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Abstract 

Energy efficiency improvement (EEI) is generally known to be a cost-effective 

measure for meeting energy, climate and sustainable growth targets. 

Unfortunately, behavioral responses to such improvements (called energy 

rebound effects) may reduce the expected savings in energy and emissions from 

EEI. Hence, the size of this effect should be considered to help set realistic energy 

and climate targets. Currently there are significant differences in approaches for 

measuring rebound effect. Here, we used a two-step procedure to measure both 

short- and long-term energy rebound effects in the Swedish manufacturing 

industry. In the first step, we used data envelopment analysis (DEA) to obtain 

energy efficiency scores. In the second step, we estimated energy rebound effects 

using a dynamic panel regression model. This approach was applied to a firm-

level panel dataset covering all 14 sectors in the Swedish manufacturing industry 

over the period 1997–2008. We showed that, in the short run, partial rebound 

effects exist within most of manufacturing sectors, meaning that the rebound 

effect decreased, but did not totally offset, the energy and emission savings 

expected from EEI. The long-term rebound effect was smaller than the short-

term effect, implying that within each sector, energy and emission savings due to 

EEI are larger in the long run compared to the short run. 

JEL classification : C02, C33, D22, Q40, Q50 

Keywords: Energy efficiency improvement, rebound effect, data envelopment 

analysis. 

 
1 Swedish Energy Agency funded this study. 
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1  Introduction  

Greenhouse gas (GHG) emissions drive climate change (Intergovernmental Panel 

on Climate Change, 2013) and about 60% of these are generated by energy use 

(International Energy Agency, 2020). Therefore, global attempts to reduce GHG 

emissions and combat climate change have aimed to reduce energy use.2 

Energy efficiency improvement (EEI) is generally recognized as a cost-

effective measure for reducing energy use. EEI can be achieved if either the same 

level of goods and services are produced using less energy, or if more goods and 

services are produced using the same level of energy. Improving energy efficiency 

should decrease the real unit price of energy service for an industrial firm. This 

change can initiate a re-optimization response that can appear in the form of 

substitution and output effects. This response is called the energy rebound effect, 

and may ultimately mitigate, increase, or even reverse the energy and emission 

savings expected from EEI. Hence, if the aim is to improve overall energy 

efficiency (with the ultimate goal of ameliorating climate effects), it is essential to 

understand the size and scope of the rebound effect. 

According to Saunders (2000), measuring the energy rebound effect 

ought to be straight forward, requiring only an estimate of the elasticity of 

demand for energy services3 with respect to changes in energy efficiency. In 

practice, however, estimating this elasticity is not so simple, and empirical studies 

have used different methods to measure the energy rebound effect, with no clear 

consensus yet about what method(s) might be best. Each of these methods have 

limitations and drawbacks. For instance, one group of studies estimated the 

rebound effect indirectly through estimating price elasticities of energy demand 

(e.g., Bentzen, 2004; Saunders, 2013, Dahlqvist et al., 2020). These estimates 

provided proxies for the rebound effect but were potentially biased for two 

reasons (Sorrell et al., 2009). First, the energy rebound effect is a consumer’s 

behavioral response to a decrease in real unit price of energy service, whereas 

price elasticities of demand are usually estimated for periods with increasing 

energy prices. Using such elasticities potentially overestimates the size of the 

energy rebound effect, because energy demand responds more strongly to price 

increases than price decreases (see e.g. Bentzen, 2004; Dahlqvist et al., 2020). 

Second, as opposed to energy price changes (which in most cases are exogenous), 

behavioral responses to EEI are driven endogenously by investments to replace 

 
2 For instance, there is a target to reduce global energy intensity, i.e. the ratio of energy use per unit 
of output, by 40% by 2030 (United Nation Secretary General`s Advisory Group on Energy and 
Climate Change, 2010). A lower energy intensity implies that less energy is used to produce one unit 
of output, and is therefore desirable in this context. 
3 Economists generally define energy services as useful work (Ayres and Ayres, 2010). Alternatively, 
energy services can be defined as the effect or outcome of using an energy flow, for example, the 
heating of a room to a particular temperature or the transportation of something over a certain 
distance within a certain time (Baumgartner and Midttun, 1987). 
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the less efficient technology. Taking the price elasticity of demand as a proxy for 

energy rebound effect implies that such investments are exogenous, which they 

are not. 

An alternative way to approach this problem was proposed by Orea et al. 

(2015), who integrated the measurement of rebound effect into a stochastic 

energy demand frontier model and estimated the effect according to the more 

theoretically sound definition suggested by Saunders (2000). This approach gave 

a direct measure of the energy rebound effect and avoided the problems of using 

the price elasticities as proxies. To obtain such a measure, they modified the 

conventional stochastic energy demand frontier model by adding an interaction 

term (i.e. a parameterized rebound function) with the inefficiency term, thereby 

estimating energy efficiency and the energy rebound effect simultaneously in a 

one-step procedure. Amjadi et al. (2018) adopted this approach for estimating 

the rebound effect for four energy-intensive sectors in the Swedish 

manufacturing industry. However, this approach had some limitations. First, it 

measured the rebound effect only through its determinants, and therefore may 

have been biased due to some omitted variables. Second, it precluded the 

existence of two potential types of rebound outcomes (“backfire” and “full 

rebound”, see discussion below) due to the one-sided nature of the inefficiency 

term in the stochastic frontier analysis (SFA) models, and the true size of the 

rebound effect might have been under-estimated. Finally, convergence properties 

were also very sensitive to the variables included in the rebound function. 

In another approach, Adetutu et al. (2016) adopted a two-stage strategy 

for measuring the energy rebound effect. In the first stage, they used SFA to 

measure the energy efficiency scores. In the second stage, they estimated a 

dynamic energy demand regression model in which various variables interacted 

with the energy efficiency term. The drawback to their approach, and to all 

parametric approaches in general, is that a functional form for the production 

technology must be assumed. In addition, Adetutu et al. (2016) did not estimate 

the rebound effect and efficiency scores simultaneously in a one-step procedure, 

and therefore their estimates are less efficient than Orea et al. (2015) or Amjadi 

et al. (2018). 

In this paper, we suggest a two-stage approach for measuring the energy 

rebound effect. The motivation for our empirical approach is to overcome the 

limitations and drawbacks of the previously mentioned approaches. In the first 

stage, we use data envelopment analysis (DEA) to obtain technical energy 

efficiency scores. In the second stage, a dynamic panel data regression model is 

used to measure the elasticity of energy demand with respect to changes in energy 

efficiency. 

Our contribution to the empirical research about the energy rebound 

effect can be summarized as follows. Applying DEA in the first stage allowed us 

to account for bad outputs (emissions) when measuring energy efficiency scores, 

and it did not require specifying any parametric production technology. 



