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Oryza minuta, a tetraploid wild relative of cultivated rice (family Poaceae), possesses a

BBCC genome and contains genes that confer resistance to bacterial blight (BB) and

white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this

wild species, this study aimed to understand the phylogenetic relationships of O. minuta

with other Oryza species through an in-depth analysis of the composition and diversity of

the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with

a typical quadripartite structure and consisting of a pair of inverted repeats separated by

small and large single copies, 139 representative genes, and 419 randomly distributed

microsatellites. The genomic organization, gene order, GC content and codon usage are

similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem

and 20 palindromic repeats were detected in the O. minuta cp genome. Comparison

of the complete O. minuta cp genome with another eleven Oryza species showed a

high degree of sequence similarity and relatively high divergence of intergenic spacers.

Phylogenetic analyses were conducted based on the complete genome sequence, 65

shared genes and matK gene showed same topologies and O. minuta forms a single

clade with parental O. punctata. Thus, the complete O. minuta cp genome provides

interesting insights and valuable information that can be used to identify related species

and reconstruct its phylogeny.

Keywords: wild rice (Oryza minuta), cp genome, repeat analysis, codon usage, phylogeny, sequence divergence,

SSRs

INTRODUCTION

The angiosperm chloroplast (cp) is a uniparentally inherited and stable structure. Accordingly,
it is considered to be an informative and valuable resource for phylogenetic analysis in plants at
multiple taxonomic levels (Nadachowska-Brzyska et al., 2015) compared tomitochondrial genomes
(Timmis et al., 2004). Most cp genomes range from 120 to 210 kb and have a quadripartite structure
that is typically composed of a small single-copy region (SSC), a large single-copy region (LSC) and
a pair of inverted repeats (IRs) (Yurina and Odintsova, 1998; Wang et al., 2015). In most cases,
differences in the length of the IRs determine length differences of the cp genome (Chang et al.,
2006; Guisinger et al., 2011).
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Previously, phylogenetic analyses have been based on
sequencing one or a few loci from the chloroplast. Due to the
availability of complete chloroplast sequences in public databases
and advances in next-generation sequencing techniques, analyses
based on the entire chloroplast genome are achievable and yield
higher quality andmore valuable information, which could reveal
detailed insight into genomic organization (Martin et al., 2005).
Indeed, examining the entire cp genome can resolve previously
ambiguous phylogenetic relationships among species (Jansen
et al., 2007; Moore et al., 2010). Due to availability of high-
throughput sequencing technology as well as the comparatively
small size and structural similarity of cp genomes, hundreds
of sequencing projects in terrestrial plants have recently been
reported (Wu, 2016b).

Rice is an important cereal crop that provides essential food
and energy for more than half of the world’s population. In
addition, rice is considered a model crop for studies on cereal
genomics. Two species of the genus Oryza (O. sativa, and O.
glaberrima) are cultivated, though there are more than 20 wild
species (Evenson and Gollin, 1997; Sang and Ge, 2007). Different
species are categorized into 10 genome types, six are diploid
(AA, BB, CC, EE, FF, and GG) (2n = 2x = 24) and the other
four are allelotetraploid (BBCC, CCDD, HHJJ, and HHKK)
(2n= 4x= 28) (Ge et al., 1999). About one half of the species
in Oryza genus are allotetraploids that originated through
interspecific hyberdization and genome doubling (Vaughan,
1989; Bao and Ge, 2008; Jacquemin et al., 2013). Rice (O. sativa)
with an AA genome type, is one of the most important species,
and it is further divided into the subspecies japonica and indica,
which are distributed globally (Chang, 1976; Wambugu et al.,
2015).

Because of the importance of Oryza as a major food crop,
great attention has been given to understanding the genetic
makeup and phylogeny of this genus, both within the genus and
species (Guo and Ge, 2005). In plants, sequencing functional
genes in cpDNA (chloroplast DNA) is helpful for resolving issues
related to molecular taxonomy and phylogenetic reconstruction
(Jansen et al., 2007; Moore et al., 2010; Wu and Ge, 2012), and
such approaches can yield vast benefits in plant breeding and
conservation strategies. Currently, 10 cp genomes belonging to
Oryzeae have been published (Waters et al., 2012; Brozynska
et al., 2014). Some wild Oryza species are better able than
cultivated Oryza species to resist biotic and abiotic stresses
and attack from insect pests. Thus, cultivated species can be
improved through introgression of resistance genes from wild
species (Heinrichs et al., 1985). For example, resistance traits
from wild O. minuta, a tetraploid wild relative of cultivated
rice, have been reported. O. minuta has a BBCC genome type
and exhibits significant potential to resist blast blight, bacterial
blight (BB), and white-backed plant hopper (WBPH) and brown
plant hopper (BPH) diseases (Vaughan, 1994). Such diseases
are damaging to the growth and yield of cultivated rice. In
addition, stress tolerance genes from O. minuta have been
successfully transferred to cultivated rice through introgression
(Amante-Bordeos et al., 1992; Rahman et al., 2009). Overall,
wild species such as O. minuta possess valuable genetic diversity
that can contribute greatly to improving the growth and yield

of various crops (Amante-Bordeos et al., 1992). To identify
desirable genes and ensure effective conservation, it is essential
to analyze phylogenetic and evolutionary relationships among
species (Guo et al., 2013). Previously, it was reported that O.
minuta was originated from allopolyploidization of O. officinalis
(paternal) and O. punctate (meternal) (Ammiraju et al., 2010;
Zou et al., 2015)

