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Abstract
Causal inference with observational longitudinal data and 
time-varying exposures is often complicated by time-depend-
ent confounding and attrition. The G-computation formula is 
one approach for estimating a causal effect in this setting. The 
parametric modelling approach typically used in practice re-
lies on strong modelling assumptions for valid inference and 
moreover depends on an assumption of missing at random, 
which is not appropriate when the missingness is missing not 
at random (MNAR) or due to death. In this work we develop 
a flexible Bayesian semi-parametric G-computation approach 
for assessing the causal effect on the subpopulation that would 
survive irrespective of exposure, in a setting with MNAR 
dropout. The approach is to specify models for the observed 
data using Bayesian additive regression trees, and then, use 
assumptions with embedded sensitivity parameters to identify 
and estimate the causal effect. The proposed approach is mo-
tivated by a longitudinal cohort study on cognition, health and 
ageing and we apply our approach to study the effect of be-
coming a widow on memory. We also compare our approach 
to several standard methods.
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1 |  INTRODUCTION

Causal inference in non-randomised longitudinal studies with time-varying exposures is often compli-
cated by time-dependent confounding and attrition. Attrition is inevitable especially if individuals in 
the studied population are older and followed over a long time period. Additionally, for cohort studies, 
an individual’s data are only recorded if that person completes follow-up testing. Hence, data for not 
only the outcome but also exposure level and confounders are missing at subsequent test waves.

The G-computation formula (Robins, 1986) is one approach for estimating a causal effect of 
time-varying exposures when time-varying confounding is present. The approach is completely 
non-parametric in its original form, although a parametric modelling approach based on maximum 
likelihood estimation is most typically used in practice (e.g. Snowden et al., 2011; Wang et al., 2017). 
Valid inference with the parametric G-formula requires correct model specification. This can be ex-
tremely difficult when there is a large set of regressors, the relationship is non-linear and/or includes 
interaction terms and there are multiple observation times. Non- and semi-parametric estimation tech-
niques that do not require prespecified distributional or functional forms of the data, have become 
popular in the causal inference literature (e.g. Häggström, 2018; Hill, 2011; Karim et al., 2017; Kim 
et  al., 2017; Tan & Roy, 2019; Wager & Athey, 2018). One such modelling strategy is Bayesian 
Additive Regression Trees (BART, Chipman, George, McCulloch, et al., 2010). BART is a sum-of-
trees model that adds together the predictions of a number of regression trees regularised by prior 
distributions. BART does not rely on strong modelling assumptions and in contrast to other tree-based 
algorithms BART yields interval estimates for full posterior inference.

A number of methodologies have been applied to address missing response or missing covariate 
data in causal effect estimation of longitudinal data under an assumption of missing at random (MAR; 
Chen & Zhou, 2011; Robins et al., 1995). These methods, however, are generally invalid when the 
missingness is missing not at random (MNAR) or due to death (Kurland et al., 2009). Partly condi-
tional models have been proposed to address the combination of dropout and truncation by death, 
where inference is conditioning on the sub-population being alive at a specific time-point (Kurland & 
Heagerty, 2005; Li & Su, 2018; Rizopoulos, 2012; Shardell & Miller, 2008; Wen & Seaman, 2018). 
However, conditioning on survival may introduce bias due to the fact that survival is a post-randomis-
ation event. One estimand that has gained much attention to address this issue is the ‘survivors average 
causal effect’ (SACE), that is, the causal effect on the subpopulation of those surviving irrespective of 
exposure (Frangakis & Rubin, 2002; Frangakis et al., 2007). Several approaches have been developed 
for estimation of the SACE in longitudinal randomised control studies (e.g. Lee & Daniels, 2013; Lee 
et al., 2010; Wang et al., 2017, 2017; ), or in context of semicompeting risks (Comment et al., 2019; 
Xu et al., 2019). For observational data Tchetgen Tchetgen (2014) developed a weighting estimator 
to identify the SACE without missingness and Shardell et al. (2014) identified the SACE with MAR 
missingness using also a weighting technique. Moreover, Josefsson et al. (2016) proposed assumptions 
to identify the SACE of a baseline exposure on a longitudinal outcome under MNAR missingness for 
the outcome using parametric methods. These approaches however, do not appropriately account for 
MNAR data among survivors when the exposure and confounding are time-varying. Shardell and 
Ferrucci (2018) proposed a parametric shared parameter model with G-computation to identify a 
principal stratum causal effect for observational longitudinal data with time-dependent confounding. 
A drawback of their approach is that unbiased estimation depends on correct model specification and 
it does not appropriately account for MNAR data among survivors.

Widowhood has been identified as an important social factor associated with increased mortality 
(Håkansson et al., 2009) and cognitive impairment (e.g. Mousavi-Nasab et al., 2012). Here, our goal is to 
develop a framework for assessing the impact of becoming a widow on memory, a monotone exposure, by 
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estimating the SACE in a setting with MNAR dropout among survivors. The proposed approach is moti-
vated by the Betula study (Nilsson et al., 1997), where individuals are followed over multiple test waves 
to study how cognitive functions potentially deteriorate with age and identify risk factors for dementia.

The remainder of the paper is organised as follows. In Section 2, we introduce the notation and the 
causal estimand. In Section 3, we propose identifying the default assumptions and sensitivity parame-
ters to allow deviations from these assumptions, followed by the identification of the SACE in Section 
4. In Section 5, we propose a Bayesian semi-parametric (BSP) modelling approach for the observed 
data distributions and the algorithm for estimation of the SACE. In Section 6, we provide a simulation 
and in Section 7 an application to the Betula data. Finally, we conclude with a discussion and possible 
future work in Section 8.