 

3 

Furthermore, using a dynamic panel regression model in the second stage 

allowed for measuring both short- and long-term rebound effects. Finally, the 

approach allowed for all possible (known) rebound effects.  

The rest of this paper is structured as follows. Section 2 introduces the 

concept of energy rebound effects and its driving mechanisms, as well as 

empirical studies about the producer-side rebound effect. Sections 3 and 4 

present the empirical framework and describe the data used, respectively. Section 

5 presents the results and gives policy guidelines based on post-estimation 

calculations, and in section 6 we conclude. 
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2  The Rebound Effect: Mechanisms and 

Empirical Literature Review  

This section gives a short background about the energy rebound effect and the 

underlying mechanisms, which is then complemented by a literature review 

focusing on empirical studies that measure the energy rebound effect for the 

production side of the economy.  

2.1  Background and Mechanisms 

As long ago as the middle of the 19th century, the William Stanley Jevons noticed 

that the invention of more efficient steam engines increased industrial use of coal. 

This phenomenon became known as “Jevons paradox”. Later, Khazzoom (1980) 

assigned the term energy rebound effect to this paradox in the economic 

literature. 

“Production-side energy rebound effect” refers to a producer’s behavioral 

changes in energy use that have been induced by energy use becoming more 

efficient. Two effects drive this change, namely the substitution/intensity effect 

and the output effect (see e.g., Saunders, 1992; Saunders, 2008). EEI increases 

the energy productivity, meaning that more output can be produced using the 

same level of energy input. The real unit price of energy service decreases and, 

hence, the price of energy (relative to other inputs) also falls. Producers may, to 

some extent, substitute energy for other inputs, and when this happens it is called 

the substitution/intensity effect. Cost savings due to the substitution effect might 

then be used for scaling up production levels, which in turn increases energy use, 

and this increase is called the scale/output effect. These two effects determine the 

size of the energy rebound effect, which is defined as the difference between the 

actual energy savings and the expected energy saving from EEI that had been 

calculated from an engineering point of view. The size of the rebound effect 

depends on the elasticities of substitution and productivity gains (Greening et al., 

2000). The energy rebound effect is a re-optimization response to changes in 

relative input prices and cost savings, and it creates economic value; in that sense, 

it enhances the level of welfare (Borenstein, 2015). That said, the size of the 

rebound effect should be considered when policies addressing climate change and 

energy demand are set, or when the effectiveness of energy efficiency policies are 

evaluated. 

There are three types of rebound effects: (i) a direct effect, (ii) an indirect 

effect, and (iii) an economy-wide effect (Greening et al., 2000). The direct effect 

is initiated when producers re-optimize their demand for inputs as energy 

becomes relatively cheaper. This re-optimization may, in general, lead to an 

increase in energy consumption. The indirect effect is linked to scaling up the 

production level due to cost savings from EEI. The economy-wide effect may 
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occur if the direct and the indirect effects are large. The size of the energy rebound 

effect will fall within the range of the five scenarios presented in Table 1, namely, 

backfire, full rebound, partial rebound, zero rebound, and super-conservation 

(see e.g., Greening et al., 2000). 

 
Table 1. Possible scenarios for the size of energy rebound effect (RE) and energy savings 

Scenario Size Energy saving 

Backfire RE > 100% Negative energy saving 

Full rebound RE = 100% Zero energy saving 

Partial rebound RE < 100% Actual energy saving < Expected energy saving 

Zero rebound RE = 0% Actual energy saving = Expected energy saving 

Super-conservation RE < 0% Actual energy saving > Expected energy saving 

 

2.2  Empirical Studies on Producer-side Rebound Effect 

Measuring the size of the rebound effect may seem straightforward, because in 

principle it only requires the elasticity of demand for energy services with respect 

to changes in energy efficiency (Saunders, 2000). In practice, data about demand 

for energy services and/or energy efficiency is usually lacking, which means that 

elasticity cannot be estimated directly (Sorrell et al., 2009; Orea et al., 2015). 

Instead, most empirical studies have used other elasticities as a proxy for the 

energy rebound effect (Sorrell and Dimitropoulos, 2008). The majority of these 

studies have looked at consumer-side rebound effect because data for measuring 

these elasticities are readily available. Few studies have tried to measure the size 

of the energy rebound effect for producers. Nadel (1993) reviewed a small sample 

of existing studies and concluded that the energy rebound effect accounted for 

about a 2% less than expected savings, on average, due to scaling up the 

production level (the output effect). 

A few more recent studies have tried to estimate producer-side energy 

rebound effects by estimating various elasticities as proxies for the direct rebound 

effect. In one such study, Bentzen (2004) estimated an energy-price elasticity 

using a system of factor demand equations. He used data on the U.S. 

manufacturing sector from 1949 to 1999 and estimated an upper bound of 24% 

for the direct rebound effect. Another example is Saunders (2013), who measured 

short- and long-term direct rebound effects for 30 U.S. sectors from 1960 to 2005 

by estimating the elasticity of substitution between energy and other production 

factors, assuming no technological gains after 1980. He concluded that the overall 

sector average short- and long-term direct rebound effects were about 125% 

(backfire) and 60% respectively.  

There are a few studies measuring the direct energy rebound effects using 

data from China. Lin and Li (2014) estimated the direct rebound effects for heavy 
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industry through a system of cost share equations derived from a translog cost 

function, resulting in a direct rebound effect of about 74%. Lin and Xie (2015) 

looked at the direct rebound effect for China’s food production industry by 

estimating a system of cost share equations, resulting in a rebound effect of about 

34%.  

Two other studies estimated the rebound effect for Sweden’s heavy 

industrial sectors Pulp and paper, Basic iron and steel, Chemical and Mining. 

Amjadi et al. (2018) used a stochastic energy demand frontier model to estimate 

fuel and electricity rebound effects using a firm-level panel dataset for the period 

2000–2008, finding that the average fuel rebound effect was 58–65%, while the 

average electricity rebound effect was 76–86%. Dahlqvist et al. (2020) also 

estimated electricity and fuel rebound effects using a factor demand model 

approach and a firm-level dataset. Their estimates of electricity rebound effects 

showed a backfire response, while the fuel rebound effect were 24–80% across 

the four energy intensive sectors. Methodological differences between these two 

studies mean that their results are complementary — Amjadi et al. (2018) focused 

on movement towards the energy efficiency frontier, while Dahlqvist et al. (2020) 

were looking at energy-related technological changes that were moving the 

frontier itself. 

The economy-wide rebound effect is usually measured using computable 

general equilibrium (CGE) models, where the estimates range from partial 

rebound to backfire (see e.g., Grepperud and Rasmussen, 2004; Washida, 2004; 

Allan et al., 2007; Vikström, 2008; Hanley et al., 2009; Broberg et al., 2015). 

