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Summary

� Wood, or secondary xylem, is the product of xylogenesis, a developmental process that

begins with the proliferation of cambial derivatives and ends with mature xylem fibers and

vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellu-

lar processes, including cell division, cell expansion, secondary wall formation, lignification

and programmed cell death. A complex network of interactions between transcriptional regu-

lators and signal transduction pathways controls wood formation. However, the role of

metabolites during this developmental process has not been comprehensively characterized.
� To evaluate the role of metabolites during wood formation, we performed a high spatial

resolution metabolomics study of the wood-forming zone of Populus tremula, including laser

dissected aspen ray and fiber cells.
� We show that metabolites show specific patterns within the wood-forming zone, following

the differentiation process from cell division to cell death.
� The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell

types host distinctly different metabolic processes. Furthermore, by integrating previously

published transcriptomic and proteomic profiles generated from the same trees, we provide

an integrative picture of molecular processes, for example, deamination of phenylalanine dur-

ing lignification is of critical importance for nitrogen metabolism during wood formation.

Introduction

With a growing demand for sustainable products, wood is
becoming an increasingly important source of renewable
biomass. From an industrial perspective, both the rate of wood
formation (i.e. biomass production) and the quality of the wood
are important traits. Future improvements in wood biomass pro-
duction and the properties of wood, either by means of genetic
engineering or by identifying elite lines using early markers for
desirable wood characteristics, require a better understanding of
the regulatory mechanisms underlying the wood developmental
programme.

Wood is formed by the activity of the vascular cambium
(hereafter referred to as cambium). The cambium consists of
fusiform and ray initials, which give rise to the axial compo-
nents of the woody stem: vessels, tracheids, fibers, companion
cells and axial parenchyma (Fischer et al., 2019).

Differentiation is controlled by a complex network of interac-
tions between transcriptional regulators and signal transduction
pathways (Nakaba et al., 2012; Ye & Zhong, 2015; Sundell
et al., 2017; Zinkgraf et al., 2017; Chen et al., 2019; Fischer
et al., 2019). Several transcriptomics studies of wood-forming
tissue in Populus have shown that gene expression is tightly
controlled in this tissue. By contrast, there have been very
few studies profiling differences in metabolite concentrations
between different cell types in the wood forming zone of
angiosperm trees (Uggla et al., 2001; Andersson-Gunner�as
et al., 2006; Immanen et al., 2016; Ning et al., 2018). Plant
hormones are important as regulators of cambial activity and
differentiation. There is evidence that auxin (indole 3-acetic
acid; IAA) is a key organizer of cambial growth and vascular
development; for example, there is a gradient of IAA concen-
tration across the developing cambium, suggesting that this
compound plays a role in positional signaling (Uggla et al.,
1996). However, there are also data suggesting that interac-
tions between IAA and gibberellins (GAs) can play a part in
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regulating secondary growth (Digby & Wareing, 1966;
Telewski et al., 1996; Bjorklund et al., 2007). The impor-
tance of GAs in controlling cambial activity and xylem fiber
length has been demonstrated using transgenic trees with
altered GA biosynthesis or GA signaling (Eriksson et al.,
2000; Mauriat & Moritz, 2009; Mauriat et al., 2011). It has
also been shown that concentrations of bioactive GAs are
high in the early expansion region of the wood-forming zone
(Israelsson et al., 2005), suggesting that they may play an
important role in fiber tip growth. The role of cytokinins in
wood formation has shown in transgenic cytokinin Populus,
where increased cytokinin content stimulated cambial cell divi-
sions and, interestingly, also led to increased cambial auxin
concentration (Immanen et al., 2016).

Metabolomics aims to identify and quantify the population of
small molecules in a biological sample and to link this biochemi-
cal information to a phenotype or biological process (Fiehn,
2002; Goodacre et al., 2004). In common with other assays of
cellular activity, such as RNA-Seq, a major challenge of applying
and interpreting metabolomics to developmental biology arises
from the complexity of assaying tissues comprising multiple cell
types, as is the case for wood. Sundberg and co-workers devel-
oped a tangential cryosectioning technique for the wood-forming
zone in Pinus silvestris and Populus, enabling a highly spatially
resolved characterization of IAA concentrations across the wood
forming region (Uggla et al., 1996). Since then the cryosection-
ing technique has been used to study many different aspects of
wood development (Tuominen et al., 1997; Uggla et al., 1998;
Hertzberg et al., 2001; Uggla et al., 2001; Schrader et al., 2004;
Courtois-Moreau et al., 2009; Immanen et al., 2016). While tan-
gential sectioning is a powerful sampling technique to pool cells
in similar stages of differentiation, it only indirectly permits
resolving differences in cell-type specific programs. In particular,
changes in ray cells might be masked by contributions from
xylem vessel and fiber cells.

RNA sequencing of cryosections has dramatically improved
our understanding of the transcriptional programme underlying
wood development (Sundell et al., 2017). However, since later
processes of wood differentiation consist largely of dead cells, the
short-lived nature of RNA means that transcriptomics provides
only a limited view into xylem vessel and fiber formation at this
terminal stage of the differentiation programme. Combining
metabolomics and transcriptomics data has greatly enhanced the
understanding of secondary wall deposition in xylem vessel-like
cells (Li et al., 2016; Ohtani et al., 2016). While Populus wood
has been extensively studied at the transcriptional level (e.g.
Andersson-Gunneras et al., 2006; Niculaes et al., 2014), few
studies have characterized metabolite profiles with high spatial
resolution across wood forming tissues (Uggla et al., 2001;
Immanen et al., 2016). To address this gap, we used 20 µm thick
tangential sections spanning the active phloem–cambium–xylem
developmental zones to produce a metabolic roadmap of wood-
forming tissue in Populus tremula (aspen). We also included
metabolomics data from laser capture dissected ray cells to
provide cell-type specific data to overcome the limitations of tan-
gential sectioning.