In this study, we assembled for the first time the complete
chloroplast genome sequence of O. minuta, and performed
detailed phylogenetic analyses on the basis of complete cp
genome and 65 shared genes. The complete cp genome of
O. minuta, in conjunction with previously reported cp genome
sequences, will improve our understanding of O. minuta and
the evolutionary history of genus Oryza. Hence, we analyzed
the fully assembled cp genome of O. minuta and compared it
to eleven closely related species: O. australiensis EE, O. nivara,
O. rufipogon, O. sativa L. ssp. indica, O. sativa L. ssp. japonica,
O. barthii, O. glumipatula, O. longistaminata, O. meridionalis, O.
officinalis CC, and O. punctata BB.

MATERIALS AND METHODS

In this study, a standard protocol for DNA extraction was used
as described in detailed by Sierro et al. (2014). The extracted
DNA was sequenced using an Illumina HiSeq-2000 (Illumina,
San Diego, CA, USA) platform at Macrogen (Macrogen, Seoul,
Korea), and the O. minuta cp genome was obtained by de novo
assembly of the entire genome sequence via a bioinformatics
pipeline (http://phyzen.com). A 400-bp paired-end library was
produced according to the Illumina PE standard protocol,
generating 28,110,596 bp of total reads with a 120-bp average

read length. Raw reads with Phred scores of 20 or less were
removed from the total PE reads using the CLC-quality trim tool,
and de novo assembly was conducted on trimmed reads using
CLC Genomics Workbench v7.0 (CLC Bio, Aarhus, Denmark)
with parameters of minimum (200 to 600 bp) autonomously
controlled overlap size. All contigs were then mapped and
assembled against the reference cp genomes of O. officinalis and
O. punctata by following a previously described method (Wu,
2016a,b). Primers were designed (Table S1) to test for correct
sequence assembly. PCR amplification was performed in a total
volume of 20 µl containing 1× reaction buffer, 0.4 µl dNTPs
(10 mM), 0.1 µl Taq (SolgTM h-Taq DNA Polymerase), 1 µl (10
pm/µl) primers, and 1 µl (10 ng/µl) DNA. The PCR program
consisted of initial denaturation at 95◦C for 5 min followed by
35 cycles of 95◦C for 30 s, 65◦C for 20 s and 72◦C for 30 s, with
a final extension step at 72◦C for 5 min. After incorporation of
the sequencing results, the finished cp genome was applied as a
reference to map previously obtained short reads to refine the
assembly based on maximum sequence coverage.

Genome Annotation and Sequence
Architecture
The program DOGMA was used to annotate the O. minuta
cp genome (Wyman et al., 2004). The annotation results
were checked manually, and codon positions were adjusted by
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TABLE 1 | Summary of complete chloroplast genomes for twelve Oryza species.

Region O. aust O. min O. niv O. rufi O. s. ind O. s. jap O. offi O. barth O. punc O. meri O. long O. glum

LSC

Length (bp) 81,074 80,974 80,544 80,594 80,512 80,594 80,952 80,684 80,621 80,604 80,595 80,612

GC(%) 37.07 37.1 37.12 37.11 37.09 37.1 37.1 37.1 37.05 37.1 37.1 37.1

Length (%) 59.95 59.9 59.8 59.9 59.8 59.9 60 59.9 59.8 59.9 59.8 59.8

SSC

Length (bp) 12,470 12,446 12,346 12,347 12,345 12,345 12,330 12,381 12,387 12,347 12,357 12,356

GC(%) 33.18 33.3 33.33 33.33 33.3 33.34 33.33 33.33 33.34 33.33 33.33 33.33

Length (%) 9.22 9.2 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.17 9.1 9.1

IR

Length (bp) 20,840 20,836 20,802 20,802 20,795 20,795 20,813 20,804 20,797 20,803 20,807 20,807

GC(%) 44.33 44.3 44.35 44.35 44.3 44.3 44.3 44.3 44.4 44.4 44.33 44.33

Length (%) 15.4 15 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4

Total

GC(%) 38.95 39 39.1 39 39 39 39 39 39 39 39 39

Length (%) 135,224 135,094 134,494 134,544 134,448 134,525 134,911 134,674 134,604 134,558 134,567 134,583

O. aust, O. australiensis; O. min, O. minuta; O. niv, O. nivara; O. rufi, O. rufipogon; O. sat. ind, O. sativa indica; O.s. jap, O. sativa japonica; O. offi, O. officinalis; O. barth, O. barthii; O.

punc, O. punctate; O. meri, O. meridionalis; O. long, O. longistaminata; O. glum, O. glumipatula.

comparison to homologs from the cp genomes of O. australiensis
and O. sativa ssp. indica in the database. All transfer RNA
sequences were verified using tRNAscan-SE version 1.21
(Schattner et al., 2005) with the default settings. OGDRAW
(Lohse et al., 2007) was applied to illustrate the structural
features of the O. minuta cp genome. To examine deviations in
synonymous codon usage by avoiding the influence of amino
acid composition, the relative synonymous codon usage (RSCU)
was determined using MEGA 6 software (Kumar et al., 2008).
mVISTA software was used in the Shuffle-LAGAN mode to
compare the complete variation in theO.minuta cp genome with
eleven other cp genomes using the O. minuta annotation as a
reference (Frazer et al., 2004).

