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RESEARCH Open Access

Levels of mannose-binding lectin (MBL)
associates with sepsis-related in-hospital
mortality in women
Sofie Jacobson1*, Peter Larsson1, Anna-Maja Åberg1, Göran Johansson1, Ola Winsö1 and Stefan Söderberg2

Abstract

Background: Mannose-binding lectin (MBL) mediates the innate immune response either through direct
opsonisation of microorganisms or through activation of the complement system. There are conflicting data
whether MBL deficiency leads to increased susceptibility to infections or not. The aim of this study was to
determine if low levels of mannose-binding lectin (MBL) predict sepsis development, sepsis severity and outcome
from severe sepsis or septic shock.

Method: Patients aged 18 years or more with documented sepsis within 24 h after admission to the intensive care
unit were included if they had participated in a health survey and donated blood samples prior to the sepsis event.
A subset of these patients had stored plasma also from the acute phase. Two matched referents free of known
sepsis were selected for each case. Plasma levels MBL were determined in stored samples from health surveys
(baseline) and from ICU admission (acute phase). The association between MBL and sepsis, sepsis severity and in-
hospital mortality were determined with 1300 ng/mL as cut-off for low levels.

Results: We identified 148 patients (61.5% women) with a first-time sepsis event 6.5 years (median with IQR 7.7) after
participation in a health survey, of which 122 also had samples from the acute septic phase. Both high MBL levels in
the acute phase (odds ratio [95% confidence interval]) (2.84 [1.20–6.26]), and an increase in MBL levels from baseline to
the acute phase (3.76 [1.21–11.72]) were associated with increased risk for in-hospital death in women, but not in men
(0.47 [0.11–2.06]). Baseline MBL levels did not predict future sepsis, sepsis severity or in-hospital mortality.

Conclusions: An increase from baseline to the acute phase as well as high levels in the acute phase associated with an
unfavourable outcome in women.

Keywords: Sepsis, Mannose-binding lectin, Sex, Case-referent study

Background
Severe sepsis is a life-threatening syndrome where little
is known about factors determining susceptibility for
developing the syndrome and severity of the syndrome
once developed. Potentially, biomarkers could be used
for identifying those at risk for severe sepsis needing

aggressive treatment, which is subject for intensive stud-
ies [1–4] . With advances in recombinant techniques,
targeted substitution therapies are forthcoming and one
of the challenges will be to define which patients will
benefit from such therapies [5–7].
Mannose-binding lectin (MBL) is a serine protease

belonging to the collectin family and is believed to be an
important factor in the innate immune system, the first line
host defence. With its pattern-recognizing ability, MBL
binds to the surface of a wide range of microorganisms,
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although not all, thus functioning either as a direct opsonin,
or through activation of the complement system, thereby
enhancing phagocytosis of microorganisms by macrophages
and neutrophils [8].
There are several known mutations in the structural

MBL2-gene and its promoter regions located at the long
arm of chromosome 10, resulting in a large number of
haplotypes. This genetic polymorphism is associated with
different levels of MBL expression and activity [9–13].
There are several reports indicating that genotypes

associated with low levels of MBL may predispose to
certain forms of infection or impaired immune response,
particularly in new-borns, but also in adults [14–17].
Other reports indicate that low levels of MBL may aug-
ment the humoral immune system [18–23]. However,
there are considerable overlaps in MBL concentrations
between different genotypes, and inter-individual variability
among individuals with identical genotypes is significant
[10–13, 24, 25]. Different definitions and cut-off values have
been used to define MBL deficiency [17, 26–29] and geno-
types associated with low MBL production are common, as
high as 25–30% in certain populations [25, 29].
Several studies on the association of MBL genetic

polymorphism and/or MBL plasma levels with severe
infections, sepsis and septic shock, have shown an in-
creased risk of sepsis development and unfavourable
outcome in MBL deficient patients [27, 28, 30, 31].
However, there are conflicting results [26, 32–34].
In this nested case-referent study we hypothesized that

low MBL levels associate with increased risk of future
sepsis, and its severity, and in contrast, that high levels
associates with decreased risk of sepsis and sepsis related
mortality. Furthermore, that the MBL-associated risk is
similar in men and women.

