
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 2020 Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems, November 17-19,
2020, Nice, France.

Citation for the original published paper:

Viktorsson, W., Klein, C., Tordsson, J. (2020)
Security-Performance Trade-offs of Kubernetes Container Runtimes
In: MASCOTS 2020 (pp. 1-4).

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes,creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-175194

Security-Performance Trade-offs of Kubernetes Container Runtimes

William Viktorsson+, Cristian Klein+∗, Johan Tordsson+∗
+Department of Computing Science, Umeå University, Umeå, Sweden; ∗Elastisys AB, Umeå, Sweden

{williamv,cklein,tordsson}@cs.umu.se

Abstract—
The extreme adoption rate of container technologies along

with raised security concerns have resulted in the development
of multiple alternative container runtimes targeting security
through additional layers of indirection. In an apples-to-apples
comparison, we deploy three runtimes in the same Kubernetes
cluster, the security focused Kata and gVisor, as well as the
default Kubernetes runtime runC. Our evaluation based on three
real applications demonstrate that runC outperforms the more
secure alternatives up to 5x, that gVisor deploys containers up
to 2x faster than Kata, but that Kata executes container up to
1.6x faster than gVisor. Our work illustrates that alternative,
more secure, runtimes can be used in a plug-and-play manner in
Kubernetes, but at a significant performance penalty. Our study
is useful both to practitioners – to understand the current state
of the technology in order to make the right decision in the
selection, operation and/or design of platforms – and to scholars
to illustrate how these technologies evolved over time.

I. INTRODUCTION

Application containers are stand-alone software packages
that consist of one or more applications and the libraries,
programming runtimes, and other dependencies required to
operate the applications. Containers provide application porta-
bility across platforms and are light-weight in both resource
usage and required storage. These features simplify develop-
ment and deployment of applications. The two key sandboxing
mechanisms commonly used in containers are namespaces
for isolation (of processes, networks, filesystems, etc.) and
resource management (of CPU, memory, network, etc.), often
implemented using cgroups. A potential shortcoming with con-
tainer sandboxing is that the host operating system is shared
among multiple containers on the same host. This contrasts the
Virtual Machine (VM) approach where multiple applications
share a host but each have their own host operating system.

Container have gained widespread adoption across a broad
spectrum of industries, in particular following the releases
of first Docker1 and later Kubernetes2. A wave of Linux
kernel vulnerabilities, such as Dirty COW3, which can be used
to escape containers, increased fears of containers providing
insufficient isolation. This gave rise to multiple alternative run-
times that aim to increase security, e.g., by adding additional
layer(s) of indirection and/or reducing the attack vector.

We analyze three container runtimes with respect to security
and performance: Kata [1], gVisor [2], and runc (the default

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

1https://www.docker.com
2https://www.kubernetes.io
3https://dirtycow.ninja/

Kubernetes runtime). These were selected as they integrate
seamlessly with Kubernetes, which is required for a runtime
to gain broad adoption. For this reason, we excluded several
interesting runtimes identified in the cloud native landscape4,
including the Firecracker microVM5, and Nabla6 that reduce
the attack surface by limiting the set of accessible system calls.
Firecracker when ran under Kata Containers nearly made it to
the list of technologies evaluated, but compatibility issues with
the benchmark applications prevented it from being properly
evaluated. Nabla Containers failed at the compatibility step as
well due to requiring applications and container images to be
ported and built specifically for Nabla.

While performance evaluation of various containerization
platforms is not new ([2]–[7]), our work distinguishes itself by
evaluating container runtimes in a typical Kubernetes cluster
using benchmark applications that are representative of the
workloads that run in such clusters (Section II-B).

Our contributions include an analysis of the security mech-
anisms of the three studied runtimes (Section II), where
we discuss to what extent they fulfill a set of requirements
with respect to isolation and resource management. We also
empirically evaluate the performance of the three runtimes
(Section III) using a microservice benchmark (TeaStore),
an in-memory data-store (Redis), and a big data processing
framework (Spark). In our experiments, runc performs up to 5x
better than Kata and gVisor in both container deployment time
and application execution. Notably, gVisor deploys containers
faster than Kata (up to 2x) but executes applications slower.

