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Abstract
Purpose Diffusion tensor magnetic resonance imaging (DTI) characterises tissue microstructure and provides proxy meas-
ures of myelination, axon diameter, fibre density and organisation. This may be valuable in the assessment of the roots of 
the brachial plexus in health and disease. Therefore, there is a need to define the normal DTI values.
Methods The literature was systematically searched for studies of asymptomatic adults who underwent DTI of the brachial 
plexus. Participant characteristics, scanning protocols, and measurements of the fractional anisotropy (FA) and mean dif-
fusivity (MD) of each spinal root were extracted by two independent review authors. Generalised linear modelling was used 
to estimate the effect of experimental conditions on the FA and MD. Meta-analysis of root-level estimates was performed 
using Cohen’s method with random effects.
Results Nine articles, describing 316 adults (1:1 male:female) of mean age 35 years (SD 6) were included. Increments of 
ten diffusion sensitising gradient directions reduced the mean FA by 0.01 (95% CI 0.01, 0.03). Each year of life reduced the 
mean MD by 0.03 × 10–3  mm2/s (95% CI 0.01, 0.04). At 3-T, the pooled mean FA of the roots was 0.36 (95% CI 0.34, 0.38; 
I2 98%). The pooled mean MD of the roots was 1.51 × 10–3  mm2/s (95% CI 1.45, 1.56; I2 99%).
Conclusions The FA and MD of the roots of the brachial plexus vary according to experimental conditions and participant 
factors. We provide summary estimates of the normative values in different conditions which may be valuable to researchers 
and clinicians alike.

Keywords Diffusion tensor · Brachial plexus · Normal · Normative · Healthy · Peripheral nerve

Introduction

The brachial plexus is a network of nerves which supply the 
upper limb with movement and feeling (Fig. 1 and Supple-
mentary Fig. 1). Magnetic resonance imaging (MRI) is gen-
erally considered the best non-invasive imaging modality for Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s4033 6-020-00393 -x) contains 
supplementary material, which is available to authorized users.
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diagnosing various pathologies affecting the brachial plexus 
[1–6]. The roots of the brachial plexus are the most common 
site of injury [7] and typically, the status of the root dictates 
the prognosis and surgical reconstruction. Consequently, defin-
ing the health status of the roots is of paramount importance. 
Whilst MRI is more accurate than electrophysiology [2, 6], 
ultrasonography [3–5, 8] and computed tomography myelogra-
phy [9], the diagnostic performance of conventional cross-sec-
tional MRI for assessing the spinal nerve roots remains subop-
timal [7]. Consequently, there has been a surge of research into 
diffusion tensor imaging (DTI) which may provide additional 
valuable information. DTI characterises tissue microstructure 
and provides reproducible [10–13] proxy measures of nerve 
health which are sensitive to myelination, axon diameter, fibre 
density and organisation [14, 15]. The parameters typically 
derived from DTI include the fractional anisotropy (FA), mean 
diffusivity (MD), axial diffusivity (AD) and radial diffusiv-
ity (RD). FA is a scalar value between zero and one; an FA 
of zero implies isotropic diffusion within a voxel, whilst (in 

the context of peripheral nerve imaging) a FA nearing one 
implies diffusion along a single axis i.e., either anterograde 
of retrograde diffusion along the length of the nerve. MD 
describes the average molecular diffusion rate of the tensor; 
AD describes the diffusion rate in the long axis and RD repre-
sents diffusion perpendicular to the long axis.

Before researchers and clinicians can use DTI parameters to 
identify abnormal roots of the brachial plexus, there is a need 
to define the “normal” values. Numerous studies have exam-
ined aspects of DTI of the brachial plexus in healthy adults. 
This review aims to summarise the values observed in health 
and explore discrepancies in the reported measurements.

Methods

This review is registered with PROPSERO (ID 
CRD42019155788), it was designed and conducted in 
accordance with the Cochrane Handbook of Systematic 

Fig. 1  The roots of the brachial 
plexus emerging from the 
intervertebral foramina (upper 
left image) and their relation-
ship to the scalene muscles and 
vasculature of the upper limb 
(upper right image). The lower 
image is a simplified schematic 
of the brachial plexus highlight-
ing (in purple) the spinal roots.  
Reproduced with permission 
from Mr. Donald Sammut
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Reviews [16] and has been authored in accordance with the 
PRISMA checklist [17].

