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A B S T R A C T

In this paper, we measure the technical efficiency for local electricity distribution firms in Sweden, and in
particular how small and micro-scale generation affects efficiency scores. Using a two-stage data envelopment
analysis to model the technical efficiency and a double bootstrap approach to estimate the determinants of
inefficiencies, we show that firms are heterogeneous in terms of inefficiency, but that a large share of small
and micro-scale generation is not associated with more inefficient operations.
1. Introduction

The share of small-scale electricity generation is increasing rapidly
in Sweden and elsewhere. For example, between 2007 and 2017, the
wind generation, as a share of total domestic generation, increased from
less than one percent to more than ten percent.1 Furthermore, both
small and micro-scale generation are heavily subsidized in Sweden,
through both direct subsidies on, e.g., installations on photovoltaics
Lindahl (2016), and through a tradable electricity certificate mech-
anism with a government-set quota to promote renewable energy.
This development is expected to continue for the foreseeable future if
Sweden is to meet its ambitious climate and energy policy goals of 100
percent of renewable generation by 2045. For example, the Swedish
Energy Agency forecast wind generation to be up to 60 TWh in 2050,
compared to approximately 20 TWh as of today Energimyndigheten
(2018).

Many argue that increased penetration of distributed electricity
generation, such as solar and wind, will have profound impacts on the
efficiency of electricity distribution (e.g., Mateo et al. (2018), Adefarati
and Bansal (2016), Asrari et al. (2016), Jenkins et al. (2017), Cossent
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1 Source: https://www.energiforetagen.se/statistik/energiaret/.
2 Transmission and distribution refers to the different stages of carrying electricity over poles and wires from generators to end-users. Transmission refers to

the part of electricity delivery that moves bulk electricity from the generation sites over long distances to substations closer to areas of electricity demand, and
distribution networks deliver electricity from these substations to the end-user. The primary distinction between the two is the voltage level at which electricity

et al. (2009)). Contrary to transmission grids,2 distribution networks
are not designed to accommodate generation, only consumption. An
increasing share of intermittent small-scale generation may also pose
management, planning, and coordination challenges in the delivery
of electricity. On the other hand, the location of generation close to
consumption may, for example, reduce networks losses, which would
possibly improve network efficiency. In any case, there is little, if any,
empirical evidence on the effects of small and micro-scale generation
on the efficiency of electricity distribution networks. This issue is
becoming increasingly important to study as the penetration of small
and micro-scale renewable energy is sure to continue to increase. This
paper fills this gap.

In more detail, this paper contributes to the existing literature by
being the first to explore how small and micro-scale generation affects
the efficiency of electricity distribution operation. We use a two-stage
Data Envelopment Analysis (DEA) approach to model the technical effi-
ciency among the approximately 150 local electricity grids in Sweden.
The analysis sets out to capture their heterogeneous environment and
firm characteristics that might affect their efficiency. Most notably,
957-1787/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar
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we include distributed power from small and micro-scale production,
which varies substantially across firm networks, as environmental vari-
ables. To a large extent, these small and micro-scale units are wind
producing units. To draw inference on how the environmental and firm-
specific factors affect the firms operating the grids, a double bootstrap
approach, similar in spirit to Simar and Wilson (2007), is employed.
In brief, we find that firms in northern Sweden (price areas SE1 and
SE2), large firms, and firms with a high customer density, are relatively
more efficient. Furthermore, and contrary to previous recent studies
(e.g., Lundin (2020)), our findings reveal that there are relatively little
differences in efficiency across different types of ownership (which is
in line with the findings in Hjalmarsson and Veiderpass (1992). Finally,
we find that the effect of small and micro-scale production on grid
efficiency is insignificant or slightly positive.

The rest of the paper is structured as follows: in Section 1.1, we
describe the Swedish transmission and distribution system and review
the recent literature concerning technical and cost efficiency in these
markets. In Section 2, we detail the data used in this paper, and we
describe the empirical approach in Section 3. The results from our
estimation are presented in Section 4, and Section 5 concludes.