2 |  NOTATION AND THE CAUSAL EFFECT OF INTEREST

2.1 | Data structure and notation

We begin with a formal description of the data. Let i=1,2,…,N denote individual and j=0,1,…,J 
denote time (the data used from the Betula study has J=3 follow-up test waves). We denote the 
vector of baseline confounders by Xi0 (gender, education and age cohort) and the time-varying 
confounder by Wij (if the spouse has been seriously ill between the j−1th and jth test wave). The 
continuous memory outcome is denoted by Yij and the binary exposure is denoted by Zij. We 
assume a monotone exposure where initially all subjects are unexposed (Z10 = 0 for all i). If a 
subject is exposed (widowed) at test wave jZij = 1 and if Zij = 1, then Zik = 1 for k>j. Let Sij denote 
survival, where Sij = 1 if an individual is alive at the time of the testing and 0 otherwise. Let Rij 
be a dropout indicator, where Rij = 1 if an individual has completed the cognitive testing or 0 
otherwise. We have monotone missingness, so if Rij = 0, Rik = 0 for k>j. Note that vital status 
information is presumed to be available even after dropping out of the study. The history of the 
time-varying variables are denoted with an overbar. For example, the exposure history for indi-
vidual i through test wave j is denoted by Zij = {Zi0, Zi1,…, Zij }. Furthermore, for individual i, Jr

i
 

denotes the number of test waves (s)he participates in the study and Js
i
≥ Jr

i
 denotes the number 

of test waves (s)he is alive. A simplified version of the study design restricted to two test waves 
is depicted in a causal diagram in Figure 1.

2.2 | Causal estimand

The goal of the study is to estimate the causal effect of becoming a widow (within 5 years) on memory 
among those who would survive irrespective of being widowed or not. We consider two contrasting 

F I G U R E  1  A causal diagram of a simplified version of the Betula study design restricted to two test waves
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exposure regimes, zij = {zi0 = 0,…, zij−1 = 0, zij = 1}, that is, individuals exposed (widowed) be-
tween the j−1th and jth wave, and the contrasting regime z

�

ij
= {zi0 = 0,…, zij = 0}, that is, indi-

viduals unexposed through test wave j, for j=1,2,3. Below, we generally suppress the subscript i to 
simplify notation. The potential memory outcome at wave j is denoted by Yj (zj ) for an individual 
under exposure regime zj. Similarly, let Sj (zj ) be the potential survival outcome at wave j, denoting 
survival under exposure regime zj.

We consider a principal stratum causal effect of a time-varying exposure on the outcome, at wave 
j, for those who would survive under either exposure regime, 

 However, main interest is not the effect at a specific wave, but rather the effect aggregated over test waves, 
defined as 

3 |  IDENTIFYING ASSUMPTIONS AND 
SENSITIVITY PARAMETERS

To identify the causal effect in Equation (2) from the observed data we first introduce a set of as-
sumptions followed by a set of sensitivity parameters to assess the impact of violations to some of the 
assumptions. The sensitivity parameters (and their values) will be explained in relation to the Betula 
data in Section 7.2.

3.1 | Assumptions

Assumptions 1–3 are a set of standard assumptions for causal inference of longitudinal observational 
data:

Assumption 1 Consistency: For a given individual, if Zj = zj, then Yj = Yj (zj ) and Sj = Sj (zj ).
Assumption 2 Positivity for a monotone exposure: Pr[zj |yj−1, zj−1 = 0, wj, rj−1, sj−1 = 1, x0 ] > 0 

for zj = 0, 1 and for all individuals, such that all unexposed individuals have a nonzero probabil-
ity of becoming exposed between test wave j−1 and j if p(yj−1, zj−1, wj, rj−1, sj−1 = 1, x0 ) ≠ 0.

Assumption 3 Conditional exchangeability: If X0 and Wj contains all pre-exposure covariates re-
lated to exposure, potential outcomes and survival, then for all exposure regimes 

 That is, at each test wave j, being exposed zj is as if randomised conditional on the set of the temporally 
preceding variables. The assumption of conditional exchangeability is likely to be violated in many set-
tings and is impossible to assess from the data. Therefore, we introduce a sensitivity parameter to investi-
gate the sensitivity for unmeasured confounding in Section 3.2.

(1)E[Yj (zj ) − Yj ( z
�

j
) |Sj (zj ) = Sj ( z

�

j
) = 1] .

(2)� =

∑
J
j=1

E[Yj (zj ) − Yj ( z
�

j
) �Sj (zj ) = Sj ( z

�

j
) = 1] × Pr[Sj (zj ) = Sj ( z

�

j
) = 1]

∑
J
k=1

Pr[Sk (zk ) = Sk ( z
�

k
) = 1]

.

Yj(zj)⊥⊥Zj|yj−1, zj−1, wj, rj, sj =1, x0

Sj(zj)⊥⊥Zj|yj−1, zj−1, wj, rj, sj−1 =1, x0.
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In cohort studies Yj, Zj and Wj are not observed (but defined) for individuals who are alive but 
who drop out of the study. We make an MAR type assumption conditional on being survival at time j 
(MAR-S) to identify the distribution of dropouts among survivors.

Assumption 4 Dropout among survivors: For all j≥1 and all t≤j 

That is, the outcome is distributed the same among dropouts and non-dropouts conditional on survival and the 
temporally preceding variables. Similarly, p(wj |yj−1, zj−1, wj−1, rj = 0, sj = 1, x0 ) = p (wj |yj−1, zj−1, wj−1, rj = 1, sj = 1, x0 ) 
and p(zj |yj−1, zj−1, wj, rj = 0, sj = 1, x0 ) = p (zj |yj−1, zj−1, wj, rj = 1, sj = 1, x0 ). Previous studies of the Betula data have 
shown that individuals who drop out have lower cognitive performance and steeper decline (Josefsson et al., 
2012). In Section 3.2 we introduce sensitivity parameters to allow the dropout to deviate from this MAR-
type assumption.

We also need three further assumptions for identification of the potential outcomes for those indi-
viduals who would survive regardless of exposure history, that is, the principal strata. We start with 
two standard assumptions.

Assumption 5 Monotonicity. Sj (zj ) ≤ Sj ( z
′

j
); if an individual were to be alive under exposure 

regime zj then (s)he would also be alive under the contrasting regime z
′

j
. Deterministic 

monotonicity can be too strong in many settings and we discuss a weakening of this in 
Section 8.

Assumption 6 Differences in outcomes when comparing different strata. For the contrasting exposure 
regime z

′

j
 we assume, E[Yj ( z

�

j
) |Sj (zj ) = Sj ( z

�

j
) = 1] = E[Y ( z

�

j
) |Sj ( z

�

j
) = 1, Sj (zj ) ≠ 1].  