Material and methods
Design and methods have been previously reported [35].
Shortly, cases were identified retrospectively within
health survey cohorts and biomarkers were analyzed in
blood samples collected at the health surveys (baseline)
and when available, in blood samples collected at admis-
sion to the intensive care unit (acute phase).
A total of 797 patients were admitted with a diagnosis

of sepsis at the Intensive Care Unit, Umeå University
Hospital, Sweden, between 1 March 1988 and 31 October
2008.
The diagnosis of sepsis and the severity of sepsis were

confirmed retrospectively by reviewing hospital records,
including results from biochemical, microbiological, and
radiological examinations.
Of the 797 patients, 148 had prior to the septic event

participated in one of four population-based health stud-
ies in Northern Sweden: the Västerbotten Intervention
Program (VIP), the Northern Sweden MONItoring Of

trends and Determinants in CArdivascular Disease
(MONICA) survey, the Mammary Screening Program
(MSP), and the Northern Sweden Maternity Cohort
(NSMC). The contribution of cases from each survey
was 80 (VIP), 4 (MONICA), 42 (MSP), and 22 (NSMC).
The Northern Sweden Health and Disease Study (NSHD
S) which includes the three former studies, and the
Northern Sweden Maternity Cohort (NSMC) are de-
scribed in detail in our previous report [35].
Patients aged 18 years or older were included if they

had a diagnosis of sepsis within 24 h after admittance to
the ICU. Only the first event was included for patients
with multiple admissions due to sepsis. The Third Inter-
national Consensus Definitions for Sepsis and Septic
Shock (Sepsis-3) were used [36]. Acute Physiology, Age,
Chronic Health Evaluation II score (APACHE II) was
calculated for assessment of severity of illness at admis-
sion [37]. Sequential Organ Failure Assessment Score
(SOFA) was calculated as a marker for organ dysfunc-
tion and disease severity [38].
Data on length of stay, mortality, referral patterns, and

reasons for admission, co-morbidities, and sources of
infection, primary infection sites and causative microor-
ganisms were collected. Microbiological cultures acquired
within 48 h before or after admission to the ICU were
considered relevant. Pre-existing diseases were defined
according to Knaus et al. [37].
For each case, two referents without any episode of

sepsis and being alive at the date of the case admis-
sion to ICU were chosen and matched for age (± 2
years), gender, health survey, and time of blood
sampling (± 30 days). Matching on smoking (y/n) was
incomplete due to missing information, mainly in the
MSP.
In addition, 122 out of 148 patients had also retriev-

able samples collected at ICU admission (the acute
phase). Thus, 122 patients had samples from both the
health survey examination (baseline) and from admission
to the ICU (the acute phase).
The study protocol was approved by the Regional

Ethical Review Board in Umeå and by the Swedish
National Computer Data Inspection Board, and complies
with the Declaration of Helsinki. All participants gave
written informed consent for future use of data and blood
samples.

Chemical analyses
MBL in plasma was analysed in duplicates using a
commercially available ELISA (MBL Oligomer ELISA
Kit 029, BioPorto Diagnostics, Gentofte, Denmark) in
accordance with the instructions from the manufacturer.
The absorbance was read on a spectrophotometer
(Labsystems Multiskan MS, Triad Scientific Inc., USA).
The range of the assay was 0 to 4000 ng/mL. The
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distribution of MBL in healthy Danish blood donors
analysed with the same assay was provided by the manu-
facturer. There was no significant difference in MBL dis-
tribution when comparing the Danish cohort with our
study cohort (Supplementary Table 5 and 6).

