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Abstract 

Energy inefficiency in production implies that the same level of goods and 

services could be produced using less energy. The potential energy inefficiency of 

a firm may be linked to long-term structural rigidities in the production process 

and/or systematic shortcomings in management (persistent inefficiency), or 

associated with temporary issues like misallocation of resources (transient 

inefficiency). Eliminating or mitigating different inefficiencies may require 

different policy measures. Studies measuring industrial energy inefficiency have 

mostly focused on overall inefficiencies and have paid little attention to 

distinctions between the types. The aim of this study was to assess whether energy 

inefficiency is transient and/or persistent in the Swedish manufacturing 

industry. I used a firm-level panel dataset covering fourteen industrial sectors 

from 1997–2008 and estimated a stochastic energy demand frontier model. The 

model included a four-component error term separating persistent and transient 

inefficiency from unobserved heterogeneity and random noise. I found that both 

transient and persistent energy inefficiencies exist in most sectors of the Swedish 

manufacturing industry. Overall, persistent energy inefficiency was larger than 

transient, but varied considerably in different manufacturing sectors. The results 

suggest that, generally, energy inefficiencies in the Swedish manufacturing 

industry were related to structural rigidities connected to technology and/or 

management practices. 

JEL classification: D22, L60, Q40 

Keywords: Stochastic energy demand frontier model, persistent and transient 

energy inefficiency, energy inefficiency.
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1  Introduction  

Greenhouse gas (GHG) emissions from human activities are the main driver of 

climate change that has been observed during last few decades 

(Intergovernmental Panel on Climate Change (IPCC), 2013). About two-thirds of 

these emissions are associated with energy use (International Energy Agency, 

2020), and global attempts to reduce GHG emissions and combat climate change 

have aimed at reducing energy use. In a recent report, the United Nation 

Secretary General’s Advisory Group on Energy and Climate Change demanded a 

reduction in global energy intensity by 40% by 2030 (AGECC, 2010). Sweden is 

a front-runner in these matters and has set ambitious energy and climate-related 

goals, including an aim of being 50% more efficient in energy use by 2030 than it 

was in 2005 (Government offices of Sweden, 2018). The target is expressed in 

terms of primary energy use in relation to gross domestic product and the 

intention is that overall energy intensity will be reduced. 

Energy intensity is generally defined as energy use per unit of activity, 

such as output. Energy efficiency improves if the same level of goods and services 

are produced using less energy, or if more of goods and services are produced 

using the same level of energy. For a given level of output, energy efficiency is 

defined as the ratio of minimum-possible to observed energy use. Improving 

energy efficiency can change energy intensity for the better.   

The industrial sectors (including manufacturing) generally contribute 

significantly to both energy use and GHG emissions. Industry generated more 

than 30% of total global GHG emissions in 2010 (Fischedick et al., 2014), and 

consumed about 36% of total global energy use in 2014 (United States Energy 

Information Administration, 2017). Hence, improving energy efficiency of the 

industrial sector is essential if energy and climate-related targets are to be 

realized.  

Industrial energy inefficiency may exist for various reasons, such as lack 

of upgrades to the most energy efficient technology, or sub-optimal allocations of 

energy in production. Overall energy inefficiency can however be decomposed 

into two types, persistent and transient (see e.g. Kumbhakar et al., 2014). 

Persistent energy inefficiency reflects structural rigidities in production and/or 

systematic shortcomings in management over a long period. Transient energy 

inefficiency is due to temporary shortcomings, like acute management problems, 

and this type of inefficiency is more readily improved in the short run.  

Recent studies on efficiency measurements have focused not only on 

overall efficiency measures, but have also distinguished between transient and 

persistent. The distinction between types of inefficiency may have important 

implications for choosing optimal energy policy aimed at mitigating inefficiency 

(Kumbhakar et al., 2014; Kumbhakar and Lien, 2017; Lai and Kumbhakar, 2018; 

Lien et al. 2018). While transient energy inefficiency might be addressed by 
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policies affecting short-term performance, mitigating persistent inefficiency 

might require policies aimed at making structural changes. Hence, studies 

measuring overall energy inefficiency are potentially misleading for designing 

short- versus long-term energy policies. 

The stochastic frontier analysis (SFA) framework allows for estimating 

both persistent and transient energy inefficiency. Currently, empirical estimates 

of these two types are limited to a few studies within the household and 

residential sectors (e.g. Alberini and Filippini, 2017), and most studies with a 

focus on industry estimate the overall energy inefficiency only (e.g., Buck and 

Young, 2007; Boyd, 2008; Lundgren et al., 2016). Clearly, it would be 

advantageous if analysis which estimates persistent and transient energy 

inefficiencies could also be applied for industries. 

This study contributes to the empirical literature on frontier analysis by 

estimating persistent and transient energy inefficiencies for the Swedish 

manufacturing industry. The manufacturing industry is one of the major drivers 

of Swedish GDP, and covers about 45% of the total energy use in Sweden in 2008 

(Statistics Sweden (SCB); cited in Martinez and Silveira, 2013). Hence, measuring 

transient and persistent energy inefficiencies is likely to have important 

implications for designing energy policies in both the long run and the short run. 

Furthermore, because the analyses in this study are performed at the sectoral 

level, the results are potentially interesting for the same sectors in other countries 

that have a similar industrial structure. Until now, the empirical evidence for this 

industry has been limited to a few studies that measured overall energy efficiency, 

e.g. Lundgren et al. (2016) and Zhang et al. (2016). This study is the first to 

measure transient and persistent energy inefficiency for the Swedish 

manufacturing industry. 

