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Abstract
A probability measure 𝜇 on the subsets of the edge set of a

graph G is a 1-independent probability measure (1-ipm) on G
if events determined by edge sets that are at graph distance at

least 1 apart in G are independent. Given a 1-ipm 𝜇, denote by

G𝜇 the associated random graph model. Let 1,⩾p(G) denote

the collection of 1-ipms𝜇 on G for which each edge is included

in G𝜇 with probability at least p. For G = Z2, Balister and Bol-

lobás asked for the value of the least p⋆ such that for all p > p⋆

and all 𝜇 ∈ 1,⩾p(G), (G)𝜇 almost surely contains an infinite

component. In this paper, we significantly improve previous

lower bounds on p⋆. We also determine the 1-independent crit-

ical probability for the emergence of long paths on the line and

ladder lattices. Finally, for finite graphs G we study f1,G(p), the

infimum over all 𝜇 ∈ 1,⩾p(G) of the probability that G𝜇 is

connected. We determine f1,G(p) exactly when G is a path, a

complete graph and a cycle of length at most 5.

KEYWORDS

extremal graph theory, local lemma, percolation, random

graphs

1 INTRODUCTION

1.1 Bond percolation models, 1-independence and edge-probability

Let G be a (possibly infinite) connected graph. Spanning subgraphs of G are called configurations. In a

configuration H, an edge is said to be open if it belongs to H, and closed otherwise. A bond percolation
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model on the host graph G is a probability measure 𝜇 on the spanning subgraphs of G, that is, on the

space of configurations. Given such a measure, we denote the corresponding random graph model by

G𝜇, and refer to it as the 𝜇-random graph or 𝜇-random configuration.

In this paper, we study bond percolation models 𝜇 where the states (open or closed) of edges in

subsets F1,F2 of E in a 𝜇-random configuration are independent provided that the edges in F1 and F2

are “sufficiently far apart.” To make this more precise, we make use of the following definition.

Definition 1. Two edge sets F1,F2 ⊆ E are k-distant if F1 ∩ F2 = ∅ and the shortest path of G
from an edge in F1 to an edge in F2 contains at least k edges. A bond percolation model 𝜇 on G is

k-independent if for any pair (F1,F2) of k-distant edge sets, the intersections G𝜇 ∩ F1 and G𝜇 ∩ F2 are

independent random variables.

So for example 𝜇 is 0-independent if each edge of G𝜇 is open at random independently of all the

others, that is, 𝜇 can be viewed as a product of Bernoulli measures on the edges of G. A well-studied

0-independent model is the Erdős-Rényi random graph Gn,p, where the host graph is G = Kn, the

complete graph on n vertices, and where 𝜇, known as the p-random measure, sets each edge to be open

with probability p, independently of all the others.

In this paper, we focus on the next strongest notion of independence, namely 1-independence.

Measures that are 1-independent have the property that events determined by vertex-disjoint edge sets

are independent. For many 1-independent models, the randomness can be thought to “reside in the

vertices.” An important example of a 1-independent model is that of site percolation on the square

integer lattice. In this case the host graph is the square integer lattice Z2 (where two vertices are joined

by an edge if they lie at distance 1 apart), and the measure 𝜇 = 𝜇site(𝜃) is obtained by switching each

vertex of Z2 on at random with probability 𝜃, independently of all the others, and by setting an edge to

be open if and only if both of its endpoints are switched on. Site percolation measures may be defined

more generally on any host graph in the natural way.

Site percolation is an example of a broader class of 1-independent measures where we indepen-

dently associate to each vertex v ∈ V(G) a state Sv at random, and set an edge uv to be open if and only

if f (Su, Sv) = 1, for some deterministic function f (which may depend on u and v). We refer to such

measures as vertex-based measures (see Section 11 for a formal definition). Vertex-based measures

on Z are a generalization of the well-studied notion of two-block factors, which are vertex-based mea-

sures on Z in which the vertex states Su are i.i.d. random variables and the function f is independent

of u and v, see [24] for further details.

An important point to note is that while all 0-independent bond percolation models are a product

of Bernoulli measures on the edges of G (with varying parameters), it is well-known that a graph G
may support many 1-independent measures which cannot be realized as vertex-based measures or as

general “block factors,” see for instance [1,13,21]. In particular for most graphs G, it is not feasible to

generate or simulate the collection of 1-independent measures of G.

Definition 2. Given a bond percolation model 𝜇 on a host graph G, the (lower)-edge-probability of

𝜇 is

d(𝜇) ∶= inf
e∈E(G)

𝜇{e is open}.

So for instance a p-random measure has edge-probability p, while a site percolation measure with

parameter 𝜃 has edge-probability 𝜃2. The collection of k-independent bond percolation models 𝜇 on a

graph G with edge-probability 𝑑(𝜇) ⩾ p is denoted by k,⩾p(G).
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Remark 3. Given a measure 𝜇 ∈ k,⩾p(G), we may readily produce a measure �̃� ∈ k,⩾p(G) such

that �̃�({e is open}) = p for all e ∈ E(G) via random sparsification: independently delete each edge e
of G𝜇 with probability p∕𝜇({e is open}) ∈ [0, 1]. The resulting bond percolation model on G is clearly

k-independent and has the property that each edge is open with probability exactly p; the corresponding

bond percolation measure �̃� thus has the required properties.

1.2 Critical probabilities for percolation and motivation for this paper

Percolation theory is the study of random subgraphs of infinite graphs. Since its inception in

Oxford in the 1950s, it has blossomed into a rich theory and has been the subject of several mono-

graphs [11,17,27]. The central problem in percolation theory is to determine the relationship between

edge-probabilities and the existence of infinite connected components in bond percolation models.

In the most fundamental instance of this problem, consider an infinite, locally finite connected

graph G, and let 𝜇 be a 0-independent bond percolation model on G. We say that percolation occurs

in a configuration H on G if H contains an infinite connected component of open edges. By Kol-

mogorov’s zero-one law, for G and 𝜇 as above, percolation is a tail event whose 𝜇-probability is either

zero or one. This allows one to thus define the Harris critical probability p0,c(G) for 0-independent

percolation:

p0,c(G) ∶= inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈ 0,⩾p(G), 𝜇({percolation}) = 1
}
.

Problem 4. Given an infinite, locally finite connected graph G, determine p0,c(G).

One of the cornerstones of percolation theory—and indeed one of the triumphs of twentieth cen-

tury probability theory—is the Harris-Kesten theorem, which established the value of p0,c(Z2) to

be 1∕2.

Theorem (Harris-Kesten Theorem [20, 23]). Let 𝜇 be the p-random measure on Z2. Then

𝜇({percolation}) =
⎧⎪⎨⎪⎩

0 if p ⩽ 1

2

1 if p >
1

2
.

In this paper, we focus on the question of what happens to the Harris critical probability in Z2 if

the assumption of 0-independence is weakened to k-independence. In particular, how much can local
dependencies between the edges postpone the global phenomenon of percolation?

Definition 5. Let G be an infinite, locally finite connected graph and let k ∈ N0. The Harris critical

probability for k-independent percolation1 in G is defined to be:

pk,c(G) ∶= inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈ k,⩾p(G), 𝜇({percolation}) = 1
}
.

1As observed in [16], a simple k-independent variant of Kolmogorov’s zero-one law shows that percolation remains a tail event

when we consider k-independent models.
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Problem 6. Determine p1,c(Z2).

Problem 6 was proposed by Balister and Bollobás [4] in a 2012 paper in which they began a system-

atic investigation of 1-independent percolation models. Study of 1-independent percolation far predates

their work (see e.g., [1, 6, 7, 13, 22, 24]), however, due to important applications of 1-independent

percolation models.

A standard technique in percolation is renormalisation, which entails reducing a 0-independent

model to a 1-independent one (possibly on a different host graph), trading in some dependency for a

boost in edge-probabilities. Renormalisation arguments feature in many proofs in percolation theory;

a powerful and particularly effective version of such arguments was developed by Balister, Bollobás,

and Walters [7].

Their method, which relies on comparisons with 1-independent models on Z2 (in almost all cases)

and Monte-Carlo simulations to estimate the probabilities of bounded events, has been applied to give

rigorous confidence intervals for critical probabilities/intensities in a wide variety of settings: var-

ious models of continuum percolation [3, 7, 8], hexagonal circle packings [10], coverage problems

[5, 19], stable Poisson matchings [14, 15], the Divide-and-Color model [2], site and bond percolation

on the eleven Archimedean lattices [29] and for site and bond percolation in the cubic lattice Z3 [9].

The usefulness of comparison with 1-independent models and the plethora of applications give strong

theoretical motivation for the study of 1-independent percolation.

From a more practical standpoint, many of the real-world structures motivating the study of per-

colation theory exhibit short-range interactions and local dependencies. For example a subunit within

a polymer will interact and affect the state of nearby subunits, but perhaps not of distant ones. Simi-

larly, the position or state of an atom within a crystalline network may have a significant influence on

nearby atoms, while long-range interactions may be weaker. Within a social network, we would again

expect individuals to exert some influence in esthetic tastes or political opinions, say, on their circle of

acquaintance, and also expect that influence to fade once we move outside that circle. This suggests

that k-independent bond percolation models for k ⩾ 1 are as natural an object of study as the more

widely studied 0-independent ones.

Despite the motivation outlined above, 1-independent models remain poorly understood. To quote

Balister and Bollobás from their 2012 paper: “1-independent percolation models have become a key

tool in establishing bounds on critical probabilities […]. Given this, it is perhaps surprising that some

of the most basic questions about 1-independent models are open.” There are in fact some natural

explanations for this state of affairs. As remarked on in the previous subsection, there are many very

different 1-independent models with edge-probability p, and they tend to be harder to study than

0-independent ones due to the extra dependencies between edges. In particular simulations are often of

no avail to formulate conjectures or to get an intuition for 1-independent models in general. Moreover,

while the theoretical motivation outlined above is probabilistic in nature, the problem of determining

a critical constant like p1,c(Z2) is extremal in nature—one has to determine what the worst possi-

ble 1-independent model is with respect to percolation—and calls for tools from the separate area of

extremal combinatorics.

In this paper, we continue Balister and Bollobás’s investigation into the many open problems and

questions about and on these measures. Before we present our contributions to the topic, we first recall

below previous work on 1-independent percolation.

1.3 Previous work on 1-independent models

Some general bounds for stochastic domination of k-independent models by 0-independent ones were

given by Liggett, Schonmann and Stacey [24]. Among other things, their results implied p1,c(Z2) < 1.
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Balister, Bollobás and Walters [7] improved this upper bound via an elegant renormalisation argument

and some computations. They showed that in any 1-independent bond percolation model on Z2 with

edge-probability at least 0.8639, the origin has a strictly positive chance of belonging to an infinite

open component. This remains to this day the best upper bound on p1,c(Z2). In a different direction,

Balister and Bollobás [4] observed that trivially p1,c(G) ⩾ 1

2
for any infinite, locally finite connected

graph G. In the special case of the square integer lattice Z2, they recalled a simple construction due to

Newman which gives

p1,c(Z2) ⩾ (𝜃site)2 + (1 − 𝜃site)2 , (1.1)

where 𝜃site is the critical value of the 𝜃-parameter for site percolation, that is, the infimum of 𝜃 ∈
[0, 1] such that switching vertices of Z2 on independently at random with probability 𝜃 almost surely

yields an infinite connected component of on vertices. Plugging in the known rigorous bounds for

0.556 ⩽ 𝜃site ⩽ 0.679492 [33, 34] yields p1,c(Z2) ⩾ 0.5062, while using the nonrigorous estimate

𝜃site ≈ 0.592746 (see e.g., [32]) yields the nonrigorous lower-bound p1,c(Z2) ⩾ 0.5172.

With regards to other lattices, Balister and Bollobás completed a rigorous study of 1-independent

percolation models on infinite trees [4], giving 1-independent analogs of classical results of Lyons [25]

for the 0-independent case. Balister and Bollobás’s results were later generalized to the k-independent

setting by Mathieu and Temmel [26], who also showed interesting links between this problem and

theoretical questions concerning the Lovász local lemma, in particular the work of Scott and Sokal [30,

31] on hard-core lattice gases, independence polynomials and the local lemma.

1.4 Our contributions

In this paper, we make a three-fold contribution to the study of Problem 6. First of all, we improve

previous lower bounds on p1,c(Z2) with the following theorems.

Theorem 7. For all 𝑑 ∈ N⩾2, we have that

p1,c(Z𝑑) ⩾ 4 − 2
√

3 ≈ 0.535898… .

Theorem 7 strictly improves on the previous best lower bound for 𝑑 = 2 given in (1.1) above; moreover,

it is based on a very different idea, which first appeared in the second author’s PhD thesis [16]. In

addition we give a separate improvement of (1.1): let 𝜃site again denote the critical threshold for site

percolation. Then the following holds.

Theorem 8.

p1,c(Z2) ⩾
(
𝜃site(Z2)

)2 + 1

2

(
1 − 𝜃site

(
Z

2
))

.

Substituting the rigorous bound 𝜃site ⩾ 0.556 into Theorem 8 yields the lower bound p1,c(Z2) ⩾
0.531136, which does slightly worse than Theorem 7. However substituting in the widely believed

but nonrigorous estimate 𝜃site ≈ 0.592746 yields a significantly stronger lower bound of p1,c(Z2) ⩾
0.554974.

Second, motivated by efforts to improve the upper bounds on p1,c(Z2), and in particular to estab-

lish some 1-independent analogs of the Russo-Seymour-Welsh (RSW) lemmas on the probability of

crossing rectangles, we investigate the following problems. Let Pn denote the graph on the vertex set

{1, 2,… n} with edges {12, 23,… , (n − 1)n}, that is, a path on n vertices. Given a connected graph
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G, denote by Pn × G the Cartesian product of Pn with G. A left-right crossing of Pn × G is a path

from a vertex in {1} × V(G) to a vertex in {n} × V(G). We define the crossing critical probability for

1-independent percolation on Pn × G to be

p1,×(Pn × G) ∶= inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈ 1,⩾p(Pn × G), 𝜇(∃ open left-right crossing) > 0
}
,

that is, the least edge-probability guaranteeing that in any 1-independent model on Pn × G, there is a

strictly positive probability of being able to cross Pn × G from left to right.

Problem 9. Given n ∈ N and a finite, connected graph G, determine p1,×(Pn × G).

Problem 9 can be thought of as a first step toward the development of 1-independent analogs of the

RSW lemmas; these lemmas play a key role in modern proofs of the Harris-Kesten theorem, and one

would expect appropriate 1-independent analogs to constitute a similarly important ingredient in a

solution to Problem 6. By taking the limit as n → ∞ in Problem 9, one is led to consider another

1-independent critical probability. Let G be an infinite, locally finite connected graph. The long paths
critical probability for 1-independent percolation on G is

p1,𝓁𝑝(G) ∶= inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈ 1,⩾p(G), ∀n ∈ N 𝜇(∃ open path of length n) > 0
}
,

that is, the least edge-probability at which arbitrarily long open paths will appear in all 1-independent

models in G.

Problem 10. Given an infinite, locally finite, connected graph G, determine p1,𝓁𝑝(G).

In this paper, we resolve Problem 9 in a strong form when G consists of a vertex or an edge (see

Theorems 15 and 30). This allows us to solve Problem 10 when G is the integer line lattice Z and the

integer ladder lattice Z × P2.