Types of studies

We included all studies which reported the findings of dif-
fusion tensor magnetic resonance imaging of the roots of 
the brachial plexus in healthy adults. Case reports were 
excluded.

Participants

Asymptomatic adults (aged ≥ 16  years) with no known 
pathology (past or present) affecting the spinal cord or bra-
chial plexus were the population of interest.

Image acquisition

Studies must have reported diffusion tensor imaging param-
eters from the roots of the brachial plexus.

Search strategy

The NICE Healthcare Databases (hdas.nice.org.uk) was 
searched using the terms “diffusion tensor” OR “DTI” 
AND “brachial plexus”. This yielded 67 hits in PubMed, 
36 in Embase, 8 in CINAHL, 2 in CENTRAL and 2 in 
ClinicalTrials.gov the on 13th November 2019. After 
de-duplication, 78 unique citations were independently 
screened by two review authors (RGW and AW). The full 
texts of all potentially relevant articles were obtained. The 
reference lists for included articles were also scrutinised 
for potentially relevant papers. The final lists of included 
articles were compared and disagreements resolved by 
discussion.

Study selection

Two review authors (RGW and AW) independently 
screened titles and abstracts for relevance, in accordance 
with the eligibility criteria. The full texts of potentially 
eligible articles were obtained and again independently 
assessed by the same two authors. Disagreements were 
resolved by discussion.

Data extraction

Two review authors (RGW and AW) independently extracted 
data concerning the demographics, scanner, pulse sequence, 
pre-processing, tensorial reconstruction, measurement con-
ditions and the outcomes of interest. The spinal nerve root 
was the unit of analysis [7] and root-level estimates of DTI 
parameters were extracted. Where data was missing or 

unclear, the corresponding author was contacted by email 
and/or phone and if no reply was received, 4 weeks later all 
authors were contacted in addition to re-contacting the cor-
responding author. The authors of one study [18] provided 
additional information (measurements form the extraforami-
nal roots using identical methods) for the purposes of this 
review.

Outcomes

The primary outcome is to estimate the normal fractional 
anisotropy (FA) of the extraforaminal roots of the brachial 
plexus in healthy adults. The secondary outcomes include: 
(a) to estimate the normal mean diffusivity (MD) of the 
extraforaminal roots of the brachial plexus in healthy adults, 
and (b) to explore the associations between DTI parameters 
and participants age, the signal-to-noise (SNR) ratios and 
related factors such as the b value(s), echo time(s) (TE) and 
resolution (in cubic millimetres,  mm3) and the number of 
diffusion sensitising gradient directions  (ND) sampled per 
shell.

Methodological quality assessment

The risk of bias was assessed by two review authors (RGW 
and AW) using the ROBINS-I tool [19] and displayed graph-
ically using robvis [20]. Disagreements were resolved by 
discussion.

Statistical analysis

Data were analysed in Stata/MP v15 (StataCop LLC, 
Texas). To estimate the effect of experimental/participant 
factors on the FA and MD, generalised linear modelling 
(GLM) was used with gaussian families. As the TE, b value 
and resolution are functions of SNR, the fixed effects were 
selected to be SNR, age in years and the ND all of which 
were handled as continuous variables. The random effects 
in the GLM varied by the study. Estimates were boot-
strapped using lossless non-parametric resampling with 
replacement, with 1000 iterations. There was insufficient 
data to meaningfully assess the effect of different tensor fit-
ting methods or components of the b value (diffusion time, 
magnitude or interval) on DTI parameters. To visualise 
the association of FA with ND, and MD with age, scatter-
plots of the aggregate estimates were generated using the 
metareg package; the circles are root-level estimates and 
the sizes are dependent on the precision (inverse variance) 
of the estimate. To estimate the pooled normal FA and MD 
of the spinal roots, meta-analyses were performed using the 
metan package. Cohen’s method was used because both 
FA and MD were homoscedastic. Dersimonian and Laird 
random effects were used given the clinical heterogeneity. 
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Analyses were subgrouped by both the  ND and spinal root 
(C5, C6, C7, C8, T1). Confidence intervals (CI) were 
generated to the 95% level. To assess the possibility of 
small-study effects we constructed a funnel plot using the 
metafunnel package, which is a scatterplot of the effect 
size against precision; symmetry implies the absence of 
small-study effects.