The paper is organized as follows. Section 2 is an overview of the 

evolution of the four-component SFA model, presenting the four-component 

stochastic energy demand frontier derived for a cost minimizing firm as well as 

its estimation approaches, and the empirical specification. Section 3 provides a 

summary of the data, while section 4 presents the results. Finally, section 5 

discusses the results and offers some conclusions. 
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2  The Evolution of Four-Component SFA 

Models  

The methodology of SFA panel models has evolved from the early models 

proposed by e.g. Pitt and Lee (1981) to the more recent four-component error 

term model1 (Kumbhakar et al., 2014; Colombi et al., 2014; Tsionas and 

Kumbhakar, 2014). In this model, the error term captures (i) unobservable unit-

specific heterogeneity, (ii) transient inefficiency, (iii) persistent inefficiency, and 

(iv) random noise, each of which is separately identified given distributional 

assumptions (e.g. Kumbhakar et al., 2014). The earlier and simpler SFA models 

included some, but not all, four components at the same time. For instance, the 

earliest SFA panel models were designed to capture persistent inefficiency, but 

did not allow for unobserved heterogeneity of panel units nor for transient 

inefficiency (see Pitt and Lee, 1981; Schmidt and Sickles, 1984; Kumbhakar, 1987; 

Battese and Coelli, 1988). Models subsequently proposed by Kumbhakar and 

Hjalmarsson (1993) and Kumbhakar and Heshmati (1995) captured both 

transient and persistent inefficiencies, but confounded persistent inefficiency 

with unit effects, because they did not separate inefficiency from unobserved 

heterogeneity. The first models separating unobserved unit heterogeneity from 

inefficiency were the “true fixed effect” and the “true random effect” panel SFA 

models by Greene (2005). However, these models are not capable of separating 

persistent inefficiency, if it exists, from unit-specific effects.  

The four-component error term SFA model improves upon the earlier 

models because it can separate unobserved heterogeneity from persistent 

inefficiency, and transient inefficiency from random noise. The model is more 

flexible in the sense that it allows for the inefficiency of a unit (e.g. firm) to be 

correlated with itself over time, and a unit may reduce part of its inefficiency over 

time by reducing short-term rigidities. In contrast, earlier SFA models generally 

assumed that inefficiency is independently distributed over time, which is a 

rather restrictive assumption (Lien et al, 2018). Other developments of the four-

component error term SFA model allow identification of determinants of 

inefficiency (see e.g. Reifschneider and Stevenson (1991), Kumbhakar et al. 

(1991), Battese and Coelli (1995), Badunenko and Kumbhakar (2017), Lai and 

Kumbhakar (2018) and Lien et al. (2018) for more comprehensive descriptions). 

The determinants of the four component inefficiencies are not as such in the 

scope of this paper.  

                                                           
1 The four-component model is also referred to as the generalized true random-effects model (GTRE) 
by Tsionas and Kumbhakar (2014). 
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2.1  A Stochastic Energy Demand Frontier Model for Panel 

Data 

A technically energy efficient producer reaches the maximum level of output (as 

represented by the production frontier) given the technology at hand and the use 

of other inputs. As there are many different input combinations that may lead to 

the same level of frontier output, there is a concern about whether the observed 

combination of inputs is the best. A relevant criterion for determining the 

performance of producers should relate to production decisions such as cost 

minimization or profit maximization, under which allocative efficiency can be 

accommodated. The cost minimization criterion is generally used in empirical 

applications for evaluating allocative efficiency and identifies the least-cost input 

combination for producing a given level of output.2  More precisely, for a cost-

minimizing firm, a stochastic energy demand frontier represents the minimum 

level of energy required to produce a given level of output, given the available 

technology and the use of other inputs and their prices. The most energy efficient 

firms are located on (or close to) the frontier, while less efficient firms are located 

further below the frontier. The overall energy inefficiency score of a firm is 

measured as the deviation from the frontier, i.e. the difference between the 

observed energy use and the cost-minimizing level defined by the derived energy 

demand frontier. The score reveals the percentage by which a firm could reduce 

its energy use in relation to the frontier (i.e. a cost-minimizing energy use given 

technology available), while still producing the same level of output. 

A firm’s overall energy inefficiency may be persistent and/or transient 

due to technical inefficiency (the failure to operate at the production frontier), 

allocative inefficiency (the failure to minimize production costs), or a 

combination of both (Filippini and Hunt, 2012). As mentioned earlier, persistent 

inefficiency reflects structural problems in a firm’s production process and/or 

systematic shortcomings in management, while transient reflects more 

temporary management problems. 

A few studies have used SFA to measure industrial energy efficiency (e.g. 

Boyd (2008), Buck and Young (2007), Filippini and Hunt (2011), Zhou et al. 

(2012), and Lundgren et al. 2016).3  The stochastic energy demand frontier model 

in this study is based on the cost-minimizing input demand equations derived in 

e.g. Schmidt and Lovell (1979) and further discussed in Kumbhakar and Lovell 

(2000). Adopting the framework proposed by Colombi et al. (2014), Kumbhakar 

et al. (2014) and Tsionas and Kumbhakar (2014), a four-component stochastic 

                                                           
2 A firm is said to be ”allocative efficient” (with respect to cost minimization) if there is no other bundle 
of inputs that can produce a given level of output at a lower cost. 
3 There are examples where Swedish industrial energy efficiency has been measured using approaches 
other than SFA, such as a study by Zhang et al. (2016) using data envelopment analysis (DEA), and a 
study by Pardo Martínez and Silveira (2013) using energy intensity as a measure of energy efficiency. 
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energy demand frontier allowing for unobserved heterogeneity, persistent and 

transient inefficiencies can be written as: 

𝑙𝑛 𝐸𝑖𝑡 = 𝛽0 +∑𝛽𝑗

𝐽

𝑗=1

𝑙𝑛𝑋𝑗𝑖𝑡 + 𝜇𝑖 + 𝜂𝑖 + 𝑢𝑖𝑡+ 𝑣𝑖𝑡⏟          
𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

                                                                  (1) 

where subscripts i and t represent firm and year, respectively. E is the actual 

energy use as a function of a vector of variables, X, including e.g. the level of 

output and relative price of other inputs to energy price (more on this below).4  β 

is a vector of j coefficients to be estimated. Unexplained energy use is reflected by 

the error terms 𝜇𝑖 , 𝜂𝑖, 𝑢𝑖𝑡 and 𝑣𝑖𝑡. 