Materials and Methods

Plant material

The plant material consisted of 47-yr-old aspen (Populus
tremula L.) trees growing in northern Sweden (lat.
64°210N, long. 19°470E). Five trees from the same clone
were sampled on 7 July 2010. The results presented in this
paper were obtained from the average of these trees. Blocks
(29 10 cm) consisting of extraxylary tissues and a few
annual rings were collected at a height of c. 3 m. The
blocks were immediately frozen in liquid nitrogen and
stored at �80°C until required for sectioning. The sections
were obtained by centripetal tangential cryosectioning of c.
29 20 mm. Sampling and anatomical characterization of
the tissues in each section was performed as described by
Uggla et al. (1996, 1998). In parallel, one transverse hand
section from the phloem to the annual ring was prepared
from a specimen from Tree 1. This section was stained
with safranin/alcian blue, washed in water and mounted in
50% glycerol.

Fibers and ray cell samples were isolated from 40 µm thick
radial sections from the same aspen trees prepared on cryomicro-
tome (Leica CM3050 S, Nussloch, Germany) from a small wood
block (c. 3 cm9 1 cm9 3 cm) containing phloem, cambium
and a few annual growth rings (Supporting Information Meth-
ods S1).

Metabolite extraction

To reduce the number of samples and concentrate the ones in
which metabolite content was expected to be low, sections from
the phloem, expanding zone and the maturation zone were
pooled. Samples from the cambial zone were kept as individual
sections (Fig. S1).

All tagential sections, as well as ray and fiber cells were
extracted in CHCl3 : MeOH : H2O (1 : 3 : 1) according to the
method described by Gullberg et al. (2004). For details, see
Methods S2.

Gas chromatography–mass spectrometry (GC-MS)
untargeted profiling

Dried extracts were first derivatized overnight at room tempera-
ture with methoxyamine (15 ng µl�1 pyridine), and thereafter
with N-methyl-N-(trimethylsilyl)trifluoracetamid (MSTFA) with
1% trimethylchlorosilane (TMCS) for 1 h at room temperature.
The derivatized extracts were analyzed as described previously
(Gullberg et al., 2004), using a Pegasus III GC-TOFMS (Leco
Corp., St Joseph, MI, USA). All mass spectra (MS) files were
exported in NetCDF format and processed using MATLAB

R2011b (Mathworks, Natick, MA, USA) according to the
method described by Jonsson et al. (2005) and using in-house
scripts. The extracted mass spectra were identified by compar-
isons with retention index values and an in-house mass spectra
library (Schauer et al., 2005).
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Liquid chromatography–mass spectrometry (LC-MS)
untargeted profiling

The evaporated extracts were dissolved in methanol : water (50%,
containing internal standards – see Methods S2) and the analysis
was performed as described in Adolfsson et al. (2017).

The generated MS files were processed with an untargeted
approach using MASSHUNTER PROFINDER B.08.00 (Agilent
Technologies Inc., Santa Clara, CA, USA) software. In addi-
tion, files generated from the LC–MS analysis of ray and fiber
cells were also processed by targeted feature extraction, using all
metabolites annotated in the wood sections as a database.

Data normalization was used to compensate for the resulting
differences between pooled and un-pooled extracts. All data given
here are the results of an average of profiling of five trees. Averag-
ing and grouping of sections between the five trees was performed
according to Table S3 (see later; sheet ‘normalized 5 trees’), and
based on distances from old phloem.

The strategy used for a systematic annotation of mass features
present in the wood forming extracts was as follows (Fig. S2): (1)
the automatic tandem mass spectrometry (autoMSMS) analysis
was performed in the extracts using collision energy from 10 to
30 V. A manual search for the fragments m/z 195.0663,
193.0514, 137.0250 and 177.0560 in the MSMS spectra allowed
selection of candidate metabolites for oligomer biosynthesis,
which were thereafter compared with the spectral fragments
described in Morreel et al. (2004, 2010) and Weng et al. (2008);
(2) annotation of salicylates was performed according to the
method described in Abreu et al. (2011). Their conjugated forms
with phenylpropanoids were manually predicted by the interpre-
tation of MSMS spectra; (3) mass searches of public databases of
spectra were manually interpreted based on, among other
descriptors, mass accuracy of fragments and neutral losses, and
cross-checked with other public databases (www.plantcyc.org and
KEGG pathways); (4) the MSMS networking (Wang et al.,
2016) was used to annotate metabolites with similar fragment
patterns (Fig. S2c). All metabolites annotated in the aspen wood
forming tissue are shown in Tables S1–S4.

Hormone analysis

Details for the analysis of IAA and cytokinin are described in Meth-
ods S3. In brief, the extracts were purified and fractionated using
micro-SPE columns as described by Svacinova et al. (2012). The
micro-SPE purified extracts containing IAA, after methylation fol-
lowed by trimethylsilylation, were analysed using an Agilent 7000
GC/MS triple quadrupole mass spectrometer as described previously
(Mauriat et al. 2011). The micro-SPE purified extracts containing
cytokinins were analyzed in positive mode on an Agilent 6490 triple
quadrupole mass spectrometer equipped with a high-performance
liquid chromatography (HPLC)-Chip CubeMS Interface.