Results

After reviewing 27 full texts, 15 were excluded (Supple-
mentary materials) and 9 articles (of 9 unique studies) were 
included [18, 21–28] (Fig. 2).

Study characteristics

Overall, 316 adults were included. The ratio of 
males:females was approximately 1:1 (156:154). The mean 
age of participants was 35 years (SD 6). The characteristics 
of included studies are shown in Table 1.

Risk of bias within studies

The risk of bias for the included studies are summarised in 
Fig. 3. Eight of the included studies [18, 21–24, 26, 28, 29] 
were at risk of bias due to confounding because there was 
no adjustment for a) effect modifiers such as age, weight and 
the experimental factors described above, and b) repeated 
measures, i.e. ten estimates of the FA (one from each spi-
nal root, bilaterally) taken from the same individual will be 
highly correlated and without adjustment, the sample-level 

estimates will have falsely small variances. Seven studies 
[21–25, 28] provided no information about missing data 
and so the risk of bias is unclear. Two studies [21, 23] were 
judged to be at high risk of bias in the measurement of FA 
and MD because a bespoke region of interest was used to 
calculate the FA and the number of diffusion sensitising 
gradients used was not described [21]. Three studies [24, 
25, 28] were at unclear risk of bias in the measurement of 
FA and MD because information was lacking about pre-
processing, tensorial reconstruction or how the estimates of 
the FA and MD were derived from images (e.g. region of 
interest size and position). One study [23] was at high risk of 
reporting bias because three b values were tested (700, 900, 
1100 mm/s) but it is unclear which yielded the estimates of 
FA and MD reported in the manuscript or whether they are 
an average of the three. The risk of bias due to selective out-
come reporting was unclear in six studies [21–24, 26, 28], 
because no information was provided regarding the exclu-
sion criteria, attrition due to scan intolerance, dataset exclu-
sion (e.g. for uncorrectable motion artefact) or otherwise and 
there were no published protocols to consult.

Evidence synthesis

There were no clear associations between experimental fac-
tors and the FA or MD on univariable modelling (Table 2). 
Multivariable modelling showed that the angular resolution 
was strongly associated with FA, whereby every additional 
ten diffusion sensitising gradient directions sampled reduced 
the FA by 0.01 (95% CI 0.01, 0.03; Fig. 4). Furthermore, 
multivariable modelling showed that each year of life 
reduced the MD by 0.03 × 10–3  mm2/s (95% CI 0.01, 0.04; 
Fig. 5). Bootstrapping did not change these estimates.

Seven studies [18, 21, 22, 24, 27–29] were included in the 
meta-analysis of the normal FA of the roots of the brachial 
plexus at 3 T; one study [26] did not provide estimates of 
the variance so could not be included. The pooled estimate 
of the normal FA of the root was 0.36 (95% CI 0.34, 0.38; 
Fig. 6). There were no statistically significant differences 
between the five roots. However, there was significant sta-
tistical heterogeneity between studies (I2 98%) which may 
be related to the experimental conditions described above. 
The pooled estimates of the normal FA subgrouped by spi-
nal root (including the study performed at 1.5 T which had 
usable data [23]) are shown in Supplementary Fig. 2.

Six studies [18, 22, 24, 27–29] contributed to the meta-
analysis of the normal MD of the roots of the brachial plexus 
at 3 T; one study [26] did not provide estimates of the vari-
ance and one study [21] did not report the MD of any roots. 
The pooled estimate of the normal MD of the roots of the 
brachial plexus was 1.51 × 10–3  mm2/s (95% CI 1.45, 1.56; 
Fig. 7 and Supplementary Fig. 3); however, there was high 
statistical heterogeneity between studies (I2 99%) which may Fig. 2  PRISMA flowchart
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be related to the experimental conditions described above. 
The pooled estimates of the normal MD subgrouped by spi-
nal root (including the study performed at 1.5 T which had 
usable data [23]) is shown in Supplementary Fig. 3.

There was no evidence of small-study effects (Fig. 8).

Discussion

We have shown that the roots of the brachial plexus in adults 
have a mean fractional anisotropy of 0.36 (95% CI 0.34, 
0.38) and mean diffusivity of 1.51 × 10–3  mm2/s (95% CI 
1.45, 1.56). However, there is substantial variation and esti-
mates are affected by experimental conditions such as the 
field strength, b value and  ND as well as patient factors, such 
as age.