Kumbhakar et al. (2014) showed that each of the four error terms can be 

identified given their respective distributions. The term 𝜇𝑖  captures unobservable 

heterogeneity among firms (i.e. firm effects), and is assumed to follow a standard-

normal distribution (i.e. 𝜇𝑖~𝑖. 𝑖. 𝑑 𝑁(0,𝜎𝜇
2)). For a firm that is not fully energy 

efficient, 𝑢𝑖𝑡 and 𝜂𝑖 measure the difference between actual and optimal energy use 

in the short and long run, respectively. Term 𝜂𝑖 is a one-sided error capturing the 

level of underlying persistent or time-invariant energy inefficiency, and is 

assumed to follow a half-normal distribution (i.e. 𝜂𝑖~𝑖. 𝑖. 𝑑 𝑁
+(0, 𝜎𝜂

2)) with 

𝐸(𝜂𝑖) = √2 𝜋⁄ 𝜎𝜂 . This part is only allowed to vary across firms i. Term 𝑢𝑖𝑡 is a one-

sided error capturing the level of underlying transient or time-varying energy 

inefficiency, also assumed to follow a half-normal distribution, (i.e. 

𝑢𝑖𝑡~𝑖. 𝑖. 𝑑 𝑁
+(0,𝜎𝑢

2)) with 𝐸(𝑢𝑖𝑡) = √2 𝜋⁄ 𝜎𝑢. This part is allowed to vary both 

across firms i and over time t. Both inefficiency terms are assumed to be larger 

than or equal to zero, and to capture the technical and allocative inefficiency 

(Filippini and Hunt, 2012). Finally, 𝑣𝑖𝑡 is a conventional symmetric random noise 

term and is assumed to be normally distributed (i.e.,𝑣𝑖𝑡~𝑖. 𝑖. 𝑑 𝑁(0,𝜎𝑣
2)). 

The half-normal distributional assumption for the one-sided inefficiency 

terms 𝜂𝑖 and 𝑢𝑖𝑡 is most common in empirical studies. Alternative distributions 

exist, such as the truncated normal, exponential, and gamma distribution, and a 

key question is whether choice of distribution has any critical implications for the 

results. Greene (1990) compared average inefficiency levels across four main 

distributional specifications for the one-sided inefficiency term (half-normal, 

truncated normal, exponential, and gamma) and found that there is almost no 

difference in average inefficiency for 123 U.S. electric utility providers. Greene’s 

finding motivates assuming a half-normal distribution for the inefficiency terms 

in this paper. 

                                                           
4This set of variables is included based on a derived stochastic energy demand frontier equation within 
a cost-minimizing framework. The empirical specification is presented in Section 2.3. 
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2.2  Estimation 

There are different approaches for estimating the four-component error model. 

For instance, Colombi et al. (2014) proposed a single stage Maximum Likelihood 

(ML) estimation, and a closed form ML estimator is obtained assuming a skewed 

normal distribution for both the time variant and invariant random components 

of Eq. (1).5   

This distribution is more general than the normal distribution and allows 

for an asymmetric error term (Azzalini, 1985). Kumbhakar et al. (2014) and Lien 

et al. (2018) suggested a three-step approach to estimate Eq. (1). As argued by 

Lien et al. (2018), the three-step approach has two advantages compared to the 

single-stage ML approach. First, β parameters estimated using a three-step 

approach are not affected by distributional assumptions on 𝑢𝑖𝑡 and 𝜂𝑖 since they 

are estimated prior to distributional assumptions. Second, the three-step 

procedure is more convenient to implement in practice (Filippini and Greene, 

2016), because the one-step ML estimator is based on a nonlinear optimization 

and therefore may not converge while maximizing the log likelihood function. 

However, the one-step ML estimator is a more efficient estimator than the three-

step approach, i.e. it has a smaller variance (Lien et al., 2018). The three-step 

approach proposed by Kumbhakar et al. (2014) and Lien et al. (2018) is used in 

this study and the steps are summarized below. 

In step 1, Eq. (1) is transformed to a standard random effect panel model 

by adding and subtracting the expected values of 𝜂𝑖 and 𝑢𝑖𝑡 to and from Eq. (1) as 

follows: 

𝑙𝑛 𝐸𝑖𝑡 = [𝛽0 + 𝐸(𝜂𝑖) + 𝐸(𝑢𝑖𝑡)]
⏞              

ℎ

+∑ 𝛽𝑗𝑗=1 𝑙𝑛 𝑋𝑗𝑖𝑡 +

[𝜇𝑖 + 𝜂𝑖 − 𝐸(𝜂𝑖)]⏞          

𝛼𝑖

+[𝑢𝑖𝑡 + 𝑣𝑖𝑡 − 𝐸(𝑢𝑖𝑡)]⏟            
𝜀𝑖𝑡

= ℎ +∑ 𝛽𝑗𝑗=1 𝑙𝑛𝑋𝑗𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡                    (2)  

Regardless of any initial distributional assumptions for the two 

components 𝜂𝑖 and 𝑢𝑖𝑡, Eq. (2) is a transformation of Eq. (1) such that components 

𝛼𝑖 and 𝜀𝑖𝑡 have zero mean and constant variance. This equation follows the 

standard form of a random effect panel model (Baltagi, 2008; Hsiao, 2014) and 

is estimated by random effect regression.   

In steps 2 and 3, firm specific effects and residuals obtained from the first 

step are used as dependent variables of two separate SFA models to estimate 

persistent and transient inefficiencies. In the second step, the predicted values of 

𝛼𝑖 are used as the dependent variable to estimate persistent inefficiency, while 

                                                           
5 Colombi et al. (2014) assume that 𝑣𝑖𝑡 and 𝜇𝑖  are independent and identically distributed (i.i.d.) with 

standard normal probability density function, and that 𝑢𝑖𝑡 and 𝜂𝑖 are i.i.d. with half normal probability 
density function. 
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ignoring the differences between the true and predicted values of 𝛼𝑖. The term 𝛼𝑖 

is decomposed as: 

𝛼𝑖 = −𝐸(𝜂𝑖)+ 𝜇𝑖 + 𝜂𝑖                                                                                                                 (3) 

Eq. (3) is estimated using a standard normal–half-normal SFA model. 

