoT,’’ in Proc. 5th Int. Conf.
Internet Things (IoT), Oct. 2015, pp. 72–79.

[12] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S. Hong,
‘‘A proximal algorithm for joint resource allocation andminimizing carbon
footprint in geo-distributed fog computing,’’ in Proc. Int. Conf. Inf. Netw.
(ICOIN), Jan. 2015, pp. 324–329.

[13] N. Parikh and S. Boyd, ‘‘Proximal algorithms,’’ Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[14] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, ‘‘Help your mobile appli-
cations with fog computing,’’ in Proc. 12th Annu. IEEE Int. Conf. Sens.,
Commun., Netw.-Workshops (SECON Workshops), Jun. 2015, pp. 1–6.

[15] R.-A. Cherrueau, D. Pertin, A. Simonet, A. Lebre, and M. Simonin,
‘‘Toward a holistic framework for conducting scientific evaluations of
OpenStack,’’ in Proc. 17th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput. (CCGRID), May 2017, pp. 544–548.

[16] R. Morabito, ‘‘Virtualization on Internet of Things edge devices with
container technologies: A performance evaluation,’’ IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[17] I. Farris, T. Taleb, H. Flinck, and A. Iera, ‘‘Providing ultra-short latency to
user-centric 5G applications at the mobile network edge,’’ Trans. Emerg.
Telecommun. Technol., vol. 29, no. 4, p. e3169, Apr. 2018.

[18] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, ‘‘Fog computing
dynamic load balancing mechanism based on graph repartitioning,’’ China
Commun., vol. 13, no. 3, pp. 156–164, Mar. 2016.

[19] K. E. Parsopoulos and N. M. Vrahatis, ‘‘Particle swarm optimization
method for constrained optimization problems,’’ Intell. Technol.-Theory
Appl., New Trends Intell. Technol. vol. 76, no. 1, pp. 214–220, 2002.

[20] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and
A. Y. Zomaya, ‘‘Secure and sustainable load balancing of edge data cen-
ters in fog computing,’’ IEEE Commun. Mag., vol. 56, no. 5, pp. 60–65,
May 2018.

[21] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
‘‘Fog computing: Principles, architectures, and applications,’’ in Internet
of Things. San Mateo, CA, USA: Morgan Kaufmann, 2016, pp. 61–75.

[22] H. Liu, ‘‘Self-duality in quantum K-theory,’’ 2019, arXiv:1906.10824.
[Online]. Available: http://arxiv.org/abs/1906.10824

[23] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
‘‘Dynamic service placement for mobile micro-clouds with predicted
future costs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4,
pp. 1002–1016, Apr. 2017.

[24] M. Taneja and A. Davy, ‘‘Resource aware placement of IoT application
modules in fog-cloud computing paradigm,’’ in Proc. IFIP/IEEE Symp.
Integr. Netw. Service Manage. (IM), May 2017, pp. 1222–1228.

[25] S. Li, N. Zhang, S. Lin, L. Kong, A. Katangur, M. K. Khan, M. Ni,
and G. Zhu, ‘‘Joint admission control and resource allocation in edge
computing for Internet of Things,’’ IEEE Netw., vol. 32, no. 1, pp. 72–79,
Jan. 2018.

[26] A. A. Alsaffar, H. P. Pham, C.-S. Hong, E.-N. Huh, and M. Aazam,
‘‘An architecture of IoT service delegation and resource allocation based
on collaboration between fog and cloud computing,’’ Mobile Inf. Syst.,
vol. 2016, pp. 1–15, Aug. 2016.

[27] D. Kelaidonis, A. Rouskas, V. Stavroulaki, P. Demestichas, and
P. Vlacheas, ‘‘A federated edge cloud-IoT architecture,’’ inProc. Eur. Conf.
Netw. Commun. (EuCNC), Jun. 2016, pp. 230–234.

[28] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino, ‘‘Scalability
and performance evaluation of edge cloud systems for latency constrained
applications,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2018,
pp. 286–299.

[29] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, ‘‘A container-based
edge cloud PaaS architecture based on raspberry pi clusters,’’ in Proc.
IEEE 4th Int. Conf. Future Internet Things Cloud Workshops (FiCloudW),
Aug. 2016, pp. 117–124.

[30] X. Lyu, H. Tian, C. Sengul, and P. Zhang, ‘‘Multiuser joint task offloading
and resource optimization in proximate clouds,’’ IEEE Trans. Veh. Tech-
nol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[31] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun, and A. X. Liu,
‘‘Dynamic resource allocation for load balancing in fog environment,’’
Wireless Commun. Mobile Comput., vol. 2018, pp. 1–15, Apr. 2018.

[32] M. Bouet and V. Conan, ‘‘Mobile edge computing resources optimization:
A geo-clustering approach,’’ IEEE Trans. Netw. Service Manage., vol. 15,
no. 2, pp. 787–796, Jun. 2018.