Characterization of Repeat Sequences and
SSRs
We employed REPuter to identify repeat sequences, including
palindromic, reverse, and direct repeats, within the cp
genome (Kurtz et al., 2001). The following settings for repeat
identification were used: (1) Hamming distance of 3; (2) 90%
or greater sequence identity; (3) a minimum repeat size of 30
bp. Phobos version 3.3.12 (Leese et al., 2008) was used to detect
(SSRs) within the cp genome, with the search parameters set at
ten repeat units ≥10 for mononucleotides, eight repeat units ≥8
for dinucleotides, four repeat units ≥4 for trinucleotides and
tetranucleotides, and three repeat units ≥3 for pentanucleotide
and hexanucleotide SSRs. Tandem repeats in the O. minuta cp
genome were identified using Tandem Repeats Finder version
4.07 b (Benson, 1999) with the default settings.

Sequence Divergence and Phylogenetic
Analysis
Complete cp genomes as well as a separate partition using only
65 shared genes were employed to analyze the average pairwise
sequence divergence for 11 Oryza species: O. australiensis, O.

nivara, O. rufipogon, O. sativa L. ssp. indica, O. sativa L.
ssp. japonica, O. barthii, O. glumipatula, O. longistaminata,
O. meridionalis, O. officinalis, and O. punctata. Missing and
ambiguous gene annotations were confirmed by comparative
sequence analysis after a multiple sequence alignment and gene
order comparison. These regions were aligned using MAFFT
(version 7.222) (Katoh and Standley, 2013) with the default
parameters. Kimura’s two-parameter (K2P) model was selected
to calculate pairwise sequence divergences (Kimura, 1980). To
resolve the O. minuta phylogenetic position within the rice
tribe (Oryzeae), 13 published cp genomes were downloaded
from the NCBI database for analyses. First, multiple alignments
were performed using the complete cp genomes based on
the conserved structure and gene order of the chloroplast
genomes (Wicke et al., 2011). Four methods were employed to
construct phylogenetic trees, including Bayesian inference (BI)
implemented with MrBayes 3.12 (Ronquist and Huelsenbeck,
2003), maximum parsimony (MP) with PAUP 4.0 (Swofford,
1993), and maximum likelihood (ML) and neighbor-joining (NJ)
with MEGA 6 (Kumar et al., 2008) using described settings
(Wu et al., 2015; Asaf et al., 2016a). In the second phylogenetic
analysis, 65 shared genes from the cp genomes of 12Oryza species
and two Zizania outgroup species were aligned in ClustalX using
the default settings, followed by manual adjustment to preserve
reading frames. The above four phylogenetic-inference methods
were used to infer trees from the 65 concatenated genes using the
same settings (Wu et al., 2015; Asaf et al., 2016a).

RESULTS AND DISCUSSION

Chloroplast Genome Organization of
O. minuta
TheO.minuta cp genomewas assembled bymapping all Illumina
reads to the draft cp genome sequence using CLC Genomics
Workbench v7.0. A total of 1,577,251 reads were obtained, with
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an average length of 120 bp, for 504.211X coverage of the cp
genome. The consensus sequence for a specific position was
generated by assembling reads mapped with at least 875 reads
per position and was used to construct the complete sequence
of the O. minuta cp genome. The complete O. minuta cp
genome is 135,094 bp in size (GenBank: KU179220), which is
similar to the already reported cp genome sizes of related Oryza
species and is within the range of other angiosperms (Yang
et al., 2010). The cp genome possesses a typical quadripartite
structure, which includes a pair of inverted repeats (IRa and
IRb 20,836 bp) and separate SSC (12,446 bp) and LSC (80,974
bp) regions (Table 1, Figure 1). The GC content (39%) of the
O. minuta cp genome is very similar to that of other Oryza

species cp genomes (Table 1) (Wu et al., 2015). However, the GC
content is unequally distributed in the O. minuta cp genome: it is
highest in the IR regions (44.3%), moderate in the LSC regions
(37.1%) and lowest in the SSC regions (33.3%). This high IR
GC percentage is due to the presence of eight ribosomal RNA
(rRNA) sequences in these regions. These results are similar to a
previously reported high GC percentage in IR regions (Qian et al.,
2013).