1.1. Background and previous literature

The Swedish power transmission and distribution system is char-
acterized by a three-tier structure, with the national transmission grid
owned and operated by a state-owned utility, Svenska Kraftnät (www.
svk.se), about thirteen regional grids owned and operated by the large
power generators, and about 150 local distribution grids primarily

anaged by municipal (approximately 67 percent of the firms) and
rivately owned entities (13 percent).3

The local grids, which distribute electricity to the end-users, are
ach a monopoly in their region of operation, and they are the focus of
ur analysis. These firms, typically referred to as Distribution System
perators (DSO’s) in the literature, are regulated through a firm-

pecific revenue cap by the Swedish Energy Market Inspectorate (SEMI,
ww.ei.se). The revenue cap model can be broken down into three
arts of revenue drivers: Controllable costs, non-controllable costs and
sset base. These are then adjusted according to efficiency requirements
allnerström et al. (2017). See Pandur and Jonsson (2015) for details.
The literature on the efficiency of electricity distribution has seen

large expansion. The common findings in the literature are that few
irms are fully efficient, but that the efficiency scores vary substantially
cross firms. These results are typically derived from either DEA or
ariants of stochastic frontier analysis (SFA).4

To give a few examples, Arocena (2008) analyzes the degree of
ertical integration and diversification in the electricity industry using
EA on Spanish data on electricity distribution. They show that cost
nd quality gains from integrating power generation and distribution
mount to approximately five percent, whereas diversifying the source
f power generation saves between 1.3 and 4.3 percent of costs and
uality.

Fallahi et al. (2019) evaluate the efficiency and productivity change
f 39 electricity distribution companies in Iran over the 2005–2014
eriod, and focus on regional heterogeneity in efficiency. Agrell et al.
2005) explore different regulatory schemes for Scandinavian electric-
ty distributors using cost information from a productivity analysis
odel and an agency theoretical decision model. The authors illustrate
ow the proposed schemes have considerable advantages compared
o the popular CPI-X revenue cap regulation. Giannakis et al. (2005)

3 The remaining firms are managed by, e.g., co-operatives
4 DEA and SFA are typically also used by the regulators; for example, in

weden, the regulator (the Swedish Energy Market Inspectorate) use DEA to
stimate efficiency scores in determining revenue cap for the individual DSO
see Energimarknadsinspektionen (2015)).
2

e

present a quality-incorporated benchmarking study of the electricity
distribution firms in the UK, and compute the utilities’ technical ef-
ficiency of the utilities using DEA technique and productivity change
over time through quality-incorporated Malmquist indices. They find
that cost-efficient firms do not necessarily exhibit high service qual-
ity and that efficiency scores of cost-only models do not show high
correlation with those of quality-based models. The results also show
that service quality improvements have significantly contributed to the
sector’s total productivity change.

Other examples of efficiency analysis of electricity distribution in-
clude Filippini et al. (2018), Bobde and Tanaka (2018) and Mydland
et al. (2019). For applications to the Nordic context, see Kuosmanen
(2012), Korhonen and Syrjänen (2003), Edvardsen and Førsund (2003),
Førsund and Kittelsen (1998), and more recently, Kumbhakar and Lien
(2017), Kumbhakar et al. (2020). These latter papers have in particular
focused on distinguishing between short- and long-run inefficiencies
(usually labeled transient or persistent inefficiency) for both technical
inefficiency and allocative inefficiency, respectively.

For studies of the efficiency of electricity distribution in Swe-
den, Hjalmarsson and Veiderpass (1992) illustrate that there are little
variation in efficiency across time, ownership and location, and Lundin
(2020) examines the effects of privatization, in the form of acquisitions,
in the Swedish electricity distribution sector. Somewhat surprising,
and as already alluded to, although the literature on the drives of
inefficiency is substantial, we have not found any previous literature
on how this heterogeneity is associated with the share of micro- and
small-scale generation.

A common way to analyze the drivers of the observed heterogeneity
in efficiency scores obtained from DEA is to employ a two-stage strategy
where efficiency scores are calculated, and regression techniques are
then used to explain the difference in efficiency across DSOs (Simar
and Wilson, 2007). Llorca et al. (2014) use a latent class approach
to cluster DSOs in the US market according to technical differences
and estimate efficiency within the classes using DEA. They find that
minimum temperature and growth in power demands promote effi-
ciency. Çelen (2013) employs a two-stage DEA analysis and a Tobit
regression to explain efficiency scores for Turkish distribution firms and
shows that customer density and diversified ownership affected firm
performance. Dai and Kuosmanen (2014) use a clustering method to
group distribution companies according to differences in environmen-
tal variables and find a small positive correlation between customer
density and productive efficiency of distribution companies in Finland.
In a recent paper, Xie et al. (2018), study Chinese DSOs by a meta-
frontier approach, where environmental factors are used to explain
bootstrapped efficiency scores through a Tobit regression. Of interest
to the current paper is that they find that increasing proportion of
renewable generation decrease efficiency.