In summary, studies on producer-side rebound effect show a wide range 

of rebound effects from partial to backfire. These results are however not always 

comparable to each other because of differences in methods, data and definitions 

(Gillingham et al., 2014; Orea et al., 2015).  
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3  Methodology 

Following Saunders (2008), we define the producer-side rebound effect (R) as: 

𝑅 = 1 + 𝜂                                                                                                                                       (1) 

where η represents the elasticity of demand for energy (E) with respect to energy 

efficiency improvement (EEI), i.e., 𝜂 = 𝑑𝑙𝑛𝐸 𝑑𝑙𝑛𝐸𝐸𝐼⁄ . Instead of estimating an 

elasticity as a proxy for η (as most previous studies have done), we directly 

estimate η and the rebound effect using a two-stage approach. In the first stage, 

energy efficiency scores are calculated using DEA, while in the second stage 

energy demand is modelled using a dynamic panel data regression (including the 

first-stage energy efficiency scores), allowing estimation of both short- and long-

term energy rebound effects. 

3.1  Measuring Energy Efficiency by a Joint Production 

Technology 

Ever since the groundbreaking work of Debreu (1951) and Farrell (1957), 

efficiency has been measured using different approaches and techniques. One 

general approach (e.g., Färe et al. 1985; Färe and Grosskopf, 2004) uses the linear 

programming technique DEA, which does not require specifying a functional 

form for the production function (i.e., no particular relationship between inputs 

and outputs) nor any assumptions about the distribution of efficiency scores.  

We applied DEA to measure the input technical efficiency scores at firm-

level. The scores indicated the maximum feasible proportional reduction of all 

inputs (energy and non-energy inputs) while still producing given levels of 

outputs. We followed the approach proposed by Färe and Grosskopf (2004), 

called the joint production framework, where the production of desirable outputs 

creates undesirable outputs. Desirable outputs are marketed goods, while 

undesirable outputs are by-products with negative effects on the environment 

and humans. This framework has two main assumptions. First, it is assumed that 

the production of desirable outputs always generates undesirable outputs (this is 

called the null-joint assumption). Given the joint production of desirable and 

undesirable outputs and a constant bundle of inputs, it is further assumed that 

any reduction in undesirable outputs is conditional on a proportional reduction 

of desirable outputs, implying that the disposal of undesirable outputs is costly 

(this is called the weak disposability assumption). This framework has the 

advantage that it allows one to take into account the production of undesirable 

outputs when evaluating the efficiency of units such as firms. Indeed, it credits 

firms for their abatement activities while measuring efficiency. 
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Setting up the linear programming model to measure efficiency scores proceeded 

like this. First, there are 𝑘 = 1, … , 𝐾 individual firms in a sector. For each firm, 

there are 𝑛 = 1, … , 𝑁 inputs x including energy and non-energy inputs, and 𝑚 =

1, … , 𝑀 desirable outputs y, and and 𝑗 = 1, … , 𝐽 undesirable outputs u. Next, an 

assumption on the return to scale of the production technology is the minimal 

requirement within the DEA framework. In this paper, we assumed a constant 

return to scale technology. Under these assumptions, the linear programming 

problem to obtain the Farrell type of input technical efficiency scores (𝛼𝑘′) for 

firm k´ was: 

𝛼𝑘′ = 𝑚𝑖𝑛
𝑧1,𝑧2,…,𝑧𝑘,𝛼

𝛼  

𝑠. 𝑡.           ∑ 𝑧𝑘𝑦𝑘𝑚
𝐾
𝑘=1 ≥ 𝑦𝑘′𝑚,                                                                                       (2)                                        

                ∑ 𝑧𝑘𝑢𝑘𝑗
𝐾
𝑘=1 = 𝑢𝑘′𝑗 , 𝑗 = 1, … , 𝐽  

                  ∑ 𝑧𝑘𝑥𝑘𝑛
𝐾
𝑘=1 ≤ 𝛼𝑥𝑘′𝑛, 𝑛 = 1, … , 𝑁  

                  𝑧𝑘 ≥ 0, 𝑘 = 1, … , 𝐾 

where z is referred to as an intensity variable and only takes a non-negative real 

number for each firm; this variable defines the extent to which each firm 

contributes to constructing the production frontier. α is included on the right-

hand side of the input constraints and measures the technical efficiency in use of 

inputs, holding the level of desirable and undesirable outputs constant. α can 

have values from 0 to 1, where 1 implies full technical efficiency in use of inputs, 

meaning that no proportional reductions in the bundle of inputs are feasible given 

the level of desirable and undesirable outputs. The inclusion of the second 

constraint in Eq. (2) implies that we consider the production of undesirable 

outputs when evaluating technical efficiency in the use of inputs, which improves 

the analysis because it appropriately credits firms for their abatement activities. 

For comparison, these scores are also calculated without constraints on 

undesirable outputs (see Appendix for the results). 

DEA-based point estimates of energy efficiency scores obtained from Eq. 

(2) are based on a finite sample of firms, and are necessarily affected by sampling 

variation because the distances to the frontier will be underestimated if the best 

performing firms in the population are not included in the sample (Simar and 

Wilson, 1998). We therefore followed the bootstrapping approach proposed by 

Simar and Wilson (1998) which constructs confidence intervals for DEA energy 

efficiency scores. This approach used the output from Eq. (2) to simulate a true 

sampling distribution of efficiency scores. A new dataset was created, and energy 

efficiency scores were calculated using this dataset. This process was repeated 

many times in order to obtain a good approximation of the true distribution of 

the sampling. The bootstrapping procedure can be summarized as follows: 
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1) Use DEA to calculate the energy efficiency scores using Eq. (2). 

2) Draw with replacement from the empirical distribution of energy efficiency 

scores.  

3) Divide the original efficiency input levels by the pseudo-efficiency scores 

drawn from the empirical distribution to obtain a bootstrap set of pseudo-inputs. 

4) Apply DEA using the new set of pseudo-inputs and the same set of outputs and 

calculate the bootstrapped efficiency scores. 

5) Repeat steps 2–4 and use bootstrapped scores for statistical inference and 

hypothesis testing. 

The outcome of this process is a bias-corrected 𝛼�̂� for 𝛼𝑘. 

3.2  Measuring the Rebound Effect within a Dynamic Panel 

Data Regression Model 

In the second stage, we use a dynamic panel data regression to model energy 

demand. We use the bias-corrected energy efficiency scores from the first stage 

as a regressor to estimate both the short- and long-term elasticities of demand for 

energy with respect to EEI. 

For a cost-minimizing firm, the energy demand is a function of the output 

level, the relative price of other inputs to energy, and the level of energy efficiency. 

