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Abstract
Purpose. To develop a method that can reduce and estimate uncertainty in quantitative MR
parameter maps without the need for hand-tuning of any hyperparameters.Methods.We present
an estimation method where uncertainties are reduced by incorporating information on spatial
correlations between neighbouring voxels. The method is based on a Bayesian hierarchical
non-linear regression model, where the parameters of interest are sampled, using Markov chain
Monte Carlo (MCMC), from a high-dimensional posterior distribution with a spatial prior. The
degree to which the prior affects the model is determined by an automatic hyperparameter search
using an information criterion and is, therefore, free from manual user-dependent tuning. The
samples obtained further provide a convenient means to obtain uncertainties in both voxels and
regions. The developed method was evaluated on T1 estimations based on the variable flip angle
method. Results. The proposed method delivers noise-reduced T1 parameter maps with associated
error estimates by combining MCMC sampling, the widely applicable information criterion, and
total variation-based denoising. The proposed method results in an overall decrease in estimation
error when compared to conventional voxel-wise maximum likelihood estimation. However, this
comes with an increased bias in some regions, predominately at tissue interfaces, as well as an
increase in computational time. Conclusions. This study provides a method that generates more
precise estimates compared to the conventional method, without incorporating user subjectivity,
and with the added benefit of uncertainty estimation.

1. Introduction

Quantitative magnetic resonance imaging (qMRI) can provide measurements of tissue properties that are
independent of the exact details of the data acquisition, and simultaneously often provide interpretations of
measurements (Tofts 2003). Several applications of qMRI can be found in cancer diagnostics and follow-ups,
e.g. prostate cancer staging using apparent diffusion coefficient imaging (Fütterer 2016) and dynamic
contrast-enhanced MRI (DCE-MRI) for early response assessment (Pham et al 2017). There are also
numerous applications outside of oncology, for example T1 and T2 relaxometry in assessment of multiple
sclerosis (Bitsch et al 2001, Tozer et al 2005), Parkinson’s disease (Nürnberger et al 2017), and renal
function (Wood 2014).

Quantitative parameters are usually obtained by fitting a non-linear regression model to the data in each
voxel. Typically, the model is fit by minimising the mean squared error, corresponding to a maximum
likelihood estimator assuming independent Gaussian noise in the data. The voxel-by-voxel approach is
intuitive and simple to implement, but may result in noisy parameter maps, in particular when the model
contains parameters that are difficult to estimate. The noise in the parameter maps can be reduced by
including a regularisation term when fitting the model to the data. In a Bayesian interpretation, this
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regularisation term can be seen as the corresponding prior distribution over the model parameters.
Structured spatial regularisation terms and priors have been used in qMRI by several authors. They have, for
instance, been used when estimating relaxation times and proton density (Wang and Cao 2012, Baselice et al
2016, Kumar et al 2012, Raj et al 2014), in diffusion and intra-voxel incoherent motion (IVIM)
estimation (While 2017, Orton et al 2014), for B0-estimation (Baselice et al 2010), and for dynamic
contrast-enhanced MRI (DCE-MRI) (Schmid et al 2006, Kelm et al 2009, Sommer and Schmid 2014, Bartos
et al 2019).

The inclusion of structured spatial regularisation terms or priors usually means there will be
regularisation parameters or hyperparameters that must be tuned to the data. Selecting the hyperparameter
is difficult, and how it is done varies between studies. Examples of different approaches include visual
inspection (Kumar et al 2012), finding good parameters for a representative dataset (Bartos et al 2019, Wang
and Cao 2012, Freiman et al 2013), L-curve analysis (Kumar et al 2012), constraints on the size of the
residuals (Raj et al 2014), and non-informative priors have been used in the Bayesian framework (Orton et al
2014).

An often overlooked part of qMRI is the uncertainty in the parameter maps. Knowledge of the
uncertainty can add much value since it gives a means to determine to what degree the data can be trusted,
enables more accurate statistical analysis, and can be used as a tool when optimising the image acquisition.
Typically, the uncertainty is estimated in each voxel separately, using for instance linear error
propagation (Schabel and Parker 2008, Garpebring et al 2013). However, this simple approach is no longer
valid if spatial regularisation or priors are used. In that case, one needs to take into account that the noise in
the parameter maps is spatially correlated. By modelling the entire distribution for the parameter maps and
sampling from this distribution using, for example, Markov chain Monte Carlo (MCMC), it is possible to
obtain the uncertainties in the presence of spatial priors, as has been demonstrated in a few studies, e.g.
in Orton et al (2014)), Schmid et al (2006), Sommer and Schmid (2014), Glad and Sebastiani et al (1995), De
Pasquale et al (2000). This approach has the added benefit, relative to linear error propagation, that the
non-linear noise propagation is accounted for, which is highly relevant when there is much noise, and for
models that are highly non-linear for some parameter combinations. The downside is that MCMC can be
computationally expensive.

Ideally, the estimation of parameter maps should incorporate some prior knowledge in order to reduce
uncertainties; it should include automatic selection of hyperparameters to make the method less subjective
and make it more easy to use; and include error estimation to improve the understanding, interpretability,
and reliability of the parameter maps. The purpose of this work was to develop a method that can achieve
this, and evaluate it for the case of T1-estimation based on the variable flip angle (VFA) method.

2. Methods

2.1. Statistical model
In the descriptions that follow, θ ∈ RV×2 denotes a collection of two tissue parameter maps over V voxels.
An individual parameter map is denoted by θ·,p ∈ RV, where p∈ {1, 2} is the index of the particular
parameter. Let v ∈ {1,2, . . . ,V} be an index over the voxels in the analysed region. All parameters in the vth
voxel are then denoted by θv,· ∈ R2. The value of a specific tissue parameter, p, at voxel v is denoted θv,p.