Statistical analysis

All univariate and multivariate statistical analyses were performed
using SIMCA v13.0.2 (Umetrics, Ume�a, Sweden) or METABO

ANALYST 4.0 (https://www.metaboanalyst.ca/home.xhtml).

Data availability

Metabolomics data have been deposited in the European Molec-
ular Biology Laboratory-European Bioinformatics Institute
(EMBL-EBI) MetaboLights database (https://doi.org/10.
1093/nar/gks1004; PubMed PMID: 23109552) with the identi-
fiers MTBLS1796, MTBLS1797 and MTBLS1831. Files gener-
ated from the autoMSMS analysis were deposited under the
study MTBLS1797 and characteristics fragments of the anno-
tated metabolites are available in Table S4 and the Metabolite
Annotation file (MTBLS1797). The complete dataset can be
accessed here: https://www.ebi.ac.uk/metabolights.

Results and Discussion

In order to obtain a broad picture of metabolic changes occurring
during wood development, we performed both untargeted
metabolite profiling and targeted quantification of low-abundant
phytohormones across the developing phloem and wood forming
tissues in five clonal replicates of wild-growing, mature (47-yr-
old) P. tremula (aspen) trees (Fig. S1). To additionally quantify
metabolic activity in different cell types, we profiled laser dis-
sected aspen ray and fiber cells isolated from 40 µm thick radial
sections containing phloem, cambium and a few previous annual
growth rings from the same aspen trees (Fig. S3).

Untargeted metabolomics data order wood samples
according to the developmental gradient

Principal component analysis (PCA) score plots of the untargeted
metabolomics data from the cryosections highlighted the comple-
mentary value of the two different techniques (GC-MS and LC-
MS): The GC-MS profiling displays phloem and cambium sam-
ples as one cluster and expanding and mature xylem as a dis-
tinctly different second cluster (Fig. S4a). The LC-MS profiling,
on the other hand, shows an ordered sample distribution from
phloem, through cambium and expanding xylem, to mature
xylem, suggesting clear metabolite gradients coinciding with the
developmental gradient of these tissues (Fig. 1a) and revealing a
more complex and differentiated composition of specialized
metabolites in contrast to the primary metabolites detected by
GC-MS. Furthermore, laser dissected ray and fiber cells were also
discriminated in the metabolite profiling data (Fig. 2a), suggest-
ing that these two cell types host distinctly different metabolic
processes.

The aspen wood forming tissues show specific metabolite
profiles

To evaluate the role of metabolites during wood formation we
performed a high spatial resolution metabolomics study of the
wood-forming zone. The untargeted GC-MS analysis identified
148 features, where the major metabolites are those involved in
central carbon metabolism (e.g. sugars, organic acids, glycerols
and amino acids) and phenolic metabolites (Table S1). Cluster
analysis of those features revealed six specific clusters along the
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wood forming zones (containing metabolites abundant in xylem
segment X3, segments X1/X2, cambium, phloem/cambium,
phloem/cambium/X1, expanding/xylem segment X1); however,
fewer clusters were observed in the xylem segments X2 and X3
than in the early stages of wood development (Fig. S4b).

About 2240 features were detected by LC-MS, of which 399
metabolites were annotated (Tables S2, S3), and of those 156
were more specifically characterized according to their MS/MS
fragmentation patterns (Table S4). Among the latter were pheno-
lic glucosides (salicyloids, arbutin and salirepin), benzoates,
flavonoids, cinnamate esters, oligomers and polar lipids (ce-
ramides and galactolipids). Although there was some overlap
between cambium and the expansion zone in the principal com-
ponent analysis (PCA) score plot of the samples (Fig. 1a), an
unsupervised hierarchical clustering analysis of detected features
by LC-MS data revealed metabolite patterns distinct to each
developmental stage (Fig. 1b). The clustering revealed eight dis-
tinct metabolite clusters across the wood-forming zone for untar-
geted LC-MS (Fig. 1b, for full description see Tables S2 and S3).
Metabolites of cluster 1 had maximum abundance in the

expanding and early xylem zones (X1 and X2). Such metabolites
could be involved in the secondary wall deposition. In line with
this, the same region showed an accumulation of monosaccha-
rides in the GC-MS data (Table S1). RNA-seq analysis of the
same wood sections identified several co-expression modules that
were significantly enriched in genes involved in secondary cell
wall biosynthesis, cell wall biosynthetic machinery and S-lignin
and xylan biosynthesis (see Fig. 3 in Sundell et al., 2017). There-
fore, as metabolite cluster 1 coincides with those co-expression
modules, the metabolites present in cluster 1 might be involved
in this process. Cluster 2 was characterized by the accumulation
of phenylalanine, caffeoyl glucoside, sucrose and glucoceramides
in the cambium, expanding and X1 zones. These regions repre-
sent extensive primary wall synthesis, a process that requires
sucrose as a substrate for cellulose biosynthesis. Interestingly, caf-
feoyl glucoside represents a monolignol precursor that might be
transported from the expanding xylem to the mature xylem,
where it could be hydrolyzed and incorporated into lignin. It
should be emphasized that to able to verify this, flux data describ-
ing whether monolignol concentrations, including caffeoyl