A total of 139 genes were found in the O. minuta cp genome,
of which 110 are unique, including 91 protein-coding genes, 40
tRNA genes, and 8 rRNA genes (Figure 1, Table 2). Of these, 11
protein-coding, four rRNA, and eight tRNA genes are duplicated
in the IR regions. The LSC region comprises 62 protein-coding

FIGURE 1 | Gene map of the O. minuta chloroplast genome. Genes drawn inside the circle are transcribed clockwise, and those outside are transcribed

counterclockwise. Genes belonging to different functional groups are color coded. The darker gray color in the inner circle corresponds to the GC content, and the

lighter gray color corresponds to the AT content.
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TABLE 2 | Genes in the sequenced O. minuta chloroplast genome.

Category Group of genes Name of genes

Self-replication Large subunit of ribosomal proteins rpl2, 14, 16, 20, 22, 23, 32, 33, 36

Small subunit of ribosomal proteins rps2, 3, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19

DNA dependent RNA polymerase rpoA, B, C1, C2

rRNA genes RNA

tRNA genes trnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC trnF-GAA, trnfM-CAU, trnG-UCC, trnH-GUG, trnI-CAU,

trnI-GAU, trnK-UUU, trnL-CAA, trnL-UAA, trnL-UAG, trnM-CAU, trnN-GUU, trnP-GGG, trnP-UGG,

trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC,

trnV-UAC, trnW-CCA, trnY-GUA

Photosynthesis Photosystem I psaA, B, C, I, J

Photosystem II psbA, C, D, E, F, H, I, J, K, L, M, N, T, lhbA

NadH oxidoreductase ndhA, B, C, D, E, F, G, H, I, J, K

Cytochrome b6/f complex petA, B, D, G, L, N

ATP synthase atpA, B, E, F, H, I

Rubisco rbcL

Other genes Translational initiation factor infA

Maturase matK

Protease clpP

Envelop membrane protein cemA

Subunit Acetyl- CoA-Carboxylate accD

c-type cytochrome synthesis gene ccsA

Unknown Conserved Open reading frames ycf2, 3, 4, 15, 68

TABLE 3 | Comparison of coding and non-coding region sizes among twelve Oryza species.

Region O. aust O. min O. niv O. rufi O. s. ind O. s. jap O. offi O. barth O. punc O. meri O. long O. glum

PROTEIN CODING

Length (bp) 59,700 61,062 68,598 56,133 61,464 66,444 59,433 59,385 62,964 55,329 59,499 59,496

GC(%) 39.3 39.5 39.7 39.3 39.5 39.6 39.4 39.4 39.3 39.1 39.3 39.3

Length (%) 44.1 45.1 51 41.7 45.7 49.3 44 44 59.8 41.1 44.2 44.2

tRNA

Length (bp) 2,866 3,031 2,865 2,772 2,795 2,784 2,474 2,474 3,043 3,049 2,474 2,474

GC(%) 53.2 52.1 53 52.3 53 52.9 52.7 52.7 51.7 52.6 52.7 52.7

Length (%) 2.1 2.2 2.1 2 2 2 1.83 1.83 2.2 2.2 1.83 1.83

rRNA

Length (bp) 9,190 9,190 9,190 9,190 9,190 9,182 9,190 9,190 9,190 9,190 9,190 9,190

GC(%) 54.8 54.8 54.8 54.8 54.8 54.7 54.8 54.8 54.8 54.8 54.8 54.8

Length (%) 6.7 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8

Intergenic 63,468 61,811 53,841 66,449 60,999 56,115 63,814 63,625 59,407 66,990 63,404 63,423

GC(%) 36 36 37 37 36 36 35 35 36 36 37 35

Length (%) 47 45.8 41 50 45.4 41.8 47.4 47.3 44.2 49.8 47.2 47.2

O. aust, O. australiensis; O. min, O. minuta; O. niv, O. nivara; O. rufi, O. rufipogon; O. sat. ind, O. sativa indica; O.s. jap, O. sativa japonica; O. offi, O. officinalis; O. barth, O. barthii; O.

punc, O. punctata; O. meri, O. meridionalis; O. long, O. longistaminata; O. glum, O. glumipatula.

and 24 tRNA genes, whereas the SSC region comprises 11
protein-coding genes and one tRNA gene. The protein-coding
genes present in the O. minuta cp genome include nine genes
encoding large ribosomal proteins (rpl2, 14, 16, 20, 22, 23, 32,
33, 36), 12 genes encoding small ribosomal proteins (rps2, 3, 4,
7, 8, 11, 12, 14, 15, 16, 18, 19), five genes encoding photosystem I
components (psaA, B, C, I, J), 10 genes related to photosystem

II (Table 2), and six genes (atpA, B, E, F, H, I) encoding ATP
synthase and electron transport chain components (Table 2). A
similar pattern of protein-coding genes is also present inO. sativa
(Zhang et al., 2012) and O. glaberrima (Wambugu et al., 2015).
There are 11 intron-containing genes, 10 of which contain one
intron, with only ycf3 genes having two introns (Table S2). The
ndhA gene has the longest intron (965 bp).
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Protein, rRNAs, and tRNAs are encoded by 45.1, 6.83, and
2.2% of the entire cp genome, respectively, and the remaining
45.8% is composed of non-coding regions (Table 3). The total

TABLE 4 | Base compositions in the O. minuta cp genome.