That is, there is no difference in potential outcomes when comparing the ‘always survivor’ 
strata to the strata where individuals were to live under the contrasting regime z ′

j
 but not under 

exposure regime zj. In Section 3.2 we introduce a sensitivity parameter to investigate sensitiv-
ity to this assumption, due to the fact that individuals in the always survivor strata are likely 
healthier and have better cognitive performance.

A common problem encountered in longitudinal cohort studies is that an individual’s exposure level 
zj, hence the exposure regime zj, and time-varying confounder wj is only observed if (s)he is alive and 
participates at the jth test wave. Hence, we need to introduce a new assumption to be able to identify 
the probability of survival among exposed and non-exposed; this is necessary for the identification of 
the potential outcomes among always survivors.

Assumption 7 Exposure and confounding among non-survivors. If sj = 0 and sj−1 = 1 for an indi-
vidual, zj and wj may have occurred before the event of death, thus, zj and wj are not observed 
but could still be well-defined. We assume, 

and 

p (yj |yj−1, zj, wj, rj = 0, sj = 1, x0 ) = p (yj |yj−1, zj, wj, rj = 1, sj = 1, x0 )

Pr[zj|yj−1, zj−1, wj, rj =0, rj−1, sj =0, sj−1 =1, x0]

=Pr[zj|yj−1, zj−1, wj, rj, sj =1, x0],

Pr[wj|yj−1, zj−1, wj−1, rj =0, rj−1, sj =0, sj−1 =1, x0]

=Pr[wj|yj−1, zj−1, wj−1, rj, sj =1, x0],
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that is, the exposure and confounder are distributed the same among survivors and non-survivors condi-
tional on the temporally preceding variables.

This assumption is used for identification of the principal strata. In the Betula study, the 
cognitive testing is performed at 5-year intervals. Since 5 years is a rather long time period it is 
likely that some of the participants who died before follow-up were also widowed before death. 
Thus, the number of widowed participants in the sample may be underestimated and must be 
accounted for.

3.2 | Sensitivity parameters

To investigate sensitivity of Assumption 3 we follow the procedure of Brumback et al. (2004). The unmeas-
ured confounding is quantified through a parameter which describes the outcome confounding. That is, for 
exposure regime zj, c(zj ) = E [Yj (zj ) |yj−1, zj, wj, rj, sj = 1, x0 ] − E[Yj (zj ) |yj−1, z

�

j
, wj, rj, sj = 1, x0 ],  

where c(zj ) is the average difference in potential outcomes because of unmeasured confound-
ing. The conditional exchangeability assumption does not hold if c(zj ) ≠ 0. Thus, estimating 
E[Yj (zj ) |yj−1, wj, rj, sj = 1, x0 ] using the naive estimator E[Yj |yj−1, zj, wj, rj, sj = 1, x0 ] leads to a bias 
of c(zj ) × Pr[z �

j
|yj−1, zj−1, wj, rj, sj = 1, x0 ]. Furthermore, since the two regimes only differ in zj, for z ′

j
, 

the bias becomes c( z
�

j
) × Pr[zj |yj−1, z

�

j−1
, wj, rj, sj = 1, x0 ]. Sensitivity to several types of unmeasured 

confounding can be assessed using this form. Here, we restrict to an unmeasured confounder independent of 
the history of the joint processes (yj−1, zj, wj, rj, sj, x0 ).

To investigate sensitivity of Assumption 4 we first make an assumption of non-fu-
ture dependence (NFD) conditional on survival (NFD-S) for the outcome and then, intro-
duce sensitivity parameters within this partial identifying restrictions (Linero & Daniels, 
2018). NFD is a special case of MNAR (Kenward et  al., 2003) and NFD-S is defined as, 
p(yj|yj−1, zj, wj, {r0 =1,…, rt−1 =1, rt =0,…, rj =0}, sj =1, x0)=p(yj|yj−1, zj, wj, rj =1, sj =1, x0), for 
all j>1 and all t<j. Here, it is defined conditional on being alive at time j. The NFD-S assumption leaves 
one conditional distribution per incomplete dropout pattern unidentified, that is when t=j. To identify the 
unidentified conditional distribution left by the NFD-S assumption, we introduce a sensitivity parame-
ter � j such that p(yj |yj−1, zj, wj, rj = {1,…, 1, 0} , sj = 1, x0 ) = p (yj + � j |yj−1, zj, wj, rj = 1, sj = 1, x0 ),  
when 𝛾 j < 0 implies a negative location shift in the outcome at the first unobserved test wave. This as-
sumption implies dropout at time j depends on being alive at that time, the history up to that time, the ex-
posure, time-varying confounder and the outcome at time j, but not outcomes or time-varying variables 
after time j. This assumption of dropout not depending on the ‘future’ is often viewed as realistic and 
was proposed originally as a remedy to concerns about many pattern mixture models implicitly having 
future dependence. Table 1 displays a description of the possible mortality and missing data patterns 
under the NFD-S assumption.

To investigate sensitivity of Assumption 6 we let, 
Δz

�

j
= E[Yj ( z

�

j
) |Sj (zj ) = Sj ( z

�

j
) = 1] − E [Y( z

�

j
) |Sj ( z

�

j
) = 1, Sj (zj ) ≠ 1], for the contrasting ex-

posure regime z ′
j
. That is, the mean difference in potential outcomes when comparing the ‘always sur-

vivor’ strata to the strata where individuals were to live under the contrasting regime z ′
j
 but not under 

exposure regime zj. In our analysis we assume Δz
�

j
≥ 0 which implies that memory performance is on 

average higher in the ‘always survivors’-strata (the always survivors-strata is healthier). We further 
assume this difference is independent of the preceding variables.

To investigate sensitivity of Assumption 7, we introduce a sensitivity parameter �j for the exposure 
such that, �j equals 
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representing the mean difference in the proportion exposed between non-survivors and survivors. 
The first probability on the right-hand side of each expression is not identified. However, bounds 
can be derived for �j; see the Web Appendix Section A.2 for details. In particular, the upper bound 
for �j, U�j

, is obtained when Pr[zj |yj−1, zj−1, wj, rj = 0, rj−1, sj = 0, sj−1 = 1, x0 ] = 1. This reflects 
that among non-survivors, all subjects were exposed before the event of death between the j−1th 
and jth wave. Furthermore, using Assumptions 1 and 5, the lower bound for �j is obtained when 
Pr[Sj = 1 |yj−1, zj, wj, rj, sj−1 = 1, x0 ] = Pr[Sj = 1 |yj−1, z

�

j
, wj, rj, sj−1 = 1, x0 ]. This reflects an equal 

survival probability among those exposed or unexposed at wave j. Here, using the law of total probability 
and Bayes theorem, the lower bound L�j

 becomes 0.