The relationship between the tissue parameters and the measured VFA signal is modelled as

yv,m = sm(θv,·)+ εv,m, (1)

wherem ∈ {1,2, . . . ,M} is an index for each acquired image, i.e. an index for the flip angles, the analysed
magnitude signal, yv,m, is an element of y ∈ RV×M, the sm(θv,·) denotes the spoiled gradient echo (SPGR)
signal model, and εv,m denotes independent Gaussian noise with mean zero and the same variance, σ2, for all
voxels and flip angles. The assumption of Gaussian distributed noise is valid in our case of high SNR
conditions. At lower signal intensities, the noise needs to be modelled as Rician to be properly
described (Gudbjartsson and Patz 1995). The SPGR signal model is given by Tofts (2003):

sm(θv,·) = ρv sin(αm)
1− exp(−TR/T1v)

1− cos(αm)exp(−TR/T1v)
, (2)

where θv,· = [ρv,T1v]
T. At each voxel, indexed by v, the ρv is proportional to the proton density and T1v is the

spin-lattice relaxation time. The TR denotes the repetition time and αm, form= 1,…,M, denotes the
different flip angles. Also, note that any dependence on the echo time has been absorbed into ρv.

Estimating the parameters of this model has traditionally corresponded to maximising the data
likelihood, i.e. p(y |θ,σ2). Since the model targets, yv,m ∼N (sm(θv,·),σ2), are assumed independent, the
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data likelihood becomes

p(y |θ,σ2) =
M∏

m=1

V∏
v=1

p(yv,m |θv,·,σ2)

= (2πσ2)−MV/2 exp

(
− 1

2σ2

M∑
m=1

V∑
v=1

(
yv,m − sm(θv,·)

)2)
. (3)

Equations (1) and (2) can be used for non-linear least squares regression between the measured signal
and the VFA signal to estimate the parameters of the model, corresponding to maximising the data
likelihood in equation (3). In this work, we present an extension to the maximum likelihood approach where
we employ an hierarchical Bayesian model that incorporates a spatial prior over the parameters. The prior
probabilities for the tissue parameters are modelled as neighbourhood dependencies expressed using the
total variation function (Rudin et al 1992), TV(θ·,p), as the energy function in a Boltzmann distribution
(Gibbs distribution).

Let λ= [λ1,λ2]
T be positive hyperparameters that relates to the image gradient for the two parameters in

each spatial location, then the joint spatial prior distribution over the parameters is given by

pTV(θ |λ) :=CTV

2∏
p=1

pTV(θ |λp)

∝
2∏

p=1

λV
p e

−λpTV(θ.,p),

in which CTV is the normalising factor (partition function) and TV(θ) is given as the the common discrete
approximation of the total variation function, i.e.

TV(x)≈
∑
i,j

√(
xv(i+1,j) − xv(i,j)

)2
+
(
xv(i,j+1) − xv(i,j)

)2
, (4)

for the case of a 2D image with voxels indexed by i and j, such that v(i, j) maps the spatial coordinates to the
linear indices of the input vector, x. That is, the total variation function is the sum of the norms of the spatial
gradients at each voxel, here approximated by the forward difference. There is a possibility that a voxel
indexed by (i+ 1, j) or (i, j+ 1) does not exist (as is the case along the borders and in the corners). In that
case, the quadratic term containing this term is set to zero (i.e. essentially using reflection padding). To make
the equations easier to read, these special cases have not been included here but are implicitly assumed.
Details on how the form of the total variation prior was derived is given in appendix A. The parameters are
also constrained by a uniform prior over a compact feasible region. This is needed to make the total
variation-based prior proper and to ensure convergence in the sampling-procedure. This is given by

punif(θ | lρ,hρ, lT1 ,hT1) =
V∏

v=1

U(θv,1 | lρ,hρ)U(θv,2 | lT1 ,hT1), (5)

where l and h denote the lower- and upper limits of the uniform prior, U , in terms of ρ and T1. Hence, the
full prior on the parameters is given as

p(θ |λ, lρ,hρ, lT1 ,hT1) = pTV(θ |λ)punif(θ | lρ,hρ, lT1 ,hT1). (6)

The hyper-prior for σ was defined using the non-informative prior

p(σ2)∝ σ−1, (7)

i.e. the Jefferys’ prior for the standard deviation σ > 0 for Gaussian distributions (Gelman et al 2014b). The
prior over λ was set to

p(λ)∝
2∏

p=1

λ−κV
p , (8)

which is a non-informative (improper) prior with unknown hyper-parameter κ. Combining equations (3),
(6), (7), and (8) gives us the full log posterior that was used in this work, namely,

logp(θ,λ,σ2 |y) =− (MV+ 1) logσ (9)
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− 1

2σ2

M∑
m=1

V∑
v=1

(
yv,m − sm(θv,·)

)2
−

2∑
p=1

[
λpTV(θ·,p)− (1−κ)V logλp

]
+C,

where C= log
(
(2π)−MV/2 punif(θ | lρ,hρ, lT1 ,hT1)CTV

)
. The joint prior of the total variation and uniform

priors in equation (6) is proper in this case, since its integral over the support of the uniform prior is finite.

2.2. Parameter estimation
Inference was done by drawing samples from the posterior in equation (9) using MCMC. To sample from the
posterior density, we utilised a blocked Gibbs sampler, comprised of a Gibbs sampler (Geman and Geman
1984) for the hyperparameters, σ2 and λ, and the affine invariant ensemble sampler by Goodman and Weare
(2010) for the likelihood parameters, θ.

To sample from p(θ,λ,σ2 |y), we thus need to construct the three conditional densities p(σ2 |θ,λ,y),
p(λ |y,θ,σ2), and p(θ |y,λ,σ2) and sample from them one at a time.

The conditional densities for the hyperparameters are straight-forward to derive from equation (9), and
can easily be found to be

p(σ2 |θ,λ,y)∝ (σ2)−(Aσ+1)e−Bσ/σ
2

,

i.e. an inverse gamma distribution with shape parameter Aσ = (MV− 1)/2 and scale parameter
Bσ = 1

2

∑M
m=1

∑V
v=1(yv,m − sm(θv,·))2; and

p(λi |λj,y,θ,σ
2)∝ λ

Aλi
−1

i e−λi/Bλi ,

i.e. a gamma distribution with shape parameter Aλi = (1−κ)V+ 1 and scale parameter Bλi = 1/TV(θ·,i),
with i∈ {1, 2} and j= 3− i. The conditional density for θ is a bit more involved. We write the TV term in
equation (9), using the approximation in equation (4), as

2∑
p=1

λpTV(θ·,p) =
2∑

p=1

λp

∑
i,j

√
(θv(i+1,j),p −θv(i,j),p)2 +(θv(i,j+1),p −θv(i,j),p)2. (10)

We note that all terms associated with a voxel with index (i, j) can be identified by looking at a 3× 3
neighbourhood around that voxel, where voxel (i, j) is in the centre. This is illustrated in figure 1. Hence, a
conditional distribution for the centre voxel only depends on the surrounding 3× 3 neighbourhood. We
exploit this property in order to develop an efficient sampler.