Assuming a Cobb-Douglas production technology with inputs labor, capital and 

energy, our dynamic energy demand regression model is written as: 

𝑙𝑛 𝐸𝑘𝑡 = 𝛽1𝑙𝑛 𝐸𝑘,𝑡−1 + 𝛽2𝑙𝑛 𝑌𝑘𝑡 + 𝛽3 𝑙𝑛 𝑅𝑃𝐶𝐸𝑘𝑡 + 𝛽4 𝑙𝑛 𝑅𝑃𝐿𝐸𝑘𝑡 +

(𝛾0 + ∑ 𝛾𝑥𝑘𝑡)𝑙𝑛 𝐸𝐹𝑘𝑡 + 𝝎𝑘 + 𝑫𝑡 + 𝑣𝑘𝑡                                                                                   (3)  

where 

∑ 𝛾𝑥𝑘𝑡 = 𝛾1𝐷𝐸𝐶𝑆𝑘𝑡 + 𝛾2𝐸𝑃𝑘𝑡 + 𝛾3𝐷𝐹𝑆𝑘𝑡 

Subscripts k and t represent firm and year, respectively. The dependent variable 

E denotes energy demand and is treated as a long run equilibrium (see e.g., 

Adetutu et al., 2016).  βs and γs are vectors of parameters to be estimated. 𝐸𝑘,𝑡−1 

is the lagged energy demand and indicates the dynamic characteristic of the 

model by accounting for intertemporal serial correlation. Because energy demand 

in any current period is expected to be correlated with energy demand in a past 

period, we expect a positive sign for β1. Y is the quantity of output produced and 

it is expected to have a positive effect on the energy demand. RPCE and RPLE are 

the relative price of capital and labor to the energy price, respectively, and they 

could affect energy demand either positively or negatively, depending on whether 

capital/labor and energy are substitutes or complements. EF is the bias-corrected 

energy efficiency score obtained from DEA. The estimated coefficient of this 

variable shows the elasticity of energy demand with respect to changes in energy 
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efficiency and therefore can be used to estimate the energy rebound effect 

according to Eq. (1). As can be seen, this coefficient is modeled as a function of a 

constant term and a few firm-specific and policy-related variables, which allows 

us to differentiate responses to EEI due to heterogeneity of firm-specific 

characteristics. The variables are (i) a dummy variable for energy cost share 

(DECS) to distinguish firms with potentially high cost savings due to EEI, (ii) the 

energy price (EP) to study the effects of energy price level and variation on the 

energy rebound effect4,  and (iii) a dummy variable for firm size (DFS) to study 

whether the rebound effect differs between large and small firms. For each firm 

in each year, the dummy variable DECS takes the value 1 if energy cost share of 

that firm is larger than the median of the sector to which the firm belongs for that 

year, otherwise this value is 0. In a similar manner, dummy variable DFS takes 

the value 1 if the output level is larger than the median of the sector for that year, 

otherwise it is 0. These variables interact with EF and allow us to evaluate how 

the energy rebound effect changes with these variables. The term wk controls for 

unobserved firm’s heterogeneity, while Dt is a set of year dummies controlling for 

year-specific effects. vkt is the independent and identically distributed error term 

with mean zero and a constant variance, i.e. 𝑣𝑖𝑡~𝑁(0, 𝜎2). 

Eq. (3) was estimated separately for each of the 14 sectors in the Swedish 

manufacturing industry using the system generalized method of moments 

(GMM) estimator developed by Arellano and Bover (1995). The estimator deals 

with issues related to dynamic panel data regression models, such as correlation 

between the lagged dependent variable and the unobservable fixed effects, 

endogeneity and serial correlation (for detailed information about system GMM 

see, e.g. Roodman, 2009). For each firm and year, we can obtain both short run 

and long run elasticities of energy demand with respect to changes in energy 

efficiency as: 

𝑆ℎ𝑜𝑟𝑡 𝑟𝑢𝑛 𝜂𝑘𝑡 = γ0 + γ1𝐷𝐸𝐶𝑆𝑘𝑡 + γ2𝐸𝑃𝑘𝑡 + γ3𝐷𝐹𝑆𝑘𝑡 

𝐿𝑜𝑛𝑔 𝑟𝑢𝑛 𝜂𝑘𝑡 = (γ0 + γ1𝐷𝐸𝐶𝑆𝑘𝑡 + γ2𝐸𝑃𝑘𝑡 + γ3𝐷𝐹𝑆𝑘𝑡) 1 − 𝛽1⁄                                    (4) 

Substituting these elasticities in Eq. (1) provides short- and long-term rebound 

effects (see also Adetutu et al., 2016, for a similar approach). Both the sign and 

the magnitude of these elasticities determine the range of the energy rebound 

effect from backfire to super-conservation. Unlike the one-stage SFA approaches 

proposed by Orea et al. (2015), this dynamic two-stage approach allows for all 

possible sizes of the rebound effects. 

 
4 This price also serves as a policy variable, because policy aimed at reducing energy use or mitigating 
emissions is likely to affect the price of energy. 
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4  Data 

We used a firm-level (unbalanced) panel data set covering all sectors in the 

Swedish manufacturing industry from 1997–2008. The fourteen sectors are Basic 

iron and steel, Chemical, Electro, Fabricated metal products, Food, Machinery, 

Mining, Motor vehicles, Printing, Pulp and paper, Rubber and plastic, Stone and 

mineral, Textiles, and Wood. The dataset was provided by Statistics Sweden and 

includes firm-level information on inputs, outputs and various emissions. 

Descriptive statistics for an average firm and year are presented in Table 2. All 

variables with monetary units are based on 2008 prices measured in Swedish 

Crowns (SEK). 

The production inputs were capital, labor and energy. The capital stock 

was calculated by the perpetual inventory method using gross investment data 

(excluding investments in buildings). The capital depreciation rate was set to 

0.087 for all firms and sectors in this study as suggested in King and Fullerton 

(1984) and Bergman (1996). Labor was the number of employees. Energy was the 

sum of electricity, district heating, wood fuel, coal, solid fuel, and gaseous fuel, 

and were all converted to energy equivalents (GWh) by Statistics Sweden using 

the same conversion rates for all sectors. 

The desirable output for each firm and year were calculated as the final 

sales divided by its corresponding producer price index for a given sector and 

year. The undesirable outputs were sulfur dioxide (SO2) and nitrogen oxide 

(NOx) measured by the metric ton.5   The capital price was defined as the user 

cost of capital and calculated based on national and sector-level indices 

(Lundgren, 2010; Brännlund and Lundgren, 2010). Unit prices of labor (i.e. 

salary) and energy prices were calculated as the ratio of these input costs to the 

quantities used.    