2. Data

The data used for this analysis is publicly available from the regu-
lator’s website (Swedish Energy Market Inspectorate, see www.ei.se),
and includes data on all (𝑁 = 155)5 the Swedish DSOs’ financial and
technological data. This data are used by the regulator for regulation.
The data on costs come from each firm’s final revenue-cap report for the
supervisory period 2012–2018, published by the regulator. However,
the data only includes information about small-scale production for
2014–2017, so we focus our analysis on these years. Summary statistics
of the key variables included in the empirical modeling are presented
in Tables 1 and 2. All monetary values in this paper are in 2014 SEK.

The first thing to notice is the substantial heterogeneity across
firms in terms of both costs and technical characteristics. Capital cost,

5 Worth noting is that this is a substantially larger sample size than, for
xample, Filippini et al. (2018) where 𝑁 = 28.

http://www.svk.se)
http://www.svk.se)
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Table 1
Descriptive statistics, Swedish local distribution service operators, 2014–2017.

Variables Unit Min Mean Max SD

Capital costs MSEK 824 116859 3889155 368506
Controllable operational costs MSEK 1097 52049 1533303 157920
Non-controllable operational costs MSEK 278 56998 1821909 185744

Number of customers 310 33748 812178 102327
Number of netstations 27 1072 36257 4048
Maximum power output MW 1 172 17700 832
Distributed low voltage electricity MWh 3469 418027 10294043 1236880
Distributed high voltage electricity MWh 0 155734 3283274 411903
Table 2
Descriptive statistics, Swedish local distribution service operators, 2014–2017.

Variables Unit Min Median Mean Max SD

Customer density customers/km 3.01 10.33 12.10 43.00 7.03
Micro scale production % 0.00 0.02 0.16 21.24 1.36
Small scale production % 0.00 1.42 5.99 96.41 12.13
Power distributed to border point % 0.00 0.00 2.44 68.44 9.26
Vertical integration % 0.00 0.14 9.85 100.00 17.82
u
b
i

r

illustrated in Table 1 is a good example, varying from 824 MSEK
to over 400 000 MSEK. Similarly, the number of customers varies
from 310 to over a hundred thousand. Turning to the key variable
of this paper, presented in Table 2, we note that the average share
of small-scale production is small; less than two percent, but that
for some firms, this share is very large: more than 95 percent. As is
illustrated by Tables A.1–A.4 in Appendix A, there are some interesting
differences in firm characteristics across small-scale production levels.
For example, firms with small-scale production above the mean on
average are somewhat smaller, with lower costs and fewer customers,
but the heterogeneity within this group is large.

3. Empirical approach

3.1. Efficiency measurement

Similar to previous literature, efficiency is defined in this paper as
the ratio of optimal to actual inputs, holding outputs fixed. Assume that
firms use a vector of 𝑁 inputs 𝑥 = (𝑥1, … , 𝑥𝑁 ) to produce a vector
of 𝑀 outputs 𝑦 = (𝑦1 , … , 𝑦𝑀 ). The technology can be defined as:
𝑇 = {(𝑥, 𝑦) ∶ 𝑥 can produce 𝑦}, which is assumed to be closed and
bounded, implying that a finite amount of inputs can only produce
a finite amount of outputs. To apply the production technology 𝑇 to
empirical applications, we can represent it by using DEA. Assume that
there are 𝑘 = 1 , … , 𝐾 observations of inputs and outputs, each of
which is associated with a firm. The technology that allows for constant
returns to scale (CRS)6 can be represented by:

𝑇 = {(𝑥, 𝑦) ∶
𝐾
∑

𝑘=1
𝑧𝑘𝑦𝑘𝑚 ≥ 𝑦𝑚, 𝑚 = 1,… ,𝑀

𝐾
∑

𝑘=1
𝑧𝑘𝑥𝑘𝑛 ≤ 𝑥𝑛, 𝑛 = 1,… , 𝑁

𝑧𝑘 ≥ 0, 𝑘 = 1,… , 𝐾 }

(1)