T/U C A G Length (bp)

Genome 30.4 19.4 30.7 19.6 135,094

LSC 31.6 18.3 31.3 18.8 80,974

SSC 30.8 17.3 35.9 16.0 12,446

IR 27.7 23.1 28 21.3 20,836

tRNA 23.5 26.1 24.3 26 3,031

rRNA 22.6 27.4 22.6 27.4 9,190

Protein-coding genes 29.9 19.5 30.5 20.0 60,948

1st position 23.27 19.0 29.3 28.2 20,354

2nd position 32.72 21.1 27.3 18.82 20,354

3rd position 37.04 14.9 31.66 16.5 20,354

protein-coding sequences (CDSs) are 60,948 bp in length and
consist of 91 genes encoding 20,354 codons (Tables 1, 4). The O.
minuta cp genome codon usage frequency was determined based
on tRNA and protein-coding gene sequences (Table 5). Leucine
(10.7%) and cysteine (1.2%) are the maximum and minimum
commonly encoded amino acids, and isoleucine, serine, glycine,
arginine and alanine are encoded by 7.9, 7.5, 7.4, 6.5, and 6.1%
of CDSs, respectively (Figure S1). Similar ratios for amino acids
are present in previously reported cp genomes (Qian et al., 2013;
Chen et al., 2015).

Among these, the maximum and minimum codons used
are ATT (820), encoding isoleucine, and TTG and ATT (1, 1),
encoding methionine. The AT content is 52.5, 60.0, and 68.7%
at the 1st, 2nd, and 3rd codon positions, respectively, within
CDS regions (Table 4). The preference for a high AT content at
the 3rd codon position is similar to the A and T concentrations
reported in various terrestrial plant cp genomes (Morton, 1998;
Nie et al., 2012; Qian et al., 2013). In total, 42.65 and 57% of all

TABLE 5 | The codon–anticodon recognition pattern and codon usage for the O. minuta chloroplast genome.

Amino acid Codon No RSCU tRNA Amino acid Codon No RSCU tRNA

Phe UUU 733 1.28 Ala GCA 378 1.18 trnA-UGC

Phe UUC 407 0.7 trnF-GAA Ala GCG 160 0.5

Leu UUA 710 1.9 trnL-UAA tRNA Tyr UAU 567 1.5

Leu UUG 402 1.1 trnL-CAA tRNA Tyr UAC 176 0.47 trnY-GUA tRNA

Leu CUU 473 1.29 Stop UAG 22 0.74

Leu CUC 165 0.4 Stop UGA 24 0.80

Leu CUA 319 0.87 trnL-UAG tRNA Stop UAA 43 1.44

Leu CUG 120 0.32 His CAU 351 1.49

Ile AUU 820 1.51 His CAC 119 0.50 trnH-GUG tRNA

Ile AUC 323 0.5 trnI-GAU tRNA Gln CAA 521 1.53 trnQ-UUG tRNA

Ile AUA 485 0.89 Gln CAG 167 0.49

Met AUG 499 1 trnM-CAU tRNA Asn AAU 579 1.44

Val GUU 450 1.50 Asn AAC 222 0.55 trnQ-UUG tRNA

Val GUC 140 0.46 trnV-GAC tRNA Lys AAA 752 1.44 trnK-UUU tRNA

Val GUA 442 1.47 trnV-UAC tRNA Lys AAG 291 0.55

Val GUG 163 0.54 Asp GAU 558 1.55

Ser UCU 383 1.56 Asp GAC 159 0.44 trnD-GUC tRNA

Ser UCC 304 1.23 trnS-GGA tRNA Glu GAA 764 1.48 trnE-UUC tRNA

Ser UCA 254 1.03 trnS-UGA tRNA Glu GAG 267 0.51

Ser UCG 120 0.48 Cys UGU 177 1.50

Ser AGU 306 1.24 Cys UGC 58 0.49

Ser AGC 105 0.42 trnS-GCU tRNA Trp UGG 356 1 trnW-CCA tRNA

Pro CCU 351 1.59 Arg CGU 290 1.36 trnR-ACG tRNA

Pro CCC 190 0.86 Arg CGC 110 0.51

Pro CCA 236 1.07 trnP-UGG tRNA Arg CGA 264 1.24

Pro CCG 105 0.47 Arg CGG 102 0.48

Thr ACU 455 1.68 Arg AGA 377 1.77 trnR-UCU tRNA

Thr ACC 208 0.76 trnT-GGU tRNA Arg AGG 131 0.61

Thr ACA 294 1.08 trnT-UGU tRNA Gly GGU 493 1.28

Thr ACG 124 0.45 Gly GGC 161 0.42

Ala GCU 553 1.72 Gly GGA 582 1.52 trnG-UCC tRNA

Ala GCC 189 0.59 Gly GGG 295 0.77
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types of preferred synonymous codons (RSCU>1) ending with
A and U and C and G, respectively, were found. Non-preferred
synonymous codons (RSCU<1) are 42.40 and 57.50% for C and
G and A and U. Usage of the start codon AUG and UGG, the
latter encoding tryptophan, has no bias (RSCU= 1) (Table 5).