4 |  IDENTIFICATION

Identification of the SACE in Equation (2) follows from two results.

Result 1. The causal contrasts in Equation (1) can be identified as follows 

where  denotes the set of temporally preceding variables (yj−1, wj, rj, x0 ).

Result 2. τ in Equation (2) can further be identified using Assumption 5 by weighting 
the contrasts in Equation (3) with 

Pr[zj |yj−1, zj−1, wj, rj = 0, rj−1, sj = 0, sj−1 = 1, x0 ] − Pr[zj |yj−1, zj−1, wj, rj, sj = 1, x0 ] ,

(3)

E[Yj(zj)−Yj(z
�

j
)�S(zj)=Sj(z

�

j
)=1]

=
E[E(Yj, Sj =1�zj, c(zj), � j,)]

E[Pr(Sj =1�zj, c(zj), � j, �j,)]
−

E[E(Yj, Sj =1�z�
j
, c(z

�

j
), � j,)]

E[Pr(Sj =1�z�
j
, c(z

�

j
), � j, �j,)]

−Δz
�

j
×

⎛
⎜⎜⎝
1−

E[Pr(Sj =1�zj, c(zj), � j, �j,)]

E[Pr(Sj =1�z�
j
, c(z

�

j
), � j, �j,)]

⎞
⎟⎟⎠

,

(4)
Pr[Sj (zj ) = Sj ( z

�

j
) = 1]

∑
J
k=1

Pr[Sk (zk ) = Sk ( z
�

k
) = 1]

=
E [Pr(Sj = 1 �zj, c(zj ) , � j, �j, ) ]

∑
J
k=1

E [Pr(Sk = 1 �zk, c(zk ) , �k, �k, ) ]
.

T A B L E  1  The table shows possible missing data, R, and mortality patterns, S. The outcome vector 
Y = {Y0, Y1, Y2, Y3 } is fully observed if S = R = 1, otherwise it is constrained by the mortality outcome and/or missing 
data patterns. Yj = O if the outcome is observed, Yj = M if missing and Yj = nd when truncated by death. The NFD-S 
restriction leaves the distribution for Yj = M ∗ unidentified

SJ

RJ

{1,0,0,0} {1,1,0,0} {1,1,1,0} {1,1,1,1}

{1,0,0,0} {O,nd,nd,nd} – – –

{1,1,0,0} {O, M ∗ , nd, nd} {O,O,nd,nd} – –

{1,1,1,0} {O, M ∗ , M, nd} {O, O, M ∗ , nd} {O,O,O,nd} –

{1,1,1,1} {O, M ∗ , M, M} {O, O, M ∗ , M} {O, O, O, M ∗ } {O,O,O,O}
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The proofs of the results can be found in the Web Appendix Section A.3. The causal effect is identifi-
able based on the observed data and Assumptions 1–7, conditional on the fixed values for the sensitiv-
ity parameters c(zj ), c( z

′

j
), Δz

�

j
, �j and, � j. For a Bayesian analysis, the sensitivity parameters can be 

given informative priors. In Section 5.3 and Table 2 we describe the estimation algorithm where the 
sensitivity parameters are given informative, non-degenerate and priors.

5 |  MODELLING OF THE OBSERVED DATA 
DISTRIBUTIONS AND COMPUTATION OF THE 
CAUSAL EFFECT

The joint distribution of the observed data is specified as a marginal model for the baseline confound-
ers and a set of sequential conditional models for the time-varying variables, given the history of the 
joint process (the outcome, exposure, confounders, and missingness). Details of the joint distribution 
are given in Web Appendix Section A.1. The baseline confounders xi0 are all observed before an indi-
vidual enters the study. For each visit j we postulate the time-varying variables in the following order: 
(sij, rij, wij, zij, yij ), even though the exposure, the time-varying confounder, and survival all occurred 
between (j−1)st and jth test wave. Of course, yij, wij and zij, are only observed if rij = 1 and sij = 1. It is 
further allowed that wij and zij may have occurred before sij.

5.1 | Bayesian semi-parametric modelling

We propose a BSP modelling approach based on Bayesian Additive Regression Trees (BART, 
Chipman, George, McCulloch, et al., 2010) for the observed data distribution.

For the time-varying components, we specify BART models for the responses as a function of prior 
histories for all individuals alive and not dropped out at a given test wave. The model consists of two 
parts: a sum-of-trees model and a regularisation prior on the parameters of that model. The model for 
the continuous response Yj is conditioned on the history of the joint process (yj−1, zj, wj, x0 ) for the subset 
that satisfies rj = 1 and sj = 1, and can be expressed as Yj =

∑ KYj

k=1
gYj

( (yj−1, zj, wj, x0 ) ;Tk
Yj

, Mk
Yj

) + �j. 
The model consists of KYj

 distinct binary regression trees denoted by Tk
Yj

. Each tree constitute a set of in-
terior node decision rules leading down to bk

Yj
 terminal nodes, and for a given Tk

Yj
, Mk

Yj
= (�

k,1

Yj
,…, �

k,bk

Yj
) 

is the associated terminal node parameters. The conditional distribution of the continuous outcome is 
specified as normal, Yj ∼ N (�Yj

(yj−1, zj, wj, x0 ) , �2
j
), where the mean function, �Yj

(yj−1, zj, wj, x0 ), is 
given by the sum-of-trees.

T A B L E  2  Algorithm for estimation of τ in Equation (2) using the G-computation formula. Details of the 
algorithm can be found in the Web Appendix section A.4

1. Sample the observed data posteriors as described in Section 5.

2. For each posterior sample of the parameters sample pseudo data ( y
∗

j − 1
, w

∗

j
, r

∗

j
, s

∗

j
, x ∗

0
) and sensitivity 

parameters � j, �j, c ( zj ), and c ( z ′
j

) of size N ∗. Additionally, sample one set of Δz
�

j
.

