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Cognitive impairments constitute a core feature of schizophrenia, and a genetic overlap between schizophrenia
and cognitive functioning in healthy individuals has been identified. However, due to the high polygenicity and
complex genetic architecture of both traits, overlapping biological pathways have not yet been identified be-
tween schizophrenia and normal cognitive ability. Networkmedicine offers a framework to study underlying bi-
ological pathways through protein-protein interactions among risk genes. Here, established network-based
methods were used to characterize the biological relatedness of schizophrenia and cognition by examining the
genetic link between schizophrenia risk genes and genes associated with cognitive performance in healthy indi-
viduals, through the protein interactome. First, network separation showed a profound interactome overlap be-
tween schizophrenia risk genes and genes associated with cognitive performance (SAB = −0.22, z-score =
−6.80, p=5.38e−12). To characterize this overlap, network propagationwas thereafter used to identify schizo-
phrenia risk genes that are close to cognition-associated genes in the interactome network space (n = 140, of
which 54 were part of the direct genetic overlap). Schizophrenia risk genes close to cognition were enriched
for pathways including long-term potentiation and Alzheimer's disease, and included genes with a role in neuro-
transmitter systems important for cognitive functioning, such as glutamate and dopamine. These results pinpoint
a subset of schizophrenia risk genes that are of particular interest for further examination in schizophrenia pa-
tient groups, of which some are druggable genes with potential as candidate targets for cognitive enhancing
drugs.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Schizophrenia is a severe neuropsychiatric disorder that affects
about 1% of the population. Although the disease is diagnosed based
on positive and negative symptoms, cognitive impairments are consid-
ered a third core aspect of the disease, affecting about 80% of the pa-
tients (Tsuang et al., 1990; Young et al., 2015). Further, cognitive
impairment has been observed before the onset of clinical symptoms,
indicating that cognitive symptoms in schizophrenia are not related to
secondary effects of the disease such as medication (Gold, 2004;
Khandaker et al., 2011). While cognitive symptoms have a higher im-
pact on functional outcomes of the disease, as well as patients' ability
to reintegrate into society (Green, 2006) than the positive symptoms
(Galderisi et al., 2016; Vita and Barlati, 2018), currently available medi-
cations primarily treat the positive symptoms by reducing dopamine
(Rampino et al., 2019). Thus, cognitive impairment constitutes an
eå, Sweden.
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important unmet treatment need for patients with schizophrenia as
well as other neuropsychiatric disorders. To develop new drugs and
treatments, further understanding of the underlying mechanisms be-
hind specific symptoms is warranted.

Genetics is known to play a crucial role in the development of
schizophrenia that has an estimated heritability of 80% (Sullivan et al.,
2003), but inheritance is complex with a large number of identified
risk genes that do not functionally relate to one single biological system
(Neale and Sklar, 2015; Purcell et al., 2009). Several neurotransmitter
systems have been suggested to be involved in the disease pathology,
such as dopamine, serotonin, and glutamate (Stępnicki et al., 2018),
but none can explain all aspects of the disease, and to what extent the
different domains of clinical symptoms are a result of shared or separate
underlying biological mechanisms remains to be revealed (Neale and
Sklar, 2015; Purcell et al., 2009; Stępnicki et al., 2018). Clinically, it has
been shown that the degree of cognitive impairment in schizophrenia
correlates with negative symptom severity but not with positive symp-
toms (Carbon and Correll, 2014). Genetic correlation analyses have
identified a genetic overlap between schizophrenia and cognitive func-
tioning in healthy individuals (Hubbard et al., 2016; Smeland et al.,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2017), and increased genetic risk for schizophrenia has been related to
decreased cognitive performance in healthy individuals (Germine
et al., 2016; Hubbard et al., 2016; Kauppi et al., 2015). However, cogni-
tive impairment in patients has not been predicted by genetic risk
scores for the disease, but rather by genetic profile scores for cognitive
performance (Richards et al., 2019). It is possible that a subset of schizo-
phrenia risk genes, that are involved in biological pathways sharedwith
cognition-related genes, are related to cognitive symptoms in patients
(Hubbard et al., 2016).