Cluster 5 Cluster 6 Cluster 7 Cluster 8
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Fig. 1 Metabolite profiling by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) of wood forming zones in five 47-yr-
old aspen trees. (a) Principal component analysis (PCA) of metabolites generated from the profiling in negative ion mode. The scores plot (PC19 PC2)
shows the separation of the different samples from all trees. The PCA model generated 12 principal components with total explained variance (R2X(cum))
equal to 0.69. The predictive capacity by means of cross validation, Q2(cum), was 0.52; PC1 (23%) and PC2 (13%). Sample T04-28 was considered to be
an outlier and was not included in the model. (b) Hierarchical clustering dendrogram and heatmap of the generated dataset showing eight metabolite
clusters with distinct profiles across the wood sections. Clustering parameter, Euclidean distance; clustering method, unweighted average distance
(UPGMA). (c) PCA models (UV-scaled, CV 95% error bars) with one component fitted for each cluster in (b). P, phloem; C, cambium; E, expanding xylem;
X1, X2, X3, mature xylem. The complete information from the liquid chromatography–mass spectrometry (LC-MS) generated data is provided in
Supporting Information Table S2. (d) Concentrations of caffeoyl shikimate in all five trees as an example of data reproducibility, together with the PCA.
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glucoside, are static or due to rapid turnover, must be described.
Cluster 3 showed that cinnamate esters, like caffeoyl and
coumaroyl shikimate, accumulated in the expanding and X1
zones. Weng et al. (2008) demonstrated that such metabolites are
an alternative resource for syringyl lignin in vascular plants.
Salicin, a characteristic metabolite in cluster 4, was found pre-
dominately in the phloem, but was also present in smaller quanti-
ties in the cambium and expanding zone. By contrast, other
salicyloids and their conjugated forms were found in clusters 5
and 6, with the former cluster representing metabolites exclu-
sively present in the phloem and the later cluster containing
metabolites typically present in the phloem and cambium.
Besides salicyloids, the accumulation of flavonoids, trisaccharides
and glutamate was typical for cluster 6. Cluster 7 metabolites
(e.g. ascorbate, ellagic acid and galactolipids) accumulated in the
cambium and mature xylem. Lignin-oligomers accumulated in
the mature xylem (X2 and X3), as represented by cluster 8
(Fig. 1c).

Sundell et al. (2017) showed that gene expression clusters were
highly reproducible in their four replicate trees, despite those
being mature trees growing under natural conditions. In the pre-
sent study, the metabolomics approach was performed in five
replicates, where trees 1 to 4 were the exact same trees sampled
by Sundell et al. (2017) and Obudulu et al. (2016). High repro-
ducibility was also demonstrated from the metabolomics data by
the PCA score plot and individual metabolite profiles (Fig. 1a
and d, respectively), suggesting a high degree of genetic control
of the processes. Using hierarchical clustering, Sundell et al.
(2017) also identified eight main expression clusters, with some
having a striking similarity with the metabolite clusters (Fig 1b,
c). To test if metabolite and gene expression profiles indeed

overlap in wood forming tissue and if this overlap could be used
to predict gene function, we examined more closely the biosyn-
thesis of salicortin, a metabolite characteristic of cluster 5

(a) (b) (c)

Fig. 2 Interaction between ray cells and aspen wood developing tissues for lipid biosynthesis. (a) Volcano plot comparing metabolite profiling of ray and
fiber cells (fold change ≥ 1.5 and false discovery rate (P ≥ 0.05); for details see Supporting Information Table S6. (b) Accumulation of 8-amino 7-
oxononanoate in ray cells, an intermediate for biotin biosynthesis: increased expression of genes encoding the biotin biosynthetic enzymes in the cambium
– Potri.006G170400 (adenosylmethionine-8-amino-7-oxononanoate transaminases), Potri.007G126400 (radical S-adenosyl methionine superfamily
protein), Potri.017G033300 (radical S-adenosyl methionine superfamily protein). (c) Biotin is a cofactor of acetyl coenzyme A (CoA) for oleic acid
biosynthesis. Gene expression from ASPWOOD (http://aspwood.popgenie.org).
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Fig. 3 Concentration profiles of cell wall sugars in wood forming zones of
five 47-yr-old adult aspen trees: glucose-6-phosphate and fructose-6-
phosphate; sucrose, glucose, fructose and xylose. The concentration
profiles for each metabolite were normalized by setting the highest
concentration found for that metabolite to 1.
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(Fig. 1c). Salicortin, an abundant salicyloid accumulated in the
phloem, is synthesized from the esterification of benzyl alcohol
with 6-hydroxy-2-cyclohexen-one-carboxylate (HCH) by the
hydrolase EC 4.2.1 (see https://pmn.plantcyc.org/; Fig. S5a).
Bioinformatic predictions of EC 4.2.1 suggest 141 candidate
genes in the Populus genome (https://www.pmn.plantcyc.org/),
of which 99 are expressed in wood-forming tissue (http://asp
wood.popgenie.org). We then compared the expression patterns
of these 99 genes (Fig. S5b) with the salicortin concentrations in
wood-forming tissue (Fig. S5c); only eight genes had highly over-
lapping gene expression with the salicortin metabolite profiles.
Hence, these eight genes are likely candidates for EC4.2.1 func-
tion in salicortin biosynthesis. We believe such a comparative
strategy could facilitate the identification of genes involved in sec-
ondary metabolism, especially when dealing with large gene fami-
lies.