Firm-specific persistent energy inefficiency is obtained using the conditional 

mean estimator of 𝜂𝑖, i.e., 𝐸 = (𝜂𝑖|𝜇𝑖) proposed by Jondrow et al. (1982). The 

corresponding firm-specific persistent energy efficiency scores are then 

calculated by exp (-𝜂𝑖). These scores take values between zero and one, where one 

indicates a fully energy efficient producer in long run, i.e., 𝜂𝑖 = 0. 

Similarly, in the third step, the predicted values of 𝜀𝑖𝑡 from step 1 are used 

to estimate the transient inefficiency 𝑢𝑖𝑡 using a standard normal–half-normal 

SFA model. This procedure ignores the difference between the true values and 

the predicted values of 𝜀𝑖𝑡. As defined in Eq. (2), 𝜀𝑖𝑡 is decomposed as: 

𝜀𝑖𝑡 = −𝐸(𝑢𝑖𝑡) + 𝑢𝑖𝑡 + 𝑣𝑖𝑡                                                                                                          (4) 

Like the second step, firm-specific transient energy inefficiency is 

obtained using the conditional mean estimator of 𝑢𝑖𝑡, i.e., 𝐸 = (𝑢𝑖𝑡|𝑣𝑖𝑡), proposed 

by Jondrow et al. (1982). The corresponding firm-specific transient energy 

efficiency scores are then calculated by exp (−𝑢𝑖𝑡 ). These scores also take values 

between zero and one, where one indicates a fully energy efficient producer in the 

short run. Overall efficiency is obtained as a product of the transient and 

persistent efficiency scores. 

2.3  Empirical Specification 

The empirical specification of the four-component stochastic energy demand 

frontier model in this study is based on a Cobb-Douglas production technology. 

This form is widely used in frontier analysis models because of its relative 

simplicity (see e.g. Kumbhakar and Lovell, 2000). Assuming firms minimize 

costs using the inputs labor, capital and energy, the frontier is formulated as: 

𝑙𝑛𝐸𝑖𝑡 = 𝛽0 + 𝛽𝑌𝑙𝑛𝑌𝑖𝑡 +𝛽𝑅𝑃𝐶𝐸 𝑙𝑛𝑅𝑃𝐶𝐸𝑖𝑡 + 𝛽𝑅𝑃𝐿𝐸 𝑙𝑛𝑅𝑃𝐿𝐸𝑖𝑡 + 𝛽𝑠𝑫𝑠 + 𝛽𝑡𝑡

+ 𝜇𝑖 + 𝜂𝑖 + 𝑢𝑖𝑡+ 𝑣𝑖𝑡⏟          
𝑓𝑜𝑢𝑟−𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟

                                                                               (5) 

As in previous equations, subscripts i and t represent firm and year, respectively. 

E is the actual energy use by each firm, modeled as a function of the level of output 

Y, the relative price of capital to energy RPCE and the relative price of labor to 

energy RPLE. Given the log-format, coefficients are interpreted as elasticities. A 

time trend variable t is added to account for changes in energy use over time. 
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Furthermore, product heterogeneity within each sector is controlled for by the set 

of sub-sector dummy variables Ds. These dummies represent different groups of 

products produced within each sector and are constructed from official Swedish 

industry classifications. The inclusion is reasonable; within each sector, firms 

producing the same products are likely to be more similar to each other than to 

other firms.  
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3  Data 

This study uses a firm-level (unbalanced) panel data set covering 14 sectors in the 

Swedish manufacturing industry for the period 1997–2008. The dataset was 

provided by Statistics Sweden and contains detailed annual information on costs 

and quantities related to different inputs and sales. In this section, I first provide 

summary statistics on inputs and their prices as well as output for an average firm 

and year within each of the 14 sectors. The next sub-section briefly reports the 

evolution of these variables over time for the whole manufacturing industry, 

while the final sub-section provides sector-level comparisons. 

3.1  Descriptive Statistics for an Average Firm and Year 

Descriptive statistics for an average firm and year are presented in Table 1, where 

all monetary values were normalized to the year 2008 price level in the Swedish 

currency, SEK.  

The inputs were capital, labor, and energy. Capital stock was calculated 

by the perpetual inventory method using gross investment data (excluding 

investments in building). From the sum of gross fixed capital formation in 

previous years as well as the depreciation rate of capital (determining service life 

of the capital), this method provides an estimate of gross and net capital stock for 

a time series. The capital depreciation rate was set to 0.087 for all firms and 

sectors in this study as suggested by King and Fullerton (1984) and Bergman 

(1996). Labor was the number of full-time employees. Energy was the sum of 

electricity, district heating, wood fuel, coal, solid fuel, and gaseous fuel, which 

were all converted to energy equivalents (GWh) by Statistics Sweden using the 

same conversion rates for all industries. The output for each firm and year was 

calculated as the firm’s final sales divided by its corresponding producer price 

index for a given sector and year. The price of capital was calculated based on 

national and sector-level indices (Lundgren, 2010; Brännlund and Lundgren, 

2010). Unit prices of labor and energy were calculated as the ratio of input cost to 

quantity used. For instance, yearly salary (price of labor) for each firm and year 

was calculated by the ratio of total salaries paid to employees in that year to the 

number of employees. This implies that the salary variable does not reflect e.g. 

the amount of part-time salaries, but instead reflects the average amount paid to 

a full-time employee by an average firm in each year. Similarly, the energy price 

for each firm and year was calculated by the ratio of total costs of energy in that 

year by that firm to the quantity used. 
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Table 1. Descriptive statistics for an average firm and year over the period 1997–2008 

Sector Obs. Capital 
(MSEK) 

Labor 
(number) 

Energy 
(GWh) 

Output 
(MSEK) 

Capital price 
 (index) 

Salary 
(TSEK) 

Energy price 
(SEK/MWh) 

Basic iron and steel 410 535 (1132) 528 (858) 676 (1967) 1148 (2062) 0.12 (0.07) 702 (235) 554 (219) 

Chemical 1201 398 (1633) 276 (913) 88 (242) 627 (2336) 0.09 (0.03) 641 (166) 496 (196) 

Electro 1227 79 (257) 376 (1570) 7 (20) 1333 (9258) 0.1 (0.03) 346 (362) 380 (207) 
Fabricated metal products 2193 11 (19) 43 (153) 2 (6) 30 (62) 0.08 (0.02) 451 (134) 604 (247) 