  

 
5Statistics Sweden computes CO2 emission by multiplying fuel consumption by an emission factor 
associated with fuel. The DEA framework in this paper allows for maximum proportional reduction 
of all inputs including energy while keeping both desirable and undesirable outputs constant. Hence, 
inclusion of CO2 as bad output is inappropriate because reduction of energy input implies reduction 
of CO2 and makes us deviate from the DEA framework by not holding the undesirables constant.  
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Table 2. Descriptive statistics for an average firm and year from 1997–2008 

Sector 
Obs. Capital 

(MSEK) 

Labor 

(number) 

Energy 

(GWh) 

Output 

(MSEK) 

SO2 

(ton) 

NOx 

(ton) 

Capital price 

(index) 

Salary 

(TSEK) 

Energy price 

(SEK/MWh) 

Basic iron and steel 410 535 528 676 1148 438.1 238.0 0.12 702 554 

Chemical 1201 398 276 88 627 9.5 9.0 0.09 641 496 

Electro 1227 79 376 7 1333 0.2 0.3 0.10 346 380 

Fabricated metal products 2193 11 43 2 30 0.1 0.1 0.08 451 604 

Food 2553 130 200 23 427 1.6 2.6 0.10 450 498 

Machinery 3506 58 179 7 266 0.2 0.3 0.09 460 520 

Mining 288 566 265 204 494 30.0 127.1 0.12 663 614 

Motor vehicles 1218 508 590 27 1601 2.2 1.8 0.08 392 458 

Printing 920 30 73 4 64 0.1 0.3 0.08 500 522 

pulp and paper 1019 722 397 433 1001 32.2 48.2 0.09 459 351 

Rubber and plastic 1349 46 90 8 111 0.2 0.5 0.09 463 506 

Stone and mineral 1019 75 151 56 178 7.5 23.8 0.08 538 485 

Textile 749 31 79 8 68 0.8 1.0 0.07 352 453 

Wood 3131 50 78 25 191 1.4 5.0 0.12 407 300 
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5  Results 

Here, we present sector-level averages of energy efficiency scores obtained from 

the DEA model, followed by parameter estimates for the dynamic energy demand 

model. The sector-level averages of the short- and long-term energy rebound 

effects are presented, followed by conclusions that provide a guide to policy 

makers by identifying sectors where promoting EEI benefited the industry or the 

environment. 

5.1  Energy Efficiency Scores from the DEA Model 

Table 3 shows sector-level averages of energy efficiency scores obtained from the 

DEA model in Eq. (2) for all 14 sectors of Swedish manufacturing industry. These 

averages were calculated for the bias-corrected firm-level energy efficiency scores 

taking into account the production of undesirable outputs, meaning that firms 

are credited for their abatement activities while measuring energy efficiency. 

Table 3 lists sectors according to their sector-level average energy 

efficiency scores, meaning that the farther one reads down the table, there is a 

larger potential for EEI.6  The efficiency score is a relative measure and Table 3 

indicates how firms within one sector perform on average relative to best 

practices available. For instance, on average, firms in the most efficient sector, 

Pulp and paper, perform closer to their best practice peers than do firms in any 

other sector.7    

 

 

 

 

 

 

 

 

 
6 For comparison, a corresponding table with bad outputs excluded is shown in Table 3A in the 
Appendix. 
7 Note that firms in different sectors do not have exactly the same technology. Thus, ranking sectors 
based on their average efficiency scores is not adequate because it may be easier in some sectors to 
perform closer to the firms defining the frontier compared to other sectors. 
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Table 3. Sector-level energy efficiency scores (including bad outputs) 

Sector Average Efficiency Score Minimum Maximum Std. Dev 

Pulp and paper 0.72 0.19 0.96 0.16 

Basic iron and steel 0.70 0.21 0.99 0.19 

Printing 0.67 0.12 0.97 0.2 

Wood 0.67 0.09 0.96 0.2 

Chemical 0.64 0.10 0.93 0.19 

Textile 0.64 0.14 0.92 0.18 

Mining 0.63 0.21 0.96 0.19 

Motor vehicles 0.57 0.14 0.92 0.19 

Stone and mineral 0.56 0.11 0.91 0.2 

Food 0.56 0.11 0.94 0.19 

Rubber and plastic 0.54 0.10 0.92 0.2 

Electro 0.54 0.10 0.92 0.2 

Fabricated metal products 0.53 0.06 0.93 0.19 

Machinery 0.46 0.07 0.91 0.18 

5.2  The Dynamic Energy Demand Model 

Table 4 presents the results of estimating Eq. (3) using a system GMM estimator.8  

System GMM is an appropriate estimator for this study since our dataset covers 

a relatively small number of time periods and a relatively large number of firms 

in each sector (Roodman, 2009). Our estimates all passed the Sargan/Hansen 

test for the joint validity of the set of instruments as well as AR(1) and AR(2) tests. 

To determine the lag order of instruments for each sector, we applied the model 

and moment selection criteria proposed by Andrews and Lu (2001).9  

Our coefficient estimates of the lagged dependent variable showed 

statistically significant and positive effects on energy demand, as expected, within 

all sectors. The results, where statistically significant, also suggested that the 

energy demand increased by the output level, which is expected. The coefficient 

estimates of relative price of capital and labor to the energy price were mostly 

positive, where significant, implying that capital/labor and energy were 

substitutes in general. 

As mentioned earlier, the elasticity of energy demand with respect to 

changes in energy efficiency is modeled as a function of a constant term and a few 

policy-relevant and firm-characteristic variables. The constant term was 

statistically insignificant in most sectors. The coefficient estimates of the 

interaction term DECSlnEF were, in most sectors, statistically significant and 

negative, indicating that in each sector, the rebound effect was lower among firms 

 
8For comparison, Table 4A in the Appendix shows a corresponding table excluding bad outputs.  
9 In our empirical estimation, the number of lags as instruments is not the same in all sectors. 
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with higher energy cost share, implying less pronounced adaptation and 

behavioral responses among such firms. The coefficient estimates of the 

interaction term EPlnEF were very small, and statistically insignificant in most 

sectors, suggesting that the rebound effect did not vary with the energy price in 

those sectors. Furthermore, the estimated coefficients of DFSlnEF were in most 

of sectors insignificant, implying that the rebound effect did not depend on the 

firm size, ceteris paribus. The coefficient estimates of the lagged energy demand 

imply that there is a difference between short- and long term rebound effects. 
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                Table 4. Parameter estimates for the dynamic energy demand model by system GMM (including bad outputs) 

 

 

 

 

 

 

 

 

 

                ***, **, and * indicate 1%, 5% and 10% significance levels, respectively.

Sector lag(ln(E), 1) lnY lnRPCE lnRPLE lnEF DECSlnEF EPlnEF DFSlnEF Hansen test AR1 AR2 df Firms Obs. 