Aspen ray and fiber cells show distinct metabolite profile

The metabolite profiling by LC-MS performed on the laser-dis-
sected ray and fiber cells, from an independent experiment,
resulted in a detection of 1034 features and the annotation of
240 metabolites (Table S5). Interestingly, several metabolites –
including salicyloids, benzoates, lignin oligomers, lignans and
cinnamate esters – that were also characterized in the aspen wood
forming tissues (Table S2) were present in the aspen ray and fiber
cells. Although ray cells do not lignify during the present year’s
growing season, no differences in metabolites associated with lig-
nification were observed between ray and fiber cells (Table S5). A
recent study in Norway spruce showed that most of the shikimate
and monolignol biosynthesis genes are equally expressed in
parenchymal ray cells and upright tracheids, suggesting that ray
parenchymal cells contribute to the lignification of upright tra-
cheids (Blokhina et al., 2019). Similarly, the presence of metabo-
lites associated with lignification in ray cells may indicate that the
ray cells contribute substrates for lignification to neighboring
non-ray cells.

Enrichment of amino carboxylic acids (like 8-amino-7-ox-
ononanoate, 8-amino methyl-7-oxononanoic acid, amino-ox-
oundecanoic acid and amino-oxododecanoic acid), dicarboxylic
acids (suberic acid and decanedioic acid) and pyroglutamic acid
was observed in aspen ray cells (Fig. 2b). These metabolites are
involved in several specific metabolic processes and could aid
understanding of some of the clusters generated by the GC-MS
profiling in the wood forming tissues (Fig. S4). For example, 8-
amino-7-oxononanoate is an intermediate of biotin biosynthesis,
a vitamin required as a cofactor of enzymes involved in fatty acid
and carbohydrate metabolism (Che et al., 2003) (amongst others,
acetyl-CoA carboxylase (ACCase)), gluconeogenesis (pyruvate
carboxylase) and amino acid metabolism (methylcrotonyl-CoA
carboxylase (MCCase) and propionyl CoA carboxylase). Curi-
ously, increased expression of genes encoding the enzymes of
biotin biosynthesis was found in the cambium and mature xylem
of aspen wood forming tissues (http://aspwood.popgenie.org;
Fig. 2b). These results suggest that the ray cells may provide
intermediates for biotin biosynthesis in wood forming tissues,

resulting in the biosynthesis of lipids and carbohydrates.
Although biotin could not be detected by any of the analytical
approaches used in this study, there was increased expression of
four genes encoding lipid biosynthetic enzymes with biotin as a
co-factor (ACCC.1, ACCC.2, HCS1 and a biotin carboxyl car-
rier) (Fig. 2c) in the cambium and mature xylem of the same
plant material (http://aspwood.popgenie.org). These results are
in line with the accumulation of lipids in the cambium (dode-
canoic acid, adipic acid, arachidic acid, heptadecanoic acid,
nonanoic acid, stearic acid and oleic acid) and cambium/mature
xylem (1-Palmitoyl-sn-glycero-3-phosphocholine, ethanolamine,
hexadecanoic acid, linoleic acid and beta-sitosterol), correspond-
ing to clusters 3 and 6, respectively (see GC-heatmap order,
Table S1). Lipid accumulation has previously been shown in the
cambium, xylem ray cells, parenchymal pith and cortex by histo-
chemical staining in stem sections of aspen (Grimberg et al.,
2018). Lipid accumulation was associated with the temporal
coordination of growth cessation (Grimberg et al., 2018), and
storage of lipid droplets in the ray cells of Populus annual rings
increases during autumn (Nakaba et al., 2012). Our results indi-
cate that the lipid accumulation in cambium and mature xylem
depends on biotin biosynthesis, whose intermediates are provided
by the ray cells.

Carbohydrates and cell wall formation

Once the dividing cells have reached their final dimensions in the
region of cell expansion, secondary cell walls are deposited inside
the primary wall. Formation of the secondary cell wall requires
biosynthesis of polysaccharides, which in Populus mainly take the
form of cellulose and xylan (Mellerowicz et al., 2001). Sucrose,
imported from the phloem and converted to uridine diphosphate
(UDP)-glucose and fructose by sucrose synthase (SuSy) or glu-
cose and fructose by invertases, is the main precursor for these
polysaccharides (Mellerowicz et al., 2001; Uggla et al., 2001;
Rende et al., 2016). GC-MS metabolite profiling revealed differ-
ential patterns of sucrose, fructose and glucose (Fig. 3). The level
of sucrose declined rapidly from the cambial tissue towards the
expansion zone, whereas the monosaccharides glucose and fruc-
tose gradually increased, with maximum abundance in the zone
of secondary wall formation (at around 800 µm from the cam-
bium). The simultaneous increase in glucose and fructose may
reflect increased invertase activity during secondary cell wall for-
mation. Neutral invertases were shown to play an important role
in supplying carbon to cellulose biosynthesis in aspen wood
(Rende et al., 2016). Roach et al. (2012) showed that fructoki-
nases are important for converting the sucrose derived fructose
into fructose-6-phosphate; fructokinases may also facilitate SuSy
reaction towards UDP-glucose production. In our study, concen-
trations of fructose-6-phosphate, fructose and glucose-6-phos-
phate were highest in the early secondary wall deposition zone
(Fig. 3), while fructokinase and SUS reach their highest activity
in the expanding xylem of aspen wood (Roach et al., 2017).

Xylose, which forms the sugar backbone of xylan, is the domi-
nant hemicellulose of the secondary cell walls in Populus exhib-
ited peak concentrations in the mature xylem, further away from
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the cambium than the other sugars, at a distance of about 800–
1400 µm from the cambium. The increase in the level of xylose
coincided with the formation of the secondary cell wall in this
region.

