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Kinetic theory for spin-1/2 particles in ultrastrong magnetic fields
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When the Zeeman energy approaches the characteristic kinetic energy of electrons, Landau quantization
becomes important. In the vicinity of magnetars, the Zeeman energy can even be relativistic. We start from the
Dirac equation and derive a kinetic equation for electrons, focusing on the phenomenon of Landau quantization
in such ultrastrong but constant magnetic fields, neglecting short-scale quantum phenomena. It turns out that the
usual relativistic γ factor of the Vlasov equation is replaced by an energy operator, depending on the spin state,
and also containing momentum derivatives. Furthermore, we show that the energy eigenstates in a magnetic field
can be computed as eigenfunctions of this operator. The dispersion relation for electrostatic waves in a plasma is
computed, and the significance of our results is discussed.
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I. INTRODUCTION

Quantum kinetic descriptions of plasmas are typically of
most interest for high densities and modest temperature [1].
For this purpose, typically the starting point is the Wigner-
Moyal equation [1–6], or various generalizations thereof also
accounting for physics associated with the electron spin,
such as the magnetic dipole force [7,8], spin magnetization
[7,9], and spin-orbit interaction [9]. Both weakly [10,11] and
strongly [12,13] relativistic treatments have been presented in
the recent literature.

Certain quantum phenomena depend strongly on the mag-
nitude of the electromagnetic field, however, rather than on
the density and temperature parameters. Phenomena such
as radiation reaction (reviewed in, e.g., Ref. [14]) and pair
creation fall into this category.1 Another field-dependent
phenomenon is Landau quantization [17], which becomes
prominent whenever the Zeeman energy due to the magnetic
field is comparable to or larger than the thermal energy, or the
Fermi energy, in the case of degenerate electrons.
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1While the classical radiation reaction, where the response is a
smooth function of the orbit, is a useful approximation as long as the
emitted spectrum is soft (dominated by photons with energies well
below mc2), the description based on QED (see, e.g., Refs. [15,16]),
containing discrete probabilistic contributions due to the emission of
high-energy quanta, is more generally applicable.

In the atmospheres of pulsars and magnetars [18], the elec-
tron motion may become relativistic, and the magnetic field
strength can be ultrastrong, i.e., the Zeeman energy may be
comparable to or even larger than the electron rest mass en-
ergy [19]. Further information about pulsar properties can be
gained through the emission profiles, see, e.g., Refs. [20–22].
Theoretical studies of wave propagation relevant for strongly
magnetized objects have been made both with kinetic [23]
and hydrodynamic [24,25] models. However, most previous
theoretical studies starting from the Dirac equation (see also
Refs. [11,12]) have been limited to cases where the magnetic
field strength is well below the critical field Bcr = m2c2/|q|h̄.

Our objective in this work is to derive a fully relativistic
kinetic model of spin-1/2 particles, applicable for ultrastrong
magnetic fields, i.e., with

B ∼ Bcr = m2c2/|q|h̄ = 4.4 × 109T, (1)

relaxing the conditions given in previous works. Assuming
that the electric field is low enough to avoid pair cre-
ation (i.e., below the critical electric field Ecr = m2c3/|q|h̄ =
1.3 × 1018V/m), we can use the Foldy-Wouthuysen transfor-
mation [26,27] to separate particle states from antiparticle
states in the Dirac equation. Moreover, we limit ourselves to
the case where the characteristic spatial scale length of the
fields is much longer than the Compton length, Lc = h̄/mc.

Making a Wigner transformation of the density matrix, our
approach results in an evolution equation for a 2 × 2 Wigner
matrix, where the four components encode information re-
garding the spin states. However, the off-diagonal elements
of the matrix is associated with the spin-precession dynamics
which is too rapid to be resolved by the theory. Thus a further
reduction is made, where only the diagonal components rep-
resenting the spin-up and the spin-down states relative to the
magnetic field remain.

Together with Maxwell’s equations, we obtain a closed
system describing the plasma dynamics. A unique feature of
the model is the energy expression, where the usual γ factor
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from classical relativistic theory is replaced by an operator
in phase space, also depending on the magnetic field. Interest-
ingly, the Landau-quantized states in a constant magnetic field
turn out to be eigenfunctions of the energy operator of this
theory, which is helpful when computing the thermodynamic
background state for the Wigner matrix. To demonstrate the
usefulness of the theory, we compute the dispersion rela-
tion for Langmuir waves propagating parallel to an external
magnetic field. Finally, the consequences of the theory and
applications to astrophysics are discussed

II. BACKGROUND AND PRELIMINARIES

In this section we will briefly summarize the fundamental
approaches we have used in order to derive a kinetic theory for
spin-1/2 particles in ultrastrong magnetic field; see the next
section for a technical derivation.

