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Abstract
Probabilistic reward learning reflects the ability to adapt choices based on probabilistic feedback. The dopaminergically
innervated corticostriatal circuit in the brain plays an important role in supporting successful probabilistic reward learning.
Several components of the corticostriatal circuit deteriorate with age, as it does probabilistic reward learning. We showed
previously that D1 receptor availability in NAcc predicts the strength of anticipatory value signaling in vmPFC, a neural
correlate of probabilistic learning that is attenuated in older participants and predicts probabilistic reward learning
performance. We investigated how white matter integrity in the pathway between nucleus accumbens (NAcc) and
ventromedial prefrontal cortex (vmPFC) relates to the strength of anticipatory value signaling in vmPFC in younger and
older participants. We found that in a sample of 22 old and 23 young participants, fractional anisotropy in the pathway
between NAcc and vmPFC predicted the strength of value signaling in vmPFC independently from D1 receptor availability in
NAcc. These findings provide tentative evidence that integrity in the dopaminergic and white matter pathways of
corticostriatal circuitry supports the expression of value signaling in vmPFC which supports reward learning, however, the
limited sample size calls for independent replication. These and future findings could add to the improved understanding
of how corticostriatal integrity contributes to reward learning ability.
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Introduction
The ability to flexibly update one’s actions based on value-
related changes in the environment deteriorates with age, as
shown in decision-making studies comparing older and younger
adults (Samanez-Larkin et al. 2012; Chowdhury et al. 2013b;

Samanez-Larkin and Knutson 2015; de Boer et al. 2017). Ani-
mal studies and neuroanatomical evidence suggest that reward
learning necessary for optimal value-based decision-making in
changeable environments recruits corticostriatal loops (Haber
and Knutson 2010; Seger et al. 2010; Haber 2016; Smittenaar
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et al. 2017). These loops are modulated by dopaminergic pro-
jections from the midbrain. Activity within the loop passing
through the ventromedial portion of the striatum has consis-
tently been associated with motivational aspects of behavior
(Haber and Behrens 2014). Conversely, activity within the loops
passing through the dorsolateral portion of the striatum is asso-
ciated with converting cognitive and motivational signals into
motor programs (Bornstein and Daw 2011).

The ventromedial prefrontal cortex (vmPFC) and nucleus
accumbens (NAcc) are important nodes within the motivational
portion of these loops. We have previously shown that value
anticipation in vmPFC is related to performance on a two-armed
bandit task (TAB) (de Boer et al. 2017). In that study, this signal
proved weaker in a sample of older participants, compared
with younger participants. Importantly, this value anticipation
signal in vmPFC correlated with performance on the TAB, even
when controlling for age. This suggested that as people age, the
brain’s ability to produce a strong value signal needed to perform
adaptive choices may change.

Aging affects the integrity of the dopaminergic system
(Bäckman et al. 2000; Bäckman et al. 2010; Rieckmann et al.
2011) and white-matter tracts in the brain (Raz et al. 2005;
Yang et al. 2016; Bennett et al. 2017). The deterioration of
either or both of these systems could underlie worse adaptive
value-based decision-making in older adults. We have already
shown that dopamine (DA) D1-R availability in NAcc predicts
the strength of the value signal in vmPFC (de Boer et al. 2017).
Integrity of frontostriatal pathways as measured by diffusion
weighted imaging (DWI) has previously proven the important of
good performance in probabilistic reward learning tasks which
measure value-based decision-making ability (Samanez-Larkin
et al. 2012; van de Vijver et al. 2016). The relationship between
these measures and value-based decision-making performance
could stem from the fact that the prefrontal value signal
necessary for making adaptive value-based choices cannot
properly emerge if the dopaminergic and vmPFC-accumbens
integrity are affected. This dual dependence on dopaminergic
modulation in the NAcc and frontostriatal connectivity is
supported by the recent observation that DA transporter binding
potential in NAcc has an indirect effect on reinforcement
learning behavior, through frontostriatal functional connectivity
(Kaiser et al. 2018).

Based on this evidence, we hypothesized that vmPFC-
accumbens white matter integrity would predict the strength of
value anticipation signals in vmPFC. Given that D1-R availability
in NAcc is also related to the strength of value anticipation in
vmPFC in the data used in this study, we expected that one of
these two measures could mediate the relationship of the other
measure with value anticipation in vmPFC. Alternatively, both
vmPFC-accumbens white matter integrity and D1-R availability
in NAcc could independently predict the strength of value
anticipation signals in vmPFC. We were also expecting to find
a direct relationship between vmPFC-accumbens white matter
integrity and behavioral performance on the TAB.

No study has previously investigated the combined effect of
dopaminergic integrity and white-matter pathway integrity on
probabilistic reward learning. Here, we test our hypotheses in
a sample of 22 older and 23 young participants, whose data
were part of a previously published study (de Boer et al. 2017).
For these participants, we report previously unpublished DWI
data, as well as functional MRI data during the TAB and DA
D1-R availability data with positron emission tomography (PET)
available to us (de Boer et al. 2017). We used a computational

model to calculate subjective value for each participant on each
trial (de Boer et al. 2017).