In this study, we examined the genetic overlap between schizophre-
nia and cognition from a perspective of biological gene networks to
identify schizophrenia risk genes that are related to the cognitive symp-
toms in schizophrenia.We utilized information from the human protein
interactome (Menche et al., 2015), together with identified genes asso-
ciated with schizophrenia (Ripke et al., 2014) and cognitive functioning
(Lee et al., 2018) from large-scale genome wide association studies
(GWAS). The protein products of risk genes for many polygenic disor-
ders are often involved in similar cellular processes, and therefore
tend to cluster together in the interactome, forming a “disease module”
or “trait module”when examining a trait such as cognitive functioning.
It has been shown that diseases whose modules overlap often share
clinical characteristics as well as biological and functional similarities
(Menche et al., 2015). Such network-based mapping is biologically
more informative than examining shared risk genes between the two
traits (Smeland et al., 2017). The identification of the genetic overlapbe-
tween schizophrenia and cognitionmay help to reveal the biological re-
latedness of cognitive functioning and schizophrenia, and may suggest
candidate proteins for new drugs targeting cognitive symptoms.

2. Methods

2.1. Disease/trait genes

To identify genes related to schizophrenia and cognitive functioning,
summary statistics from large-scale GWASs were used. Schizophrenia
risk genes were derived from the discovery sample of a GWAS per-
formed by the Psychiatric Genomics Consortium (PGC) including
35,476 cases and 46,839 controls, which identified 108 independent
loci associated with schizophrenia (Ripke et al., 2014). For genes associ-
ated with cognitive functioning, we used a large multicenter GWAS on
cognitive performancemeasured across at least three domains of cogni-
tion including257,841 individuals (Lee et al., 2018). For control analysis,
a GWAS of osteoporosis including 142,487 individuals was used where
159 loci significantly associated with osteoporosis have been identified
(Kemp et al., 2017). For all three phenotypes, genes linked to genome-
wide significant single nucleotide polymorphisms (SNPs) were identi-
fied using the “SNPtoGene” function of the web-based software Func-
tional Mapping and Annotation of Genome-Wide Association Studies
(FUMA) (Watanabe et al., 2017). First, variants from the extended
major histocompatibility complex (MHC) region (25–34 Mb on chro-
mosome 6 on the hg19 assembly) were excluded, due to the high link-
age disequilibrium (LD) of this region, including hundreds of genes
where it is not known which gene (s) that have a causal role in the dis-
ease/trait. Thereafter, genes were selected that were located within a
LD-threshold of r2 b 0.6, and a maximum distance of 250 kb, from
genome-wide significant SNPs (p b 5 × 10−8) with a minor allele fre-
quency (MAF) of ≥0.01 (positional mapping with default settings in
FUMA).

2.2. Interactome databases, network terminology and illustrations

For themain analyses, we used the protein-protein interaction (PPI)
network created byMenche et al. (2015), here referred to as the human
interactome. This interactome consists of 13,460 proteins intercon-
nected by 141,296 interactions (see Supplementary materials for de-
tails). To validate the results from the human interactome, the STRING
database (von Mering et al., 2005) was used for comparison (see Sup-
plementary materials for details). For our analyses, we used combined
confidence scores of N0.7 for the human interactome version 11.0 giving
17,161 proteins interconnected by 841,068 interactions. Network fig-
ures were created using Cytoscape (Shannon et al., 2003), where
nodes refer to genes and edges refer to interactions between two
genes through identified PPIs between gene products (proteins).

2.3. Network localization

Using network localization (Menche et al., 2015), we examined if
genes associated with cognitive functioning are significantly localized
in the network space, as we previously reported for schizophrenia risk
genes (Kauppi et al., 2018). For each cognition-associated gene, we cal-
culated the number of interaction steps, ds, to the next closest trait gene
and the corresponding frequency distribution of ds across all cognition-
associated genes. To determine whether cognition-associated genes are
more localized than expected by chance, 1000 randomly selected sets of
genes with the same number of genes as the trait were generated for
comparison with ds for cognition-associated genes to calculate test sta-
tistics (see Menche et al. (2015) for details).