In the formulation of quantum mechanics in phase space
[28] the system is described by a quasidistribution function
W (r, p). This is in contrast to the Hilbert space formulation
where the system is described by a density matrix ρ(r, r′).
The two formulations are related via the Wigner transforma-
tion. From the von Neumann equation for the density matrix,

ih̄∂t ρ̂ = [Ĥ , ρ̂], (2)

one obtains an equivalent equation for W , involving ∂xW
and ∂pW . To lowest order in h̄, this equation will be the
Liouville equation for the Hamiltonian at hand. This gener-
alizes to a many-particle system, and because the phase-space
formulation is analogous to classical statistical physics, the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-
chy [29] applies, and assuming exchange and correlation
effects are small, one obtains an analog of the classical Vlasov
equation.

While this approach is completely general (see Ref. [28]
for numerous applications in a wide range of fields), for the
Dirac Hamiltonian in particular, the physical interpretation
is complicated due to that the Dirac Hamiltonian is mixing
particle and antiparticle states. Through a Foldy-Wouthuysen
transformation [26,27], particle and antiparticle states can be
decoupled to a given order in some small expansion param-
eter ε. Using the resulting Hamiltonian ĤFW and applying a
Wigner transformation, one can get a kinetic theory for the
quasidistribution W involving particles or antiparticles only.
For this to be physically valid, the pair production rate should
be low when ε is small.

The obtained kinetic equation is an evolution equation for
a 2 × 2 Wigner matrix, where the four components represent
the different spin states. There are several ways of treating the
spin degrees of freedom in a phase-space approach [11], e.g.,
extending phase-space with spin dimensions [7], dividing the
Wigner matrix into a scalar and a 3-vector [30], or using other
generalizations of the Wigner function for spin [31].

The kinetic equation for the particles or antiparticles is
closed with Maxwell’s equations with sources as moments of
W , e.g., the free charge density is ρ f (r) = ∫

qW (r, p) d3 p =
q 〈r| ρ̂ |r〉.

In the next section, we present the derivation of a kinetic
theory for plasmas in ultrastrong magnetic fields, including

the spin degrees of freedom. In our derivation, we need to split
the magnetic field B = B0 + δB into a strong but constant
background B0 and a weak but freely varying perturbation
δB. We will also not resolve dynamics on length scales com-
parable to the de Broglie wavelength and not on timescales
comparable to the inverse Compton frequency.

III. DERIVATION OF THE THEORY
AND CONSERVATION LAWS

In this section we review the Foldy-Wouthuysen transfor-
mation for strong fields (Sec. III A), and then we apply it
to obtain a particle-only Hamiltonian that is applicable in
ultrastrong magnetic fields (Ref. III B). Next, in Sec. III C,
we derive the corresponding kinetic equation in phase space.
Finally, in Sec. III D, we present conservation laws for particle
number and energy.

A. Foldy-Wouthuysen transformation

To derive our theory for ultrastrong magnetic fields, we will
take the Dirac Hamiltonian

Ĥ = βm + Ê + Ô, (3)

as our starting point. Here m is the mass, Ê = qφ(r̂), Ô =
α · π̂, and α and β are the Dirac matrices. Furthermore, p̂ is
the canonical momentum, π̂ = p̂ − qA(r̂, t ), q is the charge,
and φ and A are, respectively, the scalar and vector potentials.
From now one we use units such that c = 1.

In Foldy and Wouthuysen’s seminal paper [26] the expan-
sion parameter ε was E/m, meaning that the expansion is
valid for sufficiently small energies, i.e., E represents relevant
energies (kinetic energy, magnetic dipole energy, etc.). In this
paper we will use the results of Refs. [27,32] where a modified
Foldy-Wouthuysen transformation was developed for the case
where the expansion parameter is instead the scale length of
the fields. This transformation hence makes it possible to take
into account arbitrarily strong fields as long as we are only
concerned with variations on sufficiently long scale lengths.

An operator is called odd if it couples the upper and the
lower pairs of components of the Dirac four-spinor and even
if it does not. The goal of a Foldy-Wouthuysen transformation
is thus to obtain a Hamiltonian HFW that is even. The odd and
even terms of the Hamiltonian (3) are Ô and Ê , respectively,
satisfying [β, Ê] = 0 and {β, Ô} = 0.