It is clear from figure 1 that only three terms are required in the part associated with the total variation
prior for a particular voxel, and hence we can construct a conditional log-posterior density over the
parameters in a voxel v as

log p
(
θv(i,j),· |θ−v(i,j),·,λ,σ

2,y
)

(11)

∝− 1

2σ2

M∑
m=1

(
yv(i,j),m − sm(θv(i,j),·)

)2
−

2∑
p=1

λp

√(
θv(i+1,j),p −θv(i,j),p

)2
+
(
θv(i,j+1),p −θv(i,j),p

)2
−

2∑
p=1

λp

√(
θv(i,j),p −θv(i−1,j),p

)2
+
(
θv(i−1,j+1),p −θv(i−1,j),p

)2
−

2∑
p=1

λp

√(
θv(i+1,j−1),p −θv(i,j−1),p

)2
+
(
θv(i,j),p −θv(i,j−1),p

)2
,

where θ−v,· denotes all voxels except the one with index v. Hence, all voxels at least three voxels apart, i.e.
those that lie in different 3× 3 neighbourhoods, can be sampled independently (and therefore also in
parallel).
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Figure 1. A zoomed-in view of a 3× 3 voxel region. Each term in the total variation (equation (10)) has one central voxel (green
square) and two neighbouring voxels (green circles). The voxel with index (i, j) will be included in three groups of voxels,
illustrated here with black connecting lines holding the voxels in a group together. These three groups correspond to the last three
summation terms in equation (11). Since the conditional distribution for the centre voxel only depends on the 3× 3
neighbourhood, the analysed region with a total of V voxels can be split into V/9 subsets of 3× 3 regions for parallel sampling.

2.2.1. Implementation
The proposed sampling method is summarised in algorithm 1 and was implemented in MATLAB R2018b
(The MathWorks, Inc., Natick, MA, USA). The algorithm returns N s samples of θ, λ, and σ2. In our
implementation, the parameters of the uniform prior, see equation (5), were set to lρ = 0, hρ = 105, lT1 = 0 s,
and hT1 = 10 s, thus constraining the estimators to exclude physically unreasonable high- and low tissue
parameter values.

The algorithm starts by computing an initial guess for the model parameters using INITIALGUESS, by first
spatially averaging all signal in the data and fitting a single curve to this average using an ML estimator. This
yields a single pair of T1 and proton density values which are distributed over all V image voxels. To satisfy
the requirement that AFFINEINVARIANTSAMPLER needs several (Nw) walkers with nonidentical initialisation,
randomness is added to each voxel and for each walker. 10 % uniform noise with zero mean is used for both
T1 and the proton density. A starting guess for σ2 is obtained from the residual resulting from applying the
parameters of the single pair of T1 and proton density at each voxel.

Before producing the samples, the algorithm generates Nb burn-in samples that are discarded. We
adapted the method of Betancourt (2010) to determine when the burn-in phase was over, i.e. computing the
number of samples (Nb) required before the chains have converged to the posterior in a sufficient manner
for practical use. The proposed method is presented in appendix B.

Thinning was used to reduce the correlation between samples by computing Ns ×Nt samples, from
which every N t sample was kept. To determine the amount of thinning (N t) to use, we estimated the effective
sample size by computing the autocorrelation time, R, of the chains, and then stored every ⌈1/R⌉
sample (Gelman et al 2014b).

The AFFINEINVARIANTSAMPLER performs MCMC sampling using the affine invariant sampler of Goodman
and Weare (2010). This sampler has been shown to perform significantly faster than standard MCMC
algorithms on highly skewed probability distributions. The sampler was tuned for best performance for T1

estimation (in terms of the number of independent samples per second) by performing a grid search over
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Algorithm 1: A blocked Gibbs sampling algorithm that returns Ns×Nw samples of θ, λ, and σ2.

Data:y ∈ RV×M, N s, N t , Nw

Result: θ(s,w) ∈ RV×2, λ(s)
1,w, λ

(s)
2,w, σ

2,(s)
w for s= 1,…,N s and w= 1,…,Nw

begin
θ(0),σ2,(0)← INITIALGUESS(y)
λ(0) = [0,0]T

for s← 1 to Nb +Ns do

θ̃← θ(s−1,·)

λ̃← λ(s−1)

σ̃2← σ2,(s−1)

for t← 1 to N t do
for v← 1 to V do

θ̃v,·← AFFINEINVARIANTSAMPLER
(
p(θv,· | θ̃−v,·, λ̃, σ̃

2,y)
)

end
for w← 1 to Nw do

λ̃1,w← SAMPLER
(
p(λ1 | λ̃2,w, θ̃

(w)
, σ̃2

w,y)
)

λ̃2,w← SAMPLER
(
p(λ2 | λ̃1,w, θ̃

(w)
, σ̃2

w,y)
)

λ̃w← [λ̃1,w, λ̃2,w]
T

σ̃2
w← SAMPLER

(
p(σ2 | θ̃

(w)
, λ̃w,y)

)
end

end
if s> Nb then

θ(s−Nb,·)← θ̃

λ(s−Nb)← λ̃

σ2,(s−Nb)← σ̃2

end
end

end

relevant sampler settings. A step size of 4.0, thinning of 8, and 10 walkers were found to perform well over a
large range of values for κ.

The SAMPLER denotes any generic function that draws samples from the given distribution; we used the
default random number generators that are available in MATLAB for the uniform, gamma, and inverse
gamma distributions. The arguments to the samplers are the density functions that samples should be drawn
from.