Food 2553 130 (371) 200 (504) 23 (74) 427 (1159) 0.1 (0.02) 450 (332) 498 (186) 

Machinery 3506 58 (161) 179 (420) 7 (20) 266 (795) 0.09 (0.02) 460 (131) 520 (188) 

Mining 288 566 (1899) 265 (692) 204 (657) 494 (1399) 0.12 (0.06) 663 (383) 614 (233) 

Motor vehicles 1218 508 (2249) 590 (2089) 27 (96) 1601 (7533) 0.08 (0) 392 (72) 458 (184) 

Printing 920 30 (62) 73 (111) 4 (8) 64 (131) 0.08 (0.01) 500 (401) 522 (183) 

Pulp and paper 1019 722 (1337) 397 (619) 433 (875) 1001 (1726) 0.09 (0.02) 459 (97) 351 (174) 

Rubber and plastic 1349 46 (81) 90 (122) 8 (16) 111 (186) 0.09 (0.02) 463 (118) 506 (165) 

Stone and mineral 1019 75 (129) 151 (217) 56 (214) 178 (263) 0.08 (0.02) 538 (1962) 485 (197) 
Textile 749 31 (81) 79 (169) 8 (17) 68 (100) 0.07 (0.01) 352 (82) 453 (178) 

Wood 3131 50 (133) 78 (153) 25 (57) 191 (430) 0.12 (0.02) 407 (101) 300 (231) 

*Column “Obs.” is the number of observations over all years and firms. 

**Standard deviations are given in parenthesis. 
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3.2  Aggregate Industrial-level Descriptive Statistics for 1997 – 

2008  

At the aggregate industry level, capital stock had an increasing and fairly constant 

trend over time from 183000 MSEK in 1997 to 333000 MSEK in 2008. Labor, 

i.e. the number of employees, showed no overall trend over the studied period. 

Energy increased from 1997 to 2000, while remaining relatively constant 

onwards. This aggregate trend was mainly driven by the two most energy 

consuming sectors, Pulp and paper and Basic iron and steel.   

The aggregate output at industry level showed an overall increasing trend 

over time and the growth rate was relatively high between 1998 and 2000. This 

was mainly driven by two sectors, namely Electro and Motor vehicles, which were 

the sectors with the highest levels of output over the studied period. Price of 

capital, an index-based variable, had a decreasing trend on the aggregate level 

over the studied period. The average salary remained relatively constant over 

time at about 450 TSEK from 1997 to 2008. The average energy price increased 

at the aggregate level within the studied period from about 300 (SEK/MWh) to 

630 (SEK/MWh). 

3.3  Sector-level Descriptive Statistics for 1997 – 2008 

Capital stock had an increasing trend over time within most of the industrial 

sectors. However, the growth rate of capital stock varied among the different 

sectors. The highest growth rates were seen in Fabricated metal products and 

Basic iron and steel, while Electro and Printing had the lowest growth rates. The 

sectors with the largest capital stocks were Pulp and paper (ranging from 45000 

to 72000 MSEK) and Motor vehicles (36000 to 69000 MSEK). 

Labor showed no overall trend within most of the industrial sectors over 

the studied period. The sector with the largest number of employees was Motor 

vehicles (ranging from 48000 to 68000 employees) followed by Machinery 

(ranging from 42000 to 68000 employees). As previously mentioned, Pulp and 

paper and Basic iron and steel were the two most energy intensive sectors within 

the manufacturing industry. The growth rate of energy varied among different 

sectors, with the highest growth rates in Fabricated metal products and Basic 

iron and steel. The largest negative rates were found in the Textile and Printing 

sectors. 

The overall output growth rate varied among sectors. The highest positive 

growth rates were found in Fabricated metal products and Motor vehicles, while 

negative rates were found in Printing and Textiles. Capital prices decreased over 

time within different sectors, with converging trends except for Electro in which 

the price of capital increased over time. The largest negative rates were observed 

in Basic iron and steel and Mining. 
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The highest salary growth rates were seen in Electro and Motor vehicles, 

while the highest negative rates were found in Basic iron and steel and Mining. 

The highest average salaries were in Basic iron and steel until 2005. In 2008, the 

average salary in Chemical and Mining exceeded Basic iron and steel. In general, 

the data showed a converging trend in salaries between different sectors over the 

studied period. The highest growth rates in energy prices were found in Electro 

and Textiles, while the lowest growth rates were found in Basic iron and steel and 

Mining. The highest average energy prices until 2005 were in Mining and Basic 

iron and steel, after which Fabricated metal products and Printing had the 

highest prices for energy. 

The variation in Table 1 is expressed by standard deviations (SD) in 

parentheses, indicating heterogeneity within sectors. As complementary 

descriptive statistics, the top two sectors with highest coefficient of variation 

(CV), i.e. the ratio of standard deviation to mean, are also indicated below. 

Capital stock had the highest SD in Motor vehicles and Mining, while CV 

was highest in Motor vehicles and Chemical. Labor showed the highest SD in 

Motor vehicles and Electro, and the highest CV in Electro and Fabricated metal 

products. Energy had the highest SD in Basic iron and steel followed by Pulp and 

paper, and the CV was highest in Stone and mineral and Motor vehicles. Output 

showed the highest SD and CV in Electro and Motor vehicles.  

The distributions of all inputs and output within all sectors were 

substantially skewed, and this skewness can be seen by comparing averages and 

median values for the different variables within each sector as presented in Table 

A.1 in the Appendix. This observation means that, within each sector, there are 

firms that are very large in comparison to the majority of firms. 
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4  Results 

This section presents the results of the parameter estimates for the stochastic 

energy demand frontier model, as well as sector-level averages of the overall, 

persistent, and transient energy efficiency scores. A numerical example is then 

provided to illustrate the potential reduction in energy use by each sector if 

inefficiency is eliminated, in the context of the available technology.  

4.1  Parameter Estimates for the Stochastic Energy Demand 

Frontier   

Estimated coefficients of Eq. (5) are presented in Table 2. The results generally 

suggest that energy use is inelastic with respect to the level of output and to the 

relative prices of capital and labor to energy as their coefficient estimates are 

smaller than unity.  