Materials and Methods
Participants

A total of 30 healthy, cognitively high functioning older adults
aged 66–75 and 30 younger adults aged 19–32 were recruited
through local newspaper advertisements in Umeå Sweden. The
health of all potential participants was assessed before recruit-
ment by a questionnaire administered via telephone by research
nurses. The questionnaire enquired about past and present
neurological or psychiatric conditions, head trauma, diabetes
mellitus, arterial hypertension that required more than two
medications, addiction to alcohol or other drugs, and bad eye-
sight. All participants were right-handed and provided writ-
ten informed consent prior to commencing the study. Ethical
approval was obtained from the Umeå Regional Ethical Review
Board. Participants were paid 2000 SEK (∼$225) for participation
and earned up to 149 additional SEK (∼$17) in the TAB.

In fMRI analyses, three older participants were excluded—
one due to excessive head motion during fMRI scanning, one
for only ever selecting one of the two stimuli in the task, and
one due to a malfunctioning button box, resulting in no recorded
responses. One additional older participant did not complete the
full PET scan, but this participant’s fMRI and task data are still
included in the analysis where possible. This resulted in a total
of 57 participants for fMRI and task analysis (27 old [10 female],
30 young [18 female]) and 56 participants for PET analysis (26
old, 30 young). For DWI analysis, tracts between VS and vmPFC
could not be reconstructed for 11 out of 57 participants. Thus, for
DWI analysis, 46 participants were included (23 old [8 female], 23
young [14 female]). One of the older participants in this sample
was the one that did not complete the PET scan, so for the full
analysis, 45 participants (22 old, 23 young) were included.

All participants performed the Mini Mental State Examina-
tion (MMSE). Scores ranged from 26 to 30 in the young sample
(mean = 29.40, SD = 0.97) and from 27 to 30 in the older sam-
ple (mean = 29.37, SD = 0.79), with no evidence of a difference
between the two (P = 0.90). PET and fMRI scanning were planned
2 days apart. However, due to a technical problem with the PET
scanner, 12 participants were scanned at a longer delay apart
(range 4–44 days apart). On the MRI scanning day, participants
completed the TAB and another unrelated task inside the MRI
scanner. Participants also completed a battery of tasks outside
the scanner. Only results from the TAB will be discussed here.

Two-Armed Bandit Task

The TAB task was presented in Cogent 2000 (Wellcome Trust
for Neuroimaging). Figure 1a depicts a schematic representation
of one TAB trial. Participants were instructed to choose the
fractal stimulus they thought to be most rewarding at each trial
and were informed of the changing probability of obtaining a
reward for each stimulus. These probabilities varied indepen-
dently from one another. Probabilities were generated using a
Gaussian random walk (Daw and Doya 2006). Before scanning,
participants were presented with five practice trials. The same
set of Gaussian random walks was used for all participants
(Fig. 1), but the assignment of random walk to stimulus identity
was counterbalanced across participants.
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Figure 1. Left: schematic representation of a trial in the TAB. Participants were presented with two fractal images on each trial and selected one of them through a

button press. The maximum response time was 2000 ms, meaning the trial would count as a miss if the response time exceeded this limit and the next trial would start
immediately after the next intertrial interval. If one stimulus was selected, this option was highlighted with a red frame. After 1000 ms, participants were presented
with the outcome: either a green arrow pointing upwards, indicating an obtained reward of 1 SEK ($0.11), or a yellow horizontal bar, indicating no win. Each image
was randomly assigned a position on the screen (left or right) on each of the 2 × 110 trials of the experiment. Reward probabilities varied throughout the experiment.

Right: varying reward probabilities for obtaining a reward for each bandit on the 220 trials of the experiment.

Statistical Analysis of Brain and Behavior

All statistical analyses were performed using R version 3.5.3. As a
measure of performance, we used the number of rewarded trials
that each participant saw. This was equivalent to the amount
of money each participant earned on the task (participants
received 1 Swedish Crown per rewarded trial). Performance dif-
ferences between groups were assessed with a one-tailed stu-
dent’s t-test. We used the lm function in the R stats package
to perform a number of multiple regressions that assessed the
relationship between age, performance, white matter integrity,
value anticipation in vmPFC, and DA D1-R availability in the
NAcc. The assumptions of the regression models were checked
by testing the residuals with Shapiro–Wilk’s test of normality
and were considered normal at P > 0.05. Variance inflation fac-
tors (VIFs) were calculated with the ols_vif_tol function, part of
the olsrr package. We considered predictor values to be over-
inflated if the VIF > 10 (O’brien 2007). In all of the analyses
we performed, we included age as a covariate of no interest.
However, we report all of the bivariate relationships without
controlling for age in the multiple linear regression tables. As
many of our predictors are collinear with age, controlling for age
ensures that the observed relationships are robust across age
groups. Thus, variables that are affected by age, but that can pre-
dict brain activity and performance beyond age, provide robust
explanations for processes affected by age-related changes.

Computational Analysis of Behavior

To calculate trial-by-trial choice values, we used a previously
reported computational model, a variation on a Bayesian
Observer that has been shown to outperform alternative models
using standard model comparison methods (de Boer et al. 2017).
For brevity, we will present only the winning model from this
analysis. For model comparison statistics (including standard

reinforcement learning models using the Rescorla–Wagner
updating rule) and fitting procedures, we refer to our previous
publication (de Boer et al. 2017).