To speed up the algorithm, we make use of the fact that the conditional probability, equation (11), for a
particular voxel only contains terms associated with voxels in its immediate surrounding. That is, the loop
over V voxels is implemented as a loop over 9 subsets of voxels and the AFFINEINVARIANTSAMPLER performs
calculations at V/9 voxels in parallel, see figure 1 for more details on these voxel subsets. To keep notation
simple and not introduce yet another index, this implementation detail is not illustrated in algorithm 1.

To determine the value of the hyperparameter κ, the only unknown hyperparameter in this work, we
propose to use the widely applicable information criterion (WAIC, also known as the Watanabe–Akaike
information criterion) (Watanabe 2009). We used the criterion denoted WAIC1 in Watanabe (2009) to
evaluate the relative quality of our model as a function of the hyperparameter κ. The WAIC is a fully
Bayesian method to estimate the out-of-sample generalisation. It is a generalization of the Akaike
information criterion (AIC), an improvement of the deviance information criterion (DIC), and is
asymptotically equivalent to Bayesian cross-validation (Watanabe 2009, Watanabe 2010, Gelman et al
2014a). The WAIC is described in more detail in appendix C.

A grid search for κ in equation (8) was conducted in the range [−0.5, 0.99] in steps of 0.01. The resulting
curve was smoothed using a moving average in order to find a κmin less affected by noise in the estimations,
and the κ corresponding to the minimumWAIC value in the grid was selected. Code for running the above
implementation, complete with a synthetic dataset, is available at the following GitHub repository:
https://github.com/MaxHellstrom/Bayesian-VFA-T1-estimation.

2.3. Data
Two sets of data were used in the evaluation of the proposed method: one synthetic dataset with known
ground truth, and one dataset with eight volunteering patients.

6
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2.3.1. Synthetic data
An axial brain slice from the BrainWeb phantom (Kwan et al 1996, Cocosco et al 1997, Collins et al
1998, Kwan et al 1999) was generated in MICE Toolkit (NONPI Medical AB, Umeå, Sweden;
www.micetoolkit.com) with matrix size 256× 256, and voxel size 0.98× 0.98× 2.00 mm3. Ground truth
reference of the tissue parameters, T1,ref and ρref, were extracted for all voxels in the acquired image matrix.
These tissue parameters were then used to compute spoiled gradient echo (SPGR) data according to
Equations (1) and 2, with TR = 6.8ms, TE = 2.1ms, flip angles α= 2◦, 4◦, 11◦, 13◦,and 15◦. Complex
circular Gaussian noise was used to generate synthetic noise, so that the magnitude SPGR signal follows the
Rician distribution. The variance of the noise was tuned until it reached the same level as the in-vivo dataset
by visual comparison. One hundred multi-flip angle images with independent noise were generated this way.

2.3.2. In-vivo data
A total of eight patients volunteered for this study and were scanned with a 3D SPGR sequence on a GE Signa
3 T PET/MR scanner. The patient group consisted of 7 men, and 1 woman, in the age span 39 to 65 year old
(with a mean age of 52 years). The scans were conducted with identical TR, TE, voxel size, and flip angles as
for the synthetic dataset. The acquisition was conducted with a matrix size of 256× 256× 8 (8 axial slices)
and a pixel bandwidth of 488 Hz/pixel. Bloch–Siegert based B1 mapping was performed to enable corrections
of flip angles. This study was conducted in accordance with the principles embodied in the Declaration of
Helsinki and was ethically approved by the regional research ethics committee (dnr: 2019-02666). Informed
consent was obtained from all patients.

2.4. Analysis
Three different estimators, referred to as ML, Bunif, and BTV, were evaluated on both the synthetic and the
in-vivo datasets. The first estimator (ML) was a conventional maximum likelihood estimator, where the
parameter maps were obtained by minimising the negative log-likelihood independently in each voxel, v, i.e.
solving the program

minimise
θv,·∈R

M∑
m=1

(
ym,v − sm(θv,·)

)2
,

and assigning the result to the parameter estimate ρ̂v and T̂1v, for v= 1,…,V, and whereR⊂ R2 is the
compact feasible region for the parameter values as defined by the uniform prior. This program was solved
using the trust-region-reflective algorithm as implemented in MATLAB R2018b.

The estimators Bunif and BTV correspond to Bayesian approaches with different priors. The difference
between these two estimators is that Bunif only uses the uniform prior on the parameters, while BTV combines
the uniform and the total variation priors. Both estimators used the blocked Gibbs sampling algorithm (see
algorithm 1) and collected N s = 1 280 samples (after thinning) from the posterior distribution. Point
estimates for Bunif and BTV were chosen to be the sample means, i.e.

ρ̂v =
1

Ns

Ns∑
s=1

ρ(s)v (12)

and

T̂1v =
1

Ns

Ns∑
s=1

T(s)
1v . (13)

The synthetic dataset with 100 generated multi-flip angle images were used to investigate the
performance of the point estimate when using the different estimators. The normalised bias and normalised
standard error, i.e. the coefficient of variation, CV, were computed as

BiasT1v =
¯̂
T1v −Tref

1v

Tref
1v

, (14)

Biasρv =
¯̂ρv − ρrefv

ρrefv

, (15)

7
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CVT1v =
1

Tref
1v

√√√√ 1

(NB − 1)

NB∑
b=1

(
T̂1v,b −

¯̂
T1v

)2
, and (16)

CVρv =
1

ρrefv

√√√√ 1

(NB − 1)

NB∑
b=1

(
ρ̂v,b − ¯̂ρv

)2
. (17)

In the equations above, b is an index over the NB = 100 generated multi-flip angle images, T̂1v,b and ρ̂v,b
are the estimates of T1 and ρ at voxel v for image b. The average estimates are defined as
¯̂
T1v = N−1

B

∑NB

b=1 T̂1v,b and ¯̂ρv = N−1
B

∑NB

b=1 ρ̂v,b. The references values T
ref
1v and ρrefv correspond to the ground

truth images from which the synthetic data was generated. To conduct a quantitative evaluation of the
Bayesian estimators Bunif and BTV, we adapted the method of Sjölund et al (2018) and constructed
probability–probability (P-P) plots from the posterior samples. To illustrate this concept, consider a set of
samples from the posterior distribution with known ground-truth reference in each voxel. A P-P plot can
then be created by calculating the frequency, across all voxels, with which the reference value is smaller than
the pth percentile of the posterior samples. A one-to-one P-P ratio is an ideal case, i.e. when the reference
value is smaller than the pth percentile in p% of the cases. This P-P ratio can act as a sanity-test of our choice
in priors. This was conducted exclusively for the synthetic data where ground truth data are available.