II. BACKGROUND

In this section, we present the relevant background of our
work. We first summarize the relevant architectural choices of
the selected container runtimes and quantify how well each
container runtimes fulfills the security requirements. Finally,
we summarize earlier benchmarking efforts.

A. Security-Relevant Architecture

Container runtimes need to ensure process isolation, filesys-
tem isolation, device isolation, Inter-Process Communication
(IPC) isolation, network isolation and resource management.
Fig. 1 compares the architecture of runC (the default container
runtime), gVisor and Kata.

gVisor introduces a novel approach of provisioning a vir-
tualized environment by moving system interfaces normally
implemented by the host kernel into a user space kernel.

4https://landscape.cncf.io/category=container-runtime
5https://github.com/firecracker-microvm
6https://nabla-containers.github.io/

https://www.docker.com
https://www.kubernetes.io
https://dirtycow.ninja/
https://landscape.cncf.io/category=container-runtime
https://github.com/firecracker-microvm
https://nabla-containers.github.io/

PodSandbox

Hardware

Host Kernel

Container

(a) runC

PodSandbox

Hardware

Host Kernel

Sentry

Container

Limited syscalls File Access only

9Pptrace
Gofer

(b) gVisor

PodSandbox

 Virtual Machine

Hardware

Host Kernel

Container

Hypervisor
Virtio

agent

(c) Kata

Fig. 1: Comparison of the high-level architectures of the studied container runtimes.

System calls are intercepted and performed on behalf of the
container, without the overhead imposed by a hypervisor [2].

gVisor consists two main components. Sentry is a user-
space kernel that intercepts system calls made by the appli-
cation. The platform responsible for intercepting syscalls is
ptrace by default, but gVisor can be configured to use the
Kernel-based Virtual Machine (KVM) [8] instead. The sentry
provides a full network stack (called netstack) that isolates all
networking from the host network stack. Gofer is a separate
process running in each gVisor instance that provides file
system access to the container using the 9P protocol [9].

Kata containers provide lightweight VMs with the goal of
achieving performance equal to containers, but with a second
layer of isolation using hardware isolation. It supports multiple
hypervisors including QEMU, Firecracker and Cloud Hypervi-
sor [1]. A VM is booted using a compact guest OS image, opti-
mized for low kernel boot time and minimal memory footprint.
Libcontainer is used to create the execution environment inside
the VM, and run containers within that environment [10]. This
implies that the containers run on the guest with cgroups and
namespaces applied in the same manner a runC container uses
these mechanisms on a host. To enable communication from
the host into the guest, a Kata-agent is created, a process
running inside the VM as a supervisor for containers running
on the guest. Commands to the Kata runtime are forwarded
to the Kata-agent over gRPC [11] that in turn makes use of
Libcontainer to manage the lifecycle of containers. Network
and storage are accessed via a set of paravirtualized devices
through the virtio virtualization framework [12].

Table I presents the number of layers of indirection for each
container runtime. More layers of indirection entail more secu-
rity, as an attacker who gained control of the application would
need to find more vulnerabilities to compromise security of the
container runtime.

As expected, runC, being optimized for performance, only
provides a single layer of indirection for each security require-
ment. Next comes gVisor with two layers of indirection for
almost all requirements except resource management. In our
security analysis, Kata comes out as the winner, having two
layers of indirection for all security aspects.

TABLE I: Layers of indirection for each runtime.