Repeat Analysis
Repeat sequences, which play a role in genome rearrangements,
are very helpful in phylogenetic studies (Cavalier-Smith, 2002;
Nie et al., 2012). Furthermore, analyses of various cp genomes
revealed that repeat sequences are essential to induce indels and
substitutions (Yi et al., 2013). Repeat analysis of the O. minuta
cp genome showed 20 palindromic repeats, 30 forward repeats,
and 28 tandem repeats (Figure 2A). Among these, 17 forward
repeats are 30–44 bp in length, with only three tandem repeats
of the same length and 18 15–29 bp in length (Figures 2A–D).
Similarly, 11 palindromic repeats are 30–44 bp, and 6 repeats
are 45–59 bp in length (Figure 2B). Overall, 78 repeats were
found in the O. minuta cp genome. Similarly, 73, 73, 76, 71
72, 78, 72, 71, 73, 77, and 74 repeat pairs were found in
previously reported O. australiensis, O. nivara, O. rufipogon,
O. sativa L. ssp. indica, O. sativa L. ssp. japonica, O. barthii,
O. glumipatula, O. longistaminata, O. meridionalis, O. officinalis

andO. punctata genomes, respectively (Figure 2A). This suggests
that O. minuta is more similar to O. barthii and O. officinalis
in terms of repeats. Approximately 29.4% of these repeats are
distributed in protein-coding regions. Previous reports suggest
that sequence variation and genome rearrangement occur due
to the slipped-strand mispairing and improper recombination
of these repeat sequences (Cavalier-Smith, 2002; Asano et al.,
2004; Timme et al., 2007). Furthermore, the presence of these
repeats indicates that the locus is a crucial hotspot for genome
reconfiguration (Gao et al., 2009; Nie et al., 2012). Additionally,
these repeats are an informative source for developing genetic
markers for phylogenetic and population studies (Nie et al.,
2012).

SSR Analysis
Simple sequence repeats (SSRs), or microsatellites, are repeating
sequences of typically 1–6 bp that are distributed throughout the
genome. In this study, we detected perfect SSRs in O. minuta
together with 11 other Oryza species cp genomes (Figure 3A).
Certain parameters were set because SSRs of 10 bp or longer
are prone to slipped-strand mispairing, which is believed to be
the main mechanism for SSR polymorphisms (Rose and Falush,
1998; Raubeson et al., 2007; Huotari and Korpelainen, 2012). A

FIGURE 2 | Analysis of repeated sequences in twelve Oryza chloroplast genomes. (A) Total of three repeat types; (B) frequency of the palindromic repeat by

length; (C) frequency of the tandem repeat by length; (D) frequency of forward repeat by length.
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FIGURE 3 | Analysis of simple sequence repeats (SSRs) in twelve Oryza chloroplast genomes. (A) Number of different SSR types detected in twelve

genomes; (B) frequency of identified SSR motifs in different repeat class types; (C) frequency of identified SSRs in coding regions; (D) frequency of identified SSRs in

LSC, SSC and IR regions.

total of 419 perfect microsatellites were found in the O. minuta

cp genome (Figure 3A). Similarly, 418, 413, 416, 416, 419, 420,
419, 419, 421, 429, and 422 SSRs were detected inO. australiensis,
O. nivara, O. rufipogon, O. sativa L. ssp. indica, O. sativa L.
ssp. japonica, O. barthii, O. glumipatula, O. longistaminata,
O. meridionalis, O. officinalis and O. punctata, respectively
(Figure 3A). The majority of SSRs in these cp genomes possess
a dinucleotide repeat motif, varying in quantity from 269 in O.
sativa ssp. indica to 276 in O. officinalis. Mononucleotide SSRs
are the second most common, ranging from 92 in O. nivara
to 100 in O. officinalis. Using our search criterion, only one
pentanucleotide SSR was found in O. nivara, O. rufipogon,
O. indica and O. officinalis (Figure 3A). In O. minuta, most
mononucleotide SSRs are A (97%) and T (2.12.30%) motifs,
with the majority of dinucleotide SSRs being A/G (47.05%)
and A/T (38.60%) motifs (Figure 3B). Approximately 62% of
SSRs are located in non-coding regions; approximately 4.3% are
present in rRNA sequences and 2.3% in tRNA genes (Figure 3C).

Further analysis revealed that approximately 66.82% of SSRs

occur in the LSC region, whereas 24.34 and 8.83% were
found in IR and SSC regions, respectively (Figure 3D). These
results are similar to previous reports that SSRs are unevenly
distributed in cp genomes, and the findings might provide
more information for selecting effective molecular markers for
detecting intra- and interspecific polymorphisms (Powell et al.,
1995a,b; Provan et al., 1997; Pauwels et al., 2012). Furthermore,
most mononucleotides and dinucleotides are composed of A
and T, which may contribute to bias in base composition,
consistent with other cp genomes (Li et al., 2013). Our findings
are comparable to previous reports that SSRs found in cp genome
are generally composed of polythymine (polyT) or polyadenine
(polyA) repeats and infrequently contain tandem cytosine (C)
and guanine (G) repeats (Kuang et al., 2011). Therefore, these
SSRs identified contribute to the AT richness of the O. minuta cp
genome, as previously reported for various species (Kuang et al.,
2011; Chen et al., 2015).
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FIGURE 4 | Alignment of twelve chloroplast genome sequences. VISTA-based identity plot showing sequence identity among twelve Oryza species using O.

minuta as a reference. The thick black line shows the inverted repeats (IRs) in the chloroplast genomes.
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FIGURE 5 | Pairwise sequence distances of Oryza minuta genes with O. australiensis, O. nivara, O. rufipogon, O. sativa L. ssp. indica, O. sativa L. ssp.

japonica, O. barthii, O. glumipatula, O. longistaminata, O. meridionalis, O. officinalis, and O. punctata.