Theorem 11. We have that

(i) p1,𝓁𝑝(Z) = 3

4
, and

(ii) p1,𝓁𝑝(Z × P2) = 2

3
.

Note that part (i) of Theorem 11 above can be read out of earlier work of Liggett, Schonman, and

Stacey [24] and Balister and Bollobás [4]. We prove further bounds on both p1,×(Pn×G) and p1,𝓁𝑝(Z×G)
for a variety of graphs G. We summarize the latter, less technical, set of results below. Let Cn and Kn
denote the cycle and the complete graph on n vertices respectively.

Theorem 12. We have that

(i) 0.5359… = 4 − 2
√

3 ⩽ p1,𝓁𝑝(Z × Cn) ⩽ p1,𝓁𝑝(Z × Pn) ⩽ 2

3
for all n ⩾ 3;

(ii) p1,𝓁𝑝(Z × K3) ⩽ 1

16

(
13 − 55

3
√

128
√

14−251

+ 3

√
128
√

14 − 251
)
= 0.63154… ;

(iii) p1,𝓁𝑝(Z × C4) ⩽ (3 −
√

3)∕2 = 0.63397… ;
(iv) p1,𝓁𝑝(Z × C5) ⩽ 0.63895… ;
(v) 0.5359… = 4 − 2

√
3 ⩽ limn→∞ p1,𝓁𝑝(Z × Kn) ⩽ 5

9
= 0.5555….
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A key ingredient in the proof of Theorems 11 and 12 is a local lemma-type result, Theorem 26,

relating the probability in a 1-independent model of finding an open left-right crossing of Pn×G to the

probability of a given copy of G being connected in that model. This motivated our third contribution

to the study of 1-independent models in this paper, namely an investigation into the connectivity of

1-independent random graphs.

Definition 13. Let G be a finite connected graph. For any p ∈ [0, 1], we define the k-independent

connectivity function of G to be

fk,G(p) ∶= inf
{
𝜇(∃ open spanning tree) ∶ 𝜇 ∈ k,⩾p(G)

}
.

Problem 14. Given a finite connected graph G, determine f1,G(p).

We resolve Problem 14 exactly when G is a path, a complete graph or a cycle on at most 5 vertices.

Theorem 15. Given n ∈ N⩾2 and p ∈ [0, 1], let 𝜃 = 𝜃(p) ∶= 1+
√

4p−3

2
and pn ∶=

1

4

(
3 − tan2

(
𝜋

n+1

))
. We have that

f1,Pn (p) =

{∑n
j=0 𝜃

j(1 − 𝜃)n−j for p ∈ [pn, 1],
0 for p ∈ [0, pn].

Theorem 16. Given n ∈ N⩾2 and p ∈ [0, 1], let 𝜃 = 𝜃(p) ∶= 1+
√

2p−1

2
and pn ∶= 1

2

(
1 − tan2

(
𝜋

2n

))
.

We have that

f1,Kn (p) =

{
𝜃n + (1 − 𝜃)n for p ∈ [pn, 1],
0 for p ∈ [0, pn].

In particular,

f1,K3
(p) = f1,C3

(p) =

{
3p−1

2
for p ∈

[ 1
3
, 1
]
,

0 for p ∈
[
0,

1

3

]
.

Theorem 17. For p ∈ [0, 1] we have that

f1,C4
(p) =

{
2p − 1 for p ∈

[ 1
2
, 1
]
,

0 for p ∈ [0, 1

2
].

Theorem 18. For p ∈ [0, 1] we have that

f1,C5
(p) =
⎧⎪⎨⎪⎩

p(3p2−1)
3p−1

for p ∈
[√3

3
, 1
]
,

0 for p ∈
[
0,

√
3

3

]
.

We also consider the opposite problem to Problem 14, namely maximizing connectivity in

1-independent random graph models. Let k,⩽p(G) denote the collection of 1-independent measures

𝜇 on G such that supe∈E(G) 𝜇{e is open} ⩽ p. Set

Fk,G(p) ∶= sup{𝜇 (∃ open spanning tree) ∶ 𝜇 ∈ k,⩽p(G)}.
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Problem 19. Given a finite connected graph G, determine F1,G(p).

We resolve Problem 19 exactly when G is a path, a complete graph or a cycle on at most 5 vertices.

Theorem 20. For all n ∈ N with n ⩾ 2, F1,Pn (p) = p⌊ n
2
⌋.

Theorem 21. For all n ∈ N with n ⩾ 2, F1,Kn(p) = 1 − f1,Kn (1 − p).

Theorem 22.

F1,C4
(p) =

{
2p − p2 if p ∈

[ 2
3
, 1
]
,

2p2 if p ∈
[
0,

1

3

]
.

Theorem 23.

F1,C5
(p) =

⎧⎪⎪⎨⎪⎪⎩

p(2−5p(1−p))
5−3p

if p ∈
[ 3

5
, 1
]
,

5p2

3
if p ∈
[ 1

2
,

3

5

]
,

5p2(p+1)
p+4

if p ∈
[
0,

1

2

]
.

Together, Theorems 15-18 and 21-23 determine the complete connectivity “profile” for 1-independent

measures 𝜇 on Kn, Pn, C4 and C5—i.e., the range of values 𝜇({connected}) can take if every edge is

open with probability p. In Figure 1, we illustrate these for four of these graphs G with plots of f1,G(p),
F1,G(p) and f0,G(p) ∶= 𝜇

(
Gp is connected

)
, where Gp is the 0-independent model on G obtained by

setting each edge of G to be open with probability exactly p, independently at random.

1.5 Organization of the paper

Our first set of results, Theorems 7 and 8 are proved in Section 2.

In Section 3, we use arguments reminiscent of those used in inductive proofs of the Lovász local

lemma to obtain Theorem 26, which gives a general upper bound for crossing and long paths critical

probabilities in 1-independent percolation models on Cartesian products Z × G. This result is used in

Sections 5 and 6 to prove Theorem 11 on the long paths critical probability for the line and ladder

lattices.

In Sections 5, 7 and 8 and 9, we prove our results on f1,G(p) and F1,G(p)when G is a path, a complete

graph or a short cycle. We apply these results in Section 10 to prove Theorem 12. Finally we end the

paper in Section 11 with a discussion of the many open problems arising from our work.

1.6 Notation

We write N for the set of natural numbers {1, 2,…}, N0 for the set N ∪ {0}, and N⩾k for the set of

natural numbers greater than or equal to k.

We set [n] ∶= {1, 2,… n}. Given a set A, we write A(r) for the collection of all subsets of A of

size r, hereafter referred to as r-sets from A. We use standard graph theoretic notation. A graph is a

pair G = (V ,E) where V = V(G) and E = E(G) ⊆ V(G)(2) denote the vertex set and edge set of G
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FIGURE 1 The 1-independent connectivity profile of G for G = K3 K4, C4 and C5. The green curve represents f1,G(p),
the dashed black curve f0,G(p), and the union of the red, blue and purple segments represent the piecewise smooth function

F1,G(p) [Colour figure can be viewed at wileyonlinelibrary.com]

respectively. Given a subset A ⊆ G, we denote by G[A] the subgraph of G induced by A. We also write

N(A) for the set of vertices in G adjacent to at least one vertex in A.

Given two graphs G and H, we write G × H for the Cartesian product of G with H, which is the

graph on the vertex set V(G) ×V(H) having an edge between (x, u) and (y, v) if and only if either u = v
and x is adjacent to y in G, or x = y and u is adjacent to v in H.

Throughout this paper, we shall use k-ipm as a shorthand for “k-independent percolation

model/measure.” In a slight abuse of language, we say that a bond percolation model 𝜇 on an infinite

connected graph G percolates if 𝜇({percolation}) = 1. We refer to a random configuration G𝜇 as a

𝜇-random subgraph of G. Finally we write E𝜇 for the expectation taken with respect to the probability

measure 𝜇. For any event X, we write Xc for the complement event.

http://wileyonlinelibrary.com
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FIGURE 2 The possible states of the vertices in T0,T1,T2 and T3 when 𝑑 = 2. The letter B stands for Blue, the letter R stands

for Red, and the letter I stands for the Inwards state [Colour figure can be viewed at wileyonlinelibrary.com]

2 LOWER BOUNDS ON P1,C(ZD)

Proof of Theorem 7. Let 𝑑 ∈ N⩾2. For k ∈ N0, let Tk ∶=
{
(x, y) ∈ Z𝑑 ∶ max(|x|, |y|) = k

}
. Let

q ∶=
√

3 − 1. For each vertex in Z𝑑 , we color it either Blue or Red, or set it to state I, which stands

for Inwards. The probability that a given vertex will be in each of these states will depend on which of

the Tk the vertex is in, and we assign these states to each vertex independently of all other vertices.

• If v is a vertex in Tk, where k ≡ 0 mod 6, then we color v Blue.

• If v is a vertex in Tk, where k ≡ 1 mod 6, then we color v Red with probability q∕2 and color it

Blue otherwise.

• If v is a vertex in Tk, where k ≡ 2 mod 6, then we color v Red with probability q and put it in

the Inwards state I otherwise.

• If v is a vertex in Tk, where k ≡ 3 mod 6, then we color v Red.

• If v is a vertex in Tk, where k ≡ 4 mod 6, then we color v Blue with probability q∕2 and color

it Red otherwise.

• If v is a vertex in Tk, where k ≡ 5 mod 6, then we color v Blue with probability q and put it in

the Inwards state I otherwise.

Note that the rules for Tk+3,Tk+4,Tk+5 are the same as those for Tk,Tk+1,Tk+2 respectively, except with

red and blue interchanged. See Figure 2 for the possible states of the vertices in T0,T1,T2 and T3 when

𝑑 = 2. Now suppose that e = {v1, v2} is an edge in Z𝑑 . First we say that the edge e is open if either

both v1 and v2 are Blue or both v1 and v2 are Red. We also say the edge e is open if, for some k, we

have that v1 ∈ Tk, v2 ∈ Tk+1, and v2 is in state I. In all other cases we say that the edge e is closed. It

is clear that this gives a 1-independent measure on Z𝑑 as it is vertex-based, and it is also easy to check

that every edge is present with probability at least 4 − 2
√

3.

Call this measure 𝜇, and let G ∶= Z𝑑 . We claim that in G𝜇, for all k ≡ 0 mod 3, there is no path of

open edges from Tk to Tk+3. Suppose this is not the case, and P is some path of open edges from a vertex

in Tk to Tk+3. We first note that P cannot include a vertex in state I, as such a vertex would be in Tk+2

and would only be adjacent to a single edge. Thus every vertex of P is either Blue or Red. However, as

one end vertex of P is Blue and the other end vertex is Red, and there are no open edges with different
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colored end vertices, we have that such a path P cannot exist. As a result, every component of G𝜇 is

sandwiched between some Tk−3 and Tk+3, where k ≡ 0 mod 3, and so is of finite size. Thus we have

that p1,c(Z𝑑) ⩾ 4 − 2
√

3. ▪

The construction in Theorem 7 can in fact be generalized to certain other graphs and lattices. Given

an infinite, connected, locally finite graph G, and a vertex set A ⊆ V(G), let A be the closure of A under

2-neighbor bootstrap percolation on G. That is, let A ∶=
⋃

i⩾0 Ai, where A0 ∶= A and for i ⩾ 1

Ai ∶= Ai−1 ∪ {v ∈ V(G) ∶ v has 2 or more neighbors in Ai−1}.

We say that G has the finite 2-percolation property if, for every finite set A ⊆ V(G), we have that

A is finite.

Corollary 24. If G has the finite 2-percolation property, then p1,c(G) ⩾ 4 − 2
√

3.

Proof. Partition V(G) in the following way: pick any vertex v and set T0 ∶= {v}. For k ⩾ 1 let

Tk ∶= N(Tk−1) ⧵
k−1⋃
j=0

Tj.

We have that if w ∈ Tk, then w is only adjacent to vertices in Tk−1,Tk and Tk+1. Moreover, w is adjacent

to at most one vertex in Tk−1—this is the crucial property needed for our construction. Since G has the

finite 2-percolation property, each Tk is finite. Thus we can use the Tk to construct a nonpercolating

1-ipm on G in the exact same fashion as done for Z𝑑 in Theorem 7 (the key being that vertices in state

I are still dead ends, being incident to a unique edge), which in turn shows that p1,c(G) ⩾ 4 − 2
√

3. ▪

An example of a lattice with the finite 2-percolation property is the lattice (3, 4, 6, 4), where here

we are using the lattice notation of Grünbaum and Shephard [18]. Riordan and Walters [29] showed

that the site percolation threshold of this lattice is very likely to lie in the interval [0.6216, 0.6221].
Thus this estimate, together with Newman’s construction (see equation (1.1)), shows (nonrigorously)

that p1,c ((3, 4, 6, 4)) ⩾ 0.52981682. As this is less than 4 − 2
√

3, we have that our construction gives

the (rigorous) improvement of p1,c ((3, 4, 6, 4)) ⩾ 4 − 2
√

3.

Proof of Theorem 8. Fix 𝜀 > 0 sufficiently small so that q ∶= 𝜃site(Z2)−𝜀 is strictly larger than 1∕4.

For each vertex v ∈ Z2, we assign to it one of three states: On, L or D, and we do this independently for

every vertex. We assign v to the On state with probability q, we assign it to the L state with probability
1

2
(1 − q), and else we assign it to the D state with probability

1

2
(1 − q).

We now describe which edges are open based on the states of the vertices. We first say that the

edge e is open if both of its vertices are in the On state. If a vertex is in state L, then the edge adjacent

and to the left of it is open. Similarly, if a vertex is in state D, then the edge adjacent and down from

it is open. All other edges are closed. See Figure 3 for an example of this construction.

It is easy to see that this is a 1-independent measure on Z2 as it is vertex-based, and every edge is

present with probability q2 + 1

2
(1 − q). Call this measure 𝜇 and let G ∶= Z2. We will show that every

component of G𝜇 has finite size. We begin by first proving an auxiliary lemma. Let t ∈ [0, 1

2
], and let

us define another 1-independent measure on Z2, which we call the left-down measure with parameter t.
In the left-down measure, each vertex of Z2 is assigned to one of three states: Off, L or D, and we do

this independently for every vertex. For each vertex v ∈ Z2, we assign it to state L with probability t,
we assign it to state D with probability t, and we assign it to state Off with probability 1−2t. As above,
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FIGURE 3 This figure shows the open edges of the construction on a small subset of Z2. The unlabeled vertices correspond to

those in the On state. The black edges are the open edges that are adjacent to two On vertices, while the dashed red edges are the

open edges that are either to the left of an L vertex or below a D vertex [Colour figure can be viewed at wileyonlinelibrary.com]

if a vertex is in state L, then the edge adjacent and to the left of it is open, while if a vertex is in state

D, then the edge adjacent and down from it is open. All other edges are closed. We use 𝜈t to denote

the left-down measure with parameter t.

Lemma 25. If 0 ⩽ t ⩽ 3

8
, then all components in G𝜈t are finite almost surely.