Statistical analyses
Data are presented as numerical values or percent-
ages. Continuous data are presented as median with
interquartile range. For comparisons, Fisher’s exact,
Mann-Whitney U-tests or Wilcoxons Signed Rank
test were used when appropriate. Spearman correl-
ation test was used for correlation. Since cases and
referents had the same follow-up time within strata in
this nested and matched case-referent study, logistic
regression analysis (rather than Cox regression) using
the conditional maximum likelihood routine designed
for matched analysis was used to estimate odds ratios
with 95% confidence intervals (CI), and the influence
of MBL on future sepsis was tested in a univariable
model. Non-conditional logistic regression (only cases)
analysis was used to calculate the risk for in-hospital
death. Mannose-binding lectin was tested as a
categorical variable with 1300 ng/ml as cut-off for low
levels [27]. The accuracy of this cut-off was tested
with Receiver Operator Characteristic (ROC) graphs
with calculation of the area under the curve (AUC).
The change in MBL levels from baseline to the

acute phase (the difference in MBL levels between
base line and the acute phase) was also tested as a
categorical variable. The cut-off was set at zero, with
positive values representing an increase and negative
values representing a decrease from baseline to the
acute phase. The accuracy of this cut-off was also
tested with ROC analysis. A p-value < 0.05 was con-
sidered significant, and all p-values reported are two-
sided. SPSS ver. 24 was used for statistical analysis.

Results
Sixty-one percent of both cases and referents were
women (matched), and there was no difference in age
between cases and referents (matched) but women were
younger than men at baseline survey, 49.8 years and
53.2 years, respectively (P = 0.003). Cases had marginally
higher BMI than referents (P = 0.04) but the prevalence
of diabetes, hypertension, hypercholesterolemia and
smoking did not differ (Table 1).
Circulating MBL levels at baseline did not differ be-

tween cases and referents (P = 0.5) (Table 2). However,
when comparing men and women in the whole cohort
women had slightly lower levels at baseline than men
(P = 0.04), but there was no difference between female
cases and their referents (P = 0.5), or between male cases
and their referents (P = 0.9) (Fig. 1). Further, the distri-
bution of low and high MBL levels (cut-off 1300 ng/mL)
did not differ between cases and referents or between
men and women (Table 2).
Patient characteristics at ICU admission are shown in

Table 3. Women were younger when developing sepsis
(P = 0.04), and the period between the baseline survey
and the sepsis event was 7.4 years (IQR 7.8) for men and
5.9 years (IQR 8.1) for women (P = 0.04). Of the events,
67% were classified as severe sepsis and 33% as the most
severe form, the septic shock. Severity of sepsis, APAC
HE II- and SOFA score, length of stay, ICU- and in-
hospital mortality did not differ between men and
women. There were no differences in co-morbidities,
sources of infection and infecting microorganisms
between men and women except for infections with
gram negative rods which was slightly more frequent in
men (P = 0.04).
MBL levels at ICU admission (samples available from

122 patients) did not differ between men and women
(P = 0.7). However, MBL levels in the acute phase were
significantly lower than baseline levels in both men and

Table 1 Subject characteristics at baseline surveys

n = cases/referents Cases 95% CI Referents 95% CI p

Age years 148/296 51.1 49.0–53.2 51.1 49.6–52.6 (matched)

Female gender, % 91/182 61.5 53.6–69.4 61.5 55.9–67.1 (matched)

BMI, kg/m2 116/229 27.6 26.5–28.7 26.4 25.8–26.9 0.04

Reduced glucose tolerance, % 80/151 35.0 24.3–45.7 23.8 17.0–30.7 0.16

Daily smoker, % # 116/237 28.4 20.1–36.8 28.7 22.9–34.5 (matched)

Hypertension, % 83/158 55.4 44.5–66.4 43.0 35.2–50.8 0.08

Systolic BP, mmHg 83/158 135 130–139 132 129–135 0.34

Diastolic BP, mmHg 83/158 82 80–85 82 80–83 0.74

Cholesterol, mmol/L¤ 83/155 5.7 5.4–5.9 6.0 5.8–6.2 0.06

Values reported are means or percentages % with 95% CI. Hypertension was defined as systolic BP > 140 mmHg and/or diastolic BP > 90 mmHg and/or
antihypertensive treatment. Reduced glucose tolerance included any of IFG, IGT or DM. Referents were matched with cases based on age, sex and (if available)
smoking status
Abbreviations: DM Diabetes mellitus, IFG Impaired fasting glucose, IGT Impaired glucose tolerance, BP Blood pressure
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women (P = 0.03 and P < 0.05, respectively) (Fig. 2). Co-
morbidities, sources of infection and infecting microorgan-
isms did not differ in those with low MBL levels defined as
levels below 1300 ng/mL compared to patients with MBLle-
vels above 1300 ng/mL (data not shown).
Circulating MBL levels at baseline did not correlate