Security Requirement runC gVisor Kata
Process isolation 1 2 2
Filesystem isolation 1 2 2
Device isolation 1 2 2
IPC isolation 1 2 2
Network isolation 1 2 2
Resource management 1 1 2

B. Earlier Benchmarking Results

Earlier work, including projects behind the secure runtimes,
compare container runtimes using micro-benchmarks [13].
Various stressors are for CPU, memory or I/O. In some cases,
syscalls are called repeatedly to highlight the careful design
that went into optimizing a specific use-case or code path.
Most of these micro-benchmarks are executed on bare-metal
without needing to deal with nested virtualization [4]. The
latter is more likely to be encountered typical Kubernetes
clusters. Other run micro-benchmarks in nested virtualization
environments [14], even on top of Kubernetes [15].

Our benchmarks complemented the above works as follows:
• We use full applications deployed on top of Kubernetes

as benchmarks, as opposed to micro-benchmarks.
• We evaluate the container runtimes on Kubernetes clus-

ters in a nested virtualization environments, as is common
with public cloud providers.

III. PERFORMANCE EVALUATION

We evaluate the performance of each container runtime,
focusing on deployment and execution time for a set of typical
microservice applications running in Kubernetes.

A. Experiment Setup

TABLE II: Components used in experiments.
Component Version / Configuration
Kubernetes 1.17.0
Containerd 1.3.0 (overlayfs)
runC 1.0.1-dev
gVisor 2019-11-14 (ptrace)
Kata 1.9.0 (QEMU+KVM)

Fig. 2: Deploy time – less is better – for each container runtime.

Fig. 3: Application performance – more is better – for each container runtime.

Infrastructure: All experiments were conducted by deploy-
ing and running applications on a two node Kubernetes cluster
deployed on Google Compute Engine VM instances. The
master ran on a n1-standard-2 (2 vCPUs, 7.5 GB memory)
machine and the worker ran on a n1-standard-8 (8 vCPUs, 30
GB memory) machine. These machines ran Ubuntu 16.04 with
nested virtualization enabled and were configured to use the
Intel Haswell CPU platform. All Pods ran only one container
and each container was limited to 1 vCPU and 2GiB of
working memory.

All container runtimes were installed and exposed for usage
within the same Kubernetes cluster through the RuntimeClass
Kubernetes feature gate [16]. This ensured that all experi-
ments were conducted in the same hardware and software
setting without the need of tearing down and reconfiguring
the Kubernetes cluster for each runtime. This setup also serves
as a proof of concept for multi-runtime Kubernetes clusters.
All benchmarks were repeated 10 times. Performance-relevant
configuration details are presented in Table II.

Applications: TeaStore [17] is a microservice benchmark.
It emulates a web store that features browsing, selecting and
making orders of tea and tea supplies. It features five services
each with different responsibilities. In the experiments, each
service had only one replica. The benchmark score for TeaS-
tore is defined as the average requests per second throughput
for eight available operations in the TeaStore API such as
adding and removing items or listing and browsing items.
The operations are performed sequentially in a round robin
fashion by two benchmark clients running simultaneously.
Each client performed 200 of each request. Time to deploy was
measured as the time from requesting all Kubernetes objects
required to run TeaStore until each service reported itself as

successfully running on the TeaStore status page. TeaStore
deployment includes time consuming training of a ML model
for a recommendation system in the web store.

Redis [18] is an in-memory data-store that features data
structures such as hashes, lists, sets and more. It has built-in
replication in a primary-replica manner. It can also provide
high availability through a Redis Sentinel that monitors Redis
instances and takes action to promote replicas to primary when
a primary seems to be failing. For the benchmark, one primary,
two replicas and two sentinels were deployed. The benchmark
score for Redis is defined as request per second throughput
for the O(1) GET operation. The Redis built-in benchmark
tool redis-benchmark was used to perform and measure the
throughput of the operations. The tool was configured to spawn
50 clients that each ran 16 operations in parallel until each
operation was executed one million times. Time to deploy was
measured as the time from requesting all Kubernetes objects
required to run Redis until the Redis master was available for
external requests.