Proof. Let z ∶= 1 −
√

1 − 2t. As 0 ⩽ t ⩽ 3

8
we have that 0 ⩽ z ⩽ 1

2
. We start by taking a random

subgraph of Z2 where every edge is open with probability z, independently of all other edges. We then

further modify it as follows. For each vertex v = (x, y) we look at the state of the edge e1 from v to the

vertex (x − 1, y), and the state of the edge e2 from v to the vertex (x, y − 1). If at least one of e1 or e2 is

closed, we do not change anything. However, if both e1 and e2 are open, with probability
1

2
we close

the edge e1, and otherwise we close the edge e2. We do this independently for every vertex v of Z2.

It is easy to see that this is an equivalent formulation of 𝜈t, the left-down measure with parameter t.
Indeed, to each vertex v = (x, y) as above we may assign a state Off if both the edge e1(v) to the vertex

to the left of v and the edge e2(v) to the vertex below v are closed, a state L if e1(v) is open and a state

D if e2(v) is open. The probabilities of these three states are (1 − z)2 = 1 − 2t, t and t respectively,

and since the vertex states depend only on the pairwise disjoint edge sets {e1(v), e2(v)}v∈Z2 , they are

independent of one another just as in the 𝜈t measure.

Thus we have coupled 𝜈t to the 0-independent bond percolation measure 𝜉 on Z2 with

edge-probability z. In this coupling we have that if an edge e is open in G𝜈t , then it is also open in G𝜉 .

As z ⩽ 0.5 we have that all components in G𝜉 are finite by the Harris-Kesten theorem, and so we also

have that all of the components in G𝜈t are finite too. ▪

By considering an appropriate branching process it is possible to prove the stronger result that if

0 ⩽ t < 1

2
, then almost surely all components in G𝜈t are finite. We make no use of this stronger result

http://wileyonlinelibrary.com
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in this paper, so we omit its proof. It is also clear that when t = 1

2
, every vertex in G𝜈t is part of an

infinite path consisting solely of steps to the left or steps downwards, and so percolation occurs in G𝜈t

at this point.

Let us return to our original 1-independent measure 𝜇, where every vertex is in state On, L or

D. Recall that our aim is to show that all components have finite size in G𝜇. Consider removing all

vertices in state L or D, and also any edges adjacent to these vertices. What is left will be a collection of

components consisting only of edges between vertices in the On state, which we call the On-sections.

The black edges in Figure 3 are the edges in the On-sections. As a vertex is On with probability

q < 𝜃site(Z2), we have that almost surely every On-section is finite. Similarly, consider removing all

edges in the On-sections. What is left will be a collection of edges adjacent to vertices in the L or D
states. We call these components the LD-sections; the dashed red edges in Figure 3 are the edges in the

LD-sections. As each vertex is in state L with probability
1

2
(1 − q) ⩽ 3

8
and in state D with the same

probability, Lemma 25 tells us that almost surely every LD-section is finite.

For each vertex v in state L orient the open edge to the left of it away from v, while for each vertex

v in state D orient the open edge below it away from v. This gives a partial orientation of the open

edges of G𝜇, in which every vertex in state L or D has exactly one edge oriented away from it, and

vertices in state On have no outgoing edge. Furthermore, if v1 is a vertex in the On state and v2 is a

vertex in the L or D state, then the edge between them is oriented from v2 to v1. Since the LD-sections

are almost surely finite, this implies the LD sections under this orientation consist of directed trees,

each of which is oriented from the leaves to a unique root, which is in the On state. In particular, every

LD-section attaches to at most one On-section. As such, almost surely every component in G𝜇 consists

of at most one On-section, and a finite number of finite LD-sections attached to it. Thus almost surely

every component in G𝜇 is finite. ▪

3 A GENERAL UPPER BOUND FOR P1,𝓁P (Z × G)

Let G be a finite connected graph. Set v(G) ∶= |V(G)|. Recall that for any 1-independent bond

percolation measure 𝜇 ∈ 1,⩾p(G), we have 𝜇(G𝜇 is connected) ⩾ f1,G(p).

Theorem 26. If p satisfies

(
f1,G(p)
)2 ⩾ 1

𝛼(1 − 𝛼)
(1 − p)v(G), (3.1)

for some 𝛼 ∈ (0, 1∕2], then for every 𝓁 ∈ N

f1,P𝓁×G(p) ⩾
(
(1 − 𝛼)f1,G(p)

)𝓁
.

Proof. Consider an arbitrary measure 𝜇 ∈ 1,⩾p(Z × G). For any n ∈ N, the restriction of 𝜇 to

[n]×V(G) is a measure from 1,⩾p(Pn×G), and clearly all such measures can be obtained in this way.

Furthermore, for every n ∈ N, the restriction of 𝜇 to {n} × V(G) is a measure from 1,⩾p(G), and

in particular the subgraph of (Z × G)𝜇 induced by {n} × V(G) is connected with probability at least

f1,G(p).
We consider the 𝜇-random graph (Z × G)𝜇. For n ⩾ 1 let Yn be the event that [n] ×V(G) induces a

connected subgraph. For n ⩾ 2, let Xn be the event that [n − 1] × V(G) induces a connected subgraph

and at least one vertex in {n}×V(G) is connected to a vertex in {n−1}×V(G). For n = 1, set X1 to be
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the trivially satisfied event occurring with probability 1. For n ⩾ 1, let Vn be the event that {n}×V(G)
induces a connected subgraph, and for n ⩾ 2 let Hn be the event that at least one of the edges from

{n − 1} × V(G) to {n} × V(G) is present.

It easily follows that Xn = Yn−1 ∩ Hn and Xn ∩ Vn ⊆ Yn. From here, we obtain the following

inclusions:

(a) (Xn+1)c ∩ Yn = (Hn+1)c ∩ Yn,

(b) Yn ∩ Yn−1 ⊇ (Vn ∩ Xn) ∩ Yn−1, and

(c) (Yn)c ∩ Xn ⊆ (Vn)c ∩ Xn.

Now set

xn ∶= 𝜇

(
Xc

n|⋂
m<n

Ym

)
and yn ∶= 𝜇

(
Yc

n|Xn ∩

(⋂
m<n

Ym

))
.

We begin by establishing two inductive relations for the sequences xn and yn. First of all, using (a)

and (b) we have,

xn+1 =
𝜇((Xn+1)c ∩ (

⋂
m⩽n Ym))

𝜇(
⋂

m⩽n Ym)
=

𝜇((Hn+1)c ∩ (
⋂

m⩽n Ym))
𝜇(
⋂

m⩽n Ym)

⩽ 𝜇((Hn+1)c)
𝜇(Yn|(⋂m<n Ym))

by 1-independence

⩽
(1 − p)v(G)

𝜇(Vn|(⋂m<n Ym)) − 𝜇((Xn)c|(⋂m<n Ym))

⩽
(1 − p)v(G)

f1,G(p) − xn
by 1-independence. (3.2)

Second, using (c),

yn =
𝜇((Yn)c ∩ Xn ∩ (

⋂
m<n Ym))

𝜇(Xn ∩ (
⋂

m<n Ym))
⩽

𝜇((Vn)c ∩ (
⋂

m<n Ym))
𝜇(Xn ∩ (

⋂
m<n Ym))

⩽ 𝜇((Vn)c)
𝜇(Xn|(⋂m<n Ym))

by 1-independence

⩽
(1 − f1,G(p))

1 − xn
. (3.3)

Now if (3.1) is satisfied, we claim that xn ⩽ 𝛼f1,G(p) for all n. Indeed x1 = 0, and if xn ⩽ 𝛼f1,G(p), then

by (3.3)

yn ⩽
1 − f1,G(p)

1 − 𝛼f1,G(p)
= 1 −

(1 − 𝛼)f1,G(p)
1 − 𝛼f1,G(p)

< 1.

Furthermore, we have by (3.2) and (3.1) that

xn+1 ⩽
(1 − p)v(G)

(1 − 𝛼)f1,G(p)
⩽ 𝛼f1,G(p),

so our claim follows by induction.
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Finally, we have that

𝜇(Y𝓁) =
𝓁∏

i=1

(1 − xi)(1 − yi) >
(
(1 − 𝛼)f1,G(p)
1 − 𝛼f1,G(p)

)𝓁 (
1 − 𝛼f1,G(p)

)𝓁 =
(
(1 − 𝛼)f1,G(p)

)𝓁
.

▪

For any finite connected graph G, f1,G(p) is a nondecreasing function of p with f1,G(1) = 1. Thus

the function (f1,G(p))2 is also nondecreasing in p and attains a maximum value of 1 at p = 1. On the

other hand, the function 4(1 − p)v(G) is strictly decreasing in p and is equal to 4 at p = 0. Thus there

exists a unique solution p⋆ = p⋆(G) in the interval [0, 1] to the equation

(f1,G(p))2 = 4(1 − p)v(G). (3.4)

Theorem 26 thus has the following immediate corollary.

Corollary 27. Let G be a finite connected graph. Let p⋆ = p⋆(G) be as above. Then

p1,𝓁𝑝(Z × G) ⩽ p⋆.

Proof. Apply Theorem 26 with 𝛼 = 1∕2. ▪

4 IMAGINARY LIMITS OF REAL CONSTRUCTIONS: A PRELIMINARY
LEMMA

In this section we prove a lemma that we shall use in Sections 5 and 7. The lemma will allow us to use

certain vertex-based constructions to create other 1-ipms that cannot be represented as vertex-based

constructions (or would correspond to vertex-based constructions with “complex weights”).

Lemma 28. Let G be a finite graph, and let  ∶= {QH(𝜃) ∶ H ⊆ G} be a set of polynomials
with real coefficients, indexed by subgraphs of G. Given 𝜃 ∈ C, let 𝜇𝜃 be the following function from
subgraphs of G to C:

𝜇𝜃(H) ∶= QH(𝜃).

Suppose there exists a nontrivial interval I ⊆ R such that, for all 𝜃 ∈ I, the function 𝜇𝜃 defines
a 1-ipm on G. Suppose further that there exists a set X ⊆ C such that, for all 𝜃 ∈ X and all H ⊆ G,
𝜇𝜃(H) is a nonnegative real number. Then 𝜇𝜃 is a 1-ipm on G for all 𝜃 ∈ X.

Proof. We start by proving that 𝜇𝜃 is a measure on G for all 𝜃 ∈ X. As 𝜇𝜃(H) is a nonnegative real

number for all 𝜃 ∈ X and all H ⊆ G, all that is left to prove is that(∑
H⊆G

QH(𝜃)

)
− 1 = 0. (4.1)

The left hand side of (4.1) is a polynomial in 𝜃 with real coefficients, and is equal to zero for all 𝜃 in

the interval I. By the fact that a nonzero polynomial over any field has only finitely many roots, the

polynomial is identically zero and so (4.1) holds for all 𝜃.
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We now show that 𝜇𝜃 is a 1-ipm on G for all 𝜃 ∈ X. To do this we must show that the following

holds true for all 𝜃 ∈ X, for all A,B ⊆ V(G) such that A and B are disjoint, and all G1 and G2 such that

G1 is a subgraph of G[A] while G2 is a subgraph of G[B]:

𝜇𝜃

(
G𝜇𝜃

[A] = G1,G𝜇𝜃
[B] = G2

)
= 𝜇𝜃

(
G𝜇𝜃

[A] = G1

)
𝜇𝜃

(
G𝜇𝜃

[B] = G2

)
. (4.2)

Both sides of (4.2) are polynomials in 𝜃 with real coefficients—the left hand side, for example, can be

written as ∑
H⊆G∶ H[A]=G1, H[B]=G2

QH(𝜃).

As 𝜇𝜃 is a 1-ipm on G for all 𝜃 ∈ I, we have that these two polynomials agree on I, and so must be the

same polynomial. Thus (4.2) holds as required. ▪

5 THE LINE LATTICE Z

In this section we prove Theorem 15 on the connectivity function of paths. Recall that, given n ∈ N⩾2

and p ∈ [0, 1], we let 𝜃 = 𝜃(p) ∶= 1+
√

4p−3

2
and pn ∶= 1

4

(
3 − tan2

(
𝜋

n+1

))
. Let gn(𝜃) ∶=

∑n
j=0 𝜃

j(1 −
𝜃)n−j.

We begin by constructing a measure 𝜈p ∈ 1,⩾p(Pn) as follows. Let us start with the case p ⩾ 3

4
.

For each vertex of Pn, we set it to state 0 with probability 𝜃, and set it to state 1 otherwise, and we

do this independently for every vertex. Recall that for each j ∈ [n] we write Sj for the state of vertex

j; in this construction, the states are independent and identically distributed random variables. We set

the edge {j, j + 1} to be open if Sj ⩽ Sj+1, and closed otherwise. Thus, as p = 𝜃 + (1 − 𝜃)2, we have

that each edge is open with probability p. Moreover (Pn)𝜈p will be connected if and only if there exists

some j ∈ [n+ 1] such that Sk = 0 for all k < j, while Sk = 1 for all k ⩾ j. Therefore (Pn)𝜈p is connected

with probability gn(𝜃). As this construction is vertex-based, it is clear that it is 1-independent.

When p <
3

4
we have that 𝜃 is a complex number, and so the above construction is no longer valid.

However, as discussed in Section 4, we will show that it is possible to extend this construction to all

p ∈ [pn, 1]. For each subgraph G of Pn, set QG(𝜃) to be the polynomial 𝜈p((Pn)𝜈p = G) for all 𝜃 ∈
[ 3

4
, 1
]
.

The following claim, together with Lemma 28, shows that in fact 𝜈p is a 1-ipm on Pn for all p ∈ [pn, 1].

Claim 29. For all p ∈ [pn,
3

4
) and all G ⊆ Pn we have that QG (𝜃 (p)) is nonnegative real number.

Proof. We proceed by induction on n. When n = 2 we have that there are only two possible subgraphs

of P2, which are P2 itself and its complement P2. We have that QP2
(𝜃(p)) = p and QP2

(𝜃(p)) = 1 − p,

so the claim holds as required for n = 2.

Let us now assume that n > 2 and that the claim is true for all cases from 2 up to n − 1. We split

into two further subcases. We first deal with the case that G = Pn. We have that QPn (𝜃 (p)) = gn(𝜃).
For p <

3

4
we can write

gn(𝜃) =
𝜃n+1 − (1 − 𝜃)n+1

2𝜃 − 1
. (5.1)

When p <
3

4
we have that 𝜃 and 1 − 𝜃 are complex conjugates, and also that 2𝜃 − 1 is a pure

imaginary number. Thus both the numerator and denominator of the above fraction are pure imaginary,
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and so gn (𝜃 (p)) is a real number for all p <
3

4
. By writing 𝜃 = rei𝜙, where r ∶=

√
1 − p and 𝜙 ∶=

arctan
(√

3 − 4p
)

, we can rewrite (5.1) as

gn (𝜃 (p)) =
2rn+1√
3 − 4p

sin ((n + 1)𝜙) . (5.2)

Now p ∈ [pn,
3

4
) implies 0 < 𝜙 ≤ arctan

(√
3 − 4pn

)
= 𝜋

n+1
, which in turn gives sin ((n + 1)𝜙) ≥

0. Thus by (5.2) above, gn (𝜃 (p)) is a nonnegative real number for all p in the interval [pn,
3

4
), as

required.