2.4. Disease module overlap between schizophrenia and cognition

To examine if the disease/trait modules of schizophrenia and cogni-
tion, as well as our control disease, were separated or overlapped in the
interactome network space, we used a method called network separa-
tion (Menche et al., 2015).We calculated the network-based separation
(SAB) of disease/trait pairs (A and B) by comparing the shortest distance
between proteins within each disease/trait (dAA and dBB) to the shortest
distance between the disease/trait pairs (dAB). Thus, the network-based
separation of a disease/trait pair, A and B, is calculated using SAB =
dAB − ((dAA + dBB) / 2), where a positive SAB indicates separation and
a negative SAB value implies that there is an overlap between the two
disease/trait modules (Menche et al., 2015). As node degree (number
of edges of a node) in the interactome is biased toward well studied
genes, we generated a node degree-preserved random distribution
from1000 random repetitions followingGuney et al. (2016) to calculate
test statistics for the observed SAB value. This method uses a data bin-
ning approach that groups nodes within a certain degree interval
(≥100 nodes in each bin) and then the same number of nodes from
each bin is selected for the randomly selected gene lists as in the dis-
ease/trait gene list (Guney et al., 2016). We repeated the network-
separation analysis in a brain-specific interactome (Kitsak et al., 2016).
Using gene expression data (RNA-seq) from the human protein atlas
version 19.3 (Uhlén et al., 2015), we excluded proteins that were not
expressed in the brain from the human interactome resulting in a
brain-specific interactome (in terms of its nodes) containing 136,006
protein interactions and 12,740 proteins.

2.5. Network propagation

To identify the disease modules of schizophrenia and cognitive
functioning, as well as their diseasemodule overlap, we used themethod
network propagation (Carlin et al., 2017; Köhler et al., 2008; Vanunu et al.,
2010), implemented in the Cytoscape application Diffusion (Carlin et al.,
2017). Starting with a chosen set of input proteins, information from all
their PPIs (referred to as heat) is transferred to their neighbors and re-
ceived from them through an iterative process. The strength of association
of proteins is scored (0–1), where higher diffusion output (heat) values
correspond to higher relatedness to the input query proteins (Carlin
et al., 2017; Köhler et al., 2008; Vanunu et al., 2010). All network propaga-
tion analyses were performed in the human interactome where we
excluded self-interactions, resulting in 138,427 interactions. To estimate
network closeness between schizophrenia genes and cognition-
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associated genes, we performed network propagation using all cognition
genes as input query.

To investigatewhich genes are close to cognition genes, we first chose
a random set of non-cognition-associated geneswith equal number and
comparable node degree as the cognition-associated genes (n = 479)
(Guney et al., 2016). Next, we performed a receiver operating character-
istic (ROC) analysis using the heat value from all cognition-associated
genes and the heat value from the randomly selected genes to predict
their gene class (“randomly selected” versus “cognition-associated”).
Here, sensitivity refers to cognition-associated genes (positives) cor-
rectly classified as cognition-associated genes, and 1-specificity refers
to randomly selected genes (negatives) falsely classified as cognition-
associated genes. To define a cut-off giving equal importance to sensitiv-
ity and specificity, we calculated the Youden index (Youden, 1950). This
procedure was repeated 1000 times and the mean value from these
1000 cut-offs was used as the final cut-off for the heat values. Corre-
spondingly, we performed network propagation analysis with all
schizophrenia risk genes as input query and defined a cut-off from
1000 ROC analyses with the heat values from all schizophrenia risk
genes (positives) and the heat value from non-schizophrenia random
genes (negatives) to define which genes are close to schizophrenia.
These analyses were performed in R version 3.5.1 (R Core Team, 2018).

2.6. Gene ontology and pathway enrichment analyses, and drug-gene
interactions

To describe the function of specific gene sets, ToppGene (Chen et al.,
2009) (last updated 2019-12-03) was used to examine enrichment in
gene ontology annotations for schizophrenia risk genes determined as
close to cognition-associated genes within the human interactome
based on network propagation analyses. From ToppGene, which uses
hypergeometric distributionwith Bonferroni correction for determining
statistical significance, we used the gene ontology annotation categories
molecular function, biological process and cellular component aswell as
pathways. A Bonferroni-corrected p-value threshold of 0.05 was used.
Additionally, the drug-gene interaction database (DGIdb) (Cotto et al.,
2018) (v3.0.2, last updated 2018-01-25) was used to search for
druggable genes and potential druggability among the schizophrenia
risk genes defined as close to cognition. In addition, we used GUILDify
(v2.0) (Aguirre-Plans et al., 2019) to describe biological functions and
potential drugs within the genetic overlap between schizophrenia and
cognition defined by theNetscore algorithm in the BIANA (Biological In-
teractions And Network Analysis) network that consists of 13,090 pro-
teins connected by 320,337 interactions derived from external
databases characterized by attributes like detection method and reli-
ability (Garcia-Garcia et al., 2010). The Netscore algorithm is compara-
ble to the Network propagation algorithm, but defines closeness
between two traits by first defining top ranking genes within each
trait within the whole interactome and then defining the overlap be-
tween the top-ranking genes (Aguirre-Plans et al., 2019).