The winning model uses a softmax decision rule, where
action propensities (ma(t)) for each bandit were entered. A tem-
perature parameter β (with β > 0) determined the probability that
a participant chose each action a ∈{0,1} (corresponding to each
bandit)

P
(
a(t) = a

) = exp [βma(t)]
exp [βm0(t)] + exp [βm1(t)]

, (1)

where ma(t) is the action propensity for bandit a on trial t. In the
winning model, the probability of obtaining a reward derived for
each bandit was represented as a beta distribution (one for each
bandit)

θa ∼ β (θa; γa, εa) , (2)

where θa was updated upon observing an outcome of each
trial. From these probability distributions, we derived the mean
probability of getting a reward for each bandit and its variance.
We will refer to the mean probability of obtaining a reward for
each bandit on a given trial as the expected value Qa(t), which is
calculated as follows:

Qa(t) = γa

(γa + εa)
. (3)

Additionally, the variance in reward probability, which was
used to calculate the action propensities ma(t) (see further
below), was defined as

Va(t) = γaεa

(γa + εa)2 (γa + εa + 1)
. (4)

The parameter values at t = 1 in the beta distributions were
1 (γa(1) = εa(1) = 1). Therefore, Q0(1) = Q1(1) = 0.5, reflecting
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an expected value at chance level on the first trial, and V0(1) =
V1(1) = 0.143, reflecting the maximum possible variance on the
first trial, in line with a general uncertainty about the underlying
reward probability distributions. Both parameters of each beta
distribution are updated on each trial as follows: when bandit
a is chosen and a reward is obtained, γa is increased by 1, εa is
relaxed toward 1, and both γ1−a (1−a referring to the unchosen
option) and ε1−a are relaxed toward 1. Conversely, after reward
omission, εa is increased by 1, but again, both γ1−a and ε1−a are
relaxed toward 1. Hence, for the chosen bandit,

γa(t) (t + 1) = (1 − ω) γa(t)(t) + ω + 1; and

εa(t) (t + 1) = (1 − ω) εa(t)(t) + ω; if R(t) = 1 (5)

γa(t) (t + 1) = (1 − ω) γa(t)(t) + ω; and

εa(t) (t + 1) = (1 − ω) εa(t)(t) + ω + 1; . if R(t) = 0 (6)

And for the unchosen bandit,

γ1−a(t) (t + 1) = (1 − λ) γ1−a(t)(t) + λ; and

ε1−a(t) (t + 1) = (1 − λ) ε1−a(t)(t) + λ, (7)

where ω and λ are separate individually fitted free parame-
ters that determine the speed with which the reward proba-
bility distributions are updated (with 0 < ω < 1) and forgotten
(0 < λ < 1).

In addition, the variance of the bandit that was not chosen
on trail t was added to the action propensity of that bandit on
trial t + 1. Hence, for the unchosen option,

m1−a(t) (t + 1) = Q1−a(t)(t) + υunchosenV1−a(t), (8)

where, if υ is positive, choices were favored if they had high
variance and if they were not chosen on the previous trial, which
can be interpreted as an exploration bonus.

Finally, a measure of confidence was added to the value of
the bandit that was not chosen on trial t. Relative confidence
was defined as the probability that a sample drawn from the
distribution for bandit a would be more likely to lead to a reward
than a sample drawn from the distribution for bandit 1 − a. A
relative confidence was added to the unchosen option at trial
t + 1

m1−a(t) (t + 1) = Q1−a(t)(t) + υunchosenV1−a(t) + κCrel(t), (9)

where κ was an individually fitted parameter that weighted the
relative confidence Crel which was calculated as follows:

Crel(t) = P
(
θa(t) > θ1−a(t)

)
−P

(
θ1−a(t) > θa(t)

)
= 2P

(
θa(t) > θ1−a(t)

)
−1,

(10)
where

C1(t) = P (θ1 > θ0) =
∫ 1

θ1=0
dθ1β (θ1; γ1, ε1)

∫ θ1

θ0=0
dθ0β (θ0; γ0, ε0)

(11)
and

C1−a(t) = 1 − Ca(t). (12)

MRI Acquisition

Brain images were acquired on an MR750 3T scanner (GE Medical
Systems), equipped with a 32-channel phased-array head coil.

T1-weighted 3D-SPGR images were acquired using a single-echo
sequence (voxel size: 0.5 × 0.5 × 1 mm, TE = 3.20, flip angle = 12◦).
DWI scans were acquired with a spin-EPI T2-weighted sequence
(64 slices, voxel size = 1 × 1 × 2 mm, TR = 8000 ms, TE = 84.4 ms,
FoV = 25 cm, flip angle = 90◦), using three repetitions, with 32
independent directions (b = 1000 s/mm2) and six b = 0 images.
Functional images were acquired using a T2∗-sensitive gradi-
ent echo sequence (voxel size: 2 × 2 × 4 mm, TE = 30.0 ms,
TR = 2000 ms, flip angle = 80◦) and contained 37 slices of 3.4-mm
thickness, with a 0.5-mm gap between slices. Volume acquisi-
tion occurred in an interleaved fashion. About 330 volumes were
obtained for each of the two functional runs. During acquisi-
tion of fMRI time series, heart rate and respiratory data were
collected using a breathing belt and a pulse oximeter.