In Ref. [32], Silenko found a unitary transformation of the
Hamiltonian operator

Ĥ ′ = Û (Ĥ − i∂t )Û
† + i∂t , (4)

where

Û (†) = ε̂ + m ± βÔ√
2ε̂(ε̂ + m)

, (5)

where ε̂ =
√

m2 + Ô2. Using the Dirac Hamiltonian Ĥ in
Eq. (4), one obtains

Ĥ ′ = βε̂ + Ê ′ + Ô′, (6)
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where

Ê ′ = Ê + 1

2T̂
([T̂ , [T̂ , βε̂ + F̂]] − [Ô, [Ô, F̂]]

− [ε̂, [ε̂, F̂]])
1

T̂
, (7)

Ô′ = 1

2T̂
β({ε̂ + m, [Ô, F̂ ]} − {Ô, [ε̂, F̂ ]})

1

T̂
, (8)

where T̂ = √
2ε̂(m + ε̂) and F̂ = Ê − ih̄∂t . The Hamiltonian

H ′ still has odd terms, the anticommutators in Ô′ are linear in
Ô, i.e., linear in α. However, the odd term Ô′ in H ′ should be
small compared to ε̂, after choosing an expansion parameter.
Since we are interested in the effects of an ultrastrong mag-
netic field, our small expansion parameters will be the electric
field strength E/Ecr (such that pair production is negligible)
and the inverse scale length of the fields Lc/L, but we will
make no assumption on the magnetic field strength.

Thus a second transformation can be preformed with the
following operator:

Û ′ = eiS′
, Ŝ′ = − i

4

{
Ô′,

1

ε̂

}
. (9)

Since Ô′ is small, only the major corrections are taken into
account. Finally, the transformed Hamiltonian is

ĤFW = βε̂ + Ê ′ + 1

4

{
Ô′2,

1

ε̂

}
. (10)

This Hamiltonian has no odd terms, so we are done with
the transformation of the Dirac Hamiltonian. Until now, we
have presented the Foldy-Wouthuysen transformation derived
in Ref. [27].

B. Strong-field Hamiltonian

Our approach now is to calculate the commutators occur-
ring in (6) to all orders in the magnetic field. In doing this
we will expand some of them in a series using Ref. [33];
see the Appendix for more details. After the calculation, the
Hamiltonian H ′ in (6) becomes

Ĥ ′ = βε̂ + Ê ′ + Ô′, (11)

where

Ê ′ = Ê + imμB

T̂

[
ih̄q

( 2

T̂
+ m

ε̂T̂

)2

(E × B) · π̂

− ih̄q

ε̂2
(E × B) · π̂ + i�̂ · (E × π̂ − π̂ × E)

]
1

T̂
, (12)

Ô′ = imμBβ

T̂

[
2α · E(ε̂ + m) − 2

( π̂

ε̂
· E

)
α · π̂

+ h̄

ε̂

(
�̂ · ∂t B

)
α · π̂

]
1

T̂
, (13)

where μB = qh̄/2m is the Bohr magneton and

�̂ =
(
σ 0
0 σ

)
.

Note that we kept all orders of the magnetic field. However,
we only kept up to first order of the combination of h̄ with
E and ∇r . In the expression for Ĥ ′ there are still some odd
operators, but since Ô′ is linear in μBE and μB∂t B, they
should be smaller than ε̂. Thus it is fine to only include the
minor correction of the second transformation in (9). Thus the
Hamiltonian ĤFW after the second transformation will have
the same structure as in (10). However, the anticommutator in
ĤFW in (10) is proportional to the square of Ô′. Since we only
kept up to first order of E and ∂t B, we keep only the first two
terms of ĤFW,

ĤFW = βε̂ + qφ(r̂) + μBm√
2ε̂(ε̂ + m)

×
{
�̂ · (π̂ × E − E × π̂) − 2μBm

ε̂2

[
1 + m2

2ε̂(m + ε̂)

]

× (π̂ × B) · E
}

1√
2ε̂(ε̂ + m)

, (14)

where ε̂ =
√

m2 + π̂2 − 2μBm�̂ · B. Taking the limit of weak
B field, i.e., keeping up to first order in μBB/m, we recover the
Hamiltonian in Ref. [27]. The Hamiltonian in (14) includes
the spin orbit interaction, see Ref. [12] for more details, but
since E � B, it is negligible compared to the magnetic in-
teraction. We will therefore neglect the spin-orbit interaction
from now on, as the main idea of this paper is to study the
effects of a strong magnetic field on the dynamics of a plasma.
The transformed Hamiltonian is now

ĤFW = β

√
m2 + π̂2 − 2μBm�̂ · B + qφ(x̂). (15)

This Hamiltonian includes all orders of μBB/m and is fully
relativistic and hence is suitable to be used in deriving a
kinetic equation for plasma in an environment where the mag-
netic field is of the order of the critical field Bcr. However,
in order to obtain a kinetic equation in phase space (see next
subsection for more details), we will use the identities from
Ref. [34], see (19) and (20) below. These identities can be
utilized for a function F that only depends on π̂. However,
our Hamiltonian in Eq. (15) depends on both B(r̂) and π̂, and
thus we divide the magnetic field as