Although we provide no direct comparisons, this work 
reinforces the generally accepted concept that the DTI 
parameters of the peripheral nervous system are differ-
ent to those of the central white matter tracts of the brain 
[27]. The systematic reviews by Label [30] and Yap [31] 
showed that in health, the white matter tracts of the brain 
have a mean FA of approximately 0.36–0.54 and mean MD 
of 0.84–1.43 × 10–3  mm2/s, depending on the fibre bundle 
measured and the age of the individual. We find that the 
roots of the brachial plexus have a substantially lower aver-
age FA (between 0.34 and 0.38 with 95% confidence) and 
higher MD (95% CI 1.45–1.56  mm2/s × 10–3), which are 
comparable to the lower bounds of the central white mat-
ter values. We believe that these discrepancies are likely 
to be related to differences in the axon density (the corpus 
callosum has 38,000 myelinated fibres per  mm2, whereas 
the brachial plexus has approximately 8348 fibres per  mm2) 
[32, 33] and extensive intraneural fascicular sharing/cross-
ing [34, 35].

Several experimental factors [36] are known to affect 
DTI parameter estimates, including: (a) scanning conditions 
such as the SNR [37], components of the b value [38, 39], 
ND [40, 41]; (b) software pipelines for denoising, correct-
ing artefacts arising from susceptibility, motion and eddy 
currents [42, 43] and tensor fitting methods [37], as well 
as (c) the size and position of ROIs which may contribute 
to partial volume effects [44]. Despite these limitations, the 
TraCED challenge [10] and several phantom studies [11–13] 
have demonstrated very high reproducibility across scan-
ners, sequences and sessions for tractography from DTI. 
With more sophisticated diffusion sequences, the reasons 
for the disparities between central and peripheral fibre dif-
fusion parameters may become apparent. Nonetheless, we 
have shown DTI parameters (and thus, probably, tractograms 
derived from these datasets) are related to numerous experi-
mental conditions and, therefore, we suggest that researchers 
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and clinicians interpret our summary values with both cau-
tion and respect to their particular circumstances.

In this study, the ND was strongly related to the FA 
whereby fewer directions were associated with higher esti-
mates of the FA. This is a well-known phenomenon [41] 
and likely to be explained by the association between noise 
(which can couple to give rise to anisotropy) and artefactu-
ally high estimates of the FA [37]. Whilst the observed FA 
values in the studies with relatively fewer directions and 
lower SNR appear plausible (rather than e.g. 0.9 which 
would clearly be artefactual), it is possible that such stud-
ies are more susceptible to bias and their estimates of FA 
are falsely high. Equally, our model may still be subject to 
collinearity because studies with higher ND tended to also 
have a higher SNR. Conversely, as MD measures the size 
of the diffusion ellipsoid [45], we expected [41] MD to be 
independent of the  ND and this is what we observed.

As humans age, axons lose their integrity, peripheral 
nerves demyelinate and there is a corresponding increase in 
extra-cellular fluid. Consequently, advancing aging is typi-
cally associated with reduced FA and increased diffusivity 
in white matter structures [31, 46]. Prior work by Kronlage 
et al. [47] on the peripheral nerves in the forearm showed 
that the FA reduced with age (as in the brain [31]). We 

observed no statistically significant association between age 
and the FA of the roots of the brachial plexus but this may 
be due to the narrow age range of participants in our study. 
Whilst Kronlage [47] found that MD increased with age, 
we found that MD was slowed by 0.03 × 10–3  mm2/s with 
each year of life (Fig. 5). Our findings are in agreement with 
the wider literature on age-related diffusivity changes in the 
brain [46] and compatible with the biological mechanisms 
of aging. Specifically, we observed that the MD of the roots 
of the brachial plexus slowed in the 3rd and 4th decade of 
life, which has also been observed in the healthy senescent 
adult brain [46]. It is unclear why Kronlage’s work differs 
but this might be due to discrepancies in the age range of the 
sample (adults in this review were aged 28–45 years versus 
20–80 years in Kronlage’s [47]) and aspects of the scanning 
because Kronlage [47] used non-isotropic voxels (4.0 mm 
through plane, 1.5 mm2 in plane) which might underestimate 
the FA and overestimate the MD [43].