Functional MRI Analysis

In-house software (dicom2usb, http://dicom-port.com/) was
used to de-identify all neuroimaging scans. Functional MRI
analyses were performed in SPM8 (http://www.fil.ion.ucl.ac.u
k/spm/software/spm8/). The preprocessing pipeline included
slice-time correction, realignment, coregistration to the T1-
weighted image, movement correction, and normalization
to MNI space. For normalization, we used a diffeomorphic
registration algorithm (DARTEL; Ashburner 2007) with spatial
resolution after normalization 2 × 2 × 2 mm. Data were
smoothed with a final Gaussian kernel equivalent to a standard
8 mm (see below). The fMRI time series data were high-pass
filtered with a 128-s cut-off, and whitened with an AR(1) model.
For each participant, the canonical hemodynamic response
function was used to compute their statistical model.

The movement parameters produced by SPM’s coregistration
algorithm showed that 15 participants moved >3 mm in any
direction during functional runs. To correct for movement arti-
facts produced as a consequence of this, we used the ArtRepair
toolbox (Mazaika et al. 2009; Levy and Wagner 2011). ArtRepair
compares the amount of motion between volume acquisitions
based on the mean intensity plot of all functional scans, and
linearly interpolates scans in which motion exceeds a specified
threshold. We used the recommended threshold value of 1.5%
deviation from the mean intensity between scans. The average
number of interpolated scans for our participants was 12.2 (1.8%)
(SD = 19.6 [3.0%]), and one participant was excluded for showing
movement >1.0 mm in >25% of scans, in line with ArtRepair’s
recommendations. ArtRepair smooths the individual subject
data with a Gaussian smoothing kernel of 4 mm before normal-
ization and movement correction. A Gaussian kernel of 7 mm
was then used for the normalization to MNI space, resulting in
a smoothed, normalized image equivalent to a standard 8-mm
smoothed normalized image.

We estimated a first-level general linear model (GLM) to look
at activity corresponding to value anticipation in the brain. In
this linear model, we parametrically modulated the time of
choice by the expected value (Q) that belonged to the cho-
sen option on each trial as calculated by the computational
model described above. In addition, the outcome of each trial
(whether the trial led to reward receipt or not) was included as a
regressor at the time of outcome. This model included several
other regressors of no interest to control for motion. These
included SPM’s six motion regressors as well as 18 parameters
that corrected for physiological noise, which we recorded with
a heartbeat detector and a breathing belt during the scanning
sessions. These regressors were calculated using the PhysiO
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toolbox version r671 (https://www.tnu.ethz.ch/en/software/tapa
s.html).

For each participant, we then calculated a contrast images
by weighting the regressor of interest (Q at choice by 1). This
contrast image was used at second level to perform a one-
sample t-test across all participants. This resulted in a second-
level map with a family-wise error (FWE) corrected threshold
at P < 0.05, from which we extracted parameter estimates to be
used in further analysis. For DWI analysis, the activity cluster
in vmPFC at P(uncorrected) < 0.001 was used to facilitate the
reconstruction of paths between NAcc and vmPFC.

DWI Preprocessing and Analysis

Diffusion weighted scans were corrected for motion- and
current-induced distortions with FSL’s eddy_correct. To further
correct for geometric distortions, the images were nonlinearly
aligned with the T1-weighted structural scan (Wu et al. 2008)
with the ANTs software (Avants et al. 2011).

Tractograms were generated with the MRtrix software
(Tournier et al. 2012) and filtered with the SIFT2 method
(Smith et al. 2015), using anatomically constrained probabilistic
tractography (Smith et al. 2012). We specified the two inclusion
regions of interest (ROIs; vmPFC and NAcc, Supplementary Fig.
1) as binary mask images and accepted only streamlines that
traversed both inclusion regions. We sampled until we recovered
100 streamlines between the vmPFC and NAcc ROIs. Subjects
were excluded if >200 million streamlines were considered,
but less than 20 were selected as probable (n = 11). FA maps
were calculated using FSL’s dtifit. The tract formed by the
reconstructed streamlines was used to mask the FA image, and
the average within the tract became the individual’s measure
of vmPFC-accumbens white matter integrity. FA values were
thresholded at 0.2.

The inferior frontal fasciculus was selected as a control tract,
as this tract is affected by aging (de Schotten et al. 2014), and
could therefore serve as an appropriate control tract to ensure
that relationships to FA and neural signals or performance were
specific to the tract at hand. We also performed a control anal-
ysis including the inferior longitudinal fasciculus (Supplemen-
tary Table 1).

PET Image Acquisition and Analysis

PET images were acquired on a 690 PET/CT scanner (GE Medical
Systems). A low-dose helical CT scan (20 mA, 120 kV, 0.8 s/revo-
lution) was used for PET attenuation correction. In order to min-
imize head movement during image acquisition, individually
fitted thermoplastic masks were used to fixate the participants’
heads (Positocasts Thermoplastic; CIVCO medical solutions).
PET scanning started after an intravenous bolus injection of
200 MBq of [11C]SCH23390. At the time of injection, a 55-min
dynamic acquisition started (9 × 120 s, 3 × 180 s, 3 × 260 s,
and 3 × 300 s), totaling 18 frames. Attenuation- and decay-
corrected 256 × 256 pixel transaxial PET images were recon-
structed to a 25-cm field-of-view using the Sharp IR algorithm
(6 iterations, 25 subsets, 3.0-mm Gaussian post filter). Sharp
IR is an advanced version of the Ordered Subset Expectation
Maximization method for improving spatial resolution (Ross
and Stearns 2010). The full-width half-maximum resolution was
3.2 mm. This protocol resulted in 47 tomographic slices per
timeframe, with 0.98 × 0.98 × 3.3 mm3 voxels. Images were decay
corrected to the start of the scan.