Basic iron and steel 0.88*** 0.09 0.14 0.05 -0.23 0.12 0.00 -0.21 1 0.03 0.90 71 40 281 

Chemical 0.85*** 0.14*** 0.13 0.14 0.16 -0.35*** -0.00 0.02 0.19 0.03 0.28 71 131 810 

Electro 0.67*** 0.25*** -0.03 0.20* 0.15 -0.40*** 0.00 -0.08 0.53 0.03 0.16 70 170 809 

Fabricated metal products 0.69*** 0.23*** 0.50*** -0.15* 0.13 -0.33*** -0.00 -0.03 0.24 0.00 0.53 70 323 1424 

Food 0.73*** 0.22*** -0.02 0.22** -0.15 -0.28*** 0.00** 0.05 0.54 0.00 0.50 71 304 1721 

Machinery 0.80*** 0.15*** -0.01 0.08* -0.12** -0.18*** 0.00*** -0.01 0.13 0.00 0.18 61 501 2605 

Mining 0.86*** 0.17 0.34 -0.36 -0.87 -0.34 0.00* -0.02 1 0.06 0.48 71 41 226 

Motor vehicles 0.74*** 0.23*** 0.35** -0.05 0.00 -0.26*** 0.00 -0.03 0.22 0.00 0.13 71 169 962 

Printing 0.45*** 0.51** 1.14 -0.56 0.78 -0.61*** -0.00 -0.29 0.99 0.07 0.43 61 102 406 

Pulp and paper 0.80*** 0.20*** 0.13 0.28** 0.32* -0.72** -0.00* 0.28* 0.18 0.00 0.86 71 111 859 

Rubber and plastic 0.70*** 0.25*** 0.16 0.08 -0.09 -0.27*** 0.00 -0.07 0.34 0.00 0.48 71 169 891 

Stone and mineral 0.68*** 0.28*** 0.39** 0.38*** 0.40** -0.41*** -0.00** -0.09 0.62 0.00 0.18 71 138 799 

Textile 0.86*** 0.13** 0.11 0.11 -0.00 -0.24** 0.00 0.12 0.99 0.00 0.60 71 104 537 

Wood 0.62*** 0.30*** 0.45** 0.06 -0.07 -0.54*** 0.00 -0.04 0.12 0.00 0.71 71 284 1396 
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5.3  Rebound Effect Estimates 

To obtain estimates of the short- and long-term rebound effects for each firm and 

year, we used our coefficient estimates in Table 4 and calculated the short- and 

long-term firm-level elasticities defined by Eq. (4). Finally, we use Eq. (1) to 

estimate the short- and long-term rebound effects for each firm in each year. 

Using these estimates in each sector, we can obtain the sector-level averages of 

the short- and long-term energy rebound effects presented in Table 5.10 

Table 5. Summary statistics of sector-level averages of the short- and the long-run rebound effects 

(including bad outputs) 

Sector Short term rebound effect Long term rebound effect 

Average Min. Max. Average Min. Max. 

Basic iron and steel 0.90 0.58 1.23 0.18 -2.55 2.94 

Chemical 0.85 0.45 1.14 0.03 -2.26 1.94 

Electro 0.93 0.67 1.22 0.79 0.00 1.65 

Fabricated metal products 0.87 0.60 1.12 0.59 -0.29 1.40 

Food 0.89 0.61 1.29 0.59 -0.46 2.11 

Machinery 0.91 0.73 1.16 0.56 -0.36 1.81 

Mining 0.71 0.04 1.85 -1.07 -5.83 7.02 

Motor vehicles 0.91 0.73 1.13 0.65 -0.03 1.49 

Printing 0.94 0.05 1.63 0.89 -0.71 2.15 

Pulp and paper 0.89 -0.16 1.56 0.45 -4.78 3.80 

Rubber and plastic 0.90 0.63 1.23 0.65 -0.26 1.76 

Stone and mineral 0.86 0.40 1.31 0.55 -0.89 1.98 

Textile 1.00 0.77 1.25 0.97 -0.67 2.82 

Wood 0.70 0.34 1.16 0.22 -0.72 1.43 

 

Table 5 reveals that the short-term rebound effect is on average partial in 

a majority of the studied sectors, ranging from 70% in Wood to 100% in Textile. 

These results suggest that in most sectors (except Textile) the energy (and 

emissions) savings expected from EEI were not totally offset because of the short-

term rebound effect. However, given the magnitude of these numbers, we can 

conclude that partial rebound effect in the short run was quite substantial in 

Swedish manufacturing. In the long run, the energy rebound effects range from 

super conservation to partial rebound. Partial rebound effects were smallest in 

the Chemical sector and largest in the Textile sector. Super-conservation was 

found in Mining, implying that a 1% increase in EEI leads, on average, to a more 

 
10 For comparison, Table 5A in the Appendix shows the sector-level averages of the short- and long-
term rebound effects excluding bad outputs. 
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than 1% reduction in energy demand. It is also notable that, in all studied sectors, 

the long-term rebound effect was smaller than the short-term effect, implying 

that within each sector, energy and emission savings due to EEI are larger in the 

long run compared to the short run. 

Sector averages of short- and long-term rebound effects ranged from 

partial to super- conservation, but firm-level rebound effects varied over an even 

wider range. Indeed, all possible scenarios ranging from backfire to super-

conservation were observed at firm-level. Therefore, policy aimed at EEI must 

account for this heterogeneity in some way, because the impact will vary 

substantially among firms and to some degree among sectors. 

5.4  EEI Outcomes in the Swedish Manufacturing Industry  

EEI potentially benefits the environment through emission savings, the industry 

by cost savings from re-optimization of inputs, or of course it can benefit both 

concerns. In this section, we conduct a post-estimation descriptive analysis to 

identify sectors in which EEI mainly benefited the environment or the industry.  

To do this, we used the sector averages of energy efficiency scores as well 

as the short- and long-term rebound effects. For each sector, we also considered 

the yearly averages of energy use, CO2 emissions and output. We also calculated 

the yearly averages of energy and CO2 intensities, defined respectively as energy 

and CO2 emissions per unit of output (similarly to Pardo Martínez and Silveira, 

2013) during the period 1997–2008. These measures are presented in Table 6.11 

There are substantial differences among the different sectors in terms of energy 

efficiency scores, short- and long-term energy rebound effects, energy use, and 

CO2 emissions and output. 

Promoting EEI in Basic iron and steel had by far the largest 

environmental impact in terms of CO2 emission savings both in the short run and 

long run. Stone and mineral, Mining, Pulp and paper, Chemical and Food 

followed Basic iron and steel in the short run. In the long-term, EEI in Mining, 

Chemical, and Pulp and paper resulted in the largest CO2 emission savings after 

Basic iron and steel, based on CO2 emissions and sector-level energy efficiency 

and rebound effect.  

In terms of energy savings, EEI in Pulp and paper led to the largest 

energy savings in absolute terms both in the short and long run, because this 

sector is the most energy intensive. In the short run, Basic iron and steel, Wood, 

and Mining also had substantial energy savings from EEI. In the long run, Basic 

iron and steel, Mining, and Chemical had the largest energy savings due to EEI. 