The intensity variables, 𝑧𝑘, 𝑘 = 1,… , 𝐾 serve as coefficients to
perform linear combinations of all observed firms’ inputs and outputs,
and determine the reference point. Then, the DEA model for measuring

6 We compare with a VRS specification, and find very similar results.
3

the efficiency of firm, 𝑘′ = 1 ,… , 𝐾 can be written as:

𝛿𝑘′ = min
𝑧𝑘 ,𝛿

𝛿

𝐾
∑

𝑘=1
𝑧𝑘𝑦𝑘𝑚 ≥ 𝑦𝑘′𝑚, 𝑚 = 1,… ,𝑀

𝐾
∑

𝑘=1
𝑧𝑘𝑥𝑘𝑛 ≤ 𝛿𝑥𝑘′𝑛, 𝑛 = 1,… , 𝑁

𝑧𝑘 ≥ 0, 𝑘 = 1,… , 𝐾

(2)

The value of 𝛿𝑘 is in the range of (0, 1]. An efficient firm has 𝛿𝑘 = 1,
while an inefficient firm will have 0 < 𝛿𝑘 < 1: a higher value indicates
higher efficiency.

3.2. The econometric model

We use an econometric model to examine what factors affect effi-
ciency. This is achieved by regressing the efficiency estimates on a set of
environmental and control variables. Suppressing subscript 𝑡 denoting
year, the regression equation can be written as:

𝛿𝑘 = 𝒇𝛽 + 𝜀𝑘 (3)

where 𝛿𝑘 is the efficiency score obtained from estimating Eq. (1), 𝒇 is
the vector of explanatory variables, e.g., small-scale production, 𝛽 are
parameters to be estimated, and 𝜀𝑘 is the disturbance term.

To estimate Eq. (3), we can use the method of ordinary least squares
(OLS). An alternative method is to treat 𝛿𝑘 as being censored (for
𝛿𝑘 > 1) and use the Tobit model. However, Simar and Wilson (2007)
point out that there exist serious problems associated with estimating
Eq. (3) using the usual estimation methods. Specifically, when 𝛿𝑘 is
sed as the dependent variable in regression analysis, two issues must
e considered. One issue is that 𝛿𝑘 is serially correlated. Another issue
s that 𝛿𝑘 is biased, though consistent. Simar and Wilson (2007) show

that it is not possible to provide consistent and valid inference for the
coefficients estimates which are obtained by using either OLS or Tobit.
To overcome the difficulty, Simar and Wilson (2007) suggest a double
bootstrap procedure, which yields consistent and valid inference for
𝛽 in Eq. (3) by using the method of maximum likelihood estimation.
Briefly, the first bootstrap is used to produce a bias-corrected 𝛿𝑘 for 𝛿𝑘;
eplacing 𝛿 with 𝛿 , and the second bootstrap is used to provide valid
𝑘 𝑘
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inference about 𝛽. The Simar and Wilson (2007) bootstrap algorithm is
applied to our regression analysis.7

A key criticism of standard DEA is that the method does not lend
itself to statistical inference concerning the efficiency scores and that
outliers in the data could be very influential for the results. Another
common criticism of the two-stage procedure is that determinants used
in the second stage could be important in that they influence the first
stage scores, and therefore should have been included as variables in
that stage already. This problem could be remedied by using stochastic
frontier analysis (SFA), where it is possible to do this kind of one-
shot estimation of both stages (the inefficiency is modeled explicitly as
dependent on determinants when generating the scores). This necessi-
tates parameterizing the frontier function, which can be restrictive and
significantly impact the results.