[33] M. S. Elbamby, M. Bennis, and W. Saad, ‘‘Proactive edge computing in
latency-constrained fog networks,’’ in Proc. Eur. Conf. Netw. Commun.
(EuCNC), Jun. 2017, pp. 1–6.

[34] W. Chen and E. Deelman, ‘‘WorkflowSim: A toolkit for simulating scien-
tific workflows in distributed environments,’’ in Proc. IEEE 8th Int. Conf.
E-Sci., Oct. 2012, pp. 1–8.

[35] N. Chopra and S. Singh, ‘‘HEFT based workflow scheduling algorithm for
cost optimization within deadline in hybrid clouds,’’ in Proc. 4th Int. Conf.
Comput., Commun. Netw. Technol. (ICCCNT), Jul. 2013, pp. 1–6.

[36] W. Chen, R. F. da Silva, E. Deelman, and R. Sakellariou, ‘‘Using imbalance
metrics to optimize task clustering in scientific workflow executions,’’
Future Gener. Comput. Syst., vol. 46, pp. 69–84, May 2015.

[37] J. Zhang, H. Guo, J. Liu, and Y. Zhang, ‘‘Task offloading in vehicular
edge computing networks: A load-balancing solution,’’ IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2092–2104, Feb. 2020.

CHEIKH SALIOU MBACKE BABOU received
theM.E. degree in networks, systems and telecom-
munication from University Cheikh Anta Diop
(UCAD), Senegal, in 2016, where he is currently
pursuing the Ph.D. degree. He is also a special
Research Student with the Nara Institute of Sci-
ence and Technology (NAIST). His research inter-
ests include edge computing, cloud computing,
resources management, quality of service (QoS),
5G technology, and optimization of networks and

systems. He received the Best Paper Award in EDGE2018, USA.

DOUDOU FALL received the M.E. degree in
data transmission and information security from
Cheikh Anta Diop University, Senegal, in 2009,
and the M.E. and Ph.D. degrees in information
science from the Nara Institute of Science and
Technology (NAIST), Japan, in 2012 and 2015,
respectively. He is currently an Assistant Professor
with the Division of Information Science, NAIST.
His research interests include cloud computing
security, the IoT security, blockchain security, vul-

nerability, and security risk analysis.

SHIGERU KASHIHARA (Member, IEEE)
received the Ph.D. degree in engineering from
the Nara Institute of Science and Technology
(NAIST), Japan, in 2003. He worked with the
Kyushu Institute of Technology, in 2004. He has
been with NAIST, since 2005. In 2010, he was a
Visiting Researcher with the University of Cali-
fornia, Los Angeles. He is currently an Associate
Professor with the Faculty of Information Science
and Technology, Osaka Institute of Technology–

Hirakata, Japan. His current research interest includes cyber-physical-human
systems based on multidisciplinary aspects.

127606 VOLUME 8, 2020

C. S. M. Babou et al.: Hierarchical Load Balancing and Clustering Technique for HEC

YUZO TAENAKA (Member, IEEE) received the
D.E. degree in information science from the Nara
Institute of Science and Technology (NAIST),
Japan, in 2010. He was an Assistant Professor with
the University of Tokyo, Japan. He has been an
Associate Professor with the Laboratory for Cyber
Resilience, NAIST, since April 2018. His research
interests include information networks, cyberse-
curity, distributed systems, and software defined
technology.

MONOWAR H. BHUYAN (Member, IEEE)
received the Ph.D. degree in computer science
and engineering from Tezpur University, in 2014.
He is currently an Assistant Professor with the
Department of Computing Science, Umeå Uni-
versity, Sweden, since January 2020, and one
of the research group leaders at Autonomous
Distributed Systems Laboratory. Before this, he
worked with the Nara Institute of Science and
Technology, Japan, UmeåUniversity, AssamKazi-

ranga University, India, and Tezpur University, India, from January 2009 to
December 2019. His research areas include machine learning, anomaly
detection, security and privacy, and distributed systems.

IBRAHIMA NIANG received the degree in com-
puter systems engineering from the Polytechnic
Institute of Kharkov, Ukraine, in 1994, and the
Ph.D. degree in computer science from the Uni-
versity of Paris Réné Descartes, in 2002. He was a
Full Professor from University Cheikh Anta Diop,
Senegal, in 2018. His research interests include
quality of service (QoS) management, mobility.
and optimization of networks and systems. Con-
cretely, he had to work on sensor networks and Pair

to Pair systems. His current interests include cloud-edge computing systems,
with the Internet of Things.

YOUKI KADOBAYASHI (Member, IEEE) received
the Ph.D. degree in computer science from Osaka
University, Japan, in 1997. He is currently a Pro-
fessor with the Laboratory for Cyber Resilience,
Nara Institute of Science and Technology, Japan.
His research interests include cybersecurity, Web
security, and distributed systems. He is a mem-
ber of the ACM and the IEEE Communications
Society.

VOLUME 8, 2020 127607