with age (r = − 0.02, P < 0.8), BMI (r = − 0.02, P < 0.9),
fasting or post-load glucose levels, (r = 0.05, P = 0.6 and
r = − 0.07, P = 0.5, respectively), or with systolic or dia-
stolic blood pressures (r = − 0.07, P = 0.6 and r = − 0.15,
P = 0.2, respectively). Similarly, MBL levels in the acute
phase did not correlate with age (r = 0.09, P = 0.3), BMI
(r = − 0.02, P = 0.9), APACHE II score (r = 0.10, P = 0.3),
or SOFA score (r = 0.08, P = 0.4). Circulating levels of
MBL in the acute phase did not correlate to MBL at
baseline (r = 0.004, P = 1.0). Correlation analysis stratified
by sex did not add any more information, neither at
baseline nor in the acute phase (data not shown).
Low levels at baseline expressed as circulating MBL

below 1300 ng/mL did not predict a future sepsis event
(0.82 [0.55–1.23]), or increased severity; severe sepsis
(0.94 [0.58–1.54]), septic shock (0.64 [0.32–1.27]), or
hospital death (1.29 [0.54–3.08]). Similar point estimates
were seen when stratified for sex. Several other cut-offs
were also tested, but lower levels (than 1300 ng/mL) did

not associate with future sepsis development, sepsis
severity or hospital outcome (Supplementary Table 4).
Women who died had significantly higher levels in the

acute phase than surviving women (P = 0.005), and they
had also higher levels than men who died (P = 0.02)
(Fig. 3).
Intra-individual MBL levels decreased significantly

from baseline to the acute phase in women who survived
(P = 0.002). Further, there was a significant difference in
the change of MBL levels in surviving women compared
to non-surviving women (P = 0.003). In men, the intra
individual changes did not differ between survivors or
non-survivors (P = 0.6) (Fig. 4).
The association between MBL levels in the acute phase

and in-hospital death was analysed, with 1300 ng/mL as
cut-off. The accuracy of the chosen cut-off (1300 ng/mL)
was tested in a ROC analysis showing a diagnostic
accuracy of 65.6% at 1319 ng/mL, with a sensitivity of
68.1% and specificity of 57.1% for the whole group. AUC
was 0.60 (0.48–0.72, 95%CI), p = 0.044. For women, the
ROC analysis showed a diagnostic accuracy of 73.3%
at 1319 ng/mL, with a sensitivity of 72.4% and specifi-
city of 76.5%. AUC was 0.73 (0.59–0.86, 95%CI), P =
0.0008. For men, no discrimination point was detected
(Supplementary Figures 7, 8 and 9, respectively).

Table 2 MBL concentration (ng/mL) at baseline survey for cases and referents

Cases Referents Cases Referents

n n MBL (ng/mL) MBL (ng/mL)

MBL conc. (ng/mL) 148 296 1646 (IQR 3095) 1401 (IQR 2305)

MBL < 1300 (ng/mL) 63 (42.6%) 140 (47.3%) 284 (IQR 541) 434 (IQR 576)

MBL > = 1300 (ng/mL) 85 (57.4%) 156 (52.7%) 2863 (IQR 2170) 2671 (IQR 2101)

Data are presented as numbers (%) and median with interquartile range (IQR)

Fig. 1 MBL concentrations (ng/mL) at baseline survey for men and women, cases and referents. Men are displayed to the left in the panel and
women to the right. Empty boxes represent referents and filled boxes represent cases. Data are presented as median and interquartile range (IRQ)
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Table 3 Patient characteristics at ICU admission

All patients (n = 148) Men (n = 57) Women (n = 91)