Glutamine is the most abundant amino acid in the phloem
and xylem

One of the most striking results related to amino acids was the
large amount of glutamine found in the mature xylem. Glu-
tamine abundance increased rapidly c. 800 µm from the cam-
bium, exhibiting maximum abundance at about 1600 µm and
then rapidly decreasing in the annual ring samples (Fig. 4a). The
highest concentration of glutamine found in the xylem was 3–4
times higher than that found within the phloem. While glu-
tamine was by far the most abundant amino acid found in the
xylem, the highest abundance of glutamic acid was found in the
phloem and expanding xylem (Table S1). Complementary to
glutamine and glutamate, accumulation of phenylalanine was
observed in the expansion zone (Fig. 4a). Phenylalanine is a sub-
strate of phenylalanine ammonia lyase (PAL), and a starting
point of the phenylpropanoid biosynthesis (e.g. monolignol
biosynthesis), resulting in the production of cinnamate and elimi-
nation of ammonium. This may indicate that during

lignification, ammonium released by PAL could be recycled and
remobilized through incorporation into glutamate by glutamine
synthetase (GS), resulting in glutamine (Fig. 4a). The incorpora-
tion of 2-oxoglutarate by glutamine oxoglutarate aminotrans-
ferase (GOGAT) results in the production of two glutamate
molecules (Cant�on et al., 2005). Glutamine synthetase (GS) plays
a central role in plant growth by fixing inorganic nitrogen into
amino acids, with glutamine being the main transported amino
acid in Populus (Tegeder & Masclaux-Daubresse, 2018). Interest-
ingly, glutamate can also be synthetized from pyroglutamate
(Paulose et al., 2013. The amino acid data suggest that ammo-
nium released by PAL during lignification is recycled by the GS/
GOGAT system, that glutamine is transported for redistribution
to the mature xylem and that pyroglutamate provides a glutamate
supply. To test these hypotheses we searched for the gene expres-
sion patterns in the xylem zone of PAL, GS, GOGAT, 5-oxopro-
linase (EC 3.5.2.9) and GS transporter in the AspWood database
(http://aspwood.popgenie.org) (Fig. 4b). Genes encoding PAL,
GS, GOGAT and 5-oxoprolinase all sharply peaked in the
expanding and the early mature xylem, co-localizing with the
highest abundance of glutamate. By contrast, the GS trans-
porters were most highly expressed in the mature xylem, in the
same region that glutamine accumulation was detected. Co-ex-
pression of those genes is shown in Fig. 4(c) and Fig. S6. The
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GS transporter genes were co-expressed, as expected. However,
the gene Potri.004G091000 (annotated as 5-oxoprolinase) was
co-expressed with the two genes encoding for GS
(Potri.012G043900, Potri.015G034700). GOGAT (Potri.
015G017500) is central in the co-expression network and is co-
expressed with several genes encoding for PAL and GS. Interest-
ingly, proteomics analysis performed on sections from the same
trees (Obudulu et al., 2016) showed accumulation of GS
(Potri.015G034700) in the expanding and early xylem X1 zone
and both GOGAT (Potri.015G017500) and PAL (Potri.
008G038200.1, Potri.010G224100.1, Potri.016G091100.1) in
the mature xylem X1–X2 zones. Expression of PAL, GOGAT
and GS genes was localized to the secondary wall deposition
zone.

Together, these results suggest that the deamination of pheny-
lalanine during lignification is of critical importance for nitrogen
metabolism during wood formation in trees.

Secondary cell wall and lignification

As the secondary cell wall is formed, the cellulose and hemicellu-
lose network is ‘locked’ by the lignification process. Lignin, a
complex phenolic polymer, not only gives the plant mechanical
support, but also contributes to plant defense and to the conduc-
tance of sap through lignified vascular elements (Mellerowicz
et al., 2001; Vanholme et al., 2008). Three different hydroxycin-
namyl alcohols, also known as monolignols, are used to build the
polymeric lignins (i.e. p-coumaryl alcohol, coniferyl alcohol and
sinapyl alcohol), and these monolignol units are referred to as
guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) units (Van-
holme et al, 2010). Several oligomers were identified in the wood
forming tissues, where G and S were the most abundant units
(Table S4). Oligomers containing additional units derived from
4OH benzoic acid (sp), vanillic acid (V) and 5OH coniferyl alco-
hol (5H) were also present, as previously described by Morreel
et al. (2004). We could not observe any obvious patterns of
monolignols, or clear sequential deposit of the different units
during the xylem development. Most of the oligomers were
detected in the mature xylem, with the exception of G(t8-O-4)G
which was detected in the phloem and expanding xylem (Fig. 5).
Lignification within the phloem has been observed in many
species (Lourenco et al., 2016), and both monolignol biosyn-
thetic genes and peroxidase genes are expressed in the phloem of
aspen wood (Sundell et al., 2017). However, it is unclear whether
the presence of G(t8-O-4)G in the phloem, but not in the xylem,
points to contrasting lignin composition between these two
tissues.