We used an ROI-based protocol to estimate nondisplaceable
binding (BPND). BPND values were obtained by coregistering the
PET time series images to the T1-weighted MRI images using
SPM. From the T1-weighted images, we segmented subcortical
ROIs using the FIRST algorithm as implemented by FSL (Pate-
naude et al. 2011). Based on our previous publication (de Boer
et al. 2017), we were interested in the NAcc. The cerebellum
was segmented with the use of Freesurfer’s recon-all algorithm
(Desikan et al. 2006) and used as a reference tissue due to the
lack of DA D1 receptors in this structure (Hall et al. 1994). The
average time activity curves were extracted across all voxels
within each ROI. Then, BPND was calculated with the use of the
Logan method (Logan et al. 1996) as implemented in imlook4d
(imlook4d version 3.5, https://sites.google.com/site/imlook4d).
BPND values were averaged across hemispheres for the NAcc.

It should be noted that [11C]SCH23390 does not only bind to
D1-Rs in the brain—it also shows a (albeit much lower) affinity
for 5-HT2A receptors (Ekelund et al. 2007; Slifstein et al. 2007).
This has been shown to affect binding potentials in the cortex.
In the NAcc, this is not as much of an issue, because the number
of D1-Rs is many times greater than 5-HT2A receptors. In the
cortex, however, 5-HT2A can represent up to 25% of the PET
signal recorded with [11C]SCH23390 (Ekelund et al. 2007).

Results
Behavior

A total of 30 older (aged 66–75) and 30 younger (aged 19–32)
participants performed a probabilistic reward learning while
being scanned with fMRI. A schematic of the task as well as the
variable reward probabilities for each bandit across the task are
displayed in Figure 1. DWI pathways could only be reconstructed
for 22 older and 23 younger participants. The behavioral results
for the entire sample have been previously reported (de Boer
et al. 2017). For completeness, we present here the behavioral
results, both for the entire sample, and the DWI sample only.

Participants earned between 106 and 149 Swedish Crowns on
the task (11–16 USD, M = 128.21, SD = 10.00). Older participants
performed slightly worse than younger participants in both the
fMRI sample (P[one-tailed] = 0.05, Cohen’s d = 0.45, 95% confi-
dence interval [CI]: −0.09 to 0.99) and the DWI subsample (P[one-
tailed] = 0.04, Cohen’s d = 0.52, 95% CI: −0.08 to 1.13) (Fig. 2). A
more elaborate comparison of performance between age groups
is described in de Boer et al. 2017).

Previous Findings in the DWI Subsample

Because the sample size in this study is limited compared with
the previous publication (de Boer et al. 2017), we first con-
firmed that our previous findings held in the sample considered
here. As in our previous study (de Boer et al. 2017), we used
computational modeling to estimate the predicted expected
value for each option as participants performed the TAB task
(de Boer et al. (2017), see Materials and Methods). We used an
GLM approach to look at fMRI activity corresponding to value
anticipation in the brain (see Materials and Methods). In this
linear model, we estimated the correlates of anticipated value
by parametrically modulating the time of choice by the expected
value (Q) that belonged to the chosen option on each trial. In
addition, the outcome of each trial (whether the trial led to
reward receipt or not) was included as a regressor at the time
of outcome. The value signal in vmPFC is a reliable anticipatory
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Figure 2. Behavioral performance on the TAB for older and younger participants, separately. Young participants performed marginally better than older participants,
both in the whole sample (P[one-tailed] = 0.05, left figure, as previously published in de Boer et al. 2017), as well as in the DWI sample (P[one-tailed] = 0.04, right figure).

Table 1 Coordinates of clusters responsive to Q at the time of choice

Region x y z Cluster size z score P(FWE-corr, cluster) P(FWE-corr, peak)

Left precuneus −22 −52 12 1845 6.14 <0.001 <0.001
Right precuneus 12 −52 16 NA 5.62 <0.001
Right hippocampus 34 −36 −4 121 5.49 <0.001 0.001
vmPFC −2 50 −8 187 5.44 <0.001 0.001
Right cuneus 12 −80 26 82 5.01 0.001 0.008

signal thought to reflect value computation. We chose to focus
on this signal, as it can more reliably be detected as a value signal
in vmPFC than the expected value component of an RPE signal
(Skvortsova et al. 2014).

From the first-level subject beta maps, we created a second-
level map with an FWE-corrected threshold at P < 0.05. From this
map, we used the vmPFC as a functional region of interest from
which we extracted parameter estimates used in further anal-
ysis. The areas that were active during value anticipation are
displayed in Table 1. We previously found that value-correlated
anticipatory activity in vmPFC at the time of choice signifi-
cantly correlated with the performance on the TAB task as
indexed by the total amount of money won (de Boer et al. 2017).
This relationship could also be observed in the subsample of
our study for whom DWI data were of sufficient quality for
tractography analysis [r(44) = 0.51, P < 0.001, 95% CI: 0.26–0.70].
This correlation survived correction for age [r(43) = 0.45, P = 0.002,
95% CI: 0.18–0.65] and was similar for the alternative measures
of performance such as the percentage of optimal switches
and the percentage of optimal choices (Supplementary Tables 2
and 3).