3. Results

3.1. Defining disease/trait modules for cognition and schizophrenia

Using FUMA (Watanabe et al., 2017), 313 schizophrenia risk genes
were identified from the schizophrenia GWAS summary statistics
(Ripke et al., 2014). Of these, 232 were included in the human interac-
tome (Supplementary Table 1). For cognitive functioning, 621 associ-
ated genes were identified from the corresponding GWAS summary
statistics (Lee et al., 2018). Of these, 479were included in the human in-
teractome (Supplementary Table 1). The largest connected component
comprised 22 and 136 genes for schizophrenia and cognition, respec-
tively. The STRING interactome, which was used for comparison, in-
cludes 201 of the GWAS-identified schizophrenia risk genes and 432
of the genes related to cognitive functioning.
Genes associated with cognition were significantly localized in the
human interactome with a mean shortest path length of 1.64 edges be-
tween two cognition-associated genes compared to 1.69 edges between
two randomly selected gene sets (p= 0.04). Using the STRING interac-
tome, the mean shortest path length between cognition gene pairs was
1.55 compared to 1.60 edges between two randomly selected genes,
again significantly shorter (p= 0.02), indicating a trait module for cog-
nitive performance in the interactome, as was previously shown for
schizophrenia (Kauppi et al., 2018). To see what genes are most central
in each of those disease/trait modules, we performed network propaga-
tion analyses using all genes associatedwith schizophrenia (Fig. S1A) or
cognition (Fig. S1B) as input query. These analyses take all interactions
in the interactome into account to identify global relatedness between
genes.

3.2. Overlap between schizophrenia and cognition

Risk genes for schizophrenia and cognition-associated genes had a
negative network separation, indicating network-based overlap,
which was significantly different from the separation between schizo-
phrenia and degree-matched randomized gene sets (SAB = −0.22, z-
score = −6.80, p = 5.38e−12). In the STRING interactome, a signifi-
cantly more negative network separation between schizophrenia risk
genes and cognition-associated genes was seen compared to randomly
selected gene sets (SAB = −0.08, z-score = −2.86, p = 0.002), which
confirms a significant overlap between schizophrenia and cognition.
The network-separation analysis within the brain-specific interactome
also showed a significant overlap between schizophrenia and cognition
(SAB = −0.21, z-score = −5.65, p = 8.13e−09).

In both the human interactome and STRING, there was no overlap
between risk genes for osteoporosis, our control disease and schizo-
phrenia risk genes or cognition-associated genes (see Supplementary
materials for details).

3.3. Characterizing the overlap between schizophrenia and cognition

To identify which specific schizophrenia risk genes are close to
cognition-associated genes, we used network propagation analyses to
define a subset of genes in the whole interactome that are close to cog-
nition (n = 5471) with all cognition-associated genes as input query
and determined a cut-off from the heat value (0.02088248). The net-
work distance (heat value) of each specific schizophrenia risk gene to
cognition-associated genes and vice versa is reported in Supplementary
Table 2 and shown in more detail in Fig. S2A (schizophrenia risk genes)
and Fig. S2B (cognition-associated genes), together with all the within-
trait/disease interactions. Schizophrenia risk genes were significantly
overrepresented among genes defined as close to cognition (n = 140,
z-value = 6.16, p-value = 1.8e−9), even when we excluded genes
that are both schizophrenia and cognition-associated (n = 54, z-
value = 2.16, p-value = 0.02). We also determined a subset of genes
that are close to schizophrenia (n = 1443, cut-off = 0.02128962), of
which 93 were cognition-associated genes. Fig. 1 shows all schizophre-
nia risk genes and cognition-associated genes, and their network-based
closeness to each other.