Simar and Wilson (2011) discuss several statistical challenges using
two-stage DEA. They claim only two statistical models have been
proposed in which two-stage regressions are statistically meaningful
and provide consistent estimation: Simar and Wilson (2007) propose a
truncated regression that provides consistent estimation in the second
stage, and the model proposed in Banker and Natarajan (2008). Simar
and Wilson (2011) propose that two-stage OLS estimation is consistent
only under peculiar assumptions on the data-generating process that
limits applicability. They also comment on ad-hoc specifications of two-
stage regressions that ignore the part of the data-generating process
that yields data used to obtain the initial DEA estimates. The two-stage
DEA is widely used in empirical applications (hundreds of papers, and
counting). We do not claim to progress methodology in this paper, but
simply follow a large previous literature and use an empirical method-
ology that is commonly accepted in applied work today. We apply the
two-stage estimation procedure proposed by Simar and Wilson (2007)
as this still seem to be the state-of-the-art approach, but we are aware
of its potential flaws and try to mitigate them as much as possible (more
on this below).

3.3. The specification of empirical models

3.3.1. The DEA specification
We specify two DEA models with different output variables. In our

first specification, 𝑀1, we follow exactly the DEA model specification
used by the Swedish regulator, SEMI, has used to estimate efficiency
scores in determining revenue cap for the individual DSOs (see page
71 in Energimarknadsinspektionen (2015).

The input and output variables for this specification are:

X1 = controllable operational costs (MSEK);
X2 = non-controllable operational costs (MSEK);
X3 = capital costs (MSEK).

The output variables are:

Y1 = number of customers;
Y2 = number of net stations;
Y3 = maximum power outputs (MWh);
Y4 = distributed low-voltage electricity (MWh);
Y5 = distributed high-voltage electricity (MWh).

The regulator provides some brief motivations for this specification,
including that (i) the output variables are plausible cost drivers; (ii)
the model gives rise to higher efficiency scores than models with,
e.g., only capital costs as input; (iii) in principal, it is reasonable to
include also non-controllable costs; (iv) the model produces similar
results to an alternative specification with only capital costs as inputs.
See Energimarknadsinspektionen (2015) for additional discussions.

7 The bootstrap algorithm developed by Simar and Wilson (2007) is de-
igned for an output-oriented efficiency measure. For the algorithm adapted
or an input-oriented measure, see Zhang et al. (2016).
4

r

The second DEA model, 𝑀2, is consistent with the DEA model
f Hjalmarsson and Veiderpass (1992) in which the efficiency of the
wedish electricity distribution was studied. . From the viewpoint of
conomic theory, we consider that these variables are closely associated
ith the firm’s revenue. This perspective motivates the second model,
nd this specification also allows us to compare with previous literature
or Sweden. Specifically, 𝑀2 includes the same input variables as 𝑀1
ut with the output variables:

Y1 = number of customers;
Y4 = distributed low-voltage electricity (MWh);
Y5 = distributed high-voltage electricity (MWh).

To create an incentive for consolidation in the electricity distri-
ution sector and realize economies of scale, SEMI suggests using
EA models with CRS in calculating efficiency scores for Swedish
SOs, even though there is scale effect (Energimarknadsinspektionen,
015). We follow the SEMI’s method and use CRS in both DEA models
ut compare our results to a VRS model (results are available upon
equest), which we find to produce very similar results as our main
pecification.

.3.2. The econometric model specification
For each of the two DEA models (𝑀1 and 𝑀2), we separately

stimate the econometric model corresponding to Eq. (3), including
ight independent variables. These variables are:

𝑓1 = customer density, which is measured by the number of
customers per kilometer power lines;
𝑓2 = firm size, a binary variable, which is equal to 1 if a firm
is large and 0 otherwise. The size is determined relative to the
median value of the number of customers in the population;
𝑓3 = electricity price area, a dummy variable, where price area
SE1 (out of SE1, SE2, SE3 and SE4) is taken as baseline;
𝑓4 = small-scale production, which is measured by the share of
delivered electricity that is produced by small-scale generation
plants (e.g., wind power plant) in the total delivery;
𝑓5 = micro-scale production, which is measured by the share of
delivered electricity that is from micro-scale generation plants
(e.g., solar panel) in the total delivery;
𝑓6 = degree of vertical integration, which is measured by the
share of energy produced by the DSO relative to the total deliv-
ered electricity;
𝑓7 = power distributed to border point, which is measured by the
share of electricity that is delivered to the border point;
𝑓8 = a year dummy variable that is included to capture the
efficiency change over time, where year 2014 is the baseline.

In addition, we also estimate specifications with interaction terms
etween small-scale generation and customer density, and between
mall-scale generation and firm size.