B(r̂) = B0 + δB(r̂), (16)

where B0 is a constant strong magnetic field (i.e., μBB0/m ∼
1) and δB(r̂) is a varying magnetic field. Furthermore, a Tay-
lor series around B = B0 can be done; see Ref. [35] for more
details. However, the Taylor series gets more complicated for
the higher-order terms, and thus a restriction on δB(r̂) needs to
be done. Considering the case where μBδB/m � 1, similarly
to the previous assumption μBE/m � 1, the Hamiltonian be-
comes

ĤFW = β

√
m2 + π̂2 − 2μBmσ · B0 + qφ(r̂). (17)

This Hamiltonian is the final one that will be used in next
section to derive the kinetic equation. Note that all operators
in (17) are even, and thus we will let β → 1 and �̂ → σ from
now on.

Note that even though δB does not appear explicitly in Eq.
(17), the perturbed magnetic field will still be contained in the
Lorentz force, as will be seen below, because π̂ contains the
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full vector potential A from which the full magnetic field is
obtained. This is an example of how the phase-space formula-
tion can make the physics of a system more explicit.

C. Gauge-invariant Wigner function and kinetic equation

Now we want to derive a kinetic equation on phase space
using the Hamiltonian (17). We will use the gauge-invariant
Wigner function defined by Stratonovich [34],

Wαβ (r, p, t ) =
( 1

2π h̄

)3
∫

d3λ exp

×
{

iλ

h̄
·
[

p + q
∫ 1/2

1/2
dτA(r + τλ)

]}

× ραβ

(
r + λ

2
, r − λ

2
, t

)
, (18)

for each spinor-space component of the density matrix, in-
diced by α, β. Thus, we write out Eq. (2) and use the identities
[34]

F [−ih̄∇r − qA(r)]ραβ (r, r′)

→ F [p − ih̄/2∇r + imμBB × ∇p]Wαβ (r, p), (19)

F [ih̄∇r′ − qA(r)]ραβ (r, r′)

→ F [p + ih̄/2∇r − imμBB × ∇p]Wαβ (r, p). (20)

Using the Hamiltonian in (17) and keeping up to first order in
∇r as we did in the derivation of the Hamiltonian, the kinetic
equation is

∂tWαβ + 1

ε′ p · ∇rWαβ + q
(

E + 1

ε′ p × B
)

· ∇pWαβ = 0,

(21)
where B is the full magnetic field and

ε′ =
√

m2 + p2 − 2mμBσ · B0 − m2μ2
B(B0 × ∇p)2. (22)

Also note that ε′ is a function of σ and that the momentum
derivatives act on everything to the right of the operator. Thus,
in the second and fourth terms of (21), 1/ε′ acts also on p. In
order to get a scalar theory, we can Taylor-expand ε′ around σ

ε′ = 1
2 (ε′

+ + ε′
−)I + 1

2 (ε′
+ − ε′

−)σz, (23)

where I is the identity matrix and

ε′
± =

√
m2 + p2 ∓ 2mμBB0 − m2μ2

B(B0 × ∇p)2. (24)

Next, we note that if initially Wαβ has no off-diagonal ele-
ments, let us say that W11 = W+, W22 = W−, then the evolution
(21) for W+ and W− will decouple into separate equations for
the spin-up and spin-down populations, as defined relative to
B0. While limiting ourselves to such initial conditions may
seem unwarranted, the only thing left out by this restriction is
the spin precession dynamics. However, since the timescale
for spin precession is the inverse Compton frequency, we
note that the present theory, based on the assumption ∂/∂t �
c/Lc, is not designed to resolve the spin precession dynamics
anyway. Hence, from now on, we will be using the above
representation for Wαβ , in which case (21) decouples into the

scalar equations for W+ and W− as follows:

∂tW± + 1

ε′±
p · ∇rW± + q

[
E + 1

ε′±
p × B

]
· ∇pW± = 0.

(25)

The kinetic equation in Eq. (25) is our main result in this work.
The new effects of this kinetic equation are hiding in ε′

±. First,
we have all orders of the spin magnetic moment, compared to
previous models [11,12] where only the first-order correction
is included. Note also that the equations for W+ and W− are
decoupled and can be solved separately. Moreover, we have
momentum derivatives in ε′, which turn to be energy opera-
tors, see Sec. IV for more details.