 
11 Sector names are shortened in Table 6 as follwing: Basic iron and steel (BIS), Chemical (CHE), 
Electro (ELC), Fabricated metal products (FAB), Food (FOO), Machinery (MCH), Mining (MIN), 
Motor vehicles (MVH), Printing (PRT), Pulp and paper (PAP), Rubber and plastic (RPL), Stone and 
mineral (STM), Textiles (TEX), Wood (WOO). 
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This ranking is based on the energy demand in absolute terms as well as sector 

averages of energy efficiency and the rebound effect.  

EEI reduces the real unit cost of energy service for producers and gives 

incentives to re-optimize such that the energy input is substituted for other inputs 

to the extent that it is physically possible (and economically feasible/beneficial). 

This reduction in the cost of energy and subsequent re-optimization could result 

in production being scaled up, which in turn would potentially increase 

emissions, and the end results would be harm to the environment. A sustainable 

solution suggests that EEI should be promoted in sectors where economic growth 

can come with the lowest environmental impact, hereafter referred to as 

“sustainable” output growth. Such sectors should be characterized by these 

conditions: (i) energy efficiency is low and hence there is enough room for EEI to 

have an effect; (ii) the rebound effect is high, implying that producers will have 

large cost savings due to re-optimization of inputs; (iii) output per unit of CO2 

emission is relatively high, implying that environmental effects of scaling up 

production are not substantial in relative terms. In Table 6, we report an index 

constructed on these three conditions that ranks the manufacturing sectors in 

terms of their potential for “sustainable” output growth (see rows “Sustainable 

growth in the short run” and “Sustainable growth in the long run”). The top 

contender for achieving “sustainable” output growth, in both in the short and long 

run, is Electro, while the next two sectors are Machinery and Motor vehicles. EEI 

in these sectors have the largest potential for scaling up production with minimal 

harm to the environment. This information is highly relevant for policy makers 

when they allocate resources for promoting EEI. Table 6A in Appendix presents 

the formulas used to calculate our indicators in Table 6. 
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Table 6.  EEI outcomes in the Swedish manufacturing industry (including bad outputs) 

 BIS CHE ELC FAB FOO MCH MIN MVH PRT PAP RPL STM TEX WOO 

Data and assumptions               

Energy demand (GWh/year) 22509 8655 722 370 4968 1989 4883 2754 268 36700 928 4722 485 6367 

CO2 emissions (KTon/year)  5606 865 34 24 623 106 608 189 21 1750 64 1084 67 68 

Energy efficiency (%) 70 64 54 53 56 46 63 57 67 72 54 56 64 67 

Short_run rebound effect (%) 90 85 93 87 89 91 71 91 94 89 90 86 100 70 

Long_run rebound effect (%) 18 3 79 59 59 56 -107 65 89 45 65 55 97 22 

Energy intensity (KWh/SEK) 0.574 0.141 0.005 0.07 0.055 0.026 0.413 0.017 0.055 0.433 0.075 0.316 0.118 0.13 

CO2 intensity (Kilo/SEK) 0.143 0.014 0 0.005 0.007 0.001 0.051 0.001 0.004 0.021 0.005 0.073 0.016 0.001 

Output (millions of unit/year) 39205 61329 135832 5254 90127 76780 11821 162203 4862 84712 12401 14946 4127 48870 

Expected savings 

Energy demand (GWh/year) 6753 3116 332 174 2186 1074 1807 1184 88 10276 427 2078 175 2101 

CO2 emissions (KTon/year) 1682 311 16 11 274 57 225 81 7 490 29 477 24 22 

Actual savings 

Energy (short run (%)) 3 5 3 6 5 5 11 4 2 3 5 6 0 10 

Energy (long run (%)) 25 35 10 19 18 24 77 15 4 15 16 20 1 26 

Energy (short run (GWh/year)) 675 467 23 23 240 97 524 107 5 1130 43 291 0 630 

Energy  (long run (GWh/year)) 5537 3022 70 71 896 473 3740 414 10 5652 149 935 5 1639 

CO2emission (short run (KTon/year)) 168 47 1 1 30 5 65 7 0 54 3 67 0 7 

CO2 emission (long run (KTon/year)) 1379 302 3 5 112 25 466 28 1 270 10 215 1 18 

Effects on growth 

Output growth (short run) 10585 18767 58109 2148 35294 37730 3105 63470 1508 21110 5134 5656 1486 11289 

Output growth (long run) 2117 662 49361 1457 23397 23218 -4680 45336 1428 10674 3708 3617 1441 3548 

Sustainable growth (short run) 2 22 1709 90 57 356 5 336 72 12 80 5 22 166 

Sustainable growth (long run) 0 1 1452 61 38 219 -8 240 68 6 58 3 22 52 

Rebound effects 

Energy demand offset (short run (GWh)) 6077 2648 309 151 1945 977 1283 1078 83 9146 384 1787 175 1471 

Energy demand offset (long run (GWh)) 1215 93 262 103 1290 601 -1933 770 79 4624 277 1143 169 462 

CO2 emissions offset (short run (KTon)) 1514 265 15 10 244 52 160 74 7 436 26 410 24 16 

CO2 emissions offset (long run (KTon)) 303 9 12 7 162 32 -241 53 6 221 19 262 23 5 
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6  Conclusions 

In this study, we estimated the short- and long-term energy rebound effects for 

all 14 sectors in the Swedish manufacturing industry over the period 1997–2008. 

We applied a two-stage approach, first using DEA to calculate an energy efficiency 

score for each firm for each year, and then using a dynamic panel data regression 

model to estimate both the short- and long-term rebound effects. We also 

explored the effects that firm characteristics and policy related variables had on 

the size of rebound effects. 

We found that the energy rebound effect was best described as partial 

within majority of manufacturing sectors, meaning that the rebound effect 

mitigated, but did not totally offset, the expected energy and emission savings 

from EEI. Hence, promoting EEI was beneficial from both environmental and 

energy saving perspectives. This result to some extent justified the restriction 

imposed on the range of the rebound effect in the study by Amjadi et al. (2018). 

It was also clear that complete realization of both short- and long-term emission 

and energy savings from EEI may require complementary policy actions, such as 

e.g. energy taxes, to correct upwards the price of energy, which would mitigate 

the rebound effect.  