Cinnamates, phenylpropanoids derived from the deamination
of phenylalanine, are the substrate for monolignol biosynthesis
(Weng et al., 2008). The metabolic profiling of wood forming
tissue showed several cinnamates esterified with shikimate, glu-
cose and phenolic glucosides (salicyloids, salirepin and arbutin;
see Table S4). Those esters were accumulated differently across
the tissues: caffeoyl and coumaroyl shikimate, which can be con-
verted into S-units (Weng et al., 2008), were accumulated in the
expanding and early xylem (X1); while coumaroyl, feruloyl and

caffeoyl glucosides accumulated in the phloem, cambium and
expanding/early xylem (Fig. 5). Accumulation of cinnamate
esterified with salicyloids was observed in the phloem and cam-
bium (clusters 5 and 6, Fig. 1 and Table S3). The accumulation
of cinnamoyl salicortin in aspen leaves has been previously
described (Abreu et al., 2011), and Si et al. (2011) isolated caf-
feoyl salicin (populoside) and caffeoyl salirepin from the bark of
Populus ussuriensis. Intriguingly, all the phenolic glucoside esters
were present in phloem and cambium; however, salicin, salirepin
and arbutin were present in clusters 4, 3 and 1, having maximum
abundance around the expanding and early xylem region
(Table S3; Fig 1). Phenolic glucosides were also detected in the
ray cells (Table S5), potentially indicating that salicin, salirepin
and arbutin esters are transported from the phloem to the
expanding xylem. However, further studies, including the deter-
mination of metabolic fluxes, are needed to understand how the
accumulation of these metabolites could be related to the lignifi-
cation process.

Defense metabolites

Salicyloids are involved in herbivore resistance in Populus leaves
(Abreu et al., 2011) and are highly abundant in the bark (Si
et al., 2011). Twenty-nine salicyloids were annotated, ranging
from basic to more complex structures in wood forming tissues
(Table S4), and higher levels were found in the phloem and cam-
bium (Fig. 5). Some of them, such as salicortin and its derivatives
(HCH-salicortin and feruloyl-salicortin), were only present in
the phloem, while others were found at high concentrations in
the phloem and the outermost cambium sections, with rapidly
decreasing concentrations towards the expansion zone, whereas
salicin was found distributed from phloem until the early xylem
(X1) tissues (Fig. 5). By contrast, high concentrations of p-Ben-
zoic acid were observed in the expanding and early xylem tissues
(Tables S1, S3). We also observed the presence of oligomers con-
taining p-benzoate (V unit), which has been previously character-
ized in Populus lignin (Morreel et al., 2004).

In Populus nigra, the biosynthesis of HCH moiety of salicortin
has a phenylpropanoid origin, while the salicyl moiety has a ben-
zaldehyde origin (Babst et al., 2010). Similarly, in
Salix pentandra salicin biosynthesis has a benzoic acid route
(Ruuhola & Julkunen-Tiitto, 2003). Benzoic acid (BA) can be
synthetized though the shikimate/chorismate pathway in the plas-
tids (Wildermuth, 2006), or the phenylalanine (Phe)/cinnamate
(CA) route in the cytoplasm (Widhalm & Dudareva, 2015). Its
biosynthesis from the Phe/CA in plants can follow two routes:
either a coenzyme A (CoA)-dependent b-oxidative pathway or a
non-b-oxidative pathway (Fig. 6a). The CA produced by the
deamination of Phe is converted to BA after the shortening of
two carbons, which can happen through one or both CoA depen-
dent pathways (Qualley et al., 2012).

As salicin is found in the early xylem, it is possible that salicy-
lates and p-benzoate are produced through the same biosynthetic
route. To this end, the expression of genes coding for the
enzymes from the CoA dependent b-oxidative and non-b-oxida-
tive pathway (Fig. 6a) were examined in the AspWood database
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(Sundell et al., 2017). Some of the enzymes contained several
predicted genes (Fig. 6b), and the ones with an expression profile
matching that of the metabolite accumulation are shown in
Fig. 6(c). The five genes encoding PAL (‘1’ in Fig. 6c) were
expressed in the phloem and expanding xylem; and the genes
encoding the enzymes CA/4-coumarate-CoA ligase (‘2’) and ben-
zaldehyde dehydrogenase (‘3’), from which p-benzoate/BA is pro-
duced through the non-oxidative pathway (Fig. 6a), were
expressed in the mature xylem (Fig. 6c). These results agreed with
the accumulation of p-benzoate and oligomers containing V units
in the same tissues (Table S4; Fig. 5). High expression of the per-
oxisomal cinnamate-CoA ligase (‘2*’), benzyl alcohol O-benzoyl-
transferase (‘4’) and a benzoate dehydrogenase (‘5’) was observed
in the phloem, from which BA is produced through a b-oxidative
pathway. The co-expression of all annotated genes showed three
clusters: PAL, genes involved in the b-oxidative pathway, and
genes from the non-oxidative pathway (Fig. 6d).

The results from the gene expression (Fig. 6) and the metabo-
lite accumulation (Fig. 5) suggest that salicyloids are produced
through the b-oxidative route, while the p-benzoates are pro-
duced by the non-enzymatic route. Therefore, the lignification
and defense metabolism are not competitive processes. However,
the high concentrations of salicyloids esterified with cinnamates
in the phloem and salicin in the expanding xylem may suggest a
tradeoff between the two metabolic processes.

Hormones and the vascular cambium

Plant hormones such as IAA, GA and cytokinins are key regulators
of growth and development. To explore hormone levels across the
wood-forming zone, and in particular across the cambial region,
the content of IAA and cytokinins in each section was determined
using quantitative GC-MS and LC-MS methods.

As in earlier studies by Uggla et al. (1996, 1998, 2001) and
Tuominen et al. (1997), a steep concentration gradient in IAA
across the vascular cambium was observed (Fig. 7). Uggla et al.
(2001) showed that the radial gradient of IAA in latewood-forming
tissue was steeper than the gradient in early wood-forming tissue.
They also found that the cell division activity was not affected by a
decrease in IAA concentration. The presence of a gradient therefore
suggests that IAA may act as a positional marker or morphogen,
possibly by controlling the amount of time each cambial derivative
remains in the different developmental zones within the cambial
region (Sundberg et al., 2000). The role of IAA as a morphogen has
been debated, and Benkova et al. (2009) instead introduced the con-
cept of the morphogenic trigger. Nevertheless, other signals are also
likely to be involved in the regulation of the rate of cell division,
including auxin, as discussed by Bhalerao & Fischer (2014).