We now deal with the case that G ≠ Pn. Let us consider the vertex-based construction from which

QG(𝜃) was defined. As not every edge is present in G we have that there exists some j ∈ [n − 1]
such {j, j + 1} is not an edge, and so Sj = 1 while Sj+1 = 0. Note that if j ⩾ 2, then the edge

{j − 1, j} is present in G regardless of the state of vertex j − 1. Similarly, if j ⩽ n − 2, then the edge

{j+ 1, j+ 2} is present in G regardless of the state of vertex j+ 2. If we write G1 ∶= G
[
{1,… , j − 1}

]
and G2 ∶= G

[
{j + 2,… , n}

]
, then we have that

QG(𝜃) = 𝜃(1 − 𝜃)QG1
(𝜃)QG2

(𝜃). (5.3)

Now, by induction, we have that QG1
(𝜃 (p)) and QG2

(𝜃 (p)) are positive real numbers for all p ∈ [pn,
3

4
);

to make this inductive step work we are using the fact that (pn)n⩾2 forms an increasing sequence, and

so p ⩾ pn implies that p ⩾ ps for all s ⩽ n. As 𝜃 (p) (1 − 𝜃 (p)) = 1 − p, we have that (5.3) is a positive

real for all p ∈ [pn,
3

4
), and so we have proven the claim. ▪

Note that as this proof shows that gn (𝜃 (pn)) = 0, we have that the probability (Pn)𝜈pn
is connected

is equal to 0. As 𝜈pn ∈ 1,⩾p(Pn) for all p ⩽ pn, we have that f1,Pn(p) = 0 for all p ⩽ pn.

We now prove that this construction is optimal with respect to the connectivity function. Note that

the following proof involves essentially following the proof of Theorem 26 when G consists of a sin-

gle point and checking that the above construction is tight at every stage of this proof. Finally, we

should emphasize that the main ideas in the construction of 𝜈p and its analysis are due to Balister and

Bollobás [4] (they considered slightly different probabilities for vertex states, setting Sk = 0 with prob-

ability qk, where qk is defined for k ∈ [n] by q1 = 0 and by the recurrence relation qk = min
(

1−p
1−qk−1

, 1
)

for k ≥ 2, which corresponds exactly to the equality case in inequality (5.5) below).

Proof of Theorem 15. The above construction discussed shows that

f1,Pn (p) ⩽
⎧⎪⎨⎪⎩

gn(𝜃) for p ∈ [pn, 1],

0 for p ∈ [0, pn].

It is clear that f1,Pn (p) ⩾ 0 for all p, and so all that remains to show is that f1,Pn (p) ⩾ gn (𝜃 (p)) for all

p ∈ [pn, 1].
Let 𝜇 ∈ 1,⩾p(Pn). For k ∈ [n], let Xk be the event that the subgraph of (Pn)𝜇 induced by the vertex

set [k] is connected, and let Hk be the event that the edge {k − 1, k} is not present in (Pn)𝜇. Applying

random sparsification as in Remark 3 if necessary, we may assume without loss of generality that for

every k, the event Hk occurs with probability exactly 1 − p.
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Let q𝜇

2
∶= 𝜇 ((X2)c) = 1 − p, and for k > 2 let q𝜇

k ∶= 𝜇 ((Xk)c |Xk−1). We have that

q𝜇

k = 𝜇(Hk ∩ Xk−1)
𝜇(Xk−1)

⩽ 𝜇(Hk ∩ Xk−2)
𝜇(Xk−1)

(5.4)

= 𝜇(Hk)𝜇(Xk−2)
𝜇(Xk−1)

by 1-independence

⩽
1 − p

1 − q𝜇

k−1

. (5.5)

Note that 𝜇((Pn)𝜇 = Pn) =
∏n

j=2(1 − q𝜇
n ). Thus to show that the previous construction is optimal

with respect to the connectivity function it is enough to show that equality holds for inequalities (5.4)

and (5.5) when 𝜇 = 𝜈p. In the measure 𝜈p, we have that every edge is present with probability exactly p,

thus 𝜈p(Hk) = 1 − p and so equality holds in (5.5). To prove that equality holds in (5.4), it is sufficient

so show that

𝜈p(Hk ∩ Xk−1) = 𝜈p(Hk ∩ Xk−2). (5.6)

Both the left and right hand sides of (5.6) can be expressed as polynomials in 𝜃(p), and so it is

sufficient to show that equality holds for p ⩾ 3

4
, as that will show they are the same polynomial (and

so equality holds for all p ∈ [pn, 1]). Suppose that the event (Hk ∩Xk−2) occurs. As Hk has occurred we

have that Sk−1 = 1 while Sk = 0. As Sk−1 = 1, we have that edge {k − 2, k − 1} is open, regardless of

Sk−2. Thus, as Xk−2 has occurred we also have that Xk−1 has occurred. Therefore (Hk ∩ Xk−1) has also

occurred, and so we are done. ▪

We remark in similar fashion to the above proof that the following holds for any 𝜇 ∈ 1,⩾p(Pn):

𝜇(Xn) ⩾ 𝜇(Xn−1) − 𝜇(Xn−1 ∩ Hn)
⩾ 𝜇(Xn−1) − 𝜇(Xn−2 ∩ Hn)
= 𝜇(Xn−1) − 𝜇(Xn−2)𝜇(Hc

n) by 1-independence

⩾ 𝜇(Xn−1) − (1 − p)𝜇(Xn−2).

Moreover, by once again considering what states of vertices can lead to the various events, we have

that equality holds for all of the above inequalities when 𝜇 = 𝜈p. This leads us to another way to define

gn (𝜃 (p)): let g1 (𝜃 (p)) ∶= 1, g2 (𝜃 (p)) ∶= p, and for all n ⩾ 3 we have that

gn (𝜃 (p)) = gn−1 (𝜃 (p)) − (1 − p)gn−2 (𝜃 (p)) .

We conclude this section with a proof of Theorem 11(i).

Proof of Theorem 11(i). For the upper bound we plug f1,P1
(p) = 1 into equation (3.4), solve that

equation to get p⋆(P1) = 3

4
and apply Corollary 27 to obtain p1,𝓁𝑝(Z) ⩽ 3

4
.

For the lower bound, let p <
3

4
be fixed. As the sequence (pn)n∈N is monotone increasing and tends

to 3∕4 as n → ∞, there exists N ∈ N such that p < pN . We showed in Theorem 15 that there exists a

measure 𝜈pN ∈ 1,⩾pN (PN) such that the probability (PN)𝜈pN
is connected is equal to zero.

We use this measure to create a measure 𝜈 ∈ 1,⩾p(Z). For each i ∈ Z, we let the subgraphs

Z𝜈[(i(N − 1) + [N])] on horizontal shifts of PN by i(N − 1) be independent identically distributed
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random variables with distribution given by 𝜈pN . This gives rise to a 1-independent model 𝜈 on Z with

edge-probability at least p (in fact at least pN). Furthermore, all connected components of Z𝜈 have size

at most 2(N − 1) − 1. In particular, p1,𝓁𝑝(Z) ⩾ p. Since p <
3

4
was chosen arbitrarily, this gives the

required lower bound p1,𝓁𝑝(Z) ⩾ 3

4
. ▪

6 THE LADDER LATTICE Z × P2

In this section we construct a family of 1-ipms on segments of the ladder Z×P2 with edge-probability

close to 2∕3 for which with probability 1 there are no open left-right crossings. The idea of this con-

struction is due to Walters and the second author [16] (though the technical work involved in rigorously

showing the construction works is new).

Let us begin by giving an outline of our construction. We write the vertex set V(PN×P2) as [N]×[2].
As in the case of the line lattice, we independently assign to each vertex (n, y) a random state S(n,y). If

n + y is even, then we let

S(n,y) ∶=

{
2 with probability pn,

0 with probability 1 − pn;

while if instead n + y is odd, then we let

S(n,y) ∶=
⎧⎪⎨⎪⎩

2 with probability rn,

1 with probability sn,

0 with probability 1 − rn − sn.

Here (pn)n∈N, (rn)n∈N, (sn)n∈N are suitably chosen sequences of real numbers, ensuring that the S(n,y)
are well-defined random variables. We then define a random spanning subgraph G𝜇 of G ∶= PN × P2

from the random vertex states S(n,y): (n, y) ∈ [N] × [2] as follows:

• for each n ∈ [N − 1] and y ∈ [2], the horizontal edge {(n, y), (n + 1, y)} is open in G𝜇 if and only if

S(n,y) ⩽ S(n+1,y),

• for each n ∈ [N], the vertical edge {(n, 1), (n, 2)} is open in G𝜇 if and only if
(
S(n,1) − S(n,2)

)
(1 −

S(n,1))(1 − S(n,2)) = 0.

Note the condition for a vertical edge {(n, 1), (n, 2)} to be open can be rephrased as if and only

if either S(n,1) = S(n,2) or one of S(n,1), S(n,2) is equal to 1. So intuitively, the value of the S(n,y) must

increase from left to right along open horizontal edges, and it must stay constant along open vertical

edges unless one of the endpoints is in the special state 1, which allows free passage up or down.

Clearly the bond percolation measure 𝜇 associated to our random graph model G𝜇 is a 1-ipm

on the ladder G = PN × P2 as it is vertex-based. By making a judicious choice of the sequences

(pn)n∈N, (rn)n∈N, (sn)n∈N and taking N sufficiently large, one can ensure that in addition 𝜇 satisfies

𝑑(𝜇) ≥ p and 𝜇(∃ open left-right crossing) = 0. In particular, with this construction we prove the

following result.

Theorem 30. Fix p ∈
(

1

2
,

2

3

)
. Then there exists N ∈ N such that for all n ⩾ N,

p1,×(Pn × P2) ⩾ p.
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Proof. Fix p ∶= 2

3
− 𝜀, with 𝜀 ∈

(
0,

1

6

)
. We start by defining the sequences (pn)n∈N, (rn)n∈N and

(sn)n∈N iteratively as follows. We set p1 = r1 = 1 and s1 = 0. Then for n ∈ N, we let

pn+1 =
{

1 − 1−p
rn+sn

if rn + sn ⩾ 1 − p,
0 otherwise;

rn+1 =
{

1 − 1−p
pn

if pn ⩾ 1 − p,
0 otherwise;

sn+1 =

{
max
{

1 − 2rn+1 +
rn+1−(1−p)

pn+1

, 0
}

if pn+1 > 0,

0 otherwise.

Lemma 31. The following hold for all n ∈ N:

(i) pn, rn ∈ [0, 1],
(ii) sn ∈ [0, 1 − rn],

(iii) pn+1 ⩽ pn,
(iv) rn+1 ⩽ rn,
(v) rn+1 + sn+1 ⩽ rn + sn.

Proof. We prove the lemma by induction on n. By definition of our sequences, p1 = r1 = 1 ⩾ p =
p2 = r2, s1 = 0, and 0 < s2 = (2p−1)(1−p)

p
< 1 − p = r1 + s1 − r2, and thus (i)-(v) all hold in the base

case n = 1.

Suppose now (i)-(v) hold for all n ⩽ N, for some N ⩾ 1. Since pN and rN + sN both lie in [0, 1],
the definition of pN+1 and rN+1 implies these also both lie in [0, 1]. This establishes (i) for n = N + 1.

By construction, sN+1 ⩾ 0, and by the inductive hypotheses (ii) and (v), we have

sN+1 ⩽ rN + sN − rN+1 ⩽ 1 − rN+1,

whence (ii) holds for n = N + 1.

If pN+2 = 0, then pN+2 ⩽ pN+1 trivially holds (since pN+1 ⩾ 0 by (i)). On the other hand, suppose

pN+2 = 1 − 1−p
rN+1+sN+1

> 0. Then we have rN+1 + sN+1 > 1 − p, which by our inductive hypothesis (v)

implies rN + sN ⩾ rN+1 + sN+1 > 1 − p. The definition of pN+1 then implies

pN+2 = 1 −
1 − p

rN+1 + sN+1

⩽ 1 −
1 − p

rN + sN
= pN+1,

as desired, establishing that (iii) holds for n = N + 1. Arguing in exactly the same way (using the

inductive hypothesis (iii) instead of (v)), we obtain that rN+2 ⩽ rN+1. Hence (iv) holds for n = N + 1.

Finally we consider (v) for n = N + 1, which is the most delicate part of the induction. We begin

by recording two useful facts, the second of which we shall reuse later.

Claim 32. If pN+2 = 0 or rN+2 = 0, then sN+2 = 0.

Proof. If pN+2 = 0, then by construction sN+2 = 0 and so we are done. If rN+2 = 0, then by con-

struction pN+1 ≤ 1 − p, which by our inductive hypothesis (iii) implies pN+2 ≤ 1 − p and hence

sN+2 = max
{

1 − 2rN+2 +
rN+2−(1−p)

PN+2

, 0
}
= max

{
1 − 1−p

pN+2

, 0
}
= 0. ▪

Claim 33. If pN+2 and rN+2 are both strictly positive, then for all i ∈ {2,… ,N + 1}, we have si > 0.
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Proof. Fix i ∈ {2,… ,N + 1}. By our inductive hypotheses (iii) and (iv) (which we have already

established up to n = N + 1) and since i ⩾ 2, we have 0 < pN+2 ⩽ pi ⩽ p2 = p and 0 < rN+2 ⩽ ri ⩽
r2 = p. Since ri+1 > 0, we in fact have pi > 1 − p. We also have that

1 − 2ri +
ri − (1 − p)

pi
= 1

pi
(pi + ri − 2ripi − (1 − p)) =∶ 1

pi
f (pi, ri).

Now for fixed y ∈ [1∕2, 1], the function x → f (x, y) is a nonincreasing function of x. Thus if ri ⩾ 1∕2,

we have

f (pi, ri) ⩾ f (p, ri) = (2p − 1)(1 − ri) > 0.

On the other hand for fixed y ∈ (0, 1∕2), the function x → f (x, y) is strictly increasing in x. Therefore

if ri < 1∕2, we have

f (pi, ri) > f (1 − p, ri) = ri(2p − 1) > 0.

In either case, f (pi, ri) > 0, and thus si = max
(

1

pi
f (pi, ri), 0

)
> 0. ▪

With these results in hand, we return to the proof of (v). If sN+2 = 0, then (v) follows immediately

from (iv). Thus we may assume that sN+2 > 0, whence by Claim 32 pN+2 > 0 and rN+2 > 0. By

Claim 33 and our inductive hypotheses (iii) and (iv), this implies that pi, ri and si are all strictly positive

for i ∈ {2, 3… ,N + 2}. By definition of our sequences we thus have for all i ∈ [N + 1] that

pi+1 = 1 −
1 − p
ri + si

, ri+1 = 1 −
1 − p

pi
, si+1 = 1 − 2ri+1 +

ri+1 − (1 − p)
pi+1

. (6.1)

Combining these equations we obtain for i ∈ {2,… ,N + 1} that:

pi+1 = 1 −
pipi−1(1 − p)

p(pi−1 − pi + 1) + pi − 1
. (6.2)

Claim 34. Under our assumption that sN+2 > 0, for all integers i ∈ [N + 1] we have

pi+1 =
pi − (1 − p)

(2 − p)pi − (1 − p)
.

Proof. Since p1 = 1 and p2 = p, our claim holds for i = 1. Suppose it holds for some i ⩽ N. Then

by rearranging terms, we have

pi =
(1 − p)(1 − pi+1)
1 − (2 − p)pi+1

.