To obtain meaningful estimation results in the second stage, en-
ironmental factors must satisfy the ‘‘separability condition’’, which
eans that the environmental factors used in the second stage as in-
ependent variables can only affect the distribution of the efficiencies,
ut not the technology frontier itself, or the attainable input–output
ombinations Simar and Wilson (2007). We investigate our data using
earson’s correlation test.8 The correlation coefficient matrix is pre-
ented in Table A.5 in Appendix A. The correlation matrix shows that
actors 𝑓4, 𝑓5, 𝑓6, and 𝑓7 are not significantly correlated with any of the

input and output variables, while 𝑓1 is not significantly correlated with
input variables X2 and X3. Accordingly, it seems reasonable to assume

8 A more formal empirical test for the validity of separability condition is
uggested by Daraio et al. (2018). However, with the variables correlation
esults at hand, we do not deem it necessary to do further testing.
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Table 3
Average estimates of technical efficiency (bias-corrected) by year, Swedish local
distribution service operators, 2014–2017. (𝑀1).

Year Mean Median Min Max SD

2014 0.7314 0.7318 0.4442 0.9458 0.1166
2015 0.7132 0.7095 0.4318 0.9407 0.1236
2016 0.7281 0.7230 0.5084 0.9316 0.0993
2017 0.7587 0.7562 0.5421 0.9525 0.1001

Table 4
Average estimates of technical efficiency (bias-corrected) by year, Swedish local
distribution service operators, 2014–2017. (𝑀2).

Year Mean Median Min Max SD

2014 0.6711 0.6423 0.3348 0.9554 0.1374
2015 0.6529 0.6264 0.3201 0.9577 0.1393
2016 0.6625 0.6490 0.3424 0.9498 0.1333
2017 0.6925 0.6764 0.3805 0.9705 0.1333

Table 5
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). (𝑀1).

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.7277*** (0.6884, 0.7678)
Large firm 0.0530*** (0.0370, 0.0699)
Customer density 0.0049*** (0.0036, 0.0062)
Small scale production 0.0004 (−0.0003, 0.0010)
Micro scale production −0.0029 (−0.0086, 0.0031)
Power distributed to border point −0.0006 (−0.0016, 0.0005)
Vertical integration 0.0004 (−0.0002, 0.0010)
Price area SE2 0.0141 (−0.0333, 0.0611)
Price area SE3 −0.0826*** (−0.1224, −0.0446)
Price area SE4 −0.1426*** (−0.1842, −0.1034)
y2015 −0.0183 (−0.0400, 0.0026)
y2016 −0.0022 (−0.0237, 0.0195)
y2017 0.0282** (0.0058, 0.0513)
Sigma 0.0959*** (0.0903, 0.1020)
Log likelihood: 582.2 on 14 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

that the environmental factors we used may only affect the distribution
of efficiencies, but not the attainable set. Thus, the regression analysis
performed in the second stage provides meaningful results.

4. Results

Our results from the first DEA model, 𝑀1, are presented in Table 3
(and in Tables B.1 and B.2 in Appendix B), and for the second DEA
model, 𝑀2, in Table 4 (and in Tables B.3 and B.4 in Appendix B).
The regression results, where we explore determinants for efficiency
scores, are presented in Tables 5 and 6 (and in Tables C.1–C.8 in
Appendix C). These results reveal several interesting results. First, we
find substantial heterogeneity in efficiency among Swedish DSOs. This
is in line with the findings in previous literature, as discussed in our
literature review. The results are also very similar to the regulator’s
own result, which is expected given that we use a similar approach
(see Energimarknadsinspektionen (2015)). Furthermore, we find that
there is not much variation in efficiency across the four years (Tables 3
and 4), as expected due to the short time span or our data.

There is a relatively large heterogeneity in efficiency across pricing
areas, as illustrated by Tables B.1 and B.3, with a higher efficiency
in the most northern pricing areas (SE1 and SE2). This is also evi-
dent in Tables 5 and 6, where we see that firms in price area 1 are
significantly more efficient than firms in price areas 2, 3 and 4. One
5

possible explanation to this result is that a majority of electricity is r
Table 6
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). (𝑀2).