3.4. Gene ontology and pathway enrichment analysis, and drug-gene
interactions

Gene ontology and pathway enrichment analysis was performed for
the 140 schizophrenia risk genes defined as close to cognition. These
genes were enriched for gene sets implicated in Alzheimer's disease
and long-term potentiation, identified from the KEGG pathway
(Fig. 2). The most significant molecular functions were peptidase activ-
ity and drug binding, and enriched biological processes included regula-
tion of catabolic processes, chromosome organization, cell signaling and
neuron differentiation (Supplementary Table 3). The schizophrenia risk
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Image of Fig. 1
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genes not defined as close to cognition were enriched for gene sets im-
plicated in nicotinic acetylcholine receptor activity. Among the 140
schizophrenia risk genes defined as close to cognition, 51 are drug tar-
gets (mostly for Alzheimer's disease, inflammation, diabetes, epilepsy,
and cancer) and among those genes that are not yet used as drug tar-
gets, 45 genes are druggable. While these numbers were not extreme
events (two-sample proportion test, drug targets: z-value = 1.29, p-
value = 0.10; druggable genes: z-value = 0.99, p-value = 0.16),
these genes may serve as suggestion for repurposing and as potential
new drug targets, respectively (Fig. 2, Supplementary Table 3). Using
all schizophrenia risk genes (n = 313) and cognition-associated genes
(n = 621) as input in GUILDify (Aguirre-Plans et al., 2019), we first
identified a significant genetic overlap between schizophrenia and cog-
nition (p = 7.0e−09) defined by the Netscore algorithm as common
genes among the 1% top-ranking genes within the BIANA network
(Garcia-Garcia et al., 2010). These common genes (n = 12) were
enriched for T cell activation andpositive regulation of neuron apoptotic
processes. Among potential drugs targeting the common genes were
mostly antidiabetics and anti-cancer drugs.

4. Discussion

Using established network-based methods, we have identified and
characterized an overlap between schizophrenia and cognition through
biological gene networks of protein interactions among gene products.
Overlapping parts of the interactome were linked to cognition-related
pathways, such as long-term potentiation, and contained druggable
genes thatmay be of interest as drug targets to treat the cognitive symp-
toms in schizophrenia.

In a recent publication we showed that schizophrenia risk genes are
significantly localized in the interactome, forming a disease module
(Kauppi et al., 2018). Here, we first tested whether cognition-
associated genes were also found to be significantly localized in the in-
teractome network space, which was the case. To study the biological
link between schizophrenia risk genes and cognition-associated genes,
we examined their relatedness in the interactome. We found that the
trait/diseasemodules of schizophrenia and cognition significantly over-
lap in the network space, indicating shared biological processes
(Menche et al., 2015). This was also seen in the brain-specific interac-
tome, strengthening the biological validity of the results.

Next, using network propagation (Carlin et al., 2017; Köhler et al.,
2008; Vanunu et al., 2010), and an unbiased cut-off value for network-
based closeness, we defined genes close to cognition-associated genes
in the whole interactome. Among genes close to cognition, we found
an overrepresentation of schizophrenia risk genes (n = 140), even
when excluding schizophrenia risk genes that are also associated with
cognition (n = 54, as those were part of the input gene list). Those re-
sults show that the biological overlap between schizophrenia and cog-
nition extend beyond the direct genetic overlap (n = 54) to also
include schizophrenia risk genes that are close to cognition-related
genes in the protein interactome (n = 140). In contrast to network-
based measures of shortest distance, the network propagation algo-
rithm has the advantage to express the global network proximity
based on the number of interactions with other genes, thus not
favouring genes with a generally large node degree (Köhler et al.,
2008). From those analyses we also defined trait/disease modules of
schizophrenia and cognition based on their heat value for relatedness
to other genes from the same trait/disease module (Fig. S1A and B).

Gene ontology analyses of the 140 schizophrenia risk genes close to
cognition revealed strongest enrichment for the KEGG pathways
Alzheimer's disease and long-term potentiation, based on genes such
as calcium-channel (CACNA1C), and glutamate-receptor genes (GRIA,
GRIN2A), suggesting a plausible route of those genes to cognitive im-
pairments. Another set of genes that have been associatedwith the cog-
nitive symptoms in schizophrenia are the nicotinic acetylcholine
receptor genes (Friedman, 2004). Notably, these were not among the
140 schizophrenia risk genes that are close to cognition. However, clin-
ical evidence suggests that acetylcholine esterase inhibitors do not im-
prove the cognitive symptoms in schizophrenia patients (Kishi et al.,
2018; Santos et al., 2018).