Substituting this into the formula for pi+2 given by (6.2), we see our claim holds for i + 1 as well. ▪

It follows from Claim 34 and (6.1) that for all i ∈ [N + 1], we can write ri+1 + si+1 as a function of pi:

ri+1 + si+1 = 1 − ri+1 +
ri+1 − (1 − p)

pi+1
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=
pip(2 − p) − (1 − p)

pi − (1 − p)

= p(2 − p) −
(1 − p)3

pi − (1 − p)
. (6.3)

For pi > (1 − p) (which we recall holds since ri+1 > 0), the expression above is an increasing

function of pi. By our inductive hypothesis (iii) that pN+1 ⩽ pN it follows that rN+2+sN+2 ⩽ rN+1+sN+1

and we have verified that (v) holds for n = N + 1. ▪

Recall that p = 2

3
− 𝜀, for some fixed 𝜀 ∈

(
0,

1

6

)
.

Lemma 35. We have that pn = rn = sn = 0 for all n ⩾ N𝜀, where N𝜀 ∶= ⌈2𝜀−1⌉.
Proof. Suppose first that there exists m ∈ [N𝜀 − 1] such that rm = 0. Then sm = 0, so pm+1 = 0 and

sm+1 = 0 by construction and rm+1 = 0 by Lemma 31(iv). Lemma 31(iii)-(v) then implies pn = rn =
sn = 0 for all n ∈ N⩾m+1, as required.

Suppose instead that rn > 0 for all n ∈ [N𝜀 − 1] and there exists some m ∈ [N𝜀 − 2] such that

pm ⩽ 1 − p. Then rm+1 = 0, and thus by the argument above, we have that pn = rn = sn = 0 for all

n ∈ N⩾m+2, as required.

Finally, suppose pn > 1 − p and rn > 0 both hold for all n ∈ [N𝜀 − 2]. By Claim 33, we have

sn > 0 for all n ∈ {2,… ,N𝜀 − 3}. This allows us in turn to apply Claim 34 to all n in this interval and

to deduce that

pn−1 − pn = pn−1 −
pn−1 − (1 − p)

(2 − p)pn−1 − (1 − p)

= 1

(2 − p)pn−1 − (1 − p)

(
(2 − p)

(
pn−1 −

1

2

)2

+
2 − 3p

4

)
⩾ 3𝜀

4
. (6.4)

Recall that p1 = 1. As such, it follows from inequality (6.4) that pn ⩽ 1−(n−1) 3𝜀

4
for all n ∈ [N𝜀−2].

In particular, as N𝜀 = ⌈2𝜀−1⌉ and 𝜀 ∈
(

0,
1

6

)
, we have

pN𝜀−3 ≤ 1 −
(

2

𝜀
− 4
)

3𝜀

4
= −1

2
+ 3𝜀 < 0,

which is a contradiction. ▪

Now let N = N𝜀 be the integer constant whose existence is given by Lemma 35 and construct the

1-ipm G𝜇 on the graph G = PN × P2 from independent random assignments of states S(n,y) to vertices

(n, y) in V(G) = [N] × [2], as described at the beginning of this section.

We observe here that by Lemma 31(i) and (ii), the states S(n,y) are well-defined random variables for

every (n, y) ∈ [N] × [2], and so 𝜇 is a well-defined 1-ipm. We recall here for the reader’s convenience

the state-based rules governing which edges are open in G𝜇:

• for each n ∈ [N − 1] and y ∈ [2], the horizontal edge {(n, y), (n + 1, y)} is open if and only if

S(n,y) ⩽ S(n+1,y),

• for each n ∈ [N], the vertical edge {(n, 1), (n, 2)} is open if and only if either S(n,1) = S(n,2) or

one of S(n,1), S(n,2) is equal to 1.
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So intuitively, the value of the S(n,y) must increase from left to right along open horizontal edges

of G𝜇, and it must stay constant along open vertical edges of G𝜇 unless one of the endpoints is in the

special state 1 which allows free passage up or down.

Claim 36. We have that 𝑑(𝜇) ⩾ p.

Proof. For (n, y) ∈ [N − 1] × [2], consider the horizontal edge {(n, y), (n + 1, y)}, . If n + y is even,

then by definition of rn+1,

𝜇
(
{(n, y), (n + 1, y)} ∈ G𝜇

)
= 𝜇
(
S(n,y) ⩽ S(n+1,y)

)
= rn+1 + (1 − rn+1)(1 − pn) ⩾ p.

Similarly if n + y is odd, then by definition of pn+1,

𝜇
(
{(n, y), (n + 1, y)} ∈ G𝜇

)
= 𝜇
(
S(n,y) ⩽ S(n+1,y)

)
= pn+1 + (1 − pn+1)(1 − rn − sn) ⩾ p.

Finally, for a vertical edge {(n, 1), (n, 2)}, n ∈ [N], we have

𝜇
(
{(n, 1), (n, 2)} ∈ G𝜇

)
= 𝜇
(
S(n,1) = S(n,2) or 1 ∈ {S(n,1), S(n,2)}

)
= sn + pnrn + (1 − pn)(1 − rn − sn).

Now, if pn = 0, then rn−1 ⩽ 1 − p by definition of pn, whence rn ⩽ 1 − p by Lemma 31(iv), and so the

expression above equals 1− rn ⩾ p. On the other hand if pn ≠ 0, then by definition of sn the expression

above is at least p. Thus each horizontal edge and each vertical edge is open in G𝜇 with probability at

least p, and 𝑑(𝜇) ⩾ p as claimed. ▪

Claim 37. There is no open path in G𝜇 from {1} × [2] to {N} × [2].

Proof. By construction, p1 = r1 = 1, whence S(1,1) = S(1,2) = 2. Furthermore, by Lemma 35 and our

choice of N, pN = rN = sN = 0, whence S(N,1) = S(N,2) = 0.

Let N′ be the largest n ∈ [N] for which there exists an open path in G𝜇 from {1}× [2] to {n}× [2].
Let  be such a path, and let v0 ∈ {1} × [2], v1 ∈ {2} × [2], v2, … , v𝓁 ∈ {n} × [2] be the vertices of

 traversed from left to right. Observe that in this ordering of the vertices of  , every horizontal edge

{(n, y), (n + 1, y)} of  is traversed from left to right.

We claim that for all i ∈ [𝓁], we have Si ∈ {1, 2}. Indeed, by construction Sv0
= 2. Suppose there

exists some 1 ⩽ i < 𝓁 such that Svj ∈ {1, 2} for all j < i. If Svi = 2, then the edge vivi+1 can be open

in G𝜇 only if Svi+1
∈ {1, 2}. What is more, Svi+1

can be equal to 1 if and only if vivi+1 is a vertical edge.

On the other hand, suppose Svi = 1. Then vi−1vi was a vertical edge (since there is no edge both of

whose endpoints are in state 1 and since horizontal edges are traversed from left to right by ), and so

vi+1 = vi + (1, 0). But then vivi+1 open in G𝜇 implies Svi+1
= 2. Thus for every vertex vi of  , we have

that Svi is indeed in state 1 or 2.

This implies in particular that v𝓁 ∉ {N} × [2] (since as we remarked above S(N,1) = S(N,2) = 0).

Thus there is no open path in G𝜇 from {1} × [2] to [N] × [2]. ▪

Thus 𝜇 is an element of 1,⩾p(PN × P2) for which

𝜇(∃ open left-right crossing) = 0.
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Given n ⩾ N, we may extend 𝜇 to an element 𝜇′ ∈ 1,⩾p(Pn × P2) by letting every edge in Pn × P2 ⧵
PN × P2 be open independently at random with probability p. In this way we obtain a 1-independent

bond percolation measure 𝜇′ on Pn × P2 with edge-probability p for which there almost surely are no

open left-right crossings of Pn × P2, giving the required lower bound on p1,×(Pn × P2). ▪

We conclude this section by proving Theorem 11(ii), with the aid of Theorem 30.

Proof of Theorem 11(ii). Trivially, the 1-independent connectivity function of the path on 2 vertices

P2 (i.e., the graph consisting of a single edge) is f1,P2
(p) = p. Thus the constant p⋆(P2) defined by

equation (3.4) is the unique solution in [0, 1] to the equation x2 = 4(1 − x)2, namely p⋆(P2) = 2

3
. By

Corollary 27, this implies p1,𝓁𝑝(Z × P2) ⩽ 2

3
.

For the lower bound, fix p ∈
(

1

2
,

2

3

)
. In the proof of Theorem 30, we showed there exist some

integer N ∈ N and 𝜇 ∈ 1,⩾p(PN × P2) such that

(i) 𝜇(∃ open left-right crossing) = 0;

(ii) 𝜇 ({(1, 1), (1, 2)} and {(N, 1), (N, 2)} are open) = 1.

We use this measure to create a measure 𝜈 ∈ 1,⩾p(Z×P2). Let G ∶= Z×P2. For each i ∈ Z, we

let the subgraphs G𝜈 [(i(N − 1) + [N]) × [2]] on horizontal shifts of the ladder PN × P2 by i(N − 1) be

independent identically distributed random variables with distribution given by 𝜇. Thanks to property

(ii) recorded above, the random subgraphs agree on the vertical rungs {1 + i(N − 1)} × P2 of the

ladder, and this gives rise to a bona fide 1-independent model 𝜈 on Z×P2 with edge-probability p.

Furthermore, property (i) implies all connected components in G𝜈 have size at most 4(N − 1) − 2 =
4N − 6. In particular, p1,𝓁𝑝(Z × P2) ⩾ p. Since p <

2

3
was chosen arbitrarily, this gives the required

lower bound p1,𝓁𝑝(Z × P2) ⩾ 2

3
. ▪

7 COMPLETE GRAPHS

In this section we will prove Theorem 16. Recall that, given n ∈ N⩾2 and p ∈ [0, 1], we let 𝜃 = 𝜃(p) ∶=
1+
√

2p−1

2
and pn ∶= 1

2

(
1 − tan2

(
𝜋

2n

))
. Let gn(𝜃) ∶= 𝜃n + (1 − 𝜃)n.

7.1 An upper bound for f1,Kn (p)

Before proving Theorem 16, let us give a simple vertex-based construction of a measure 𝜈p ∈
1,⩾p(Kn) that shows f1,Kn (p) ⩽ gn(𝜃) for p ⩾ 1

2
. We call this measure the Red-Blue construction. We

think of Kn as the complete graph on vertex set [n], and we color each vertex Red with probability 𝜃

and color it Blue otherwise, and we do this independently for all vertices. The edge {i, j} ∈ [n](2) is

open if and only if i and j have the same color. As p = 𝜃2+(1−𝜃)2, we have that each edge is present in

(Kn)𝜈p with probability p. Note that (Kn)𝜈p will either be either a disjoint union of two cliques, in which

case it is disconnected, or the complete graph Kn, in which case it is connected. This latter case occurs

if and only if every vertex receives the same color, and so the probability that (Kn)𝜈p is connected is

equal to gn(𝜃). As this construction is vertex-based, it is clear that it is 1-independent.

If p <
1

2
then 𝜃 is a complex number, and so the Red-Blue construction is no longer valid. However,

as discussed in Section 4, we will show that it is possible to extend this construction to all p ∈ [pn, 1].
Given j ∈ {0, 1,… , n}, let

gn,j(𝜃) ∶= 𝜃j(1 − 𝜃)n−j + 𝜃n−j(1 − 𝜃)j.
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When j = 0 or j = n we have that gn,0(𝜃) and gn,n(𝜃) are each equal to gn(𝜃), and so we just write the

latter instead. Given some A ⊆ [n], let HA be the disjoint union of a clique on A with a clique on [n]⧵A.

Note that when A = ∅ or [n] we have that HA is equal to K[n], and more generally that HA = H[n]⧵A. For

p ∈ [0, 1], let 𝜇p be the following function on subgraphs G of Kn:

𝜇p (G) ∶=

{
gn,|A| (𝜃 (p)) if G = HA for some A ⊆ [n],
0 else.

For p ∈
[

1

2
, 1
]

this function matches the Red-Blue construction given above, and so by defining

𝜈p((Kn)𝜈p = G) ∶= 𝜇p(G) for all subgraphs G ⊆ Kn, we obtain a measure 𝜈p which is a 1-ipm defined

without making reference to states of vertices. The following claim, together with Lemma 28, shows

that in fact 𝜈p is a 1-ipm on Kn for all p ∈ [pn, 1].

Claim 38. For all p ∈
[
pn,

1

2

]
and all j ∈ {0,… , n} we have that gn,j (𝜃 (p)) is nonnegative real

number.

Proof. Let us begin with the case j = n. As p ⩽ 1

2
, we have that 𝜃 and 1− 𝜃 are complex conjugates,

and so gn
(
𝜃(p)
)

is a real number for all p in this range. By writing 𝜃 = rei𝜙, where r ∶=
√

1−p
2

and

𝜙 ∶= arctan
(√

1 − 2p
)

, we can write

gn (𝜃 (p)) = 2rn cos (n𝜙) . (7.1)

Now p ∈
[
pn,

1

2

]
implies 0 ≤ 𝜙 ≤

𝜋

2n
, which in turn gives cos(n𝜋) ≥ 0. By (7.1), it follows that

gn (𝜃 (p)) is a nonnegative real number for all p ∈
[
pn,

1

2

]
, which proves the claim when j = n. For

general j ∈ {0,… , n}, we have that

gn,j (𝜃 (p)) =
⎧⎪⎨⎪⎩
(

1−p
2

)j
gn−2j (𝜃 (p)) if n ⩾ 2j,(

1−p
2

)n−j
g2j−n (𝜃 (p)) if n ⩽ 2j.

Therefore the previous case of the claim shows that gn,j (𝜃 (p)) ∈ [0, 1] for all p ∈
[
pn,

1

2

]
; at this stage

we are using the fact that (pn)n⩾2 forms an increasing sequence, and so p ⩾ pn implies that p ⩾ ps for

all s ⩽ n. ▪

Note that as this proof shows that gn (𝜃 (pn)) = 0, we have that the probability (Kn)𝜈pn
is connected

is equal to 0. As 𝜈pn ∈ 1,⩾p(Kn) for all p ⩽ pn, we have that f1,Kn (p) = 0 for all p ⩽ pn. We now prove

that this construction is optimal with respect to the connectivity function.

7.2 A lower bound on f1,Kn(p)

Proof of Theorem 16. The previous constructions discussed show that

f1,Kn(p) ⩽

{
gn(𝜃) for p ∈ [pn, 1],
0 for p ∈ [0, pn].
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It is clear that f1,Kn (p) ⩾ 0 for all p, and so all that remains to show is that f1,Kn(p) ⩾ gn(𝜃) for p ∈ [pn, 1].
We will prove this result by induction on n. The inequality is trivially true when n = 2, so let us

assume that n > 2 and that the inequality is true for all cases from 2 up to n − 1. First, we note that

gn(𝜃) = gj(𝜃)gn−j(𝜃) − gn,j(𝜃) for all j ∈ {0, 1,… , n}. Thus, if we multiply both sides of this equation

by
(n

j

)
and sum over all j ∈ {0, 1,… , n}, we have that

2ngn(𝜃) =
( n∑

j=0

(
n
j

)
gj(𝜃)gn−j(𝜃)

)
− 2, (7.2)

Let 𝜇 ∈ 1,⩾p(Kn) and let C be the event that (Kn)𝜇 is connected. Given A ⊆ [n], let XA be the event

that (Kn)𝜇[A] and (Kn)𝜇[Ac] are each connected, where Ac = [n] ⧵ A. Moreover, let YA be the event

that (Kn)𝜇[A] and (Kn)𝜇[Ac] are each connected, and there are no edges between A and Ac in (Kn)𝜇.