Structural and Sequence Comparisons of
cp Genomes in Oryza
Eleven complete cp genomes within the Oryza genus
(O. australiensis, O. nivara, O. rufipogon, O. sativa L. ssp.
indica, O. sativa L. ssp. japonica, O. barthii, O. glumipatula,
O. longistaminata, O. meridionalis, O. officinalis, and O.
punctata) were selected for comparison with that of O. minuta
(135,094 bp). O. australiensis has the largest genome, and this
difference is mostly attributed to variation in the length of the
LSC region (Table 1). Analysis of genes with known functions
showed that O. minuta shares 65 protein-coding genes with
eleven other Oryza species. The number of unique genes found
in O. australiensis, O. nivara, O. rufipogon, O. sativa L. ssp.
indica, O. sativa L. ssp. japonica, O. barthii, O. glumipatula, O.
longistaminata, O. meridionalis, O. officinalis, and O. punctata
was 110, 100, 101, 108, 80, 104, 104, 104, 100, 104 and 114,
respectively (Table S3). Furthermore, the O. minuta cp genome
has a gene content and organization that are similar to other
Oryza species and members of Poaceae (Wicke et al., 2011);
however, as for other grasses, it lacks a ycf1 gene, and the accD
gene is a truncated pseudogene. Because these genes are essential
for the survival of photosynthetic plants (Drescher et al., 2000;
Kode et al., 2005), they were most likely functionally transferred

to the nucleus or functionally replaced by a eukaryotic gene,
as observed for the accD plastid gene in other plant families
(Babiychuk et al., 2011; Rousseau-Gueutin et al., 2011).

Pairwise cp genomic alignment between O.minuta and the 11

other genomes showed a high degree of synteny. The O. minuta

cp genome annotation was used as a reference for plotting the
overall sequence identity of the cp genomes of the 11 Oryza
species in mVISTA (Figure 4), and the results revealed high
sequence identity with all 11 Oryza species. However, except for

O. australiensis, relatively lower identity was also observed with
these species in various comparable genomic regions, particularly
the rps3, rpl22, rpl23, rpl2, and rps19 regions (Figure 4). In
addition, the LSC and SSC regions show less similarity than the
two IR regions in all Oryza species. In addition, non-coding
regions exhibit greater divergence than coding regions. These
highly divergent regions include rbcL, rps16-trnQ, trnfM-trnM,
psbM-petN, rpoC2, atpI-atpH, ndhA rpl33, petA-psbJ, ccsA, ndhF-
rpl32, and ycf3. Similar results related to these genes were also
reported by Qian et al. (2013). Our results also confirm similar
differences among various coding regions in the analyzed species,
as suggested by Kumar et al. (2009).

We compared the cp genomes and calculated the average

pairwise sequence divergence among the 12 species (Table S4).
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FIGURE 6 | Comparison of border distances between adjacent genes and junctions of LSC, SSC, and two IR regions among chloroplast genomes of

twelve Oryza species. Boxes above or below the main line indicate the adjacent border genes. The figure is not to scale with regard to sequence length and only

shows relative changes at or near IR/SC borders.

Of these, the O. minuta genome has 0.005 average sequence
divergence, and high divergence was found for O. australiensis
(0.00725); O. officinalis has the lowest average sequence
divergence (0.0044). Furthermore, the twelve most divergent
genes among these genomes are petG, matK, infA, ccsA, rpoC2,
clcP, psbE, rbcL, psbN, rps18, rpl36, and ndhF. The highest
average sequence distance was found for rpoC2 (0.01983),
followed by petG (0.0154) (Figure 5). Both these genes are
located in LSC regions and display a trend toward more rapid
evolution.