Equation (25) describes the dynamics of an ensemble of
spin-1/2 particles in an ultrastrong magnetic field in the mean-
field approximation. In this approximation, the electric and
magnetic fields are generated by the sources via

∇ · E = ρ f , and ∇ × B = j f + ∂t E, (26)

where ρ f and j f are the free charge and current density,
respectively,

ρ f = q
∑
±

∫
d3 pW±, (27)

j f = q
∑
±

∫
d3 p

1

ε′±
pW±. (28)

Under the assumptions we have made, the bound sources
arising from the spin are negligible, but these and have been
included in other models, e.g., Refs. [7,11]. A more thorough
discussion of our model, including comparison with previous
works [8–13,36–38] is found in Sec. VI.

D. Conservation laws

To check the validity of the derived model, we derive the
conservation law of energy and the mass continuity. Starting
with the mass continuity, the number density of spin-up (spin-
down) particles n± can be given by n± = ∫

d3 pW±. To show
that this quantity is conserved we take the time derivative of
it and use Eq. (25). Since ε′ is independent of r, it is trivial to
show that

∂t n± + ∇r ·
∫

d3 p
1

ε′±
pW± = 0. (29)

The number densities are separately conserved because transi-
tions between spin-up and spin-down states require absorption
or emission of quanta with energies on the order of m. This is
based on the assumption that μBB0/m ∼ 1 holds, since this
is the regime where the strong-field quantum effects of our
model are most significant. Note that this is closely related to
the approximation made when deriving Eq. (25).

Moving to the conservation of energy, the total energy
density is

Etot = 1

2
(E2 + B2) +

∑
±

∫
d3 p ε′

±W±. (30)

We want now to show that the energy is conserved, taking
the time derivative of Etot, and using Maxwell’s equations
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together with the kinetic equation, we get

∂t Etot + ∇r · K = 0, (31)

where K is the energy flux

K = E × B +
∑
±

∫
d3 p pW±. (32)

This is precisely what one would expect: the Poynting vector
for the fields and the kinetic energy flux for the particles as
required in a relativistic theory. Since we have neglected po-
larization and magnetization, there is no Abraham-Minkowski
dilemma in this model; see Ref. [13] and references therein for
a related discussion.

IV. BACKGROUND WIGNER FUNCTION IN
A CONSTANT MAGNETIC FIELD

In principle we can compute the time-independent solu-
tions for W in a constant magnetic field B = B0ẑ by solving
the Dirac equation for this geometry, making a sum over dif-
ferent particle states and then perform the Foldy-Wouthuysen
and Wigner transformations of Sec. III C. Except for the
Foldy-Wouthuysen transformation, this was done in a covari-
ant approach in Ref. [36]. However, here we will take a shorter
route to arrive at the same results. Noting that for a constant
magnetic field, both the Dirac equation and the Pauli equation
results in electrons obeying a quantum harmonic oscillator
equation, we can make a trivial generalization of the Pauli
case [7]. First we need to find the Wigner function correspond-
ing to the Landau quantized energy eigenstates. Both for the
Pauli and the Dirac equations, the spatial dependence of the
wave function in Cartesian coordinates can be expressed as
a Hermite polynomial times a Gaussian function [39] only
the energy eigenvalues are different. Specifically, applying
the Dirac theory, the energy of the Landau quantized states
become

En± = m

√
1 + (2n + 1 ± 1)

h̄ωce

m
+ p2

z

m2
, (33)

where n = 0, 1, 2, . . ., corresponds to the different Landau
levels for the perpendicular contribution to the kinetic energy,
the index ± represents the contribution from the two spin
states, and the term proportional to p2

z gives the continuous
dependence on the parallel kinetic energy. Since the Pauli and

Dirac equations for individual particle states have the same
spatial dependence for the wave function, we can adopt the
expression for the Wigner function from Ref. [7] (based on
the Pauli equation) with some relatively minor adjustments.

(1) Contrary to Ref. [7], we have made no Q transform
to introduce an independent spin variable, and thus the spin-
dependence of Ref. [7] reduces to W±.

(2) The Wigner function of Ref. [7] must be expressed in
terms of the momentum, i.e., m(v2

x + v2
y )/2 → (p2

x + p2
y )/2m.

(3) The nonrelativistic energy of Ref. [7] is replaced by
the relativistic expression Eq. (33) of the Dirac theory.

(4) The normalization of the Wigner function must be
adopted to fit the present case.