Limitations

The main limitation of this review is the pooled estima-
tion of FA and MD. We decided to perform meta-analyses 
in the presence of high statistical heterogeneity because 

Fig. 3  The summary risk of bias plot for included studies. Red = high risk, yellow = unclear risk, green = low risk
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(a) the generated outputs provide an important graphi-
cal representation of the variability of measurements in 
relation to experimental conditions which are easy to 
interpret, and (b) the forest plots provide a pictorial rep-
resentation of the deleterious effects of failing to adjust 
study-level estimates for repeated measures. Figures 6 and 

7 and Supplementary Figs. 2 and 3 show that in the eight 
studies [18, 21–24, 26, 28, 29] which did not use multi-
level models, the standard errors of the mean (and thus, 
their CIs) are falsely small. We believe that if studies had 
appropriately adjusted for clustering/repeated measures, 

Table 2  Mixed-effects generalised linear modeling showing the unadjusted, multivariable and bootstrapped multivariable effect estimates of co-
variables on fractional anisotropy and mean diffusivity of the roots of the brachial plexus

a Excluded due to multicollinearity

DTI parameter Experimental factors Unadjusted coeffi-
cients (95% CI)

p value Adjusted coefficients 
(95% CI)

p value Resampled adjusted 
coefficients (95% CI)

Resa-
mpled 
p 
value

Fractional anisotropy SNR 0.0001 (− 0.0003, 
0.0004)

0.662 0.0001 (− 0.0001, 
0.0004)

0.257 0.0001 (− 0.001, 
0.002)

0.840

Age in years 0.0003 (− 0.006, 
0007)

0.926 0.001 (0.001, 0.002) 0.001 0.001 (− 0001, 
0.003)

0.236

Number of diffusion 
directions

− 0.002 (− 0.005, 
0001)

0.183 − 0.001 (− 0.002, 
− 0.001)

 < 0.001 − 0.001 (− 0.002, 
− 0.0004)

0.002

Echo time (ms) 0.002 [0.00001, 
0.004])

0.174 a a a a

b value (mm/s) − 0.0004 (− 0.001, 
0.0001)

0.098 a a a a

Resolution  (mm3) 0.008 (0.003, 0.013) 0.126 a a a a

Mean diffusivity 
 (mm2/s × 10–3)

SNR − 0.001 (− 0.003, 
0.0005)

0.154 − 0.001 (− 0.003, 0) 0.055 − 0.001 (− 0.012, 
0.01)

0.799

Age in years − 0.01 (− 0.03, 0.01) 0.303 − 0.025 (− 0.030, 
− 0.021)

 < 0.001 − 0.03 (− 0.042, 
− 0.01)

0.003

Number of diffusion 
directions

0.005 (− 0003, 0013) 0.234 0.001 (− 0.001, 
0.002)

0.238 0.001 (− 0.005, 
0.006)

0.723

Echo time (ms) − 0.012 (− 0.019, 
− 0.005)

0.174 a a a a

b value (mm/s) 0.001 (0.0004, 0.002) 0.003 a a a a

Resolution  (mm3) 0.004 (0.002, 0.007) 0.562 a a a a
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Fig. 4  A scatterplot showing the negative association between the 
mean fractional anisotropy of the roots of the brachial plexus and the 
number of diffusion sensitising gradient directions
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the CIs would be wider, so  overlaping the aggregate 
means from other studies and the measures of statistical 
heterogeneity (e.g. I2) would fall.

We show a negative association between MD and age; 
however, readers should note that the range of aggregate 
ages in the included studies is narrow (28–45 years) and so 
the estimates may not be generalisable to the population.

Fig. 6  Summary estimates of the normal fractional anisotropy of the roots of the brachial plexus at 3-T
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Conclusions

The roots of the brachial plexus in adults appear to have 
a pooled mean fractional anisotropy of 0.36 (95% CI 

0.34, 0.38) and pooled mean diffusivity of 1.51 × 10–3 
 mm2/s (95% CI 1.45, 1.56), although these parameters are 
dependent on experimental conditions and vary slightly 
from C5 to T1.

Fig. 7  Summary estimates of the normal mean diffusivity of the roots of the brachial plexus at 3-T
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