Age years 60.7 (IQR 18.3) 63.4 (IQR 16.5) 57.2 (IQR 18.0)

Years between survey and sepsis 6.5 (IQR 7.7) 7.4 (IQR 7.8) 5.9 (IQR 8.1) *

BMI (n = 116, 52/64) 26.7 (IQR 6.0) 26.0 (IQR 6.2) 26.9 (IQR 7.0)

Disease scores

APACHE II Score 18.0 (IQR 9) 17.0 (IQR 10) 18.0 (IQR 9)

SOFA score 7.0 (IQR 5) 7.0 (IQR 5) 7.0 (IQR 6)

Disease severity, n (%)

Severe sepsis 99 (66.9%) 42 (74%) 57 (63%)

Septic shock 49 (33.1%) 15 (26%) 34 (37%)

ICU mortality 27 (18.2%) 10 (17.5%) 17 (18.7%)

Hospital mortality 32 (21.6%) 13 (22.8%) 19 (20.9%)

Hospital Length of stay 17.5 (IQR 24.7) 15 (IQR 25.5) 18 (IQR 27)

Co-morbidities, n (%)

COPD 4 (2.7%) 1 (1.8%) 3 (3.3%)

Congestive heart failure 5 (3.4%) 3 (5.3%) 2 (2.2%)

Chronic renal insufficiency 4 (2.7%) 2 (3.5%) 2 (2.2%)

Chronic liver disease 0 (0%) 0 (0%) 0 (0%)

Diabetes, n (%)

Insulin treatment 11 (7.4%) 4 (7.0%) 7 (7.7%)

Other treatments 8 (5.4%) 4 (7.0%) 4 (4.4%)

Cancer, n (%)

Hematological 9 (6.1%) 4 (7.0%) 5 (5.5%)

Localized 20 (13.5%) 9 (15.8%) 11 (12.1%)

Metastatic 11 (7.4%) 5 (8.8%) 6 (6.6%)

Immunosuppressants, n (%)

Chronic steroids 8 (5.4%) 3 (5.3%) 5 (5.5%)

Chemotherapy 13 (8.8%) 7 (12.3%) 6 (6.6%)

Other immunosuppression 12 (8.1%) 4 (7.0%) 8 (8.8%)

Primary infection site, n (%)

Pneumonia 24 (16.2%) 11 (19%) 13 (14%)

Abdominopelvic 50 (33.8%) 19 (33%) 31 (34%)

Urinary tract 20 (13.5%) 10 (18%) 10 (11%)

Other 52 (35.1%) 17 (30%) 35 (38%)

Unknown 5 (3.4%) 2 (3.5%) 3 (3.3%)

Infecting microorganism, n (%)

Gram positive (cocci) 62 (14.0%) 23 (40.4%) 39 (42.9%)

Gram negative (rods) 40 (27%) 21 (36.8%) 19 (20.9%) *

Fungi 11 (7.4%) 3 (5.3%) 8 (8.8%)

Virus 9 (6.1%) 3 (5.3%) 6 (6.6%)

Negative cultures 33 (22.3%) 13 (22.8%) 20 (22.0%)

Data are presented as numbers (%) or median and interquartile range (IQR)
* p < 0.05 Mann-Whitney and Chi2. Abbreviations: APACHE Acute Physiology, Age and Chronic Health Evaluation, SOFA Sequential Organ Failure Assessment,
CI Confidence interval, IQR Interquartile range, COPD Chronic obstructive pulmonary disease, ICU Intensive care unit
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High levels associated with in-hospital death (2.84
[1.20–6.76]). In the stratified analysis, the association
remained in women (8.53 [2.42–30.07] but not in men
(0.59 [0.13–2.61]). The association remained for women
even after adjustment for APACHE II score and for
SOFA score separately (Fig. 5). Furthermore, an increase
from baseline to the acute phase associated with hospital
death in women (3.76 [1.27–11.72]) but not in men
(0.47 [0.11–2.06]) (Fig. 6). In a ROC analysis a diagnostic
accuracy of 73.3% for the risk of in hospital death for

women was found at an increase of 516 ng/mL from
baseline to the acute phase, with a sensitivity of 75.9%
and specificity of 64.7%. AUC was 0.74 (0.61–0.87,
95%CI), p = 0.0001 but no discriminating point could be
seen in men, (Supplementary Figure 10 and 11,
respectively).