3. Results

3.1. Tissue parameter estimation
Parameter maps computed using all three estimators are shown in figure 2. These maps are estimated from
the data from one of the patients in the in-vivo dataset (patient 1). Previous to the imaging occasion, the
patient went through surgical removal of a grade 2 astrocytoma tumour, which is clearly visible in all images.
In figure 2, the voxel intensity equals the parameter estimates ρ̂v (in 2–c) and T̂1v (in 2d–f). The same
parameter estimates are presented as normalised histograms, ρ̂v (in 2g–i) and T̂1v (in 2j–l). These histograms
present the same results as in (2a–f), but sorted in order of increasing parameter values, instead of spatial
location. The difference between the three estimators is shown more clearly in figure 3, which shows a
zoomed-in version of the T1 estimate in figure 2(d)–(f). The degree to which fine-grained details are affected
by the priors is shown in the top row of figure 3, which shows a region with several fine structures. By
comparing 3e and 3f, i.e. the introduction of the TV-term, we see that fine structures are still clearly visible
after the smoothing has been applied. The Bunif estimator delivers estimates in a similar way as the
conventional estimate (ML). Further, it is clear that BTV delivers a distinguishable amount of noise reduction,
as well as an overall T̂1 reduction in homogeneous regions of high T1 value. When comparing the T1

histograms (2j–l), we see that the distribution produced with BTV(2l) differs significantly from the ones
produced with ML and Bunif (2j-k) in the sense that the distribution is more tightly concentrated at three
clearly visible peaks. These peaks are located at approximately 0.6 s, 1.2 s and 4.7 s. Parameter maps
computed for the other volunteers in the in-vivo dataset were very similar and are presented in appendix D.

Parameter estimates with ML, Bunif, and BTV were also conducted for the synthetic dataset of 100
generated multi-flip angle images. For the in-vivo dataset, the mean computation times, including burn-in,
were 6.0 (ML), 6.1 (Bunif), and 31 (BTV) minutes per patient (one axial slice). The corresponding numbers for
the synthetic dataset was about 6.1, 5.6, and 28 minutes. For both datasets, the burn-in phase took about
45 % of the total computation time. The difference in computation time between the two datasets is likely
affected by the number of pixels in the analysed region. Please note that hyperparameter search for κ is not
included in the above stated estimation time. This is presented in detail in section 3.2. All computations were
performed on a 3.7 GHz Intel Core i7-8700K processor.

Figure 4 illustrates the utility of obtaining distributions of likely values rather than only a single
point-estimate. A ground truth synthetic T1 map is shown together with histograms of the samples acquired
with Bunif and BTV using one of the 100 synthetically generated multi-flip angle images. The total variation
prior in BTV produces more narrow histograms in all four locations. This is most evident in regions with
large T1 values. Further, the magnitude of the estimation bias varies between the different locations and
tends to be larger in regions with large T1 gradient. By observing e.g. figure 4(d), we see that Bunif produces a
positive estimation bias, while BTV produces a negative bias. Please note that the histograms in figure 2
present the distribution of ρ̂v and T̂1v estimates in all voxels, while the histograms in figure 4 present the
distribution of T1 samples in a voxel at four different locations.
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Figure 2. Parameter estimates obtained by using all three estimators for patient 1 in the in-vivo dataset. ρ̂v in ((a)–(c)) and T̂1,v in
((d)–(f)). The red and blue zoom-boxes in (d)–(f) are presented in greater detail in figure 3. The tissue parameter values in the
parameter maps in (a)–(f) is also presented as normalised histograms in the subplot below.

Figure 3. A 50× 50 voxels zoomed-in view of figure 2. The red zoom-boxes in figure 2 are presented in the top row, and the blue
zoom-boxes in the bottom row.

P-P plots of observed versus theoretical probabilities as well as the normalised standard deviation in the
posteriors are presented in figure 5. A slight deviation from the ideal one-to-one P-P ratio is visible in both
estimators, most evident in BTV at higher probabilities.

The normalised bias and standard deviations, as defined in equations 14 through 17, are shown in
figure 6. The left 3× 3 array plot corresponds to the ρv estimate, and the right one corresponds to the T1

estimate. Comparing the coefficient of variation in 6(a–c) shows an increase in precision when applying BTV.
This is most evident in regions with high parameter values and low signal, such as in the ventricles. In 6(d–f),
we see that Bunif and BTV introduce some level of estimation bias. The effect of the TV term when using BTV

is clearly visible in regions with sharp edges, where it introduces a negative estimation bias (see 6(f)). This
bias is also presented in 6(g–i), but in terms of parameter values without spatial information.

3.2. Sampling parameters
The hyperparameter search for κ were conducted for both datasets prior to parameter estimation.

9
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Figure 4. Presentation of the T1 distribution consisting of 1 280 samples in each voxel, acquired with Bunif and BTV on one
randomly chosen element of the synthetic dataset. This is presented at four different voxels as normalised histograms, Bunif in red,
BTV in green and reference T1 value (Tref

1v ) is marked with a blue line. The mean value of each sampling distribution corresponds

to the T1 estimate in that voxel, i.e. T̂1v. Each histogram is linked to its corresponding voxel in the reference slice (b) with a blue
arrow. (a) A voxel in a white matter region with low T1 value and gradient. (c) A voxel in a grey matter region. (d) A voxel in a
high-gradient region, which causes the most prominent estimation bias when applying BTV. (e) A voxel in a low-gradient
ventricle region, high in CSF.