Spark [19] is a distributed general purpose computing
framework for big data processing. A Spark cluster was
deployed with one master and 3 workers. The benchmark score
for Spark is defined as the average amount of primes found
per second when finding all prime numbers in the first million
numbers. Apache Zeppelin [20] was used to submit workloads
using PySpark, the Spark Python API. Time to deploy was
measured as the time from requesting all Kubernetes objects
required to run Spark until all workers had joined the master.

B. Experimental Results

Figs. 2 and 3 presents the results for deployment time and
application performance, respectively. The x-axis represents

the three benchmark applications, while the y-axis presents
the metric. All experiments are repeated 10 times, each box-
plot represents the quartiles.

Deployment Time: When comparing the deployment of
TeaStore to runC with the other runtimes, gVisor take about
three times as long to deploy and Kata almost four times
as long. The same relationship in deployment times are true
for deploying Spark. The deployment time for Redis shows
a slightly different ratio between the runtimes, with Kata and
gVisor both deploying Redis close to twice the time of runC.

Given their architecture, these results are expected and
represent the cost of launching two extra processes (Sentry
and Gofer) for gVisor, as well as a VM and hypervisor for
Kata.

Application Performance: When comparing application per-
formance, gVisor and Kata achieved around 40% and 60%,
respectively, of the runC score for TeaStore. A similar re-
lationship exist for Spark, with Kata outperforming gVisor
performance-wise. Regarding Redis performance, both gVisor
and Kata scored a request throughput of around 20% of that
of runC. This is due to the fact that Redis performance is
measured using a simple GET requesting in-memory data. The
low CPU and memory requirements of the operation itself
implies that the application performance is mostly determined
by networking performance.

C. Overhead

Besides impacting deployment and application performance,
container runtimes also impose an overhead in terms of CPU
and memory usage. We measured such overhead by running
an idle container for five minutes and scraping resource usage
metrics for the entire Pod using cAdvisor [21]. The results
(not shown for briefness) highlight that the CPU overhead is
negligible for all runtimes, whereas for memory this is not the
case: gVisor imposes a 14 MB memory overhead and Kata
143 MB.

IV. OUTLOOK

In this paper, we evaluate the security capabilities and
performance of two alternative Kubernetes container runtimes:
Kata and gVisor. Overall, our results show that higher security
comes at a very high cost, both in terms of deployment time
and application performance loss. When focusing on the two
security-hardened runtimes, Kata – which provides the most
security layers – also features the highest deployment time, but
– surprisingly – better application performance than gVisor,
both for a compute-bound and network-bound applications.

Increasing the security of container runtimes by adding
layers of indirection is still a fast-evolving landscape. Scholars
need to regularly evaluate said landscape to better understand
trends, design trade-offs and fundamental limits. For our study,
Kata and gVisor were selected due to their plug-and-play
compatibility with Kubernetes, but other container runtime
– in particular Firecracker and Nabla – are soon expected
to challenge their favored position. In the future, although
each container runtime is expected to conceptually stay the

same, the underlying technology that they use may change,
significantly altering their performance. For example, gVisor
is switching from ptrace-based syscall interception to KVM.

Although the performance of security-hardened container
runtimes will increase as the technology matures, it is un-
likely that there will be a one-size-fits-all container runtime.
Therefore, besides comparing the container runtimes in a
competition, future work should also focus on how container
runtimes can complement each other, perhaps providing the
user with a wider range of choices than only between strong
security and high performance.

REFERENCES

[1] Kata Containers. The speed of containers, the security of VMs. https:
//katacontainers.io/. Accessed: 2020-06-20.

[2] Ethan G Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. The true cost of containing: A
gVisor case study. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19), 2019.

[3] Tyler Caraza-Harter and Michael M Swift. Blending containers and
virtual machines: a study of firecracker and gvisor. In Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 101–113, 2020.

[4] Xu Wang. Kata containers and gVisor: a quantitative
comparison. https://www.openstack.org/videos/summits/berlin-2018/
kata-containers-and-gvisor-a-quantitative-comparison. Accessed:
2020-06-20.