The concentrations of zeatin riboside (ZR), a precursor of the
biologically active molecule zeatin, followed the same steep gradi-
ent over the vascular cambium as IAA (Fig. 7). Although the
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amount of zeatin was below the limits of detection in this experi-
ment, the concentrations of ZR indicate that there was a concen-
tration gradient of zeatin-type cytokinins across the vascular
cambium. The concentrations of isopentenyl adenosine (iPA)
were lower than those of ZR; however, iPA also showed a distinct
peak in the cambial region, which overlapped with the ZR peak
(Fig. 7). The concentrations of isopentenyl adenosine 50

monophosphate (iPMP), a precursor of iPA, on the other hand,
did not peak in the cambial region; instead, they were found to
be fairly uniform up to a point c. 800 µm from the cambium,
and then followed a steady decline towards the annual ring. A
peak in cytokinin concentrations in the vascular cambium was
anticipated, since several studies have demonstrated a role for
cytokinin in controlling the rate of cell division within the cam-
bium (Matsumoto-Kitano et al., 2008; Nieminen et al., 2008;
Immanen et al., 2016). Nieminen et al. (2008) showed that the
number of cells in the cambial layer was lower in transgenic lines
of Populus with a reduced concentration of active cytokinins,

indicating that cytokinin concentrations have an impact on the
rate of cell division. They also measured the expression of the
cytokinin receptor family across the cambial region and found
that the peak in expression levels coincides with the expression of
a marker gene for cambial cell identity. In the present study, a
closer examination of the pattern of ZR and IAA concentrations
in the cambial region revealed that the peak in the ZR gradient is
slightly shifted towards the phloem side in comparison to the
IAA peak. This pattern was the same in all trees analyzed
(Table S6). Similar patterns of cytokinins in the wood forming
tissue in P. tremula9 P. tremuloides have also been shown by
Immanen et al. (2016). Altogether, this observation suggests that
cytokinins are involved in regulating cell division whereas, IAA
acts as a morphogen, providing the cambial region with posi-
tional information. The cytokinin peak may indicate the position
of the cambial initials, which previous studies have suggested are
located towards the phloem side of the cambial region (Schrader
et al., 2004; Nilsson et al., 2008).
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Conclusions

In the present study we have shown specific patterns of metabo-
lites, including signaling compounds, in different regions of the
wood-forming zone in P. tremula. Many of these patterns can
be explained based on the developmental processes occurring
within these regions, for example in the cambium (summarized
in Fig. 8). However, interpretation of metabolomics data from

the wood development zone is complicated by the fact that in
addition to developmental processes, the transport of nutrients
and secondary metabolites within the phloem and xylem must
also be considered. The xylem transpiration stream that trans-
ports water and nutrients from the root to the shoot makes a
major contribution to the metabolites in the samples from
mature wood, and these nutrients and metabolites do not reflect
the developmental state of the wood cells in this region. As well
as the transpiration stream, these sections also contain ray cells,
which stay alive for years and are metabolically active, in con-
trast to the dead xylem vessels and fibers. Hence there are at
least three possible reasons for increases in metabolite content
in the mature dead wood zone. The first possibility is that the
concentration of the metabolite is increasing as a result of xylo-
genesis, that is, the metabolite is involved in molecular develop-
mental processes within the wood cells. The second is that the
increase is due to the xylem transpiration stream that passes
through the region. This probably explains the three- to four-
fold increase in glutamine concentrations observed in the
mature xylem tissue compared to the phloem tissue. The third
possible explanation is that the increase in metabolite content
may be due to the metabolic activity of the ray cells.

The data presented here indicate that cambial activity, cell
expansion and secondary cell wall thickening are tightly coupled
processes, as suggested by Uggla et al. (2001). In the current study
both cytokinin and IAA showed distinct peaks in the cambial
region. The concentration maximum for IAA was found to be
towards the xylem side of this region, whereas the maximum for
cytokinins was further towards the phloem. Altogether, these find-
ings suggest that plant hormones such as auxins and cytokinins
have important roles in controlling cell division and position in the
cambium region. The newly formed xylem vessels and fibers elon-
gate to reach their final dimensions in the expansion zone, and this
is reflected in a dramatic increase in the concentrations of glucose,
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Fig. 8 Model for major metabolic shifts during aspen wood formation. Transverse wood section from Sundell et al. (2017).
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which is the monomeric subunit of cellulose, the main polysaccha-
ride of the primary wall. When the fibers and vessels have attained
their final dimensions in the expansion zone, the secondary cell
wall is formed inside the primary wall (Mellerowicz et al., 2001).
We found that concentrations of xylose, the subunit of the hemi-
cellulose xylan, increase as the glucose concentration starts to
decrease, marking the transition from primary cell wall to sec-
ondary cell wall formation. Oligomers were found to accumulate
after the xylose peak, indicating that lignification occurs at a later
stage of differentiation compared to formation of the secondary cell
wall. However, accumulation of the monolignol precursors of
lignin occurred before the accumulation of xylose, suggesting that
biosynthesis of the monolignols begins during the transition from
primary to secondary cell wall formation, whereas polymerization
occurs at a later stage of differentiation.
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