3. Implement G-computation for zj, and similarly for z ′

j
, using the pseudo data and sensitivity parameters 

from Step 2 by computing E [ Yj | yj−1, zj, wj, rj, sj = 1, x0 ] and ∏ j

k = 0
Pr [ Sk = 1 � zk, wk, rk, yk−1, Sk−1 = 1, x0 ]. 

Furthermore, implement Monte Carlo integration using the pseudo data to compute Pr [ Sj = 1 | zj ] and 
E [ Yj, Sj = 1 | zj ].

4. Use the quantities in Step 3 to compute one posterior sample of τ as defined in Equations (3)–(4).

5 Repeat step 2–4 for each of the posterior sample of the parameters.
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The BART models for our binary responses Zj, Wj, Rj, and Sj are speci-
fied as probit models. For example the model for the exposure can be expressed as: 
�Zj

(yj−1, zj−1, wj, x0 ) = Φ (
∑ KZj

k=1
gZj

( (yj−1, zj−1, wj, x0 ) ;Tk
Zj

, Mk
Zj

) ), where Φ denotes the cumulative 
density function of the standard normal distribution and �Zj

(yj−1, zj−1, wj−1, x0 ) is the probability of 
being exposed at wave j given (yj−1, zj−1, wj, x0 ) for the subset that satisfies rj = 1 and sj = 1. The 
BART model for Sj is fitted for the subset that satisfies rj−1 = 1 and sj−1 = 1, and for Rj the subset that 
satisfies rj−1 = 1 and sj = 1. The predicted probabilities of rj = 1 and sj = 1 are: �Rj

(yj−1, zj−1, wj−1, x0 ) 
and �Sj

(yj−1, zj−1, wj−1, x0 ). Note that, s0 = 1 and r0 = 1 for all individuals, �Rj
= 0 if rj−1 = 0, and 

�Sj
= 0 if sj−1 = 0.
The baseline confounders are all categorical (age cohort, sex and education level). We create a 

saturated multinomial random variable, x0 ∼ Multi (N,�1
x0

,�2
x0

,…,�L
x0

), based on these categorical 
variables. L is the number of categories and each category corresponds to a unique combination of the 
categorical variables. �x0

= (�1
x0

,�2
x0

,…,�L
x0

) is given a Dirichlet prior with parameters equal to one.

5.2 | Posterior

Draws from the posterior distribution of the sum-of-trees models are generated using Markov chain 
Monte Carlo (MCMC). The parameters of the conditional distributions for Yj, Zj, Wj, Rj, and Sj are as-
sumed independent and thus their posteriors can be sampled simultaneously. BART is implemented 
in the R package bartMachine (Kapelner & Bleich, 2013) for continuous and binary responses. We 
use default priors on all of the parameters of the sum-of-trees model, that is, on the tree structure, the 
terminal node parameters and the error variance. For details see Kapelner and Bleich (2013).

5.3 | Computation of the SACE

The algorithm for generating samples from the posterior distribution of τ in Equation (2) using the 
G-computation formula is given in Table 2. Details can be found in the Web Appendix SSection A.4. The 
algorithm provides the details of generating posterior samples of the causal quantities in Results 1 and 2 
(from Section 4) using the posterior distribution of the observed data model parameters (Section 5.1) and 
the identifying restrictions with sensitivity parameters (Sections 3.1 and 3.2). Recall the expressions in 
Results 1 and 2 are a function of the observed data distribution and the sensitivity parameters.

For implementation of the algorithm in practice, a number of the initial posterior samples are dis-
carded as burn-in. Parallel computation can be implemented to speed up computations. For example, 
instead of running one long chain in Step 1, it is possible to run multiple shorter chains in parallel, 
although each chain still needs to converge. Also, Step 2 may be divided into k blocks of size N∗ ∕k

, and in Steps 3–4 the parameters of interest are computed by combining the pseudo data from the k 
blocks. We give further details on computation with Betula data in Section 7.3.

6 |  SIMULATION STUDY

We performed a simulation study to evaluate the performance of the BSP G-computation algorithm. 
For simplicity of comparison to other appropriate methods we estimate E[Yj (zj ) − Yj ( z

�

j
) |sj = 1] 

and set Δz
�

j
= 0, � j = 0, and c(zj ) = c (z �

j
) = 0, that is, a setting with MAR missingness and no deaths. 

Details are found in the Web Appendix section A.5.
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We consider two settings for our BSP approach. First, where we specify a normal distribu-
tion for the outcome as described in the algorithm (BSP-GC1) and second (BSP-GC2), when 
specifying a t-distribution with three degrees of freedom (t3). We compare our approach with 
three other methods used for causal effect estimation of longitudinal data with time-varying 
confounding. The three other methods implemented are: (i) A parametric version of the pro-
posed procedure (BP-GC). Here, we specified Bayesian linear and logistic additive regression 
models instead of the BART models described in Section 5.1. (ii) Inverse probability of treat-
ment weights (IPTW; Cole & Hernán, 2008). Here, the mean E[Yj |sj = 1, zj ] is estimated by 
averaging the memory outcome for the subset with Zj = zj in a pseudo-population constructed 
by weighting each individual using both unstabilised weights (IPTW-W) and stabilised weights 
(IPTW-SW), to adjust for confounding and for attrition among survivors. The IPTW-W and 
IPTW-SW were implemented using the ipw and survey packages in R. (iii) Targeted minimum 
loss-based estimation approach for longitudinal data structures (TMLE; Laan & Gruber, 2012). 
We implemented the TMLE using the ltmle package using default settings (Lendle et al., 2017). 
Confidence intervals were calculated using non-parametric bootstrap. We used 5000 bootstrap 
samples. The bootstrap confidence intervals were calculated using the 2.5th and 97.5th percen-
tiles of the resulting estimates.