With these changes, the Wigner function for an energy
eigenstate Wn± can be written

W 0
n± = gn,±(pz )(−1)nφn(p⊥), (34)

where

φn(p⊥) = exp

(
− p2

⊥
mh̄ω2

ce

)
Ln

(
2p2

⊥
mh̄ω2

ce

)
, (35)

where Ln denotes the Laguerre polynomial of order n and
gn±(pz ) is a function that is normalizable but otherwise ar-
bitrary. The number of particles in each Landau quantized
eigenstate n0n,± obeys the condition

n0n± =
∫

gn±(pz )(−1)nφn(p⊥) d3 p

⇒

n0n± = (2π h̄)3

2

∫
gn±(pz )d pz. (36)

Naturally, a general time-independent solution W 0
± to

Eqs. (25) can be written as a sum over the energy eigenstates
(34), according to

W 0
± =

∑
n

W 0
n± =

∑
n

gn,±(pz )(−1)nφn(p⊥). (37)

That the factor φn(p⊥) gives us the proper Wigner function
for the Landau quantized eigenstates can be confirmed by
an independent check. Since the expression (40) contains no
dependence on the azimuthal angle in momentum space, we
can write

ε′
± = m

√
1 + p2

⊥/m2 − μ2
BB2

0

(
∂

∂ p⊥
+ 1

p⊥

)
∂

∂ p⊥
∓ 2μBB0

m
+ p2

z

m2
, (38)

when ε′
± acts on φn(p⊥). Computing ε′

±φn(p⊥) by Taylor-
expanding the square root to infinite order, using the
properties of the Laguerre polynomials, and then converting
the sum back to a square root, it is straightforward to verify
the relation

ε′
±φn(p⊥) = m

[
1 + (2n + 1 ± 1)

h̄ωce

m
+ p2

z

m2

]1/2

φn(p⊥),

(39)

where ωce = |qB0|
m is the electron cyclotron frequency, con-

firming that φn(p⊥) generates the proper energy eigenvalues
for the perpendicular kinetic energy and the spin degrees of
freedom.

Next we turn our attention to the case of a back-
ground state in thermodynamic equilibrium. Given the
energy eigenstates, we only need to apply Fermi-Dirac
statistics, in which case the total thermodynamic Wigner
function W TB = ∑

± W TB
± , including both spin states, is
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given by

W TB = n0

(2π h̄)3

∑
n,±

2(−1)nφn(p⊥)

exp [(En,± − μc)/kBT ] + 1
, (40)

where n0 is the total electron number density of the plasma,
μc is the chemical potential, and T is the temperature.

Naturally, the expressions presented above are of most
significance for relativistically strong magnetic fields, when
Landau quantization is pronounced. As a consequence, the
formula (40) will reduce to more well-known expressions
when the limit h̄ωce/m � 1 is taken. Specifically, (40) will
become a relativistically degenerate Fermi-Dirac distribution
in case we let T = 0 and μc = EF  h̄ωce, where EF is the
Fermi energy. Alternatively, for kBT  EF and kBT  h̄ωce,
(40) reduces to a Synge-Juttner distribution.

To give a concrete illustration, in Fig. 1 we have made a
bar chart for the normalized number density n0n±/n0 in the
different energy states for a few values of the temperature
and magnetic field, under the assumption that the density is
low enough for the system to be nondegenerate, i.e., assuming
T  TF .

As will be demonstrated in the next section, to a large
degree the electrons behave as a multispecies system, where
each particle species has its own rest mass, as given by
Eq. (33) but with pz = 0. This is because the separation be-
tween Landau levels is on the order of the rest mass, and
all excitation quanta with energies of that order have been
neglected. Noting that the effective number density of each
“species” (discrete energy state) is given by

n0n± ≡ n0

(2π h̄)3

∫
d3 p

2(−1)nφn(p⊥)

exp [(En± − μc)/kBT ] + 1
, (41)

we see that n0n± essentially will be determined by the Boltz-
mann factors of (40). However, for the cases where our model
Eq. (25) is of most interest, the magnetic field B0 is strong
enough to make relativistic Landau quantization prominent.
Thus, in the next section and for the remainder of this paper,
we will consider background distributions W0± where simpli-
fications based on h̄ωce/m � 1 do not apply.

V. LINEAR WAVES

The operator in the square root in Eq. (25) gives the im-
pression that it is very technical and complex to apply the
model in studying, e.g., waves in plasma. In this section we
consider electrostatic waves in a homogeneous plasma by
using Eq. (25). We consider the wave vector k = kez and
express the momentum p in cylindrical coordinates p⊥, ϕp,
and pz. To linearize Eq. (25), we separate variables according
to W± = W 0

±(p⊥, pz ) + W 1
±(z, p⊥, pz, t ), E = E1ez, and B =

B0ez, where the subscripts 0 and 1 denote unperturbed and
perturbed quantities, respectively. Moreover, the perturbed
quantities follow the wave plane ansatz according to W 1

± =
W̃ 1

±eikz−iωt . Equation (25) is now(
ω − kpz

ε′±

)
W 1

± = −iqE1
∂W 0

±
∂ pz

. (42)

The unperturbed Wigner function W 0
± is in general given by a

static solution of the form (37). Since the operators in ε′
± have

FIG. 1. The normalized number density for different energy
states Em at different values of the parameters β = μBB0/m and
τ = kBT /m.