For all A ⊆ [n], we have that

𝜇(C) ⩾ 𝜇(XA) − 𝜇(YA). (7.3)

Note that when A = ∅ or A = [n], the above equation is trivially true due to the fact that C,X∅,X[n],Y∅
and Y[n] are all the same event. As 𝜇 is 1-independent we have that if A is a nonempty proper subset of

[n], then, by induction on n, we have

𝜇(XA) ⩾ g|A|(𝜃)gn−|A|(𝜃). (7.4)

Note that here we are using the fact that (pn)n⩾2 forms an increasing sequence, and so p ⩾ pn implies

that p ⩾ ps for all s ⩽ n. We are also using the fact that g1(𝜃) = 1 for all 𝜃 ∈ [0, 1]. We proceed by

summing (7.3) over all nonempty proper subsets of [n], and then applying (7.4) to obtain

(2n − 2)𝜇(C) ⩾
( ∑

A⊆[n]
g|A|(𝜃)gn−|A|(𝜃)

)
− 2g0(𝜃)gn(𝜃)

−
( ∑

A⊆[n]
𝜇(YA)
)
+ 𝜇(Y∅) + 𝜇(Y[n]). (7.5)

We apply (7.2) and the fact that the events C,Y∅ and Y[n] are all the same event to (7.5) to get

(2n − 4)𝜇(C) ⩾ (2n − 4)gn(𝜃) + 2 −
( ∑

A⊆[n]
𝜇(YA)
)
. (7.6)

Note that for all A ⊆ [n], the events YA and YAc are the same event, and so
∑

A⊆[n] 𝜇(YA) =
2
∑

1∈A⊆[n] 𝜇(YA). Moreover, the set {YA ∶ 1 ∈ A ⊆ [n]} consists of pairwise disjoint events, and so∑
1∈A⊆[n] 𝜇(YA) ⩽ 1. Thus ∑

A⊆[n]
𝜇(YA) ⩽ 2. (7.7)

We apply (7.7) to (7.6) to obtain (2n−4)𝜇(C) ⩾ (2n−4)gn(𝜃). As n > 2, we have that 𝜇(C) ⩾ gn(𝜃)
and so we are done. ▪
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7.3 A remark on fk,Kn (p) for k ⩾ 2

Clearly we can define fk,G(p) analogously to f1,G(p) for k ∈ N0. For k = 0, f0,Kn(p) is exactly the

probability that an instance of the Erdős-Rényi random graph Gn,p contains a spanning tree. As far as

we know, there is no nice closed form expression for this function.

In this section, we have computed f1,Kn (p) exactly, which is the other interesting case, as for k ⩾ 2

the connectivity problem is trivial.

Proposition 39. For all k, n ∈ N⩾2, we have that

fk,Kn (p) =

{
0 if p ⩽ 1 − 2

n
,

1 − n(1−p)
2

otherwise.

Proof. For the lower bound, consider 𝜇 ∈ k,⩾p(Kn). Since any subgraph of Kn with at least
(n

2

)
−

(n − 1) edges is connected, we can apply Markov’s inequality to show that

1 − 𝜇({connected}) ⩽ 𝜇({∃ ⩾ (n − 1) closed edges}) ⩽ 1

n − 1
E𝜇{# closed edges} =

n(1 − p)
2

.

For the upper bound, consider the random graph G obtained as follows. Let x ∶= 1−p
2

. With probability

min(nx, 1), select a vertex i ∈ [n] = V(Kn) uniformly at random, and let G be the subgraph of Kn
obtained by removing all edges incident with i. Otherwise, let G be the complete graph Kn. It is easy

to check that G is a 2-independent model with edge-probability p and that G is connected if and only

if G = Kn, an event which occurs with probability 1 − min(1, nx) = max (0, 1 − n(1 − p)∕2). ▪

8 CYCLES

8.1 Linear programming for calculating f1,G(p)

In this subsection we describe how we can represent the problem of finding f1,G(p), for any graph G,

as a (possibly nonlinear) program.

Given a graph G on vertex set [n], let  = (G) be the set of all labeled subgraphs of G. Through-

out this section we treat these subgraphs as subsets of E(G), and always imagine them to be on the full

vertex set [n]. For each labeled subgraph of G we write

𝜇(S) ∶= 𝜇(S ⊆ G𝜇) and 𝜇(Ŝ) ∶= 𝜇(G𝜇 = S).

Recall that for a function 𝜇 ∶  → R⩾0, we have 𝜇 ∈ 1,⩾p(G) if and only if the following three

conditions all hold:

1. 𝜇 is a probability measure on labeled subgraphs of G,

2. Every edge of G is open in G𝜇 with probability at least p,

3. Given nonempty S,T ∈  such that S and T are supported on disjoint subsets of [n], 𝜇(S) ⋅𝜇(T) =
𝜇(S ∪ T).

As we are interested in determining f1,G(p), and as randomly deleting edges cannot increase the prob-

ability of being connected, we may assume that in fact every edge of G is open in G𝜇 with probability

exactly p (by applying random sparsification as in Remark 3 if necessary).We can thus rewrite the

conditions above in the following way:
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1.
∑

H∈ 𝜇(Ĥ) = 1,

2. For all edges e ∈ E(G), we have that
∑

H∈ 1(e ∈ H)𝜇(Ĥ) = p,

3. For all nonempty S,T ∈ , such that S and T are supported on disjoint subsets of [n], we have that

∑
H∈

𝜇(Ĥ)
(
1
(
(S ∪ T) ⊆ H

)
− 1
(
S ⊆ H
)
𝜇(T)
)
= 0. (8.1)

Let A = A(G) be a matrix which has columns indexed by, and a row for each piece of information

given by one of the above conditions. That is:

1. We have a row for the empty set such that A∅,H ∶= 1.

2. We have a row for e ∈ G; the entry Ae,H ∶= 1(e ∈ H);
3. We have a row for each pair S,T ∈  ⧵ {∅} supported on disjoint subsets of [n]; the entry

A{S,T},H ∶= 1((S ∪ T) ⊆ H) − 𝜇(T) ⋅ 1(S ⊆ H).

Let q = q(G) be a vector with indexing the same as the rows of A; let q∅ ∶= 1, qe ∶= p for e ∈ G,

and q{S,T} ∶= 0 for each pair S,T ∈  ⧵ {∅} supported on disjoint subsets of [n]. Then a vector w,

whose entries are indexed by , which satisfies wH ⩾ 0 for all H ∈ , and also Aw = q corresponds

precisely to a 1-ipm 𝜇 on G with 𝜇{e open} = p for all edges e ∈ E(G).
Let c be a vector indexed by  defined by cH ∶= 1(H is connected). Just to make it clear, we

say that H ∈  is connected if it contains a spanning tree of [n]. Then for a given value of p the

vector w(p) satisfying Aw(p) = q and cTw minimal corresponds to a measure 𝜇 ∈ 1,⩾p(G) such that

𝜇(H is connected) = f1,G(p).
Observe that for any graph with five vertices or fewer, any partition of the graph into two parts has

that one part must have at most two vertices in it. In particular, if G is a graph on [5], and S and T are

nonempty subgraphs of G supported on disjoint subsets of [5], then one of S and T must consist of

precisely one edge of G. By choosing T to be this subgraph, we can always choose S and T for (8.1) so

that 𝜇(T) = p. Thus for any choice of p, we can turn the problem of finding f1,G(p) into the following

linear program:

a∗ = min
w

cTw subject to Aw = q,w ⩾ 0. (8.2)

(Note that for graphs with six or more vertices, one may find S and T such that 𝜇(T) (in (8.1)) is an

unknown function of p, and thus the program is not linear; for example, this indeed is the case for C6.)

The duality theorem states that the asymmetric dual problem has the same optimal solution a∗:

a∗ = max
x

qTx subject to ATx ⩽ c and x ⩾ 0. (8.3)

One can easily solve the linear programs above for a specific value of p, for example using the software

Maple, and the LPSolve function it contains. However we of course wish to find solutions for all values

of p ∈ [0, 1].
By writing A = (aij), w = (wj), c = (cj), q = (qi) and x = (xi) any solutions w and x must satisfy∑

j aijwj = qi,
∑

i aijxi ⩽ cj, xi ≥ 0 and wi ⩾ 0. Thus we have

∑
i

qixi =
∑

i

(∑
j

aijwj

)
xi =
∑

j

(∑
i

aijxi

)
wj ⩽
∑

j
cjwj.
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In particular for optimal solutions we have
∑

i qixi =
∑

j cjwj and so the inequality must be an equality,

that is (∑
i

aijxi

)
wj = cjwj, for all j.

Consequently for each j we either have wj = 0 or
∑

i aijxi = cj. Thus in our attempt to obtain a function

for all p, it seems reasonable to look at an optimal solution for one value of p and see which wj have

been set to zero; assume for these indices that we always have wj = 0 and attempt to directly solve the

equations that result from this. This motivates the following method:

• Solve (8.2) with a specific value of p to obtain a solution w(p) and a set J ∶= {j ∈ [|w|] ∶wj(p) = 0}.

• Solve the set of equations {(Aw)i = qi,wj = 0 ∶ i ∈ [|w|], j ∈ J} to obtain functions of p for all wk,

k ∈ [|w|], which we write as w′
k(p).

• Solve the set of equations {(ATx)i = ci ∶ i ∈ [|w|] ⧵ J} to obtain functions of p for all xk, k ∈ [|w|],
which we write as x′k(p).

• Write w∗(p) ∶= cTw′(p) and x∗(p) ∶= qTx′(p).
• For a certain interval P ⊆ [0, 1] of values of p, check that (ATx′)i(p) ⩽ ci and w′

i(p) ⩾ 0, for all

i ∈ [|w|].
For the given interval P which works above, the conditions above ensure that the w′(p) and x′(p)
obtained in this way are feasible solutions to (8.2) and (8.3) respectively. Thus if w∗(p) = x∗(p), then by

the duality theorem we have f1,G(p) = w∗(p). Furthermore, a measure 𝜇 on the subgraphs of G which

is extremal is given directly by w′(p). In the following subsection we give, as examples, two results

which are proved using the above method.

8.2 The connectivity function of small cycles

In this subsection we prove Theorems 17 and 18 using the above method. Furthermore, the method

gives us an extremal example in each case.

Proof of Theorem 17. For C4 and p ∈
[

1

2
, 1
]

an extremal construction is given by the measure 𝜇,

defined by

𝜇(Ĥ) =

⎧⎪⎪⎨⎪⎪⎩

2p − 1 if H = C4;
p(1−p)

2
if H is contains precisely two edges, which are adjacent;

(1 − p)2 if H is contains precisely two edges, which are not adjacent;

0 otherwise.

For C4 and p ∈
[
0,

1

2

]
an extremal construction is given by the measure 𝜇, defined by

𝜇(Ĥ) =

⎧⎪⎪⎨⎪⎪⎩

1 − 2p if H is the empty graph;
p(1−p)

2
if H is contains precisely two edges, which are adjacent;

p2 if H is contains precisely two edges, which are not adjacent;

0 otherwise.
▪
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We can in fact give a direct combinatorial proof of the lower bound in Theorem 17: for any 𝜇 ∈
1,⩾p(C4), we have by 1-independence that

𝜇({connected}) ⩾ 𝜇({12, 34 are open}) − 𝜇({23, 14 are closed}) ⩾ p2 − (1 − p)2 = 2p − 1.

Together with the first of the constructions of measures 𝜇 above (which can be found by analyzing

how the bound in the inequality above can be tight), this gives a second and perhaps more insightful

proof of Theorem 17 than the one obtained from applying the linear optimisation method. However for

the next result, on f1,C5
(p), we do not have a combinatorial proof, and our result relies solely on linear

optimisation.

Proof of Theorem 18. For C5 and p ∈
[√

3

3
, 1
]

an extremal construction is given by the measure 𝜇,

defined by

𝜇(Ĥ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p(3p2−1)
3p−1

if H = C5;
p(1−p)(2p−1)

5(3p−1)
if H is missing precisely two edges, which are adjacent;

p(1−p)2

5(3p−1)
if H is missing precisely two edges, which are not adjacent;

(2p−1)(1−p)2

3p−1
if H is the empty graph;

0 otherwise.

For C5 and p ∈
[
0,

√
3

3

]
an extremal construction is given by the measure 𝜇, defined by

𝜇(Ĥ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

5p3−5p2−2p+2

3p+2
if H is the empty graph;

p(1−3p2)
3p+2

if H consists of precisely two edges, which are adjacent;

p3

3p+2
if H is missing precisely two edges, which are adjacent;

p2(1+p)
3p+2

if H is missing precisely two edges, which are not adjacent;

0 otherwise.

▪

8.3 General bounds for cycles of length at least 6

We can use Markov’s inequality to derive the following simple lower bound on f1,Cn(p) for n ⩾ 6.

Proposition 40. For n ∈ N, with n ⩾ 6, and p ∈ [0, 1], we have f1,Cn(p) ⩾
np−(n−2)

2
.

A small adjustment to this argument gives the following improvement for n = 6.

Proposition 41. For p ∈ [0, 1] we have that f1,C6
(p) ⩾ −p3 + 3p2 − 1.

Proof of Proposition 40. Let 𝜇 ∈ 1,⩾p(Cn). Note that G𝜇 is connected if and only if it has at most

one closed edge. Thus by Markov’s inequality, we have

f1,Cn (p) = 1 − 𝜇(∃ ⩾ 2 closed edges in Cn)
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⩾ 1 −
E𝜇(# closed edges in Cn)

2

= 1 −
n(1 − p)

2
=

np − (n − 2)
2

.

▪

Proof of Proposition 41. Let X be the number of closed edges in G𝜇. Cyclically label the edges of

C6 as e1,… , e6. Then by simple counting,

2(1 − p)3 = 𝜇(e1, e3, e5 are closed) + 𝜇(e2, e4, e6 are closed)
⩽ 𝜇(X = 3) + 𝜇(X = 4) + 𝜇(X = 5) + 2𝜇(X = 6).

Now by simple counting again, linearity of expectation and the inequality above, we get:

f1,C6
(p) = 1 − 𝜇(X ⩾ 2) = 1 −

E𝜇(X)
2

+
(
𝜇(X = 1) + 𝜇(X = 3) + 2𝜇(X = 4) + 3𝜇(X = 5) + 4𝜇(X = 6)

2

)
⩾ 1 −

6(1 − p)
2

+ (1 − p)3 = −p3 + 3p2 − 1.

▪

9 MAXIMIZING CONNECTIVITY

In this section, we derive our results for maximizing connectivity in 1-independent modes. First of all

Theorem 16 allow us to easily determine the value of F1,Kn(p) and hence prove Theorem 21.