We also confirmed in the DWI sample that anticipatory
value-related activity was correlated with DA D1-R BPND in
NAcc. Thus, we correlated this anticipatory activity with D1-
R BPND in NAcc in the entire sample, as well as in the DWI
sample. Bivariate correlations were significant in the entire
sample [r(54) = 0.41, P = 0.001, 95% CI: 0.17–0.61], as well as in
the DWI sample [r(43) = 0.40, P = 0.006, Table 4]. When entered
into a multiple regression with age, D1_R BPND in NAcc was
the only significant predictor of the value signal in vmPFC in

the entire sample (P = 0.04, 95% CI of standardized beta weight:
0.02–0.83, for age: 95% CI: −0.39 to 0.41). This predictor was,
however, not significant in the DWI sample only (P = 0.10, 95% CI
of standardized beta weight: −0.07 to 0.83, for age: 95% CI: −0.48
to 0.42).

Relationship Between White-Matter Integrity, Behavior,
D1 BPND, and Neural Correlates of Value Anticipation

Next, we tested the hypothesis that vmPFC-accumbens white
matter integrity was correlated to the anticipatory value sig-
nal in vmPFC. We performed tractography analysis to recon-
struct the pathway between the NAcc ROI, which was used to
obtain BPND estimates, and the vmPFC ROI in which we saw
value anticipatory activity. We used fractional anisotropy (FA) in
this pathway as the measure of interest, in line with previous
work (Samanez-Larkin et al. (2012)). White-matter integrity in
this pathway was significantly different between younger and
older participants [Myoung (SD) = 0.34 (0.03), Mold (SD) = 0.31 (0.02),
P < 0.001, Cohen’s d = 1.43]. We correlated these FA values to the
value-anticipatory activity in vmPFC. This correlation proved
significant [r(44) = 0.48, P = 0.001, 95% CI: 0.22–0.68, Fig. 3]. When
entered in a multiple regression, only FA, not age, was a sig-
nificant predictor of value-anticipatory activity in vmPFC and
survived correction for age (P = 0.01, 95% CI of standardized beta
weight: 0.12–0.79, for age: 95% CI: −0.39 to 0.28).

We next investigated our hypotheses combining all predic-
tors of anticipated value in vmPFC. We tested the hypothesis
that FA in the vmPFC-accumbens tract would mediate the rela-
tionship between D1-R availability in NAcc and the strength
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Figure 3. Observed relationships (bivariate correlations) between variables investigated in this study. Age is related to both a lower D1-R BPND, and lower FA in the

connection between vmPFC and NAcc. Both of these variables predict the expected-value signal in vmPFC during choice. This expected-value signal proved important
for performance on value-based decision-making. Numbers and CIs on the lines indicate bivariate correlations and their 95% CI. The multiple regression coefficients
for these relationships can be found in Tables 2 and 4. Note that in a multiple regression, D1-R BPND in NAcc did not survive as a significant predictor, possibly due to
a lack of statistical power in the reduced sample, or as the result of a type 1 error.

of the value anticipation signal in vmPFC. Alternatively, we
predicted that FA in the vmPFC-accumbens tract and D1-R avail-
ability in NAcc could independently predict the strength of value
anticipation signals in vmPFC. To test these hypotheses, we
first correlated FA in the vmPFC-accumbens tract with D1-R
availability in NAcc. In line with a full mediation hypothesis,
these variables would have to be correlated, and their correlation
would be expected to cancel out the relationship between D1
receptor availability and the strength of the expected value
signal in the vmPFC. However, these variables were not sig-
nificantly correlated (r = 0.14, P = 0.40). Thus, we observed no
evidence supporting a mediatory relationship between FA in the
vmPFC-accumbens tract and D1-R availability in the NAcc.

In order to test the hypothesis that the two could indepen-
dently predict the strength of the expected value signal in the
vmPFC, we performed a multiple linear regression to investigate
how D1-R BPND and FA in the vmPFC-accumbens pathway were
related to the anticipated value signal in vmPFC. The results
of this multiple regression analysis are displayed in Table 2.
Our result was in contrast with the hypothesis that predicted a

mediation of the relationship between D1-R BPND in NAcc and
anticipatory value signal in vmPFC by vmPFC-accumbens FA.
Instead, it supported the hypothesis that both BPND in NAcc
and vmPFC-accumbens FA were independent predictors of the
anticipated value signal in vmPFC (Table 2; βage=0.30, P = 0.211,
βD1−R = 0.41, P = 0.052, βFA = 0.49, P = 0.006, Table 2). It should be
pointed out that the significance of D1-R BPND in NAcc as a
predictor was at what is sometimes referred to as trend level.
Given the previously observed significant relationship between
these variables, and the reduced sample size in this study, we
choose to present this relationship as one contributing signifi-
cant variance, rather than being nonsignificant. If we assumed
that the effect size of the relationship between D1-R in NAcc
and Q in vmPFC is at the small-to-medium effect size of 0.3
as we reported in de Boer et al. (2017)), we had significantly
reduced power in the subsample reported here to detect that
relationship. However, the limited sample size of this analysis
should also caution against the over interpretation of this effect:
we cannot exclude the possibility that this relationship is a
type 1 error. The addition of another predictor of white matter
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Table 2 Univariate and multivariate standardized coefficients (95% CIs) predicting the expected-value signal in vmPFC

Dependent: Q in vmPFC Coefficient (univariate) Coefficient (multivariate)

Age −0.32 (−0.61 to −0.03, P = 0.030) 0.30 (−0.17 to 0.76, P = 0.211)
D1-R in NAcc 0.41 (0.12 to 0.69, P = 0.006) 0.41 (−0.00 to 0.82, P = 0.052)
vmPFC-accumbens FA 0.48 (0.22 to 0.75, P = 0.001) 0.49 (0.15 to 0.83, P = 0.006)

Both D1-R BPND and FA in the connection between NAcc and vmPFC independently predicted the strength of this value signal. It should be noted that we present these
effects as independent here, based on the previously reported significant relationship between BPND in NAcc and the expected-value signal in vmPFC. However, this
relationship exceeded the threshold for significance when entered into the regression with age and FA in NAcc-vmPFC. Univariate coefficients represent the result of
bivariate correlations, whereas multivariate coefficients represent multiple regression coefficients of a model including all predictors.