For all sectors in Swedish manufacturing, energy use increased with the 

level of output produced. The output coefficients, interpretable as elasticity 

values due to the log format, were all statistically significant and ranged from 0.57 

for Basic iron and steel to 0.96 for Pulp and paper. The estimated elasticity of 

energy demand with respect to the relative price of capital to energy was also 

positive and, in most sectors, statistically significant, ranging from 0.2 in Printing 

to 0.5 in Chemical, suggesting that capital and energy are substitutable to some 

degree.  The elasticity estimates for energy demand with respect to the relative 

price of labor to energy were statistically insignificant in most sectors, meaning 

that the level of substitutability between energy and labor is zero. However, for a 

few sectors, this elasticity was statistically significant but relatively small in size, 

and its sign differed, implying that labor and energy to be either substitutes or 

complements depending on the sector.  Estimates of the time trend coefficient 

showed statistically significant positive effects on the energy use in most sectors, 

ranging from 1% to 7% on yearly average, suggesting that energy use increased 

over time.  

4.2  Estimated Levels of Energy Efficiency 

Sector-level averages of transient, persistent and overall energy efficiency scores 

obtained from firm-level estimates are presented in Table 2. The results generally 

suggest that the main sources of overall inefficiency in Swedish manufacturing 

were persistent rather than transient. The average transient efficiency estimates 

range from about 80% to almost 100% across all sectors, while the average 

persistent efficiency estimates range from about 45% to almost 100%. 

These results suggest that energy inefficiency within Fabricated metal 

products, Food, Machinery, and Rubber and plastic was nearly exclusively 

transient. On the other hand, energy inefficiency within Chemical, Motor vehicles 



 

14 

and Printing was persistent. It is also possible to identify sectors that had both 

transient and persistent energy inefficiencies, such as Basic iron and steel, Stone 

and mineral and Textile. Finally, the results suggests that, given the 

contemporary technology, there was almost no room for efficiency improvement 

of any type in Electro, Mining, Pulp and paper, and Wood, implying that, in these 

sectors, firms performed close to the energy demand frontier (optimal 

performance) and were similar to each other in some ways.  

Table 2 also shows the sectoral averages of firm-level energy efficiency 

scores divided into three types: overall, persistent, and transient. The firm-level 

energy efficiency scores were calculated using the density distribution of Jondrow 

et al. (1982) (illustrated in Figure A.1 in the Appendix for all sectors). These 

density distributions suggest that there were some sectors in which there was 

large variation between energy efficiency point estimates.  

I also investigated whether each sector had differences in the average of 

energy efficiency scores among firms producing different product groups, which 

can be readily evaluated because, within each sector, firms’ different products are 

grouped by Swedish Standard Industrial Classification. For instance, according 

to the standard 5-digit classification code6, firms in Basic iron and steel produced 

six different groups of products. To address this question, a descriptive analysis 

was performed (results presented in Table A.2 in the Appendix). Some sectors 

had large variation in the average of point estimates of overall and persistent 

energy efficiency scores between groups of firms producing different products, 

such as Chemical, Stone and mineral, Textile, and Printing. This variation 

implies that there was heterogeneity among firms with respect to their potentials 

for EEI in these sectors. Given limited resources for promoting energy efficiency, 

this type of analysis can generally be used to effectively target relatively inefficient 

sub-sectors with more room for EEI. 

                                                           
6Information on Swedish Standard Industrial Classification and lists of product groups within each 
sector can be found at the homepage of Statistics Sweden.  
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Table 2. Estimated coefficients and sector average energy efficiency scores 

 
Variable 

Basic 
iron and 

steel 
Chemical Electro 

Fabricated 
metal 

products 
Food Machinery Mining 

Motor 
vehicles 

Printing 
Pulp 
and 

paper 

Rubber 
and 

plastic 

Stone 
and 

mineral 
Textile Wood 

Frontier 

lnY  0.57*** 0.64*** 0.69*** 0.71*** 0.69*** 0.66*** 0.58*** 0.71*** 0.90*** 0.96*** 0.75*** 0.63*** 0.63*** 0.73*** 

lnRPCE  0.03 0.50*** 0.21*** 0.38*** 0.42*** 0.23*** 0.25* 0.37*** 0.20*** 0.23*** 0.26*** 0.45*** 0.12 0.49*** 

lnRPLE  0.23** 0.01 -0.07 -0.16** 0.01 -0.01 -0.13 -0.07 -0.04 0.07 -0.09 0.21*** 0.01 0.00 

Ds   YES YES YES YES YES YES YES YES YES YES YES YES YES YES 

t  0.02 0.07*** 0.04*** 0.03*** 0.04*** 0.00 0.01 -0.01 0.05*** 0.01** 0.03*** 0.01 -0.01 0.03*** 

_cons  7.67*** 6.23*** 5.14*** 4.42*** 4.73*** 4.89*** 4.33*** 5.14*** 2.78*** 6.55*** 5.53*** 6.91*** 5.30*** 5.33*** 

Energy 
efficiency 
(%) 

Transient 
efficiency 

85.10 
(30-96) 

99.98 
(99-99) 

99.97 
(99-99) 

80.85 
(10-96) 

83.81 
(29-96) 

90.09 
(64-97) 

99.97 
(99-99) 

99.99 
(99-99) 

99.98 
(99-99) 

99.99 
(99-99) 

89.59 
(58-97) 

79.67 
(23-94) 

85.64 
(51-96) 

99.96 
(99-99) 

Persistent 
efficiency 

49.42 

(16-73) 

44.84 

(3-89) 

99.88 

(99-99) 

99.93 

(99-99) 

99.90 

(99-99) 

99.86 

(99-99) 

99.87 

(99-99) 

60.65 

(22-87) 

67.46 

(23-89) 

99.87 

(99-99) 

99.91 

(99-99) 

56.87 

(19-89) 

49.02 

(6-85) 

99.91 

(99-99) 

Overall  
efficiency 

42.05 
(13-69) 

44.83 
(3-89) 

99.85 
(99-99) 

80.79 
(10-96) 

83.72 
(29-96) 

89.97 
(64-97) 

99.83 
(99-99) 