Discussion
We report that low levels of MBL in a pre-sepsis state
did not associate with a future sepsis event. Further, in

Fig. 2 MBL concentrations (ng/mL) at baseline (MBL1) and in the acute phase (MBL2) for men and women. Men are displayed to the left in the
panel and women to the right. Empty boxes represent baseline levels and filled boxes represent levels in the acute phase. Data are presented as
median and interquartile range (IRQ). * p < 0.05 MBL2 vs. MBL1 using Wilcoxon Signed Rank test

Fig. 3 MBL concentrations (ng/mL) in the acute phase for men and women, survivors (S) and non-survivors (NS). Men are displayed to the left in
the panel and women to the right. Empty boxes represent survivors and filled boxes represent non-survivors. Data are presented as median and
interquartile range (IRQ). * p < 0.05 NS vs. S using Mann-Whitney U-test
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the acute phase of sepsis there were sex-related differ-
ences in MBL levels in relation to in-hospital mortality.
Women who died in hospital had higher levels than sur-
viving women. This association between MBL levels and
outcome was not seen in men. Furthermore, an increase
in MBL levels from baseline to the acute phase associ-
ated with hospital death in women but not in men. To

our knowledge, the association between circulating MBL
levels and sepsis outcome in women has not been previ-
ously reported. This finding indicates the presence of
sex-related differences related to innate immunity. It has
been reported that ‘resting’ MBL levels in women may
be higher than those of men of similar age, though
others have not made such observation [39, 40].

Fig. 4 MBL (ng/mL). Differences between MBL levels in the acute phase and at baseline for survivors (S) and non-survivors (NS) displayed for men
and women separately. Men are displayed to the left in the panel, and women to the right. Empty boxes represent survivors and filled boxes
represent non-survivors. For each box a negative value represent a decrease and a positive value represents an increase, (MBL_acute phase -
MBL_baseline) > 0 = increase from baseline to the acute phase, (MBL_acute phase - MBL_baseline) < 0 = decrease from baseline to the acute
phase. Data are presented as median and interquartile range (IRQ). * p < 0.05 NS vs. S using Mann-Whitney U-test

Fig. 5 Logistic regression. MBL concentration in the acute phase < 1300* vs. > = 1300 ng/mL and the risk of in-hospital death. All patients are
displayed in the upper part of the panel, men in the middle part of the panel and women in the lower part of the panel. First as univariate
analysis and then APACHE II and SOFA scores are introduced separately. Data are presented as odds ratio (OR) and 95% confidence intervals.
* denotes the indicator contrast with OR 1.00
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A second notable finding relates to changes in MBL
levels in response to acute sepsis. Contrary to the ex-
pected, MBL levels decreased from baseline to the acute
phase, especially in survivors, with a differential pattern
in men and women.
The notion of MBL as an acute phase reactant stem

from earlier findings. The promoter sequence of the
MLB2 gene contains several consensus elements. As in
other acute phase reactants, the transcription is en-
hanced by IL-6, dexamethasone and heat shock protein
but inhibited by IL-1 [41, 42]. However, MBLs function
as an acute phase reactant has been questioned since
there is considerable heterogeneity in the acute response
in different settings and the influence of genetic poly-
morphism is substantial. A slower and less obvious MBL
response to infection or surgical trauma compared with
other acute phase reactants, as C-reactive protein, and
variable responses in sepsis have been reported [43–46].
In an Australian study, 41% of patients with pneumonia
and blood stream infection had stable MBL levels
through their hospital stay [44]. Further, they found that
patients who were MBL deficient at study entry, failed to
demonstrate a positive acute phase response into the
normal range. This diverge from our results were 35% of
patients with baseline values less than 500 ng/mL
increased to 1500 ng/mL or more in the acute phase.
Differences in patient selection and timing of blood
sampling may account for these discrepancies.
Another main finding was that low pre-sepsis MBL