IR Contraction and Expansion
Expansion and contraction at the borders of IR regions are the
main reason for size variations in the cp genome and play a
vital role in its evolution (Raubeson et al., 2007; Wang et al.,
2008; Yang et al., 2010, 2014). A detailed comparison on four
junctions (JLA, JLB, JSA, and JSB) between the two IRs (IRa
and IRb) and the two single-copy regions (LSC and SSC) was
performed among O. australiensis, O. nivara, O. rufipogon, O.
sativa L. ssp. indica, O. sativa L. ssp. japonica, O. barthii, O.
glumipatula,O. longistaminata,O. meridionalis,O. officinalis and
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O. punctata with regard to O. minuta by carefully analyzing the
exact IR border positions and adjacent genes (Figure 6). Despite
the similar length of the O. minuta IR region with the other
eleven Oryza species, from 20,836 bp to 20,840 bp, some IR
expansion and contraction was observed. JLA is located between
rps19 and psbA, and variation in distances between rps19 and
JLA range from 40 to 49 bp across all species; the distance in O.
minuta is 46 bp. The distance between psbA and JLA is 81 bp in
O. minuta, which is similar to the other genomes (81 bp). The
distance between rpl22 and JLB varies from 23 bp to 29 bp. In O.
minuta, 1-bp variations exist in the JSA border region compared
to the other cp genomes. The ndhH gene traverses the SSC and
IRa regions, with approximately 164 bp located in the IR region
for O. minuta. Furthermore, there are 16-bp variations observed
compared withO. officinalis for ndhF, ndhH and rps15 in the SSC
and IRb regions, located 41 bp, 164 bp and 302 bp from the JSB
and JSA border regions, respectively.

Phylogenetic Analysis
The Oryza genus is composed of 23 species distributed in
different regions of America, Africa, Asia, and Australia (Ge
et al., 1999). Continued efforts have expanded our ability to
differentiate among and to understand the genomic structure
and phylogenetic relationships of rice species (Khush, 1997).

Taxonomy and phylogeny of the rice genus have been extensively
investigated at genus level (Ge et al., 1999; Zhu and Ge, 2005;
Jacquemin et al., 2013). Previous evolutionary relationships
among different rice genomes and species were estimated
by nuclear and chloroplast DNA restriction fragment-length
polymorphisms (Ge et al., 1999; Zou et al., 2015), but complete
genome sequencing provides more detailed insight (Wambugu
et al., 2015; Wu et al., 2015; Asaf et al., 2016b). In this
regard, O. minuta has been poorly investigated. In this study,
the phylogenetic position of O. minuta within Oryza was
established by utilizing complete cp genomes and 65 shared
genes among 12 Oryza members (Figures 7A,B). Two species,
Zizania aquatic and Zizania latifolia were set as outgroups.
Phylogenetic analysis using Bayesian inference (BI), maximum
parsimony (MP), maximum likelihood (ML) and neighbor-
joining (NJ) methods were performed. The results showed same
phylogenetic signals for the complete cp genomes and 65 shared
genes of O. minuta. The complete genome sequences (Table S5)
and 65 shared genes (Tables S3, S6) from all species generated
phylogenetic trees with same topologies (Figures 7A,B). In these
phylogenetic trees based on the entire genome data set and 65
shared genes, O. minuta formed a single clade with O. punctata,
with high BI and bootstrap support using four different methods
(Figures 7A,B). Furthermore, the tree topology confirmed the

FIGURE 7 | Phylogenetic trees were constructed for 14 species from the rice tribe using different methods, and two Bayesian trees are shown for data

sets of the entire genome sequence and 65 shared genes. (A) The entire genome sequence data set (B). The data set of 65 shared genes. Each data set was

used with four different methods, Bayesian inference (BI), maximum parsimony (MP), maximum likelihood (ML) and neighbor-joining (NJ). Numbers above the branches

are the posterior probabilities of BI and bootstrap values of MP, ML, and NJ, respectively. Stars represent positions for O. minuta (KU179220) in the two trees.
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relationship inferred from the phylogenetic work conducted by
Ge et al. (1999) and Zou et al. (2015). This position of O. minuta
confirms the previously published phylogeny described by Ge
et al. (1999). Ge et al. (1999) reported that O. minuta BBCC
shares a clade with O. punctata BB with regard to Adh1, whereas
it forms a clade with O. officinalis CC in the Adh2 phylogenetic
analysis. Similar resuls was suggested by Zou et al. (2015),
whereby phylogenetic analysis of the four nuclear loci and three
meternally interited chloroplast fragments from different Oryza
species grouped O. minuta in a clade with maternal parent O.
punctata BB (Zou et al., 2015). As the phylogenetic tree based on
the matK gene represents the maternal genealogy of rice species,
which can offer an opportunity to identify maternal parents of
allotetraploid species, we performed an additional phylogenetic
analysis of O. minuta using the matK gene from related species
(Figure S2). The results revealed a single clade for O. minuta
with parental O. punctata. Similar results was also suggested by
Ge et al. (1999), whereby phylogenetic analysis of the matK gene
from different Oryza species grouped O. minuta in a clade with
the maternal parent O. punctata BB instead of O. officinalis CC.
Furthermore, the result suggests that there is no conflict between
the entire genome data set and 65 shared genes of these cp
genomes.

CONCLUSION

This study reports the first complete chloroplast genome
sequence of O. minuta (135,094 bp). The structure and
organization of this genome is very similar to previously reported
cp genomes from the tribe Oryzeae. The location and distribution
of repeat sequences was detected, and sequence divergences
among cp genomes and 65 shared genes were identified
with related species. No major structural rearrangement of
Oryza species cp genomes was observed. Phylogenetic analyses
showed that data sets based on the entire genome and 65
shared genes generate trees with same topologies regarding
the placement of O. minuta. These findings provide a
valuable analysis of the complete cp genome of O. minuta,

which can be used to identify species and clarify taxonomic
questions.
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