60.65 
(22-87) 

67.44 
(23-89) 

99.86 
(99-99) 

89.51 
(58-97) 

45.38 
(14-77) 

42.07  
(4-77) 

99.88 
(99-99) 

Number 
of firms 

69 218 381 703 606 850 72 260 390 148 340 209 198 698 

Obs. 408 1195 1214 2175 2538 3475 287 1207 912 1018 1344 1014 747 3085 

Minimum and maximum point estimates of each efficiency type are presented in parentheses. 
***, **, and * indicate 1%, 5% and 10% significance levels, respectively. 
“Yes” indicates inclusion. Some of these dummies in each sector become statistically significant.  
Some observations are dropped in the first step of estimation (random effect regression).  
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4.3  Quantifying Potential Energy Savings  

A numerical example is provided to illustrate the potential reductions in energy 

use that could have been realized from eliminating overall, transient, and 

persistent energy inefficiency given the technology available at the time. The 

calculation is based on the sector-average transient, persistent and overall energy 

efficiencies and the yearly average energy uses seen in each sector over the period 

1997–2008. The sectors are listed by yearly average energy use from highest to 

lowest in Table 3. Pulp and paper and Printing had the highest and lowest energy 

uses of about 37,000 and 200 GWh per year respectively. 

Table 3. Potential yearly reductions in energy use from eliminating energy inefficiency  
 Potential EEI (%) Energy demand 

(GWh 
Potential energy saving (GWh) 

Sector Transient Persistent Overall Transient Persistent Overall 
Pulp and paper 0.01 0.13 0.14 36 745 3.87 46.55 50.42 

Basic iron and steel 14.90 50.58 57.95 23 096 3441.45 9940.84 13382.29 

Chemical 0.02 55.16 55.17 8 786 2.04 4845.39 4847.43 

Wood 0.04 0.09 0.12 6 493 2.29 5.77 8.06 

Food 16.19 0.10 16.28 4 994 808.66 4.24 812.90 

Mining 0.03 0.13 0.17 4 888 1.66 6.58 8.23 

Stone and mineral 20.33 43.13 54.62 4 769 969.56 1638.76 2608.32 

Motor vehicles 0.01 39.35 39.35 2 060 0.22 810.52 810.74 

Machinery 9.91 0.14 10.03 2 008 198.94 2.46 201.40 

Rubber and plastic 10.41 0.09 10.49 934 97.28 0.77 98.05 

Electro 0.03 0.12 0.15 729 0.19 0.90 1.08 

Textile 14.36 50.98 57.93 492 70.73 214.95 285.68 

Fabricated metal products 19.15 0.07 19.21 379 72.59 0.22 72.81 

Printing 0.02 32.54 32.56 201 0.04 65.46 65.50 

Potential EEI (%) = 100 – (Energy Efficiency %) 

For the overall energy use in absolute terms (GWh per year), the largest 

overall potentials for energy savings were to be found in the second largest sector 

in terms of energy use Basic iron and steel (13,382), followed by Chemical (4,847) 

and Stone and mineral (2,608). In relative terms, large energy inefficiencies were 

found in Basic iron and steel (58%), Textile (58%), Chemical (55%), Stone and 

mineral (55%), Motor vehicles (39%), and Printing (33%), while very small 

overall potentials for EEI were found in Pulp and paper, Mining, Wood and 

Electro.  

For transient inefficiencies, the largest potential energy savings in 

absolute terms (GWh per year) were to be found in Basic iron and steel (3,441), 

Stone and mineral (969), and Food (808). In relative terms, Stone and mineral, 

Fabricated metal products, Food, Basic iron and steel, and Textile had the largest 

potentials for EEI. For persistent inefficiencies, the largest potential energy 

savings in GWh per year were in Basic iron and steel, Chemical, Stone and 

mineral and Motor vehicles, while in relative terms, Chemical, Textile, Basic iron 

and steel, and Stone and mineral had high potentials for EEI. Table 3 also shows 

that the potential for EEI (%) and energy savings (GWh per year) were, in general, 

larger for persistent inefficiency. Finally, it is worth mentioning that the potential 

savings in Table 3 do not in any way reflect costs required to eliminate these 

inefficiencies.  
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5  Discussion and Conclusions 

Industrial energy inefficiency may exist for various reasons such as lack of 

upgrades to the most energy efficient technology and/or sub-optimal allocations 

of energy in production due to factors unrelated to energy use per se, like e.g. poor 

management. Regardless of the reason, inefficiency may exist for short periods 

and be explained by temporary shortcomings (transient inefficiency), or for it 

may exist for longer periods, indicating structural rigidities (persistent 

inefficiency).  

The Swedish manufacturing industry contributes a large proportion of 

overall production and economic growth in Sweden. Manufacturing’s total energy 

use was about 45% of the total final energy used in Sweden in 2008 (Statistics 

Sweden (SCB); cited in Martinez and Silveira, 2013). Hence, identifying transient 

and persistent energy inefficiencies may have important implications for 

designing energy policies in both the short run and the long run, and may play an 

important role for overall industrial energy efficiency. 

This study contributes to our knowledge of industrial energy efficiency by 

estimating and identifying persistent and transient energy inefficiency in the 

Swedish manufacturing sectors. Within the studied sectors, the results suggest 

that persistent energy inefficiency is notably larger than transient energy 

inefficiency. The implication of this finding is that conventional estimates of 

overall energy inefficiency, which do not distinguish between persistent and 

transient inefficiencies, mainly capture persistent inefficiency (at least for these 

sectors). However, the proportions of transient and/or persistent energy 

inefficiency varies both among and within the different manufacturing sectors. 

The distinction between persistent and transient inefficiencies is 

potentially useful for policies targeting energy intensity, and guidelines that do 

not take this distinction into account could propose the wrong solutions. For 

instance, one of the largest overall energy inefficiencies (larger than 50%) is found 

in Chemical. However, the results of this study imply that policies that only 

improve short-term performances in this sector would be ineffective, because this 

sector is already efficient in terms of transient efficiency. Instead, policy makers 

interested in improving short-term inefficiencies might instead target Fabricated 

metal products and Food. These two sectors are not among the sectors with the 

largest overall energy inefficiencies, and would not necessarily be identified as 

particularly important based on conventional overall energy efficiency measures. 