Current medications available for schizophrenia patients have con-
siderable limitations such as serious side effects and treatment resis-
tance in about one third of patients with psychosis (Rampino et al.,
2019; Stępnicki et al., 2018). To identify drug targets to also treat the
negative and cognitive symptoms, novel approaches in schizophrenia
drug design aim to cover new signaling mechanisms including various
neurotransmitter systems beyond dopamine (Rampino et al., 2019).
To identify genes with potential as new drug targets or for drug
repurposing, we examined the interactome overlap between schizo-
phrenia and cognition through the druggable genome, as listed in Sup-
plementary Table 3. Fifty-one drugs already targeted gene products of
schizophrenia risk genes defined as close to cognition, which could po-
tentially be used for repurposing to treat the cognitive symptoms in
schizophrenia. Among them are drugs developed to treat Alzheimer's
disease, anti-inflammatory and immunosuppressant drugs, anticonvul-
sant medications and antidiabetic medications, but also anticancer and
other drugs (Supplementary Table 2). Using Netscore as an alternative
algorithm to define the genetic overlap between schizophrenia and cog-
nition, we found that genes within this overlapweremostly targeted by
anti-diabetic and oncology drugs. Interestingly, oncology drugs (Araki,
2013), anti-diabetic drugs (Yarchoan and Arnold, 2014), and anti-
inflammatory drugs (Wang et al., 2015; Zhang et al., 2018) have been
suggested for repurposing to treat the cognitive impairment in
Alzheimer's disease, and could be considered for further examination
as cognitive enhancers in schizophrenia. Indeed, it has been shown
that diseases that share drugs also tend to share biological pathways,
which could be targeted to make use of novel drug repurposing oppor-
tunities (Aguirre-Plans et al., 2018).

While previous research has shown a genetic overlap between cog-
nition and schizophrenia (Hubbard et al., 2016; Ohi et al., 2018), it has
been difficult to relate schizophrenia gene variants to cognitive symp-
toms (Goff et al., 2012; Richards et al., 2019), which may be a result of
the biological heterogeneity of schizophrenia (Goff et al., 2012). Studies
investigating schizophrenia symptoms in relation to patients' IQ found
that there may be a subgroup of schizophrenia patients with high IQ
who do not show any cognitive deficits (Cernis et al., 2015; Maccabe
et al., 2012) and who have fewer negative symptoms than typical
schizophrenia patients (Cernis et al., 2015). In a recent study, Bansal
et al. (2018) suggested that schizophrenia can be divided into two dis-
ease subtypes where one resembles bipolar disorder and high IQ, and
one that is a cognitive disorder independent of bipolar disorder. Thus,
our study contributes to unravel the complexity of schizophrenia by de-
fining a group of schizophrenia risk genes that may be related to a bio-
logical disease subgroup that resembles a cognitive disorder. To further
explore this hypothesis, risk genes that we identified as close to cogni-
tion should be further examined in relation to cognitive symptoms in
patients.

A major limitation of the human interactome used in this study is its
incompleteness, as it covers only about 20% of all estimated PPIs. How-
ever, Menche et al. showed that the incomplete network could be used
to successfully identify discrete disease modules of 226 complex dis-
eases allowing the systematic investigation of disease mechanisms
and relationships between diseases (Menche et al., 2015). To address
this limitation, we also used the less conservative STRING interactome
for which results remained consistent. Moreover, human interactomes
are potentially biased towardwell-studied proteins. In the human inter-
actome, this bias is addressed by including PPIs derived from high-
throughput data sets (Rolland et al., 2014; Venkatesan et al., 2009; Yu
et al., 2011). To minimize this bias, we used node degree-preserved
methods.

In summary, we have identified a biological overlap between genes
related to schizophrenia and cognitive ability in healthy individuals,
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through the human protein interactome that extends beyond previ-
ously identified shared risk genes. This overlap was characterized by
schizophrenia risk genes related to long-term potentiation and
Alzheimer's disease, and contained important risk genes with a role in
neurotransmitter systems such as glutamate and dopamine, as well as
calcium channels, which were not also GWAS-identified cognition
genes. The results pinpoint schizophrenia risk genes of particular inter-
est for further examination in relation to cognitive symptoms in schizo-
phrenia patient groups. In addition, many druggable genes were found
among genes constituting the overlap, some of which may be poten-
tially suitable as candidates for drugs targeting cognitive symptoms of
schizophrenia.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.schres.2020.06.002.
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