Proof of Theorem 21. Given a 1-independent model G on Kn with edge-probability at least 1 − p,

observe that the complement Gc of G in Kn is a 1-independent model in which every edge is open

with probability at most p. Furthermore, Gc is connected whenever G fails to be connected. This

immediately implies

1 − f1,Kn (1 − p) ⩽ F1,Kn (p). (9.1)

Furthermore, observe that the Red-Blue measure 𝜈p we constructed to obtain the upper bound on

f1,Kn(p) in the proof of Theorem 16 has the property that a 𝜈p-random graph is connected if and only if

its complement fails to be connected. This immediately implies that we have equality in (9.1). ▪

For paths, a simple construction achieves the obvious upper bound for F1,Pn (p).

Proof of Theorem 20. For any measure 𝜇 ∈ 1,⩽p(Pn), we have by 1-independence that

𝜇 ({connected}) = 𝜇({Pn}) ⩽ 𝜇

⎛⎜⎜⎝
⋂

1⩽i⩽⌊ n
2
⌋{the edge {2i − 1, 2i} is open}

⎞⎟⎟⎠ ⩽ p⌊ n
2
⌋
,

which implies F1,Pn (p) ⩽ p⌊ n
2
⌋. For the lower bound, we construct a 1-ipm as follows. For each integer

i: 1 ⩽ i ⩽ n∕2, we assign a state On to the vertex 2i with probability p, and a state Off otherwise,

independently at random. Then set an edge of Pn to be open if one of its endpoints is in state On,
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and closed otherwise. This is easily seen to yield a 1-ipm 𝜇 on Pn in which every edge is open with

probability p, and for which

𝜇 ({connected}) = 𝜇

⎛⎜⎜⎝
⋂

1⩽i⩽⌊ n
2
⌋{the vertex 2i is in state On}

⎞⎟⎟⎠ = p⌊ n
2
⌋
.

Thus F1,Pn (p) ⩾ p⌊ n
2
⌋, as claimed. ▪

The case of cycles Cn appears to be slightly more subtle. For the 4-cycle, as in the previous section,

we can give two proofs, one combinatorial and the other via linear optimisation.

Proof of Theorem 17. The theorem immediately follows from an application of the linear optimisa-

tion techniques from Section 8. Alternatively, we can obtain the upper bound by a direct argument. For

any measure 𝜇 ∈ 1,⩽p(C4), we have by 1-independence that

1 − 𝜇({connected}) ⩾ 𝜇 ({both 12 and 34 are closed}) ⩾ (1 − p)2,

and, by a simple union bound and 1-independence,

𝜇({connected}) ⩽ 𝜇 ({both 12 and 34 are open} ∪ {both 23 and 14 are open}) ⩽ 2p2.

Combining these two inequalities and using 1 − (1 − p)2 = 2p − p2, we obtain

𝜇({connected}) ⩽ min
(
2p2, 2p − p2

)
,

which gives the claimed upper bound on F1,C4
(p).

For the lower bound, we give two different constructions, depending on the value of p. For p ∈[
2

3
, 1
]

consider the measure 𝜇 defined by

𝜇(Ĥ) =

⎧⎪⎪⎨⎪⎪⎩

p(3p − 2) if H = C4;
p(1 − p) if H contains precisely three edges;

1 − p(2 − p) if H is the empty graph with no edges;

0 otherwise.

It is easily checked that 𝜇 ∈ 1,⩽p(C4) and that 𝜇({connected}) = 1 − (1 − p(2 − p)) = 2p − p2,

which is maximal for p in that range.

For p ∈
[
0,

2

3

]
, consider the measure 𝜇 defined by

𝜇(Ĥ) =

⎧⎪⎪⎨⎪⎪⎩

p2

2
if H contains precisely three edges;

p(2−3p)
2

if H contains precisely one edge;

1 − 4p(1 − p) if H is the empty graph with no edges;

0 otherwise.

Again, it is easily checked that 𝜇 ∈ 1,⩽p(C4) and that 𝜇({connected}) = 𝜇 ({⩾ 3 edges open}) =
2p2, which is maximal for p in that range. ▪
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Proof of Theorem 18. We simply apply the linear optimisation method from Section 8—here again

we do not have a combinatorial proof. In addition to establishing the theorem, this gives us construc-

tions of extremal 1-independent measures maximizing connectivity.

For p ∈
[

3

5
, 1
]

an extremal construction is given by the measure 𝜇, defined by

𝜇(Ĥ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p(5p−3)
5−3p

if H = C5;

p(1−p2)
5−3p

if H contains precisely four edges;

3p3−7p2+5p−1

5−3p
if H contains precisely two edges, which are adjacent;

2(1−p)3

5−3p
if H contains precisely one edge;

0 otherwise.

For p ∈
[

1

2
,

3

5

]
an extremal construction is given by the measure 𝜇, defined by

𝜇(Ĥ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p2

3
if H contains precisely four edges;

p(2−3p)
3

if H contains precisely two edges, which are adjacent;

p(2p−1)
3

if H contains precisely one edge;

3−5p
3

if H is the empty graph with no edges;

0 otherwise.

For p ∈
[
0,

1

2

]
an extremal construction is given by the measure 𝜇, defined by

𝜇(Ĥ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p2(p+1)
p+4

if H contains precisely four edges;

p2(1−2p)
p+4

if H is missing precisely two edges, which are adjacent;

p(p2−3p+2)
p+4

if H contains precisely two edges, which are adjacent;

5p2−9p+4

p+4
if H is the empty graph with no edges;

0 otherwise.

▪

10 PROOF OF THEOREM 1.12

Combining Corollary 27 with our results on 1-independent connectivity, much of Theorem 12 is

immediate.

Proof of Theorem 12. For the lower bound in part (i), we note that Z×Cn has the finite 2-percolation

property. Thus, as described after the proof of Theorem 7, we have that p1,𝓁𝑝(Z× Cn) ⩾ 4 − 2
√

3. For

the upper bound in part (i), since the long paths critical probability is nondecreasing under the addition

of edges, we have

p1,𝓁𝑝(Z × Cn) ⩽ p1,𝓁𝑝(Z × Pn) ⩽ p1,𝓁𝑝(Z × P2),

which is at most 2∕3 by Theorem 11(ii).
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For the upper bounds (ii)-(iv) Theorem 12 follow directly from our results on 1-independent con-

nectivity functions. For G = K3,C4,C5, we plug in the value of f1,G(p) in equation (3.4), solve for

p⋆(G) and apply Corollary 27.

In part (v), we begin by noting that as we are considering an increasing nested sequence of graphs,

the sequence
(
p1,𝓁𝑝(Z × Kn)

)
n∈N

is nonincreasing in [0, 1] and hence tends to a limit as n → ∞. For

the lower bound in (v), observe that for any n ∈ N the graph Z × Kn has the finite 2-percolation

property—indeed for any finite k, the closure of a copy of Pk × Kn under 2-neighbor bootstrap per-

colation in Z × Kn is equal to itself. We construct a 1-ipm 𝜇 on Z × Kn as in Corollary 24 but with

starting set T0 = {0} × V(Kn) and hence Tk = ({k} × V(Kn)) ∪ ({−k} × V(Kn)). It is easily checked

that 𝜇-almost surely, all components (and hence all paths) in a 𝜇-random graph have length at most

5n. Since by construction 𝑑(𝜇) = 4 − 2
√

3, this proves

p1,𝓁𝑝 (Z × Kn) ⩾ 4 − 2
√

3

for all n ∈ N. For the upper bound, we perform some simple analysis. By solving a quadratic equation,

we see that (
1 +
√

2p − 1

2

)2

> (1 − p)

for all fixed p ∈
(

5

9
, 1
)

. Then by Theorem 16, for any such fixed p and all n sufficiently large, we have

that

(
f1,Kn(p)

)2
>

(
1 +
√

2p − 1

2

)2n

> 4(1 − p)n = 4(1 − p)v(Kn).

Thus p⋆(Kn) < p for all n sufficiently large, which by Corollary 27 implies p1,𝓁𝑝 (Z × Kn) < p. ▪

11 OPEN PROBLEMS

11.1 More tractable subclasses of 1-independent measures

The most obvious open problem about 1-independent percolation is of course whether the known lower

and upper bounds on p1,c(Z2) can be improved. This problem is, we suspect, very hard in general.

However, it may prove more tractable if we restrict our attention to a smaller family of measures.

Definition 42. Let G be a graph. A G-partition is a partitioned set ⊔v∈V(G)Ωv, with nonempty parts

indexed by the vertices of G. A G-partite graph is a graph H on a G-partition V(H) = ⊔v∈V(G)Ωv whose

edges are a subset of the union of the complete bipartite graphs ⊔uv∈E(G){𝜔u𝜔v ∶ 𝜔u ∈ Ωu, 𝜔v ∈ Ωv}
corresponding to the edges of G.

Given a G-partite graph H on a G-partition ⊔v∈V(G)Ωv, we have a natural way of constructing

1-independent bond percolation models: given a family X = (Sv)v∈V(G) of independent random vari-

ables with Sv taking values in Ωv, the (H,X)-random subgraph of G, denoted by H[X], is the random

configuration on E(G) obtained by setting uv to be open if and only if SuSv ∈ E(H).

Definition 43. Let G be a graph. A measure 𝜇 ∈ 1,⩾p(G) is said to be vertex-based if there exist
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• a G-partition ⊔v∈V(G)Ωv,

• an associated G-partite graph H, and

• a collection of independent random variables (Sv)v∈V(G) with Sv taking values in Ωv,

such that the (H,X)-random subgraph H[X] has the same distribution as the 𝜇-random graph G𝜇.

Let vb,⩾p(G) denote the collection of all vertex-based measures on G with edge-probability at least p.

Problem 44. Determine inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈ vb,⩾p(Z2), 𝜇({percolation}) = 1
}

.

Vertex-based measures arise naturally in renormalising arguments, and are thus a natural class of exam-

ples to consider. A special case of Problems 6 and 44 is obtained by further restricting our attention to

the case where the Ωv have bounded size.

Definition 45. A vertex-based measure 𝜇 on a graph G is N-uniformly bounded if it as in

Definition 43 above and in addition for each v ∈ V(G), |Ωv| ⩽ N. Furthermore, a vertex-based measure

𝜇 on a graph G is uniformly bounded if it is N-uniformly bounded for some N ∈ N.

Let N−ubvb,⩾p(G) and ubvb,⩾p(G) denote the collection of all vertex-based measures on G with

edge-probability at least p that are N-uniformly bounded and uniformly bounded respectively.

Problem 46. (i) For N ∈ N, determine

inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈ N−ubvb,⩾p(Z2), 𝜇({percolation}) = 1
}
.

(ii) Determine

inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈ ubvb,⩾p(Z2), 𝜇({percolation}) = 1
}
.

Finally, let us note that the second most obvious problem arising from our work, besides that of

improving the bounds on p1,c(Z2), is arguably that of giving bounds on p1,𝓁𝑝(Z2) and closely related

variants. Such problems, which correspond to new questions in extremal graph theory, are discussed in

the subsections below. For these problems too we believe restrictions to the class of uniformly bounded

vertex-based 1-ipms could be both fruitful and interesting in their own right.

11.2 Harris critical probability for other lattices

Beyond Z2, it is natural to ask about bounds on p1,c(G) for some of the other commonly studied lattices

in percolation theory.

Problem 47. Give good bounds on the value of p1,c(G) when G is one of the eleven Archimedean
lattices in the plane or the 𝑑-dimensional integer lattice Z𝑑 .

This problem is particularly interesting when G is the triangular lattice or the honeycomb lattice (two

lattices for which the 0-independent Harris critical probability is known exactly), or the cubic integer

lattice Z3 (which is important in applications). A challenge in all cases is finding constructions of non-

percolating 1-independent measures with high edge-probability—indeed, our arsenal of constructions
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for 1-independent percolation problems is so sparse that any new construction could be of independent

interest.

In a different direction, we can observe that Z𝑑+1 contains a copy of Z𝑑 , whence the sequence(
p1,c(Z𝑑)

)
𝑑∈N

is nonincreasing in [0, 1] and converges to a limit. Balister and Bollobás asked for its

value:

Problem 48. [Balister, Bollobás [4]] Determine lim𝑑→∞ p1,c(Z𝑑).

Note that by Theorem 7 proved in this paper, this limit must be at least 4 − 2
√

3.

11.3 Other notions of 1-independent critical probabilities

Let G be an infinite, locally finite connected graph, and v0 a fixed vertex of G. Given a bond percolation

model 𝜇 on G, we let Cv0
denote the connected component of G𝜇 containing v0.

If 𝜇 is 0-independent, then 𝜇({percolation}) = 1 if and only if 𝜇({|C0| = ∞}) > 0. However this

need not be true for a 1-independent measure. Indeed, consider the 1-ipm on Z2 obtained by taking

the measure constructed in the proof of Theorem 7 to determine the state of the edges in the 𝓁∞ ball

of radius 3 around the origin and setting every other edge to be open independently at random with

probability 4 − 2
√

3. Then in this model percolation occurs almost surely, but the origin is contained

inside a component of order at most 28.

Thus in principle there are different edge-probability thresholds in 1-independent percolation on a

graph G for percolation to occur somewhere with probability 1 and for it to occur anywhere with strictly

positive probability. Indeed, if p1,c(Z2) were strictly less than 3∕4, then one could obtain examples of

such a graph G by attaching a long path to the origin in Z2.

Another critical edge-probability of interest is the Temperley critical probability, which in

0-independent percolation is the threshold pT at which E|Cv| = ∞ for any vertex v (and every

0-independent measure with edge-probability> pT ). In general this threshold is different from the Har-

ris critical probability. Again for 1-independent percolation we have that the threshold for some vertex

v ∈ V(G) to satisfy E|Cv| = ∞ and for the threshold for all vertices of G to satisfy this are different.

Problem 49. Given an infinite, locally finite connected graph G, determine the following four critical
probabilities:

p1,T1
(G) ∶= inf

{
p ∈ [0, 1] ∶ ∀𝜇 ∈ 1,⩾p(G),∃v ∈ V(G) ∶ E𝜇|Cv| = ∞

}
,

p1,T2
(G) ∶= inf

{
p ∈ [0, 1] ∶ ∀𝜇 ∈ 1,⩾p(G),∀v ∈ V(G) ∶ E𝜇|Cv| = ∞

}
,

p1,H1
(G) ∶= inf

{
p ∈ [0, 1] ∶ ∀𝜇 ∈ 1,⩾p(G),∃v ∈ V(G) ∶ 𝜇 (|Cv| = ∞) > 0

}
,

p1,H2
(G) ∶= inf

{
p ∈ [0, 1] ∶ ∀𝜇 ∈ 1,⩾p(G),∀v ∈ V(G) ∶ 𝜇 (|Cv| = ∞) > 0

}
.

It follows from their definition that these four critical probabilities satisfy

p1,T1
(G) ⩽ p1,T2

(G) ⩽ p1,H2
(G) and p1,T1

(G) ⩽ p1,H1
(G) ⩽ p1,H2

(G). (11.1)

In general, these four critical probabilities are all different. Indeed, Balister and Bollobás showed

in [4, Theorem 1.5] that there exists an infinite, locally finite connected graph G with p1,H1
(G) = 1

2
.
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For any p:
1

2
< p <

3

4
, we have shown in Theorem 15 that there exists N such that f1,PN (p) = 0. Attach

one end of a path of length N to an arbitrary vertex of G to form a graph G1, and let v denote the other

end of the path. Then there exist 1-ipm 𝜇 ∈ 1,≥p(G1) such that with probability 1 the component of

v in a 𝜇-random graph has order at most N, which is finite. Thus we have

p1,T1
(G1) ≤ p1,H1

(G1) ≤ p1,H1
(G) = 1

2
< p ≤ p1,T2

(G1) ≤ p1,H2
(G1).