However, they have the second and third largest transient energy inefficiencies, 

and policies that improve short-term energy performance might have relatively 

greater impacts on these sectors than others. 

These results show that there is a potential for reducing energy use 

through eliminating energy inefficiencies, which also implies a potential for 

decreasing energy intensity (defined as the ratio of energy to output) through 
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energy efficiency improvements (EEI). This means that energy intensity targets 

can be addressed without decreasing output levels or compensating in other ways 

by increasing input. In terms of GWh per year, the largest total energy savings are 

to be found in Basic iron and steel, which is the second largest sector in terms of 

total energy use. Given its high level of energy use and large energy inefficiency, 

the potential for energy savings in this sector is larger than for all other 13 sectors 

put together. However, it should be noted that these results might be driven to 

some extent by the high degree of heterogeneity in the use of inputs (e.g. energy) 

in this sector (as indicated by the standard deviations in Table 1). 

Based on these results, further research could, for example, focus on 

Basic iron and steel to identify the drivers of inefficiency, and to explore what 

sort of policy measures could be used to mitigate these inefficiencies. However, it 

should be noted that the relatively large estimates of energy inefficiency may also 

have been driven by difficulties in fully controlling for firm heterogeneity within 

product groups when adopting the framework of a four-component SFA model. 

There are some differences between the results of this study and two 

earlier studies measuring energy efficiency for the Swedish manufacturing 

industry using SFA. This study showed that four sectors were almost fully energy 

efficient given the technology available to them at the time. This result to some 

extent differs to the findings Lundgren et al. (2016) and Amjadi et al. (2018), 

which estimated fuel and electricity efficiencies. The differences could be 

explained by the choice of different SFA models. The present study used the four-

component SFA model, which is capable of decomposing overall inefficiency into 

its persistent and transient parts and of separating firm effects from inefficiency 

and noise. In contrast, Lundgren et al. (2016) applied True Random Effect model 

of Greene (2005), which did not separate persistent efficiency from firm 

heterogeneity, while the model used by Amjadi et al. (2018) did not fully control 

for firm-effects nor separate persistent and transient components of overall 

inefficiency. Furthermore, Lundgren et al. (2016) and Amjadi et al. (2018) 

estimated fuel and electricity efficiency separately for a shorter time period, i.e., 

2000–2008. Taken together, these differences in data and analytical procedures 

could potentially explain the differences in results. 

In general, policies promoting EEI should optimally target sectors based 

on where the marginal cost-effectiveness is highest. Identifying policy measures 

at the sector-level for improving persistent and transient energy efficiencies for 

the Swedish manufacturing industry in order to meet energy and climate related 

targets remains an interesting topic for future research.  
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Appendix 

Table A.1. Descriptive statistics for average and median firms and years over the period 1997–2008 

Sector Obs. Capital 
(MSEK) 

Labor 
(number) 

Energy 
(GWh) 

Output 
(MSEK) 

Capital price 
(index) 

Salary 
(TSEK) 

Energy price 
(SEK/MWh) 

Basic iron and steel 410 535 (104) 528 (192) 676 (58) 1148 (390) 0.12 (0.11) 702 (667) 554 (519) 

Chemical 1201 398 (50) 276 (78) 88 (8) 627 (137) 0.09 (0.09) 641 (626) 496 (468) 

Electro 1227 79 (10) 376 (64) 7 (1) 1333 (92) 0.1 (0.10) 346 (317) 380 (318) 

Fabricated metal products 2193 11 (5) 43 (20) 2 (1) 30 (13) 0.08 (0.07) 451 (441) 604 (575) 

Food 2553 130 (25) 200 (49) 23 (4) 427 (91) 0.1 (0.01) 450 (426) 498 (464) 

Machinery 3506 58 (11) 179 (52) 7 (1) 266 (54) 0.09 (0.08) 460 (450) 520 (487) 

Mining 288 566 (35) 265 (42) 204 (5) 494 (46) 0.12 (0.09) 663 (577) 614 (564) 

Motor vehicles 1218 508 (18) 590 (84) 27 (3) 1601 (88) 0.08 (0.08) 392 (383) 458 (423) 

Printing 920 30 (10) 73 (32) 4 (1) 64 (24) 0.08 (0.07) 500 (476) 522 (472) 

Pulp and paper 1019 722 (132) 397 (186) 433 (44) 1001 (328) 0.09 (0.09) 459 (451) 351 (314) 

Rubber and plastic 1349 46 (17) 90 (47) 8 (2) 111 (50) 0.09 (0.08) 463 (452) 506 (481) 

Stone and mineral 1019 75 (23) 151 (65) 56 (5) 178 (67) 0.08 (0.08) 538 (451) 485 (476) 

Textile 749 31 (9) 79 (36) 8 (1) 68 (33) 0.07 (0.07) 352 (341) 453 (410) 

Wood 3131 50 (14) 78 (34) 25 (4) 191 (74) 0.12 (0.12) 407 (401) 300 (242) 

*Column “Number of observations” is the number of observations over years and firms.  

**Medians are provided in parenthesis. 
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Table A.2. Range of average overall, persistent and transient energy efficiency scores between firms 

producing different product groups (1997–2008) 

Sector Transient Efficiency Persistent Efficiency Overall Efficiency 

Basic iron and steel 82–86 46–54 40–45 
Chemical 100–100 25–65 25–65 

Electro 100–100 100–100 100–100 

Fabricatef metal products 81–81 100–100 81–81 

Food 83–84 100–100 83–84 

Machinery 90–90 100–100 90–90 

Mining 100–100 100–100 100–100 

Motor vehicles 100–100 56–63 56–63 

Printing 100–100 57–73 57–73 

Pulp and paper 100–100 100–100 100–100 
Rubber and plastic 89–90 100–100 89–90 

Stone and mineral 78–80 29–63 24–50 

Textile 82–86 16–64 13–54 

Wood 100–100 100–100 100–100 

*Note: numbers are rounded, and 100 represents a number close to, but not exactly, 100.

** Product groups are based on the Swedish standard 5-digit classification codes. 
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