Figure 5. P-P plots of theoretical- versus observed probability when conducting tissue parameter estimation with Bunif and BTV,
both with N s = 1 280 samples (ρ in (a) and T1 in (d)). (b), (c), (e), (f) Normalised standard deviation (in percent) of the ρ and
T1 posterior distributions. This data was obtained from parameter estimation with Bunif and BTV on one of the 100 generated
multi-flip angle images in the synthetic dataset.

For the in-vivo dataset, κmin varied in the range [0.07, 0.18] for patient 1 to 8, with a mean value of 0.11
and a standard deviation of 0.037, see figure 7. Since all searches ended up in the range [0.07, 0.18] which is
only about 7% of the total search window, the efficiency in this hyperparameter search can likely be increased
by narrowing the search window. These hyperparameter computations took on average 9 hours per patient
for the entire search window [−0.5, 0.99] with a step size of 0.01.

For the synthetic dataset, a single search was conducted for all 100 images, which resulted in κmin = 0.06.
In addition to this, the effect of a difference in κ value was investigated by conducting parameter estimation
with κ= κmin ±{0.05,0.1}, i.e. comparing the parameter estimation result for slightly different κ values.
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Figure 6. Coefficient of variation ((a)–(c)) and normalised estimation bias ((d)–(f)), in terms of ρv (left 3× 3 array plots) and
T1v (right 3× 3 array plots) estimated from the synthetic- and in-vivo datasets. The estimation bias is also presented in ((g)–(i)),
where it is expressed as a function of the reference parameter value, grouped in the percentile ranges: 1–99%, 5–95%, and
25–75%. The dashed red line is the ideal 1:1 ratio.

Figure 7. (a) Hyperparameter search for κ for patient 1. The selected κ value, κmin, was chosen as the minimum of the smoothed
WAIC1 values over the evaluated range. (b) Result of the hyperparameter search for all patients in the in-vivo dataset. All κmin

values were obtained in the range [0.07, 0.18]. Therefore, the search window can probably be narrowed in order to increase
computational efficiency.

The largest voxelwise difference was observed at κ= κmin − 0.1 (+ 6.1 % in ρv and+ 4.0 % in T1v). This is
presented in figure 8.

Maps of the calculated required thinning, based on the autocorrelation, were investigated for both
datasets, where it was evident that the amount of required thinning varies spatially. Further, it peaks at about
4 using Bunif and 8 when using BTV. Therefore, the peak values 4 and 8 were chosen when conducting
parameter estimation with Bunif and BTV, in order to ensure a sufficient amount of uncorrelated samples in
all voxels.

4. Discussion

The purpose of this work was to develop a method that can reduce and estimate uncertainty in quantitative
MR parameter maps without the need for hand-tuning of hyperparameters. To this end, a Bayesian
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Figure 8. The error in estimation result for different κ values, in relation to κ= κmin. This is based on ρv and T1v estimations
conducted with the synthetic dataset. The largest positive voxelwise errors were (in subplot (a)–(h)): (6.1, 3.1, 2.6, 5.2, 4.0, 1.8,
2.0, 3.8)%. The corresponding largest negative voxelwise error were -(5.2, 2.8, 2.4, 4.8, 3.7, 1.9, 1.5, 3.1)%.

hierarchical non-linear regression model with a total variation prior was used to enable noise reduction.
Uncertainties were obtained through sampling from the corresponding posterior distribution, and WAIC
was used to automate the selection of hyperparameters. The method was evaluated for parameter estimation
of proton density and T1 relaxation time on VFA data. The main finding in this work is that noise reduction,
uncertainty estimation, and automatic hyperparameter tuning can be combined, and that the method is
applicable to VFA based T1 estimation.

An important consideration when applying Bayesian methods for parameter estimation is the choice of
prior. This choice entails both selecting the type of prior to use and also to what degree one should trust the
prior or the data. With sufficient amounts of data, uninformative priors can be used, e.g. Orton et al (2014).
However, in this work, we used the WAIC to compare models and based on that select the hyperparameters
for the prior. This approach is novel in the context of qMRI and is much more objective than varying the
hyperparameters until the images look good, or finding an optimal hyperparameter using e.g. synthetic data
and using that value for subsequent estimations. A TV-based prior was used in this work due to its previous
success in image denoising, including in the context of T1 estimation using VFA data (Wang and Cao 2012).
As can be observed in figures 2, 3 and 6, the TV-prior is quite successful in reducing uncertainties in T1 and
proton density values, and from a qualitative point of view, sharp borders at tissue interfaces, e.g. in
figure 3(f) and the fine-grained details in figure 3(c) seem to be preserved. However, when looking more
closely at the result in figure 6, it is clear that bias is introduced by the TV-based prior, in particular at
interfaces between different types of tissues. This causes slightly incorrect tissue parameter values in
interface-regions and fine-grained details. This bias is expected since the prior makes assumptions about
differences between neighbouring voxels. This is also a sign that there likely is room for improvements. For
instance, one could imagine that the use of two separate hyperparameters for the strength of the prior—one
for each parameter, or using a weighted TV-based prior (e.g. such that the data is trusted more near
borders)—could result in further improvements. Using other priors, e.g. exploiting wavelet
compressibility (Ji et al 2008), could potentially improve the results. However, the MCMC algorithm used in
this work is likely to perform poorly in that particular case since the developed algorithm’s speed relies on
each voxel being conditionally dependent only on its immediate neighbours.

It is important to mention that this estimation bias does not include contributions from inaccuracies
caused by errors in the B1 map, insufficient signal spoiling, and other physical factors from the data
acquisition itself. Although beyond the scope of this study, these factors could be included in a Bayesian
model to incorporate their effects on the estimated uncertainty.

Obtaining the uncertainty of the estimated parameters was a key goal of this work. Several important
statistical questions may be posed when uncertainty information is provided, such as, what the probability is
that a parameter is above or below a certain value of clinical relevance. One particular strength of Bayesian
statistics and sampling of parameter maps is that the spatially correlated noise will be properly captured,
which is very important in order to obtain correct uncertainty estimates in ROI analyses, for instance.