On the other hand consider a graph G2 obtained from the line lattice by attaching to each vertex i ∈ Z

a collection of 2|i|+2 leaves. Clearly, p1,H1
(G2) = p1,H1

(Z) = 1. Now consider a 1-ipm 𝜇 ∈ 1,≥
3

4

(G2).

By Theorem 26 applied to G = K1 and 𝛼 = 1

2
, for any path P of length i in G2, the 𝜇-probability that

all edges in P are open is at least 2−(i+1). Thus for any v0 ∈ V(G2), the expected size of |Cv0
| is

E𝜇|Cv0
| = ∑

v∈V(G2)
𝜇
(
{v ∈ Cv0

}
)
≥
∑

i∈Z≥2

#{v ∶ the path from v0 to v has length i}2−(i+1)

≥
∑

i∈Z≥2

2i+12−(i+1) = ∞.

Thus we have

p1,T1
(G2) ≤ p1,T2

(G2) ≤
3

4
< 1 = p1,H1

(G2) = p1,H2
(G2).

Corollary 50. (i) None of the inequalities in (11.1) may be replaced by an equality.
(ii) Neither p1,T2

(G) ⩽ p1,H1
(G) nor the reverse inequality are true in general.

Observe that p1,H1
(G) is the 1-independent Harris critical probability p1,c(G) studied in this

paper; given Corollary 50, we more precisely should call it the first Harris critical probability for

1-independent percolation. Our construction for the proof of Theorem 7 and the argument of Balister,

Bollobás and Walters from [7] give the following bounds when G = Z2:

4 − 2
√

3 ⩽ p1,T1
(Z2) ⩽ p1,H2

(Z2) ⩽ 0.8639.

Question 51. Are any of the four critical probabilities from Problem 49 equal when G = Z2?

Finally, note that Problem 49 asks, in essence, how much we can delay percolation phenomena

relative to the 0-independent case by exploiting the local dependencies between the edges allowed

by 1-independence. While perhaps less useful in applications, it is an equally natural and appealing

extremal problem to ask how much we can use these local dependencies to instead hasten the emer-

gence of an infinite connected component. Balister and Bollobás were the first to consider this problem

in [4], which it would be remiss not to mention here.

Definition 52. Let G be an infinite, locally finite connected graph, and let k,⩽p(G) be as before

the collection of k-ipms 𝜇 on G satisfying supe∈E(G) 𝜇{e is open} ⩽ p. The critical threshold for fast

k-independent percolation on G is

pk,F(G) ∶= inf
{

p ∈ [0, 1] ∶ ∃𝜇 ∈ k,⩽p(G) ∶ 𝜇({percolation}) = 1
}
.
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Balister and Bollobás determined p1,F(G) when G is an infinite, locally finite tree, and also gave

the simple general bounds

1

(𝜇conn.(G))2
⩽ p1,F(G) ⩽ (𝜃site(G))2 , (11.2)

where 𝜇conn.(G) is the connective constant of G and 𝜃site(G) the critical value of the 𝜃-parameter for site

percolation on G. For the square integer lattice, this gives a lower bound on p1,F(Z2) of 0.1393 from

known upper bounds on 𝜇conn.(Z2). In the other direction, we get a rigorous upper bound of p1,F(Z2) of

0.4618 and nonrigorous upper bound of 0.3515 from bounds and estimates for 𝜃site(Z2). This obviously

leaves a big gap, which Balister and Bollobás asked to reduce.

Question 53. [Balister and Bollobás [4]] What is p1,F(Z2)?

11.4 Long paths critical probability

An obvious problem is to tighten the bounds in Theorem 12(v), which are not too far apart (compared

to many of the other bounds on critical probabilities for 1-independent model).

Problem 54. Determine limn→∞ p1,𝓁𝑝 (Z × Kn)
(

which must be an element of
[
4 − 2
√

3,
5

9

] )
.

In a similar vein, the sequence p1,𝓁𝑝(Z × Pn) is a nonincreasing function of n (since Z × Pn+1 contains

Z × Pn as a subgraph). In this paper, we have given constructions showing that for all integers n ⩾ 3,

4 − 2
√

3 ⩽ p1,𝓁𝑝(Z × Cn) ⩽ p1,𝓁𝑝(Z × Pn) ⩽
2

3
= p1,𝓁𝑝(Z × P2).

Thus the sequence
(
p1,𝓁𝑝(Z × Pn)

)
n∈N

tends to a limit in the interval
[
4 − 2
√

3,
2

3

]
as n → ∞.

Problem 55. Determine

p1,𝓁𝑝 (Z × P∞) ∶= lim
n→∞

p1,𝓁𝑝(Z × Pn).

An in principle different but related problem is determining the value of the long paths critical

probability in Z2 (which need not be equal to the quantity p1,𝓁𝑝 (Z × P∞) defined above).

Problem 56. Determine p1,𝓁𝑝
(
Z2
)
.

We can also ask for k-independent versions of the long paths critical probability. Defining pk,𝓁𝑝 (G)
mutatis mutandis, it is straightforward to adapt our arguments and constructions from Section 5 to show

the following result, which also follows directly from the work of Liggett, Schonmann and Stacey [24]

on stochastic domination of 0-independent measures on Z by k-independent ones.

Theorem 57. [Liggett, Schonman and Stacey [24]] For any k ∈ N0, we have

pk,𝓁𝑝(Z) = 1 − kk

(k + 1)k+1
,

with the convention that 00 = 1.
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Given k fixed, it is easy to construct a 3k-ipm 𝜇 on Z2 with 𝑑(𝜇) = 1 − 2

k
and no open path of

length more than (2k + 1)2. Indeed, build a random graph model as follows:

• begin with all edges of Z2 open;

• independently for each (i, j) ∈ Z2, choose Hij ∈ [k + 1] uniformly at random and then for all j′:
j(k + 1) − k ≤ j′ ≤ j(k + 1) + k, set the horizontal edge {(i(k + 1) + Hij − 1, j′), (i(k + 1) + Hij, j′) to

be closed;

• independently for each (i, j) ∈ Z2, choose Vij ∈ [k + 1] uniformly at random and then for all i′:
i(k+1)−k ≤ i′ ≤ i(k+1)+k, set the vertical edge {(i′, j(k+1)+Vij−1), (i′, j(k+1)+Vij) to be closed.

It is easy to check that this random graph model is 3k-independent, has edge probability at least
k2

(k+1)2
≥ 1 − 2

k
and that every connected component has order at most (2k + 1)2.

Corollary 58. For any fixed k ∈ N,

p3k,𝓁𝑝(Z2) ≥ 1 − 2

k
.

In particular we have limk→∞ pk,𝓁𝑝(Z2) = 1 (and in fact a similar construction shows this remains true

in Z𝑑).

Finally, as in Section 11.3, we should observe that the almost sure existence of arbitrarily long

open paths in a 1-independent model on G does not imply that for every 𝓁 ∈ N every vertex of G has

a strictly positive probability of being part of a path of length at least 𝓁. Thus we may actually define

a second long paths critical probability,

p1,𝓁𝑝2 (G) ∶= inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈ 1,⩾p(G),∀v ∈ V(G),∀𝓁 ∈ N,

𝜇(∃ open path from v of length 𝓁) > 0} .

Problem 59. Determine p1,𝓁𝑝2 (Z
2).

Our construction in the proof of Theorem 7 shows that p1,𝓁𝑝2 (Z
2) ⩾ 4 − 2

√
3, and we know it is

upper-bounded by p1,H2
(Z2) ⩽ 0.8639. As in Section 11.1, it may be fruitful to study the long paths

critical constant when one restricts one’s attention to a smaller class of 1-ipms. In particular, by con-

sidering the class of uniformly bounded vertex-based measures, one is led to the following intriguing

problem in graph theory.

Given an n-uniformly bounded Z2-partite graph H with partition ⊔v∈Z2Ωv. A transversal subgraph
of H is a subgraph of H induced by a set of distinct representatives S for the parts of H, that is, a set

of vertices of H such that |S ∩ Ωv| = 1 for all v ∈ Z2. The G-partite density of H is

𝑑G(H) ∶= inf
{e(H[Ωu ⊔Ωv])|Ωu| ⋅ |Ωv| ∶ uv ∈ E(Z2)

}
.

Question 60. Suppose H is an n-uniformly bounded Z2-partite graph in which in every transversal
subgraph the connected component containing the origin is…

(a) … of size at most C, for some constant C ∈ N.
(b) … finite.

How large can 𝑑G(H) be?
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This question can be viewed as a problem from extremal multipartite graph theory. Plausibly some tools

from that area, in particular the work of Bondy, Shen, Thomassé and Thomassen [12] and Pfender [28],

could be brought to bear on it.

11.5 Connectivity function

We determined in Sections 8 and 9 the connectivity function f1,Cn (p) for cycles Cn of length at most 5.

It is natural to ask what happens for longer cycles.

Problem 61. Determine f1,Cn (p) for n ∈ N⩾6.

As mentioned in Section 8, the problem of finding f1,C6
(p) is nonlinear. Nevertheless, one can

use software, such as Maple and its contained NLPSolve function, to try to estimate the answer. This

suggests the following:

• The threshold at which f1,C6
(p) becomes nonzero is approximately p = 0.59733;

• For p just above this threshold, the best “asymmetric” (see the next subsection for a definition)

measure is better than the best “symmetric” measure; e.g. at p = 0.62 we have f1,C6
(0.62) is

approximately 0.007, but is as high as 0.11 when restricted to “symmetric” measures.

More generally, one can ask what happens in cycles if we have higher dependency or if we try to

maximize connectivity rather than minimize.

Problem 62. Determine fk,Cn (p) for all p ∈ [0, 1], k ∈ N and integers n ⩾ k + 2.

Problem 63. Determine Fk,Cn (p) for all p ∈ [0, 1], k ∈ N and integers n ⩾ k + 2.

Beyond paths, cycles and complete graphs, the 1-independent connectivity problem is perhaps

most natural to study in the hypercube graph Qn and in the n × n toroidal grid Cn × Cn. Progress on

either of these would likely lead to progress on other problems in 1-independent percolation as well.

Problem 64. Determine f1,Qn (p) for all n ⩾ 3.

Problem 65. Determine f1,Cn×Cn(p) for all n ⩾ 3.

In a different direction, we can ask whether the extremal measures attaining f1,G(p) can be required

to have “nice” properties. For C4 and p ∈ [0, 1∕2] another extremal construction for f1,C4
(p) is given

by the measure 𝜇, defined by

𝜇(Ĥ) =

⎧⎪⎪⎨⎪⎪⎩

1 − 2p if H is the empty graph;

p(1 − p) if H is {12, 14} or {23, 34};
p2 if H is contains precisely two edges, which are not adjacent;

0 otherwise.

Motivated by the above, we call a measure𝜇 ∈ 1,⩾p(G) symmetric if for any pair of labeled subgraphs

S and T of G such that there exists an automorphism of G mapping S to T , then 𝜇(Ŝ) = 𝜇(T̂). Note

that the above measure is an example of a nonsymmetric extremal construction for f1,C4
(p), whereas

the measure given at the end of Section 8.1 is symmetric. This leads to the following question.
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Question 66. For any G and any p ∈ [0, 1], does there always exist a symmetric measure 𝜇 ∈
1,⩾p(G) which achieves f1,G(p)?

If the program for solving f1,G(p) attained via our method in Section 8.1 is linear, then the answer

for G is yes (see the appendix for a proof of this fact).

Another natural question is when the extremal connectivity can be attained by vertex-based

measures.

Question 67. For which G and which p does there exist a vertex-based measure 𝜇 ∈ 1,⩾p(G)
which achieves f1,G(p)?
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APPENDIX

Let Sn be the symmetric group on n elements. For a graph G let Γ(G) be the automorphism group of

G, Γ(G) ∶= {𝜎 ∈ Sn ∶ 𝜎(i)𝜎(j) ∈ E(G) if and only if ij ∈ E(G), for all i, j ∈ [n]}. Enumerate the

elements of Γ(G) as 𝜎i, i ∈ [|Γ(G)|], and for H ⊆ G write H𝜎i for its image under 𝜎i. Recall 𝜇 is

symmetric if for all H ⊆ G and for all i, j we have 𝜇(Ĥ𝜎i) = 𝜇(Ĥ𝜎j ).

Theorem 68. Let G be a graph with vertex set [n] such that the optimisation problem for f1,G(p) is
linear. Suppose that 𝜇 is a nonsymmetric measure which achieves f1,G(p) for some value of p. Then for
this same value of p there exists another 𝜇′ which is symmetric and also achieves f1,G(p).
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Proof. Let 𝜇 be the nonsymmetric measure which achieves f1,G(p). For all H ⊆ G define

𝜇′(Ĥ) ∶= 1|Γ(G)| |Γ(G)|∑
j=1

𝜇(Ĥ𝜎j ).

First note that we have the following:

𝜇′(S𝜎j) =
∑
H⊆G

1(S𝜎j ⊆ H)𝜇′(Ĥ)

= 1|Γ(G)| ∑H⊆G

|Γ(G)|∑
i=1

1(S𝜎j ⊆ H𝜎i)𝜇
′(Ĥ)

= 1|Γ(G)| ∑H⊆G

|Γ(G)|∑
i=1

1(S𝜎i ⊆ H)𝜇′(Ĥ)

= 1|Γ(G)| |Γ(G)|∑
i=1

𝜇(S𝜎i). (A1)

The first and final equalities follow by definition. The second equality follows by summing through

each automorphism of H and the fact that 𝜇′(Ĥ𝜎i) = 𝜇′(Ĥ𝜎j) for all i, j. The third equality follows by

swapping automorphisms of H to automorphisms of S, which again works since 𝜇′(Ĥ𝜎i) = 𝜇′(Ĥ𝜎j ).
Now note that if S is the empty graph or a single edge, then 𝜇(S𝜎i) = 𝜇(S𝜎j) for all i, j and thus we

obtain 𝜇′(S𝜎i) = 𝜇(S𝜎i) for all i. It easily follows that 𝜇′ is a measure with edge-probability p. We must

show 𝜇′(S) ⋅ 𝜇′(T) = 𝜇′(S ∪ T) for all S,T which are labeled nonempty subgraphs of G supported on

disjoint subsets of vertices. If the optimisation problem is linear, then without loss of generality we

have 𝜇′(T) = p, and so this follows by linearity and (A1). It remains to show that 𝜇′ also achieves

fG(p). Again this follows easily since

𝜇′(a 𝜇′-random graph is connected) =
∑
H⊆G

1(H is connected)𝜇′(H)

= 1|Γ(G)| ∑H⊆G

|Γ(G)|∑
i=1

1(H𝜎i is connected)𝜇′(H𝜎i)

= 𝜇(a 𝜇-random graph is connected),

where the second equality follows by summing through each automorphism of H, and the third since

H𝜎i is connected if and only if H𝜎j is connected, for all i, j. ▪