Data were generated based on a simplified version of the Betula data. We simulated 1000 data-
sets of size n=1000. We considered Ji = 2 follow-up test waves, a continuous baseline covariate, 
Xi0, generated as X0 ∼ Unif(0, 1). The outcome, Yij, was considered a continuous time-varying 
variable. The binary variable Zij indicated if the subject was widowed or not, and Wij indicated 
if the spouse been severely sick. Widowhood was an absorbing state, such that, if Zij = 1 then 
Zik = 1 for k≥j. Note, that Zi0 = 0 for all subjects. As in the Betula data, all time-varying vari-
ables had a highly non-linear relationship with the baseline covariate and the time-varying con-
founder interacted with the baseline covariate in the exposure model. Data for the simulation 
study were generated as X0 ∼ Unif(0, 1), Wj ∼ Ber(expit( − 2 + 0.5X0 − 2X2

0
+ 5X3

0
+ 0.25Wj−1 ) ),  

Zj ∼ Ber(expit( − 5 + X0 − 4X2
0
+ 6X3

0
+ 0.6Wj + 0.3Wj−1 + 0.5X0Wj − X2

0
Wj + 2X3

0
Wj ) ), and 

Yj = 0.5 − 0.05Zj − 0.05Wj − 0.25Yj−1 − 0.1X0 + 0.25X2
0
− 0.25X3

0
+ �j, where �j ∼ N (0, 0. 12 ). R 

code for the data generation is provided in the Web Appendix Section A.5.
Table 3 shows the bias, empirical standard deviation (ESD), mean squared error (MSE) and 

coverage of 95% confidence intervals from the simulation study for BSP-GC1, BSP-GC2, BP-GC, 
IPTW-W, IPTW-SW and TMLE. The causal effect estimates for BSP-GC1, BSP-GC2 and TMLE 
are nearly unbiased. BSP-GC1 and BSP-GC2 are however more efficient (smaller MSE and ESD) 
and have higher coverage (larger than 95%) than TMLE (lower than 95%). The simulation results for 
BSP-GC1 and BSP-GC2 are very similar. As expected, the three other methods; BP-GC, IPTW-W and 
IPTW-SW are all biased. Additionally, of all methods, BP-GC has the highest bias and MSE, IPTW-W 
is the least efficient and IPTW-SW has the lowest coverage.

To see how the proposed approach performs when the error distribution is misspecified data were 
instead generated from a t3-distribution for the error of the outcome Yj. Bias, ESD, MSE and coverage 
from the simulation are found in Table 4. The results are similar in terms of bias and coverage com-
pared to the previous simulation with correctly specified error. However, ESD and MSE are higher 
and are now comparable to TMLE.

To see how the proposed approach performs when there is lack of overlap, data were generated as 
Ber(expit(aZj

) )IX0>0.5 for the exposure, mimicking the Betula study where only individuals at older 
ages were exposed (widowed). The results from the simulation are found in Table 4. The results are 
similar to the first simulation with correctly specified error and non-linear effects for BSP-GC1 and 
TMLE. But for the other three approaches bias was higher and CP was lower.
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7 |  ANALYSIS OF THE BETULA DATA

7.1 | The Betula data

The goal is to estimate the causal effect of becoming a widow on memory among those who would sur-
vive irrespective of being widowed or not. As such, we limit our data set to those individuals who were 
married at enrolment. Of approximately 2000 participants N=1059 were married at study enrolment, and 
data were recorded at four fixed test waves (j=0,…,3) with 5 years interval. The memory outcome was 
assessed at each wave using a composite of three episodic memory tasks. The score can range between 
0 and 76, with a higher score indicating better memory (for details see Josefsson et al., 2012). We con-
sider two contrasting exposure regimes, subjects who became a widow between the j−1th and jth wave, 
zj = {z0 = 0,…, zj−1 = 0, zj = 1}, and subjects married through test wave j, z �

j
= {z0 = 0,…, zj = 0},  

for j=1,2,3. Baseline demographic characteristics included age-cohorts: 45,50,…,80 years of age at 

T A B L E  3  Simulation results for causal effect estimation with n=1000 with the true causal effect τ=−0.05, using 
two settings for our proposed approach: error specified as normal (BSP-GC1) and error specified using a t-distribution 
(BSP-GC2), a parametric version of the proposed procedure (BP-GC), inverse probability of treatment weights 
using unstabilised weights (IPTW-W), stabilised weights (IPTW-SW) and Targeted minimum loss-based estimation 
approach for longitudinal data structures (TMLE). Mean squared error (MSE) are multiplied by 100 for ease of 
presentation. ESD denotes empirical standard deviation and CP denotes coverage probability of 95% credible intervals

Bias ESD MSE CP

BSP-GC1 −0.002 0.013 0.02 98.7

BSP-GC2 −0.003 0.013 0.02 98.4

BP-GC −0.065 0.021 0.47 63.6

IPTW-W 0.024 0.040 0.22 64.3

IPTW-SW −0.031 0.013 0.12 20.4

TMLE −0.002 0.021 0.04 92.8

T A B L E  4  Simulation results for causal effect estimation with n=1000 with the true causal effect τ=−0.05. Two 
scenarios, (a) where the error distribution for the outcome is misspecified using a t-distribution with three degrees of 
freedom and (b) a setting with limited overlap. Comparing our proposed approach (BSP-GC1), a parametric version 
of the proposed procedure (BP-GC), inverse probability of treatment weights using unstabilised weights (IPTW-W), 
stabilised weights (IPTW-SW) and Targeted minimum loss-based estimation approach for longitudinal data structures 
(TMLE). Mean squared error (MSE) are multiplied by 100 for ease of presentation. ESD denotes empirical standard 
deviation and CP denotes coverage probability of 95% credible intervals

(a) t
3

(b) non-overlap

Bias ESD MSE CP Bias ESD MSE CP

BSP-GC1 −0.002 0.037 0.13 97.2 −0.003 0.014 0.02 98.9

BP-GC −0.074 0.038 0.69 69.5 −0.078 0.024 0.67 43.0

IPTW-W 0.028 0.068 0.55 59.7 −0.026 0.033 0.18 56.2

IPTW-SW −0.031 0.022 0.15 43.5 −0.042 0.015 0.20 10.6

TMLE −0.001 0.036 0.13 92.3 0.002 0.023 0.05 93.9
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enrolment, gender and education, categorised into low: 6–7 years of education (29%), intermediate: 8–9 
years (31%), or high: >9 years (40%). We also measured a time-varying confounder; an indicator if the 
spouse has been sick within the last 5 years. We note that baseline confounders are always recorded.

7.2 | Sensitivity parameters

Our approach allows uncertainty about untestable assumptions by specifying priors for the sensitivity 
parameters described in Section 3.2. We restrict the parameters to a plausible range of values, reflect-
ing the authors’ beliefs about the unknown quantities.