Table 3 Model comparison demonstrating that a model predicting
value anticipation in vmPFC with both D1-R in NAcc and vmPFC-
accumbens FA is superior to a model with one of the predictors
only

Model BIC Adjusted
R-squared

Age + D1 135 0.122
Age + FA 131 0.203
Age + D1 + FA 130 0.256

integrity did not change the significance of these predictors
(inferior frontal fasciculus, Supplementary Table 1), suggesting
that this relationship is specific to the white matter pathway
that we investigated here. The model with both FA and D1-R
BPND in NAcc proved superior in predicting the expected-value
signal in vmPFC compared with a model with FA or D1-R BPND

as a single predictor beyond age (Table 3).
Finally, given previous findings by Samanez-Larkin et al.

(2012), we wanted to understand how vmPFC-accumbens
white matter integrity influenced the relationship between
the anticipatory value signal in vmPFC and performance on
the TAB task. Therefore, we investigated the relationship
between all of these variables and performance on the TAB task.
Table 4 shows the univariate and multivariate estimates of the
relationships between value anticipation in vmPFC, D1-R BPND

in NAcc, and the amount of money won on the task. Univariate
coefficients represent the result of bivariate correlations,
whereas multivariate coefficients represent multiple regression
coefficients of a model including all predictors. The table also
shows the VIF for each predictor variable. VIF is a measure
of how inflated the value of a predictor is in a model as a
result of multicollinearity between the predictors. A rule of
thumb states that a VIF > 10 is cause for further investigation
(O’brien 2007). However, in our model, no VIF exceed 3.3
(Table 4). In a multiple regression, only the anticipatory value
signal in vmPFC proved the predictive of performance on
the TAB (Table 4; βage = −0.33, P = 0.176; βD1−R = −0.20, P = 0.373;
βFA = −0.11, P = 0.550; βQ−vmFPC = 0.54, P = 0.002). Other measures
reported in de Boer et al. (2017)), such as the proportion of
optimal choices and optimal switch behavior, showed similar
relationships to these neural predictors, with Q in vmPFC as
the only significant predictor (Supplementary Tables 2 and 3).
This is in contrast with our hypothesis, which predicted that we
would observe a direct relationship between vmPFC-accumbens
FA and behavioral performance. In Figure 3, we summarize the
observed relationships.

Discussion
We showed in a sample of 23 young and 22 older participants
that the strength of a anticipatory value signal in vmPFC is
predicted by: 1) DA D1-R BPND in NAcc and 2) vmPFC-accumbens
white matter integrity. The anticipatory value signal in vmPFC is
an important predictor of good performance on the probabilistic
reward learning task used in this study. Although DA D1-R BPND

in NAcc and vmPFC-accumbens white matter integrity did not
directly predict the performance on the task, these new results
suggest that both measures of corticostriatal integrity are crucial
for the emergence of the value anticipatory signal.

Our findings are in line with previous studies show-
ing that frontostriatal white matter integrity is important
for value-based decision-making. Specifically, one study by
Samanez-Larkin et al. (2012) showed that the integrity of white
matter on the pathway between NAcc and medial PFC could
predict the performance on a probabilistic monetary incentive
learning task. This relationship between performance and
white matter integrity survived correction for age. Similarly,
a study by van de Vijver et al. (2016) has shown that some, but
not all parameters reflecting integrity in frontostriatal white
matter, were related to the measures of probabilistic reward
learning. Frontostriatal white matter integrity was also found
to be predictive of the development of delay of gratification in
a longitudinal study with adolescents (Achterberg et al. 2016),
suggesting that good decision-making and frontostriatal white
matter integrity go hand in hand.

We previously reported that DA D1-R availability in NAcc
was a significant predictor for the anticipatory value signal in
vmPFC. DA receptors in the NAcc have often been implicated
in successful probabilistic reward-learning (Koch et al. 2000;
Salamone and Correa 2012; Shiner et al. 2012; Chowdhury et al.
2013a). It is believed that DA neurons report reward prediction
errors (Schultz et al. 1997; Day et al. 2007) to target structures
such as the NAcc. These dopaminergic signals in NAcc appear to
be a crucial hallmark of learning (Pessiglione et al. 2006; Jocham
et al. 2011) and are also necessary to continue making good
decisions based on learned values (Shiner et al. 2012; Collins and
Frank 2014).