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.5509*** (0.5116, 0.5910)
sizeLarge 0.0480*** (0.0319, 0.0660)
Customer density 0.0131*** (0.0117, 0.0146)
Small scale production 0.0001 (−0.0006, 0.0007)
Micro scale production −0.0007 (−0.0063, 0.0051)
Power distributed to border point −0.0017*** (−0.0029, −0.0006)
Vertical integration 0.0001 (−0.0004, 0.0007)
Price area SE2 0.0698*** (0.0243, 0.1159)
Price area SE3 −0.0614*** (−0.1014, −0.0238)
Price area SE4 −0.1105*** (−0.1523, −0.0711)
y2015 −0.0158 (−0.0376, 0.0057)
y2016 −0.0053 (−0.0275, 0.0170)
y2017 0.0231** (0.0006, 0.0458)
Sigma 0.0958*** (0.0902, 0.1015)
Log likelihood: 583.3 on 14 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

produced in the northern part of Sweden (e.g., hydropower) whereas
most consumption is in the southern Sweden. The long distance of
transmission from North to South results in a large net loss. As a result,
firms in areas SE1 and SE2 are more efficient.

There is relatively little difference in efficiency across ownership
types, as illustrated in Tables B.2 and B.4. This finding is somewhat
surprising because it seems likely that firms that are owned by, e.g., mu-
nicipalities have a somewhat different objective, compared to privately
owned firms. For example, firms owned by municipalities may be
concerned by, e.g., equity, or other objectives that are not necessarily
compatible with efficiency. Contrary to previous studies (e.g., Lundin
(2020), our findings reveal that this is not the case. Furthermore, large
firms, and firms with high customer density, are more efficient; see,
for example, Tables 5 and 6. A plausible explanation to this is that
distribution of electricity is characterized by economies of scale.

Firm size (above median number of customers) and customer den-
sity are positively associated with efficiency in all specification,
whereas the effects of power distributed to border point are statistically
significant and negative in 𝑀1 and statistically insignificant in 𝑀2, and
he degree of vertical integration is insignificant in both specifications.

We find small-scale production to be positively correlated with
fficiency scores in some models (e.g., Tables C.2 and C.4), but the
ffect is small and in other specifications (e.g., Tables 5 and 6), it is not
ignificantly different from zero. Most importantly, we find no negative
ffect of small scale production on efficiency in any of our specifica-
ions.9 This tells us that a large share of small-scale generation does not
ead to electricity distribution inefficiencies. This is an important result,
iven that the share of small-scale generation is increasing steadily in
weden and elsewhere.

. Conclusions and policy implications

In this paper, we study how the technical efficiency of Swedish
lectricity distribution firms vary across firm characteristics. Of par-
icular interest is how the increasing share of small and micro-scale
eneration affects inefficiency. Even if small and micro-scale generation
n average is relatively small in Sweden, heterogeneity across firms
n this respect is substantial, which makes Sweden a useful context
or such analysis. Using detailed firm-level data and a two-stage Data

9 In addition, as illustrated by Table C.9, there is no statistically significant
elation between small scale generation and net losses.
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Table A.1
Descriptive statistics, Swedish local distribution service operators, 2014–2017, small scale production ≥ mean.

Variables Unit Min Mean Max SD

Capital costs MSEK 1352 75648 1304059 167478
Controllable operational costs MSEK 1162 35314 730574 87033
Non-controllable operational costs MSEK 476 35675 588586 82249

Number of customers 512 22391 564677 67451
Number of netstations 40 707 9555 1526
Maximum power output MW 3 93 1826 230
Distributed low voltage electricity MWh 3469 270116 5718447 713748
Distributed high voltage electricity MWh 0 111958 2302841 312113
Table A.2
Descriptive statistics, Swedish local distribution service operators, 2014–2017, small scale production < mean.

Variables Unit Min Mean Max SD

Capital costs MSEK 824 130415 3889155 413080
Controllable operational costs MSEK 1097 57554 1533303 174806
Non-controllable operational costs MSEK 278 64012 1821909 208471

Number of customers 310 37483 812178 111249
Number of netstations 27 1192 36257 4579
Maximum power output MW 1 199 17700 949
Distributed low voltage electricity MWh 4272 466682 10294043 1363016
Distributed high voltage electricity MWh 0 170135 3283274 439155
Table A.3
Descriptive statistics, Swedish local distribution service operators, 2014–2017, small scale production ≥ mean.