been shown to be energy eigenvalues when acting on W 0
±, we

act on both sides by (ω − kpz/ε
′
±)−1, such that the perturbed

distribution function becomes

W 1
± = −iqE

ω − kpz/ε
′±

∂W 0
±

∂ pz
=

∑
n

−iqE

ω − kpz/En±

∂W 0
n±

∂ pz
, (43)

where in the second equality we used that W 0
± is a sum of

eigenfunctions of ε′
±, and the summation is over the Landau

levels indexed by n. Using Poisson’s equation, the dielectric
tensor for the electrostatic case is

D(k, ω) = 1 + q2

k

∑
n,±

∫
d3 p

1

ω − kpz/En±

∂W 0
n±

∂ pz
. (44)
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Note that if we set h̄ to zero in En± in the dielectric tensor, then
the denominator in the second term of the dielectric tensor is
the same as for the relativistic Vlasov equation [40].

The background distribution W 0
n± will be divided into its

eigenstates, which for the case of thermodynamic equilibrium,
(40), will depend on the temperature and the magnetic field,
see Fig. 1. As a result, the dispersion relation (44) is that of
a relativistic multispecies plasma where each species has its
own rest mass, En±.

VI. SUMMARY AND DISCUSSION

In the present paper we have derived a kinetic model for
plasmas immersed in a relativistically strong magnetic field,
i.e., with a field strength of the order of the critical field.
Based on a Foldy-Woythausen transformation and a Wigner
transformation, an evolution equation for the spin-up and
spin-down components W± has been found. Besides having
two components, the main difference to a classical relativistic
model is that the γ factor in that theory is replaced by an
operator containing momentum derivatives. Since our theory
is formulated in phase space, we stress that such operators are
fundamentally different from the operators of Hilbert space,
and to the best of our knowledge, this effect has not been seen
in any previous quantum kinetic models.

Comparing the Wigner function of our model with pre-
vious quantum kinetic models [8–13] and [36–38], we note
that many of them focus on other physical effects, including
short scale effects (of the order the de Broglie length) and/or
spin dynamics. The latter type of processes is filtered out
in our case, due to the short timescale for spin precession
associated with strong fields. Most other works studying the
Wigner function for electrons make the assumption that the
electromagnetic field strength is well below the critical field
strength, and hence the strong-field effects of our paper are not
included. A notable exception consists of papers based on the
Dirac-Heisenberg-Wigner (DHW) approach [36–38], where a
kinetic theory is formulated based on a direct Wigner trans-
formation of the Dirac equation. This is contrasted with our
approach, where a Foldy-Wouthuysen transformation is made
before the Wigner-transformation, in order to separate particle
states from antiparticle states. An obvious disadvantage with
our approach, compared to the DHW approach, is that some of
the physics of the Dirac equation, notably pair creation, is lost.
For cases where the separation of particles and antiparticles
is applicable, however, the Foldy-Wouthuysen transformation
leads to considerable simplifications. This is illustrated by the
16 coupled components of the Wigner function in the DHW
approach [37], as compared to the relative simplicity of the
present evolution Eq. (25), where the two spin components
are decoupled.

As pointed out above, a noted feature of the present
theory is that the energy becomes an operator, which has
consequences when studying the background Wigner func-
tion. Classically, or in less advanced quantum mechanical
models, the evolution equation does not predict the detailed
momentum dependence for a given Landau level. Thus the
background expression has been put in by hand, and one
has to return to the starting point of the theory (e.g., the
Pauli or Dirac equations for single particles) to find proper

expressions. Here, however, the eigenvalue equation ε′W0 =
En,±W0 determines the background state for a given Landau
level (bar a constant for the number density), and there is no
need to go outside the kinetic theory itself to find proper initial
conditions.

To avoid some technical difficulties related to the operator
orderings, we have here divided the magnetic field into an
ultrastrong but constant part (B0ẑ) and a fluctuating part δB.
This approach allows for the treatment of large classes of
problems in magnetar atmospheres, for example linear and
nonlinear wave propagating in homogeneous backgrounds,
even up to relativistic wave amplitudes, as long as the flutuat-
ing part fulfills μB|δB| � m.

Of course, a full modeling of the magnetar surroundings,
covering the dipole nature of the background source field, is
beyond the scope of such a theory. Moreover, in order to focus
on the physics due to ultrastrong magnetic fields, the present
theory excludes effects such as the magnetic dipole force, the
spin magnetization, and the spin-orbit interaction included in
some previous models [10,11], which can be justified for the
long scale lengths and moderate frequencies that we focus
on here. In this context, however, it should be noted that
omission of the spin-orbit interaction is closely related to a
correction term of the free current density (see, e.g., Eq. (21)
of Ref. [10]). While the additional term kept by Ref. [10] is a
small correction for the conditions studied in this paper, it can
contribute with currents perpendicular to B0 that may be of
importance for certain problems, specifically for geometries
where the (otherwise larger) parallel currents vanish. This and
other possible extensions of the current theory is a project for
future research.