levels were not identified as a risk for severe sepsis,
septic shock or unfavourable outcome. This is contrary
to some interpretations that low MBL levels or a state of
MBL deficiency is associated with increased risk for in-
fection and development of SIRS, sepsis, septic shock,
and even sepsis related death [28, 30, 47]. Also, in this
respect there are conflicting data. In a large population
based study were 9245 individuals were genotyped and
followed 8 to 24 years, no evidence for significant

differences in infectious disease or mortality in MBL
deficient individuals versus controls was found [32]. A
study on intensive care patients could not find any
difference in frequency of MBL2-polymorfism between
patients and controls at baseline, and between patients
classified as having sepsis or not [34].
Considering the biological function of MBL as a

pathogen recognizing molecule that either directly or
mediated via the associated serinproteases MAPS2 acti-
vate the complement pathway and enhance phagocyt-
osis, it would not be surprising if a ready access of
functional MBL are beneficial in case of an infection.
However, if this leads to an exaggerated complement
activation it could result in extensive tissue damage, det-
rimental for the host. Of note in our cohort of patients,
none of the women with the highest MBL values at
baseline died in hospital, while an increase or high levels
in the acute phase did not prove to be beneficial, at least
not for women. In theory, this could imply that an abun-
dance of MBL allowing a rapid pathogen recognition
and early neutralization prevents further, uncontrolled
activation of other cascade systems with subsequent
excessive inflammatory response and organ dysfunction.
A delayed response with an increase of MBL when other
components of the innate immune system already are
set into action may impose additional, non-beneficial in-
flammatory responses. Partly supporting this notion are
data indicating beneficial effects of low MBL levels in
different settings [18–21, 23, 48–50]. Thus, MBL may
have different effects in different situations and in differ-
ent phases of acute illness. An alternative explanation
for the finding that patients who died had higher MBL
levels than survivors could relate to dysfunctional MBL
with reduced ligand binding and opsonin function which
could lead to reduced phagocytosis and reduced clear-
ance from the circulation and higher free MBL levels.
However, the assay used in this study is considered to
predominantly detect oligomeric or “functional” MBL.

Fig. 6 Univariate logistic regression. The difference in MBL levels between the acute phase and baseline (MBL_acute phase - MBL_baseline) and
the risk of in-hospital death. All patients are displayed in the upper part of the panel, men in the middle part of the panel and women in the
lower part of the panel. Data are presented as odds ratio (OR) and 95% confidence intervals. * denotes the indicator contrast with OR 1.00
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Most studies have not considered the possibility of
sex-related differences and data are not presented strati-
fied for sex. The value of MBL as a prognostic marker
for out-come or patient selection for substitution or
inhibitory therapy requires a deeper understanding of its
action before implementation into clinical practice.
We were not able to find any association between

MBL levels and degree of severity of acute sepsis,
source of infection, infecting microorganism or other
comorbidities. This was unexpected, since acute illness
and co-morbidities might be expected to be accompan-
ied by some degree of inflammation, also with corre-
sponding MBL expression. A finding also unexpected
in the light of reports that MBL deficiency is associated
with recurrent respiratory infections and infections
with gram-positive bacteria [16, 51–53]. However, the
power to detect more subtle associations may have
been restricted by the size of the study cohort.
Our results contradict findings from others that the

presence of MBL variant alleles, and low MBL levels,
associates with the development of sepsis, severe
sepsis, and septic shock [28, 30]. There are also
others who have not been able to show such distinct
associations between severity of illness and MBL
levels or genotype [26, 34, 44].