A limitation of this study is that we could not reconstruct
white-matter pathways in 11 out of 57 participants and, thus,
lost a considerable amount of power in detecting relationships
between DA, FA, and Q in vmPFC. Despite this, we could replicate
the previously observed relationship between performance and
value anticipation in vmPFC in the DWI subsample (de Boer
et al. 2017). The two predictors we found could each explain
variance in the multiple regression predicting activity in vmPFC,
although the previously observed relationship between DA D1-
R availability and activity in vmPFC proved fragile once the
sample size was reduced. We believe that this may be related to
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Table 4 Univariate and multivariate standardized coefficients (95% CIs) predicting the number of wins on the TAB from D1-R BPND in NAcc,
FA in the connection between NAcc and vmPFC, and the expected-value signal in vmPFC

Dependent: wins Coefficient (univariate) Coefficient (multivariate) VIF

Age −0.29 (−0.58 to 0.00, P = 0.053) −0.33 (−0.82 to 0.16, P = 0.176) 3.268340548
D1-R in NAcc 0.23 (−0.08 to 0.53, P = 0.138) −0.20 (−0.64 to 0.24, P = 0.373) 2.670655726
vmPFC-accumbens FA 0.26 (−0.03 to 0.55, P = 0.081) −0.11 (−0.49 to 0.27, P = 0.550) 1.973339025
Q in vmPFC 0.51 (0.25–0.77, P < 0.001) 0.54 (0.22–0.86, P = 0.002) 1.442440738

The expected-value signal is the only significant predictor of behavior in a multiple regression model. The VIF is a measure of how inflated the variance of each
predictor is due to multicollinearity of the predictors. VIFs in this model are below 10, which is considered within acceptable range. Univariate coefficients represent
the result of bivariate correlations whereas multivariate coefficients represent multiple regression coefficients of a model including all predictors.

our inability to detect this relationship with small-to-medium
effect size in a small sample like the one used here. However,
we cannot exclude the possibility of this relationship consti-
tuting a type 1 error. This relationship should, therefore, be
replicated in an independent sample to ensure that this is
not a false positive result. If this relationship does exist, this
suggests that both high dopaminergic integrity in NAcc as well
as high integrity in relevant white-matter pathways, contribute
to a strong value signal and subsequently good performance.
The fact that DA D1-R availability and vmPFC-accumbens white
matter integrity predict the strength of the value anticipation
signal in vmPFC is in line with the well-established theory
that decision-making and reward learning are dependent on
corticostriatal loops (Seger 2009; Haber 2016). Activity in these
loops is modulated by dopaminergic signals that project from
the midbrain to the striatum (Haber and Knutson 2010). This
dopaminergic modulation allows for the emergence of value
signals in prefrontal cortex. Computational evidence suggests
that striatal D1 receptors, specifically, play an important role in
this iterative gating process (Gruber et al. 2006).

Although we did not observe any direct relationship
between frontostriatal white matter integrity and behavioral
performance, our results suggest an indirect relationship. Fron-
tostriatal white matter integrity predicted value anticipation in
the vmPFC which in turn predicted behavioral performance
on the TAB task. Value anticipation signals in vmPFC have
consistently been shown to be crucial for the ability to perform
probabilistic reward learning tasks (Noonan et al. 2010; Bartra
et al. 2013; Halfmann et al. 2016), as it is the most flexible
brain region when it comes to quick value computation (Haber
2016), with computations occurring just before or during an
action. Our results suggest that the age-related attenuation
in the anticipatory value signal may be in part attributed to
the decreased integrity of the frontostriatal tract associated
with older age. The fact that we did not observe a direct
relationship between frontostriatal white matter integrity and
behavioral performance may stem from the design of our task.
Whereas previous studies have used tasks with stationary
probabilistic contingencies (Samanez-Larkin et al. 2012, 2014;
Eppinger et al. 2013), the reward probabilities for each stimulus
fluctuated according to a random walk. Whereas our task
design may maximize the occurrence of prediction errors during
probabilistic reward learning, it also promotes the exploration
of unchosen options which may additionally depend on frontal
mechanisms unrelated to the frontostriatal path that we studied
here (Boorman et al. 2009, 2011).

The exploration involved in this task may also provide an
explanation for the marginal performance difference between
older and younger participants. Some previous studies have
shown that older adults perform on average somewhat, but

not dramatically, worse than younger participants on value-
based decision-making tasks (Samanez-Larkin et al. 2008, 2014;
Lighthall et al. 2018). This difference is usually larger when the
task involves probabilistic decisions that require participants
to learn to update behavior based on changing reward contin-
gencies (Mell et al. 2005; Mata et al. 2011; Worthy and Maddox
2012), as compared with decision-making tasks where learning
is not required. Here, we only found marginal differences on
a probabilistic learning task. This lack of behavioral difference
in our and other studies is mirrored by a lack of difference
between these older and younger participants in the strength
of neural signals reflecting reward prediction errors in the NAcc
(de Boer et al. 2017; Lighthall et al. 2018). Differential exploration
between the two age groups and the relatively small sample
size may provide an explanation for a relatively behavioral
difference between age groups. Additionally, the older adults in
this study are cognitively high functioning, with MMSE scores
above 26.

We present an important contribution to the mechanistic
understanding of decision-making in probabilistic environ-
ments. Despite the fact that our sample size is small for
evaluating a mediation with five variables, our observations
demonstrate two separate predictors of the integrity of
corticostriatal circuitry, which may both contribute to the
emergence of strong anticipatory value signals important for
successful decision-making. These findings, taken together,
provide insights into how age-related decay in the integrity of
frontostriatal white matter as well as dopamine D1 receptor
availability in the NAcc may underlie an impairment in
probabilistic reward learning performance in some older
adults.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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