Our post-estimation analysis provides a guide to policy makers by 

identifying sectors where promoting EEI is more likely to have a desirable impact 

on the environment, energy savings and/or “sustainable” output growth. Our 

results suggested that different desirable outcomes can potentially be achieved by 

EEI in different sectors, mainly due to sector-specific characteristics such as CO2 

emissions, energy consumption and output per unit of emission. We found that 

EEI had the largest positive impact on the environment, energy saving and 

“sustainable” output growth in Basic iron and steel, Pulp and paper and Electro, 

in that order. These results agree with earlier findings Amjadi et al., (2018) where 

were also found that EEI in Basic iron and steel and Pulp and paper results in, 

respectively, the largest CO2 emission savings and largest total energy savings in 

Swedish heavy industry. 

Because energy demanded by Swedish manufacturing is about 45% of 

Sweden’s total energy use in 2008 (Statistics Sweden (SCB); cited in Martinez 

and Silveira, 2013), the energy rebound effects have important implications for 

design and implementation of energy and climate-related policies. For example, 

in sectors with significant rebound effects, policy aimed at EEI should be 

accompanied by complementary measures (such as energy taxes) to help mitigate 

the effects of energy becoming effectively less costly, and thus neutralize some of 

the unintended consequences that come with EEI. 
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Appendix 

Table 3A. Average bias-corrected energy efficiency scores (excluding bad outputs) 

Sector Average efficiency score 
Mining 0.49 

Stone and mineral 0.48 

Textile 0.46 

Printing 0.46 

pulp and paper 0.46 

Chemical 0.43 

Motor vehicles 0.41 

Wood 0.40 

Rubber and plastic 0.39 

Electro 0.32 

Basic iron and steel 0.30 

Food 0.29 

Machinery 0.26 

Fabricated metal products 0.17 
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    Table 4A. Parameter estimates for the dynamic energy demand model by system GMM (excluding bad outputs) 

    ***, **, and * indicate 1%, 5% and 10% significance levels, respectively. 

 

Sector lag(ln(E), 1) lag(ln(E), 2) lnY lnRPCE lnRPLE lnEF DECSlnEF EPlnEF DFSlnEF Hansen test AR1 AR2 df Firms Obs. 

Basic iron and steel 0.54*  0.42 0 0.28 -0.56 -0.09** 0.00 -0.02 1 0.04 0.57 71 55 381 

Chemical 0.71***  0.30*** 0.15* 0.17** -0.15* -0.26*** 0.00* -0.02 0.20 0.01 0.10 65 167 1110 

Electro 0.63***  0.33*** -0.09 0.27*** -0.24*** -0.30*** 0.00** 0.00 0.41 0.00 0.12 71 197 976 

Fabricated metal products 0.72***  0.21*** 0.38** -0.06 -0.02 -0.15*** 0.00 -0.02* 0.14 0.00 0.53 71 387 1736 

Food 0.63***  0.33*** 0.21*** 0.19*** -0.22*** -0.19*** 0.00 -0.02 0.13 0.00 0.49 71 375 2223 

Machinery 0.66***  0.32*** 0.02 0.17*** -0.32*** -0.18*** 0.00*** -0.02 0.31 0.00 0.16 71 571 3054 

Mining 0.77***  0.24 -0.16 0.44 0.06 -0.35** 0.00 0.07 1 0.03 0.51 71 43 245 

Motor vehicles 0.49*** 0.18*** 0.30*** 0.12 0.09 -0.21** -0.21*** 0.00 -0.05** 0.43 0.00 0.13 69 185 1097 

Printing 0.44***  0.57*** 0.48 -0.08 -0.14 -0.51*** 0.00 -0.05 0.99 0.02 0.69 71 140 633 

Pulp and paper 0.60***  0.41*** 0.10 0.52*** -0.14 -0.61*** 0.00 0.03 0.37 0.00 0.74 71 126 966 

Rubber and plastic 0.73***  0.27*** 0.23** 0.15** -0.09 -0.19*** 0.00 0.01 0.35 0.01 0.47 71 216 1176 

Stone and mineral 0.61***  0.35*** 0.35* 0.48*** 0.22 -0.42*** 0.00* -0.08 0.36 0.10 0.25 68 154 933 

Textile 0.81***  0.20*** 0.31*** 0.14 0.03 -0.22*** 0.00 0.04 0.48 0.00 0.49 71 119 643 

Wood 0.50***   0.48*** 0.40** 0.15 -0.20*** -0.35*** 0.00 -0.02 0.11 0.00 0.97 71 292 1435 
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Table 5A. Sector-level averages of the short- and the long-run rebound effects (excluding bad outputs) 

Sector Short-run Rebound Effect Long-run Rebound Effect 
Basic iron and steel 0.51 -0.06 

Chemical 0.61 -0.36 

Electro 0.72 0.23 

Fabricated metal products 0.90 0.64 

Food 0.65 0.06 

Machinery 0.66 0.01 

Mining 0.81 0.14 

Motor vehicles 0.76 0.28 

Printing 0.60 0.29 

Pulp and paper 0.46 -0.35 

Rubber and plastic 0.76 0.10 

Stone and mineral 0.71 0.25 

Textile 0.84 0.16 

Wood 0.57 0.14 

 
These results were obtained using a DEA framework excluding bad 

outputs. Table 5.A shows that the average of the short-term rebound effect was 

partial in all 14 sectors, and ranged from 46% in Pulp and paper to 90% in 

Fabricated metal products. This implies that the energy and emission savings 

expected from EEI were not totally offset by the short-term rebound effect, 

though the size of rebound effect was significant. In the long run, rebound effect 

was partial in most of the studied sectors. However, our results indicate a super-

conservation response to EEI in the three of energy-intensive sectors Pulp and 

paper, Basic iron and steel and Chemical, implying that a 1% EEI led on average 

to a >1% reduction in energy demand. These have important policy implications 

for promoting EEI in the long run, because these three sectors constituted about 

three-quarters of total energy use in Swedish manufacturing (Swedish Energy 

Agency report, 2015). Table 5.A also shows that the long-term rebound effect was 

smaller than the short-term rebound effect, implying that in the long run, energy 

and emission savings induced by EEI are larger than the short run. Although 

sector averages of the short- and long-term rebound effects range from partial to 

super-conservation, firm-level rebound effects included all possible rebound 

effects, i.e., from backfire to super-conservation. 
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Table 6A. Formulas used to calculate EEI outcomes in the Swedish manufacturing industry 

(reported in Table 6) 

Actual energy saving (%)=(((1-(0,01× rebound effect (%)))×(100-Energy efficiency(%)) ) ⁄ (100)×100) 

Actual energy saving (GWh/year)=((Actual energy saving (%)) ⁄ 100)×Energy demand(GWh/year) 

Actual CO2 emission saving (KTon/year)=((Actual energy saving (%)) ⁄ 100)×CO2 emission (KTon/year) 

Actual output growth=((100-Energy efficiency (%))) ⁄ 100×(rebound effect(%)) ⁄ (100×Output(millions of unit))  

Actual sustainable growth= Actual output growth ⁄ (CO2 emission (KTon/year))  

 