Limitations in the study design
In this study, only circulating plasma levels of MBL were
determined, which ideally should have been combined
with genotypes and studies of MBL function. More than
80 polymorphic sites are known, not all of known clin-
ical relevance and only seven haplotypes are commonly
found and studied were three different structural vari-
ants, B, C and D and the promoter haplotypes HY, LY
and LX have a dominant effect on circulating MBL levels
[10, 25, 33]. However, an individual’s MBL levels cannot
be determined from its genetic variant alone, since there
are considerable inter-individual variations and other yet
unknown factors probably influence circulating levels
[12, 13, 25, 33]. Still, a future study of sex-related MBL
responses would ideally include genotyping. Further, due
to lack of resources we were not able to specifically ana-
lyse MBL function, as with analysis of C4b deposit or
MBL associated serine protease 2 (MASP-2).
The sample size was determined by access to pre-

illness biomaterial, which affected the patient selec-
tion and limited the number of observations. For
this reason, there is a majority of women of slightly
younger age than the men. Patients do not entirely
represent all patients consecutively admitted to the
ICU, though their characteristics are representative
for patients with sepsis at our ICU and we believe
that there were sufficient observations to draw major
conclusion from this explorative study.

The findings are empirical which can generate new
hypothesis, and the study was not designed to assess
possible pathophysiological mechanisms. Furthermore,
the reported sex-related differences are similar to those
previously reported for the adipokine leptin [35].

Summary and conclusions
In summary, we observed sex-related differences in MBL
levels and kinetics related to sepsis survival. High levels
or an increase of MBL in the acute phase of sepsis were
associated with unfavourable outcome in women. We
conclude that further evaluation of MBL response in
acute sepsis should include a differentiated analysis with
regard to gender. Further aspects of MBL response in
sepsis needs to be elucidated before substitution with
recombinant MBL or inhibitory therapy is considered in
the future.
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1186/s12950-020-00257-1.

Additional file 1: Figure S7. Receiver operating characteristics, ROC
analysis. ROC curve (left panel) for MBL concentrations in the acute phase
(MBL2) in relation to in-hospital death for all patients (n = 122). In right
panel sensitivity and specificity are shown for different MBL concentra-
tions. An “optimal” cut-off point is shown in point A with a MBL concen-
tration of 1319 ng/mL with a diagnostic accuracy of 65.6% and a
sensitivity of 68.1% and a specificity of 57.1%. Area under curve is 0.60
(0.48–0.72, 95%CI), p = 0.044.

Additional file 2: Figure S8. Receiver operating characteristics, ROC
analysis. ROC curve (left panel) for MBL concentration in the acute phase
(MBL2) for women (n = 75) in relation to in-hospital death. In right panel
sensitivity and specificity are shown for different MBL concentrations. An
“optimal” cut-off point is shown in point A with a MBL concentration of
1319 ng/mL with a diagnostic accuracy of 73.3% and a sensitivity of
72.4% and a specificity of 76.5%. Area under curve is 0.73 (0.59–0.86,
95%CI), p = 0.0008.

Additional file 3: Figure S9. ROC curve (left panel) for MBL
concentration in the acute phase (MBL2) for men (n = 47) in relation to
in-hospital death. In right panel sensitivity and specificity are shown for
different MBL concentrations. Area under curve is 0.42 (0.24–0.60, 95%CI),
p = 0.81.

Additional file 4: Figure S10. ROC curve (left panel) for the difference
in MBL concentration between the acute phase (MBL2) and baseline
(MBL1) for women (n = 75) in relation to in-hospital death. In right panel
sensitivity and specificity are shown. An “optimal” cut-off point is shown
in point A with a MBL concentration difference of 516 ng/mL with a diag-
nostic accuracy of 73.3% and a sensitivity of 75.9% and a specificity of
64.7%. Area under curve is 0.74 (0.61–0.87, 95%CI), p = 0.0001.

Additional file 5: Figure S11. ROC curve (left panel) for the difference
in MBL concentration between the acute phase (MBL2) and baseline
(MBL1) for men (n = 47) in relation to in-hospital death. In right panel
sensitivity and specificity are shown. Area under curve is 0.45 (0.26–0.63,
95%CI), p = 0.71.

Additional file 6: Table S4. MBL at baseline and risk for future sepsis
development.

Additional file 7: Table S5. Comparison of MBL distribution at baseline
with a cohort of Danish blood donor.

Additional file 8: Table S6. Comparison of MBL distribution in the
acute phase with a cohort of Danish blood donor.
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