In this work, we utilised P-P plots for quantitative evaluation of the parameter uncertainty estimation.
Looking at the results in the P-P plots in figure 5(a), (d), we see a near-ideal match between observed and
theoretical probability when using Bunif. When using BTV, we see that the observed probability is slightly
below the ideal 1-1 ratio. e.g. in figure 5(d) where only 91 % of the true T1 values are in the 95th percentile.
The cause of this can be either a biased posterior distribution or one with too small tails.
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Although very powerful and flexible, Bayesian methods also have some downsides. Using MCMC for
inference can be very computationally demanding, and may introduce complexity in terms of parameters
that must be tuned for good performance, e.g. the burn-in length and amount of thinning. To reduce this
complexity, we implemented a method that automatically determines the burn-in length. To reduce the
computation time, we exploited the fact that parameters at different voxels can be updated in parallel in the
Gibbs sampling scheme when the structure of the posterior allows for it (as was the case here). In this work,
we used a TV-based prior, which assumes that voxels are conditionally dependent only on their immediate
neighbours. Hence, the voxel could be updated in blocks as depicted in figure 1. This results in a substantial
speed-up when using languages such as MATLAB that heavily rely on vectorisation for speed. However, even
after vectorising the computations, the method cannot be considered fast. Obtaining a single slice
(approximately 27 000 non-masked voxels) requires 18 minutes of burn-in and an additional 20 minutes of
sampling to obtain 1 280 uncorrelated samples when using the TV-based prior. If several slices are to be
computed, the estimation may take hours, which can be prohibitive—especially in clinical applications.

In addition to the estimation time, the search for the hyperparameters must also be added. A very fine
grid was used in this work, requiring about 9 hours to find the hyperparameter κ for a single slice. This is a
clear limiting factor that can be improved in several ways. When observing the results in figure 7, the most
straight-forward approach to increase the efficiency in the hyperparameter search is to empirically narrow
the search window. The maximum spread in κmin we observed was 0.11, i.e. very small in comparison to the
entire range we tested in this work. Simply narrowing the search grid to the range [0, 0.25] would decrease
the computational time to about 1.5 hours per slice. Further, a coarser grid could likely be used since a
difference in κ less than 0.1 had a relatively small effect, see figure 8, on the produced images. This small
difference also implies that one likely only need to do the search for a single slice in a volume. Another
promising approach is to investigate if it is possible to use a fixed κ value for all patients undergoing imaging
with the same protocol. Our results in figure 7(b) and figure 8 suggests that it might be possible due to low
patient variability in κmin. This would drastically improve the effectiveness of our method.

To further speed up the estimation and hyperparameter search, the most obvious next step would be to
move to more powerful hardware, e.g. GPUs instead of CPUs. Based on our experience of applying GPUs for
computations, we expect such a migration to give improvements of at least one order of magnitude.
Although this would greatly facilitate the practical applicability of the method in many situations, the
computation time may still be a problem—in particular for clinical applications. Thus, there is a need for
improvements of the algorithm used for sampling, perhaps using other MCMC algorithms such a e.g.
Hamiltonian MCMC (Duane et al 1987). For the hyperparameter search, the grid-search employed in this
work is quite inefficient and better methods are needed in particular if more than one hyperparameter is
used. Bayesian optimisation (Snoek et al 2012), for instance, is commonly used for efficient hyperparameter
search in other machine learning applications and would thus likely be a valuable tool here as well.

This work focused on T1 estimation using VFA data. The proposed method is likely also applicable to
other types of qMRI, e.g. diffusion and T2/T∗

2 quantification and possibly also DCE-MRI, since those
estimations also imply finding a few parameters at each voxel location. Other possible generalisations and
improvements could be to use other priors as mentioned above, utilise spatial information in 3D (e.g. 3D
total variation), improve the gradient approximation method, and to use a larger family of priors and select
the optimal one using WAIC, e.g. use WAIC to select between different functional forms for the prior and
using a prior with more than a single hyperparameter, for instance, a separate κ value for T1 and the proton
density. Other possible improvements for this work would be to model the noise as spatially varying in order
to properly describe the noise distribution when using e.g. parallel imaging techniques.

5. Conclusion

We have presented a novel framework for parameter estimation with associated error estimates in qMRI,
applied for tissue parameter estimations of T1 relaxation time. Due to automated hyperparameter selection,
our method can deliver noise reduction without incorporating end-user subjectivity. Key features to address
in future developments are to refine the design of the spatial priors, as well as to address the computational
efficiency to enable more widespread use.
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Appendix A. Derivation of the total variation-based prior

In order to impose the total variation function through a prior distribution on the parameters, we utilise the
Boltzmann distribution (Gibbs distribution) which is a well-tried method in Bayesian image
restoration (Geman and Geman 1984). The corresponding probability density function then has the form

p(θ |λ) = 1

Z(kT)
e

−ϕ(θ)
kT =

1

Z(λ)
e−λϕ(θ), (A1)

where λ= (kT)−1 > 0 is a hyperparameter controlling the temperature of the system (k would be
Boltzmann’s constant, and T the temperature), Z(λ) is the partition function ensuring that the probability
density integrates to one, θ ∈ RN for N parameters, and ϕ : RN → R is an energy function. In our case the
energy function would be the total variation function, defined in equation (4) as

TV(θ) :=
∑
i,j

∥∥∇i,jθ
∥∥
2

≈
∑
i,j

√(
θv(i+1,j) −θv(i,j)

)2
+
(
θv(i,j+1) −θv(i,j)

)2
,

where v(i, j) maps the spatial coordinates to the linear indices of the input parameter vector, θ, and where
∇i,jθ denotes the spatial gradient in the image at location (i, j). The spatial gradient is approximated using a
first-order approximation (the forward difference).

We note that the total variation function, TV, is absolutely homogeneous, i.e. it obeys the scaling rule

TV(γθ) = |γ|TV(θ),

for any γ ∈ R. Hence, for λ > 0, integrating equation (A1) with ϕ= TV yields

1=
1

Z(λ)

ˆ
RN

e−λTV(θ) dθ

=
1

Z(λ)

ˆ
RN

e−TV(λθ) dθ

=
λ−N

Z(λ)

ˆ
RN

e−TV(ψ) dψ

=
λ−NIψ
Z(λ)

,

where Iψ is the value of the integral over ψ. Inserting this result into equation (A1) yields

p(θ |λ) = I−1
ψ λNe−λϕ(θ)

∝ λNe−λTV(θ).