[5] Allison Randal. The ideal versus the real: Revisiting the history of
virtual machines and containers. ACM Computing Surveys, 53(1):1–31,
2020.

[6] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and YC Tay.
Containers and virtual machines at scale: A comparative study. In 17th
International Middleware Conference. ACM, 2016.

[7] Selome Kostentinos Tesfatsion, Cristian Klein, and Johan Tordsson.
Virtualization techniques compared: performance, resource, and power
usage overheads in clouds. In ACM/SPEC International Conference on
Performance Engineering, pages 145–156, 2018.

[8] Humble Devassy Chirammal, Prasad Mukhedkar, and Anil Vettathu.
Mastering KVM virtualization. Packt Publishing Ltd, 2016.

[9] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Trickey, and Phil Winterbottom. Plan 9 from bell labs.
Computing systems, 8(2):221–254, 1995.

[10] Kata Containers. Kata containers architecture. https://github.com/
kata-containers/documentation/blob/master/design/architecture.md. Ac-
cessed: 2020-06-20.

[11] gRPC. A high performance, open-source universal RPC framework.
https://grpc.io. Accessed: 2020-01-03.

[12] Rusty Russell. virtio: towards a de-facto standard for virtual I/O devices.
ACM SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[13] The gVisor Authors. gVisor performance. https://gvisor.dev/docs/
architecture guide/performance/. Accessed: 2020-06-20.

[14] Shiny Sebastian Eric Ernst, K. Y Srinivasan. Kata containers: the
speed of containers, security of VMs - even in a nested environ-
ment! https://events19.linuxfoundation.org/wp-content/uploads/2017/
12/Eric-Ernst KY-Srinivasan OSS-slides-kata-nested.pdf. Accessed:
2020-06-20.

[15] Stig Telfer Bharat Kunwar. I/O performance of kata containers. https:
//www.stackhpc.com/kata-io-1.html. Accessed: 2020-06-20.

[16] The Kubernetes authors. Runtime class. https://kubernetes.io/docs/
concepts/containers/runtime-class. Accessed: 2020-06-20.

[17] Jóakim von Kistowski et al. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management
Research. In MASCOTS, 2018.

[18] Redis Labs. Redis. https://redis.io. Accessed: 2020-06-20.
[19] Matei Zaharia et al. Apache spark: a unified engine for big data

processing. Communications of the ACM, 59(11):56–65, 2016.
[20] Apache. Zeppelin. https://zeppelin.apache.org. Accessed: 2020-06-20.
[21] Google. cadvisor. https://github.com/google/cadvisor. Accessed: 2020-

06-20.

https://katacontainers.io/
https://katacontainers.io/
https://www.openstack.org/videos/summits/berlin-2018/kata-containers-and-gvisor-a-quantitative-comparison
https://www.openstack.org/videos/summits/berlin-2018/kata-containers-and-gvisor-a-quantitative-comparison
https://github.com/kata-containers/documentation/blob/master/design/architecture.md
https://github.com/kata-containers/documentation/blob/master/design/architecture.md
https://grpc.io
https://gvisor.dev/docs/architecture_guide/performance/
https://gvisor.dev/docs/architecture_guide/performance/
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Eric-Ernst_KY-Srinivasan_OSS-slides-kata-nested.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Eric-Ernst_KY-Srinivasan_OSS-slides-kata-nested.pdf
https://www.stackhpc.com/kata-io-1.html
https://www.stackhpc.com/kata-io-1.html
https://kubernetes.io/docs/concepts/containers/runtime-class
https://kubernetes.io/docs/concepts/containers/runtime-class
https://redis.io
https://zeppelin.apache.org
https://github.com/google/cadvisor

	Introduction
	Background
	Security-Relevant Architecture
	Earlier Benchmarking Results

	Performance Evaluation
	Experiment Setup
	Experimental Results
	Overhead

	Outlook
	References