In Section 3.2, the sensitivity parameter c(zj ) reflects the average difference in potential 
outcomes due to unmeasured confounding (violation of Assumption 3). For the Betula data, 
when studying the effect of widowhood on cognition, one concern may be that the association is 
confounded by a healthy lifestyle, such as a healthy diet and/or exercise, something that is often 
shared within couples. Couples with a healthy lifestyle live longer and may have better cognitive 
performance than couples with a less healthy lifestyle. This information is not available from 
the database. Hence, it is a potential unmeasured confounder. Here, we assume c(zj ) < 0 and 
c(z ′

j
) > 0, reflecting that exposed (widowed) individuals are less healthy compared to unex-

posed (married) individuals. We further assume the effect is equal for exposed and unexposed. 
That is, we assume c(zj ) = −�j and c(z �

j
) = �j. Here, we specify a uniform prior on the sensitiv-

ity parameters, �j ∼ Unif(0, U�j
), with upper bound U�j

=
1

2
× SD(Yj |yj−1, zj, wj, rj = 1, sj = 1, x0 ). 

That is, we expect the sensitivity parameter not to be bigger than one-half standard deviation of 
the outcome conditional on the history of the joint process. This approximately corresponds to 
an effect size similar to that found in previous literature on the effect of Mediterranean diet on 
memory (Radd-Vagenas et al., 2018).

Departures from a MAR mechanism (Assumption 4) for the missingness among survivors can 
be investigated by varying � j in Section 3.2. Our prior belief is that 𝛾 j < 0, reflecting a negative shift 
in memory performance occur immediately after the first unobserved test wave. Here, the prior is 
specified as � j ∼ Unif( − L� j

, 0), where we assume the lower bound is one observed conditional 
standard deviation, L� j

= 1 × SD(Yj |yj−1, zj, wj, rj = 1, sj = 1, x0 ). The effect is similar to what has 
been found in previous work examining differences in cognition between completers and those who 
withdraw, at the last cognitive testing visit before dropping out (Rabbitt et al., 2008)

Sensitivity to Assumption 6, uses Δz
�

j
, which reflects the difference in outcomes when comparing 

the ‘always survivor’ strata to the strata where individuals were to live under the contrasting regime 
z
′

j
 but not under exposure regime zj. We again specify a uniform prior Δz

�

j
∼ Unif(0, UΔz�

j

), with upper 
bound UΔz�

j

= 1 × SD(Yj |sj = 1).
Finally, sensitivity to Assumption 7 uses the sensitivity parameter �j, which represents the differ-

ence in the probability of being exposed at wave j for non-survivors and survivors conditioning on the 
history of the joint process. As shown in Section 3.2, �j is restricted to [0, U�j

]. We assume the prior 
for �j is uniform over this range, �j ∼ Unif(0, U�j

). The upper bound reflects that, between the j−1th 
and jth wave, all subjects were exposed before death.

7.3 | Results and comparison with other methods

We estimated τ using the proposed BSP method and embedded sensitivity parameters. For each chain 
the first 1000 iterations were discarded as burn-in and 2240 posterior samples of τ were obtained. We 
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sampled pseudo data of size N∗ = 25, 000 at each iteration. Convergence of the posterior samples was 
monitored using trace plots of the samples. To reduce computation time we used 448 parallel chains. 
Total computation time was 1 hour and 18 minutes.

For longitudinal exposure regimes limited overlap is not uncommon. To avoid extrapolation of the 
outcome model outside the range of estimated propensities we restrict the overlap region for the longi-
tudinal exposure regimes. Specifically, we restrict data to the set of individuals that have an estimated 
propensity score that lies within the range of the observed propensities for the two contrasting regimes 
(similar to the procedure used in Zhou et al., 2019).

We consider two settings for our BSP approach. First, we specify a normal distribution for the 
residual of the outcome as described in the algorithm (BSP-GC1); second (BSP-GC2), we replace the 
normal distribution with a t-distribution with three degrees of freedom (t3). For BSP-GC1, the poste-
rior sampling results revealed a mean episodic memory score of 38.2 (95% CI; 35.4, 40.8) for exposed 
and 38.1 (95% CI; 35.6, 40.1) for unexposed individuals and an estimate of τ of 0.18 (95% CI; −1.43, 
1.86), suggesting that there is no effect of becoming a widow on memory among those who would sur-
vive irrespective of exposure. For BSP-GC2, the posterior sampling results revealed a mean episodic 
memory score of 38.2 (95% CI; 35.5, 40.9) for exposed and 38.0 (95% CI; 35.6, 40.1) for unexposed 
individuals and an estimate of τ of 0.21 (95% CI; −1.42, 1.82). The conclusions are insensitive to the 
two choices of outcome residual distribution here.

As a sensitivity analysis we compare how the point estimates and uncertainty varied when setting 
one sensitivity parameter at a time to zero, while the remaining sensitivity parameters are given the 
priors described in Section 7.2. Setting � j to zero resulted in a estimate of τ of 0.18 (95% CI; −1.42, 
1.91); for �j = 0, 0.20 (95% CI; −1.36, 1.83); for δ=0, 0.21 (95% CI; −1.38, 1.94); and for �j = 0, 
−0.83 (95% CI; −2.43, 0.75). The largest differences was found for the analysis setting �j to zero (i.e. 
no unmeasured confounding); however the CI still cover zero and we expect this assumption to not 
hold. Fixing the other sensitivity parameters at zero had minimal impact.

We also compare our approach, BSP-GC1 with BP-GC, IPTW-W, IPTW-SW and TMLE (de-
scribed in the simulation study). For simplicity of comparison we estimate the causal contrasts 
described in the simulation study. Further to avoid limited overlap, we restrict our data to those 
age-cohorts where we observe both married and widowed participants over the study period, 
instead of restricting to the region as for the main analyses. For IPTW-W, IPTW-SW and TMLE, 
confidence intervals were calculated using non-parametric bootstrap. We used 5000 bootstrap 
samples. The bootstrap confidence intervals were calculated using the 2.5th and 97.5th percen-
tiles of the resulting estimates.