Appendix B. Determining the burn-in length

We adapted the method of Betancourt (2010) to determine when the burn-in phase is over, i.e. when the
chains have converged to the posterior in a sufficient manner for practical use. In this approach, we look at
the coefficients within a window of the last 100 sampled parameter values for each voxel, split these into two
consecutive windows with 50 samples each, and compute the means within these two windows over all
samples in the window and all chains. Hence, we obtain two means for each voxel, and thus have two ‘mean
images’. The means are approximately normally distributed, and the question is whether these two ‘mean
images’ are sufficiently similar.
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The voxels in the ‘mean images’ are modelled by a Bayesian mixture model, where the mixture is between
a model that assumes the voxels have the same mean, and one where we assume they have different means.
We then examine the posterior distribution of the mixture coefficient, to determine whether the chains have
converged or not.

Formally, the posterior over the mixture coefficient is

p(α|I, J) = p(I, J |α)p(α)´ 1
0 p(I, J |α)p(α)dα

, (B2)

where I and J are the ‘mean images’, and α is the mixture coefficient. The likelihood is a Gaussian mixture,
and is defined as

p(I, J |α) =
V∏

v=1

αp(Iv, Jv |S)+ (1−α)p(Iv, Jv | S̄),

where S is the event that the voxels Iv and Jv have the same means, and S̄ is the event that the means are
different. The prior for the mixture coefficient is uniform over [0, 1], such that

p(α) = 1, ∀α ∈ [0,1].

The evidence that they are the same is modelled by two Gaussian distributions, evaluated over the
support of the prior, with the same mean, µ, and the same (known) variance (σ2, estimated from the data).
The prior is uniform,

p(µ |S) =

{
1
t , if 0≤ µ≤ t,

0, otherwise,

the joint likelihood is

p(Iv, Jv |µ,S) = p(Iv |µ,S)p(Jv |µ,S)

=
1√
2πσ2

e−
(Iv−µ)2

2σ2
1√
2πσ2

e−
(Jv−µ)2

2σ2 ,

giving the evidence

p(Iv, Jv |S) =
ˆ ∞

−∞
p(Iv, Jv |µ,S)p(µ |S)dµ

=
1

t

ˆ t

0

1√
2πσ2

e−
(Iv−µ)2

2σ2
1√
2πσ2

e−
(Jv−µ)2

2σ2 dµ. (B3)

The evidence that they are different is also modelled by two Gaussian distributions, evaluated over the
support of the prior, but with different means, µI and µJ , and (known) variances (σ2

I and σ2
J , estimated from

the data) where the joint prior is uniform,

p(µI,µJ | S̄) = p(µI | S̄)p(µJ | S̄)

=

{
1
t2 , if 0≤ µI ≤ t and 0≤ µJ ≤ t,

0, otherwise,

the joint likelihood is

p(Iv, Jv|µI,µJ, S̄) = p(Iv|µI, S̄)p(Jv|µJ, S̄)

=
1√
2πσ2

I

e
− (Iv−µI)

2

2σ2
I

1√
2πσ2

J

e
− (Jv−µJ)

2

2σ2
J ,

giving the evidence

p(Iv, Jv | S̄) =
ˆ ∞

−∞
p(Iv |µI, S̄)p(µI | S̄)dµI

ˆ ∞

−∞
p(Jv |µJ, S̄)p(µJ | S̄)dµJ

=
1

t
√
2πσ2

I

ˆ t

0
e
− (Iv−µI)

2

2σ2
I dµI ·

1

t
√
2πσ2

J

ˆ t

0
e
− (Jv−µJ)

2

2σ2
J dµJ. (B4)
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The evidences, equations (B3) and (B4), can easily be computed analytically (using the error function).
The posterior evidence (the denominator in equation (B2)) was computed numerically using Simpson’s rule.

The chain was deemed having converged to the posterior when the mode of the posterior of the mixture
coefficient was larger than 0.99. In that case, the model has found that the overwhelming majority of the
voxels in the ‘mean images’ are better described by a single Gaussian than by two independent Gaussians.

Appendix C. The widely applicable information criterion (WAIC)

We used the criterion denoted WAIC1 in Watanabe (2009), which is defined through the Bayesian and Gibbs
training losses as

WAIC1 := BLt + 2β(GLt −BLt)

= BLt +
β

N
V+ op

(
1

N

)
,

where BLt and GLt are the Bayesian and Gibbs training losses, respectively, V is the empirical variance, op
denotes convergence (to zero) in probability, and β > 0 is an inverse temperature parameter that was set to
β= 1 in our estimations—corresponding to Bayesian estimation. The criterion is related to the Bayes
generalization loss as

E[BLg] = E[WAIC1] + o

(
1

N

)
,

where BLg is the Bayes generalization loss, N is the number of data samples, and o is the little-o notation. The
WAIC1 can be estimated by

WAIC1 ≈ B̂Lt +
β

N
V̂,

with

V=
N∑
i=1

Var
(
logp(xi |θ)

)
≈

N∑
i=1

1

Ns − 1

Ns∑
s=1

(
logp(xi |θ(s))−µi

)2
=: V̂

in which

µi =
1

Ns

Ns∑
s=1

logp(xi |θ(s)),

the data points are {xi}Ni=1, and {θ(s)}Ns
s=1 are parameter samples from the posterior; and

BLt =− 1

N

N∑
i=1

logEθ
[
p(xi |θ)

]
≈− 1

N

N∑
i=1

log

(
1

Ns

Ns∑
s=1

p(xi |θs)

)
=: B̂Lt.

Appendix D. In-vivo dataset

Tissue parameter estimates, calculated with the three estimation models ML, Bunif, and BTV are presented in
figure D1. Each row in figure D1 presents the estimated parameters for a different patient the in-vivo dataset
(patients 1 to 8).
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Figure D1. Tissue parameter estimation results of ρ (col (a)–(c)) and T1 (col (d)–(f)) for each of the eight patients in the in-vivo
dataset (row 1–8).
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