To illustrate the usefulness of the present theory, we have
computed the dispersion relation for Langmuir waves in a
strong magnetic field for a relativistic temperature. To a large
extent, we find that the electrons behave as if they are divided
into different species. More concretely, each Landau level of
the background plasma contributes to the susceptibility with
a term similar to the classical relativistic expression, but with
its own effective mass mn± = m[1 + (2n + 1 ± 1)h̄ωce/m]1/2.
We expect this result to generalize to some other problems, but
not be completely general, as for certain problems, the differ-
ence between the standard γ factor and the energy expression
of the current theory will be apparent. A more complete study
of the effects due to ultrastrong magnetic fields is a project for
future research.

APPENDIX: COMMUTATORS

The Hamiltonian in (6) contains some commutators of
functions of operators. To calculate these commutators, we
need to expand them in a series. We present here some of the
calculations that were done in order to obtain the result in (11).

First, both T̂ and ε̂ are functions of Ô, since these functions
can be expanded in a Taylor series of Ô, the commutator

[Ô, Ôn] = 0, (A1)

thus, we have that

[T̂ , Ô] = [ε̂, Ô] = 0. (A2)
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We can now rewrite (6) as

Ĥ ′ = βε̂ + Ê + 1

2T̂
([T̂ , [T̂ , F̂ ]] − 2β[ε̂, F̂ ]Ô

+ 2β[Ô, F̂ ]ε̂ + 2mβ[Ô, F̂ ] − [ε̂, [ε̂, F̂]]

− [Ô, [Ô, F̂]])
1

T̂
. (A3)

Looking first at the commutator of ε̂ and F̂ (the same result
can be used to the commutator of T̂ and F̂), we have

[ε̂, F̂ ] = [ε̂, qφ(r̂)] + ih̄∂t ε̂. (A4)

To calculate the commutator [ε̂, φ(r̂)], we expand the func-
tions in the commutators in a series [33],

[ε̂, φ(r̂)] = −
∞∑

k=1

(ih̄)k

k!
ε̂ (k)φk (r̂)

≈ −ih̄
∂ε̂

∂π̂i
∇iφ(r̂), (A5)

where in the last equality, higher derivative terms were ne-
glected in accordance with the long-scale approximation.
Thus, we have

[ε̂, F̂] = ih̄q
π̂

ε̂
· E. (A6)

Next, we calculate the commutator

[ε̂, [ε̂, F̂]] = ih̄q
1

ε̂
[ε̂, π̂ · E]

= ih̄q
1

ε̂
([ε̂, π̂ j]Ej + π̂ j[ε̂, Ej])

= ih̄q
1

ε̂
[ε̂, π̂ j]Ej, (A7)

where in the last equality, we neglected the commutator of ε̂

and Ej in accordance with the long-scale approximation. For
the commutator of ε̂ and π̂ j , we need to expand it in a series.
However this time, we have a commutator of functions that
depend on both p̂ and r̂. Using the result from Ref. [33], we
expand the commutator in a series

[ε̂, π̂ j]Ej =
∞∑

k=1

(ih̄)k

k!

(
∂kπ̂ j

∂kri

∂k ε̂

∂k pi
− ∂k ε̂

∂kri

∂kπ̂ j

∂k pi

)
Ej

≈ ih̄q
π̂

ε̂
· (E × B), (A8)

where in the last equality we only kept up to k = 1 in the
summation since higher-order terms vanish in the long-scale
approximation. Finally, we have

[ε̂, [ε̂, F̂]] = (ih̄q)2 π̂

ε̂2
· (E × B). (A9)

Note that [T̂ , [T̂ , F̂]] is calculated in the same way,

[T̂ , [T̂ , F̂ ]] = (ih̄q)2

[
1

T̂

(
2 + m

ε̂

)]2

π̂ · (E × B). (A10)

Now we will calculate the commutator of Ô and F̂
[Ô, F̂] = ih̄qα · E. (A11)

We did not need to do any approximation in calculating this
commutator since it is linear in Ô. Finally, we calculate

[Ô, [Ô, F̂]] = ih̄q(αiπ̂iα jE j − α jE jαiπ̂i )

= −h̄q�̂ · (π̂ × E − E × π̂), (A12)

where in the last equality we have used

αiα j = δi j + iεi jk�k .

Using (A6) and (A9) to (A12) in (A3), we get the Hamiltonian
Ĥ ′ in (11).
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