The results from all the methods are given in Table 5. First, all of the methods display a neg-
ative widowhood effect on memory, although all confidence/credible intervals (CI) cover zero. 
There is a large discrepancy between our semi-parametric approach, BSP-GC1 and the para-
metric counterpart, BP-GC. In the latter, the effect was attenuated and the CI was narrower. A 
likely explanation of the discrepancy in effect estimates is that BP-GC is more susceptible to bias 
caused by model misspecification. BP-GC and IPTW-SW yielded most similar results, although 
the weighting approach had much wider CI. Furthermore, the effect estimate appeared most neg-
ative using IPTW-W and the CI was much wider than for any of the other methods. Weighting 
methods are known to be unstable and to have problems with large variance estimates in finite 
samples if the values of the weights are extreme. In our analysis the range of the weights was 
0.06–14.3 for IPTW-W, compared to 0.06–5.4 for IPTW-SW. The large weights using IPTW-W 
may explain the deviating result using this method. Our BSP-GC1 approach yielded an estimate 
of τ most similar to TMLE, although TMLE had slightly wider CI. This is consistent with the 
results of the simulation study.



   | 411JOSEFSSON aNd daNIELS

8 |  CONCLUDING REMARKS

This paper has proposed a BSP framework for estimating the SACE with longitudinal cohort data. Our 
approach allows for Bayesian inference under MNAR missingness and truncation by death, as well 
as the ability to characterise uncertainty about unverifiable assumptions. The proposed approach has 
several advantages compared to existing approaches: (i) the flexible modelling of the observed data 
as compared to parametric methods, while maintaining computational ease, (ii) interval estimates for 
full posterior inference (iii) easy to introduce sensitivity parameters.

The simulation study, although simplified, mirrored the Betula data. All time-varying variables had a 
highly non-linear relationship with the baseline covariate and interaction effects were included. The models 
for BP-GC, IPTW-W, IPTW-SW and TMLE were specified using additive effects, and thus, were mis-
specified. The results showed that BSP-GC1, BSP-GC2 and TMLE were nearly unbiased. BSP-GC1 and 
BSP-GC2 were however more efficient and had better coverage than TMLE (though a bit conservative). 
The results are in line with previous research (Roy et al., 2018), suggesting that TMLE is less efficient than 
BSP and non-parametric modelling. This, however, must be explored more thoroughly in future work.

The three other methods; BP-GC, IPTW-W and IPTW-SW, were all biased. This is expected since 
these methods make stronger distributional assumptions and thus are more sensitive to model mis-
specification. Similar to TMLE our approach does not rely on strong modelling assumptions, but 
unlike TMLE, it is quite easy to modify assumptions and incorporate sensitivity parameters. Recall 
we could not easily make direct comparisons of the proposed approach with the other approaches 
under our assumptions that include sensitivity parameters. We attempted to implement Super learner, 
implemented in the R package SuperLearner, but observed highly variable results for the Betula data 
(causal effect estimates varied between −0.34 and −1.33). This may be a result of the cross-validation 
step and the fact that the exposure is a rather rare event. Using our BSP approach these problems are 
avoided by increasing the size of the pseudo data and running longer chains. Although, computation 
time can be demanding for large pseudo sample sizes, the algorithm can be fully parallelised as dis-
cussed in Sections 5.3 and 7.3, which would vastly reduce the total computation time.

For the Betula data we did not find an effect of widowhood on memory. The results were not sen-
sitive to different specification of the errors as normal- or t-distributed, and changing the sensitivity 
parameters one at a time did not change the results significantly either. The difference in findings from 
previous studies may partly be explained by different estimands being used; ours is the only analysis 
using a SACE. Additionally, in this study we considered the immediate effect of widowhood (within 5 
years) rather than a long-term effect; it may take longer for degeneration to become apparent.

Our approach can be generalised in various ways. For example, it is possible to allow for multi-
ple time-varying confounders and/or continuous baseline confounders using a sequential approach 

T A B L E  5  Comparison of methods used for causal effect estimation of the Betula data, setting Δz
�

j
= 0, � j = 0, and 

c ( zj ) = c ( z �
j

) = 0, using our proposed approach (BSP-GC), a parametric version of the proposed procedure (BP-GC), 
inverse probability of treatment weights using unstabilised weights (IPTW-W), stabilised weights (IPTW-SW) and 
Targeted minimum loss-based estimation approach for longitudinal data structures (TMLE)

Estimate [95% CI]

BSP-GC −0.98 [−2.78, 0.73]

BP-GC −0.53 [−1.73, 0.68]

IPTW-W −1.67 [−5.96, 1.51]

IPTW-SW −0.44 [−3.06, 1.39]

TMLE −0.96 [−3.11, 0.99]
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as proposed by Xu et al. (2016). This would involve first ordering the confounders into sequential 
conditionals and then, applying BART to model each of these univariate conditionals. Additionally, 
although widowhood status is thought of as a monotone exposure pattern and an absorbing state in 
this study, this is not essential for the proposed approach and other (non-monotone) exposure regimes, 
such as the effect of widowhood duration on memory at the last visit, might be of interest and are 
possible to study with a few modifications (e.g. the positivity assumption).

Violations of the consistency assumption can be problematic when using observational data (Cole 
& Frangakis, 2009). For example, the effect of widowhood can affect memory via different pathways, 
for example, for some subjects via stress or depression and others via reduced physical health due to 
poorer lifestyle choices (Gerritsen et al., 2017). This is a limitation with the current study where the 
exposure is defined homogeneously, and should be explored more thoroughly in future work.

Several of our assumptions can be (further) relaxed. For example, Assumption 5 can be weakened to a 
stochastic Monotonicity, by following the procedure described in Lee et al. (2010). Also, in this study we have 
considered unmeasured outcome confounding; this assumption can easily be extended to allow unmeasured 
mortality confounding. Assumption 6 can be weakened by conditioning on the history of the joint process. 
However, a drawback with relaxing these assumptions is increasing the number of sensitivity parameters.

One limitation with BART is the restrictive, and sometimes unrealistic, assumption of IID normal 
errors, (although they can easily be replaced with heavier tail errors as in here). A fully non-parametric 
modelling approach could be obtained by extending BART to model the error distribution using the 
Dirichlet process mixtures (George et al., 2018). An additional limitation of the proposed approach is 
that we used existing R-functions for BART that are not most efficient for our setting. We will explore 
these limitations in future work, as well as, other choices for priors of the sensitivity parameters.

SUPPLEMENTARY MATERIALS

Web Appendices referenced in Sections 3, 4, 5, 6 and 7, as well as R code are available as Supplementary 
materials.
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