Variables Unit Min Median Mean Max SD

Customer density customers/km 3.29 8.45 9.99 42.90 6.07
Micro scale production % 0.00 0.02 0.51 21.24 2.71
Small scale production % 6.02 15.21 20.62 96.41 17.42
Power distributed to border point % 0.00 0.00 4.79 68.44 13.47
Vertical integration % 0.00 0.00 15.19 85.47 23.86
Table A.4
Descriptive statistics, Swedish local distribution service operators, 2014–2017, small scale production < mean.

Variables Unit Min Median Mean Max SD

Customer density customers/km 3.01 10.92 12.79 43.00 7.19
Micro scale production % 0.00 0.02 0.04 2.11 0.12
Small scale production % 0.00 0.27 1.18 5.76 1.56
Power distributed to border point % 0.00 0.00 1.66 63.86 7.23
Vertical integration % 0.00 0.54 8.10 100.00 14.94
Table A.5
Correlation matrix of Pearson correlation coefficients.

X1 X2 X3 Y1 Y2 Y3 Y4 Y5 𝑓1 𝑓4 𝑓5 𝑓6
X1
X2 0.97**
X3 0.99** 0.97**

Y1 0.98** 0.97** 0.96**
Y2 0.93** 0.96** 0.95** 0.89**
Y3 0.50** 0.50** 0.49** 0.50** 0.48**
Y4 0.98** 0.98** 0.97** 1.00** 0.92** 0.50**
Y5 0.93** 0.92** 0.91** 0.96** 0.82** 0.47** 0.94**

𝑓1 0.12** 0.08 0.07 0.20** −0.08* 0.03 0.15** 0.24**
𝑓4 −0.04 −0.03 −0.03 −0.05 −0.01 −0.04 −0.04 −0.04 −0.20**
𝑓5 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 −0.01 −0.05 0.14**
𝑓6 0.03 0.01 0.04 0.02 0.04 0.00 0.02 0.02 −0.01 0.01 −0.04
𝑓7 −0.01 −0.01 −0.01 −0.02 0.01 0.04 −0.02 −0.03 −0.22** 0.02 −0.02 0.56**

Note: * and ** represent significance at the 5% and 1% levels, respectively.
Envelopment Analysis (DEA) approach to model the technical efficiency
among the approximately 150 local electricity grids in Sweden, we find
that efficiency scores vary substantially across firms, but that small and
micro-scale generation does not lead to a decrease in efficiency.

In addition to these results, we also show that there is relatively
little difference in efficiency across different types of ownership, which
stands in contrast to some of the recent literature Lundin (2020) but are
in line Hjalmarsson and Veiderpass (1992), among others. Finally, we
6

show that both firm size and customer density are positively correlated
with efficiency, and these results are in line with, e.g., Hjalmarsson and
Veiderpass (1992). Finally, it is important to note that even though,
for example, small and micro-scale generation does not seem to be
associated with inefficiencies in the distribution of electricity, many
firms are still inefficient in their operations, and measures should be
taken to reduce such inefficiencies.
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Table B.1
Average estimates of technical efficiency (bias-corrected) by electricity price area (Epa),
Swedish local distribution service operators, 2014–2017. (𝑀1).

epa 2014 2015 2016 2017 Mean

SE1 0.8052 0.8152 0.7162 0.7738 0.7776
SE2 0.8143 0.7861 0.8033 0.8301 0.8084
SE3 0.7376 0.7195 0.7310 0.7607 0.7372
SE4 0.6703 0.6497 0.6956 0.7242 0.6850
Avg. 0.7569 0.7426 0.7365 0.7722 0.7521

Table B.2
Average estimates of technical efficiency (bias-corrected) by ownership, Swedish local
distribution service operators, 2014–2017. (𝑀1).

Ownership 2014 2015 2016 2017 Mean

Municipal 0.7344 0.7144 0.7357 0.7648 0.7373
Private 0.7567 0.7434 0.7539 0.7860 0.7600
Economic org 0.7041 0.6878 0.6842 0.7178 0.6985
Avg. 0.7318 0.7152 0.7246 0.7562 0.7319

Table B.3
Average estimates of technical efficiency (bias-corrected) by electricity price area,
Swedish local distribution service operators, 2014–2017. (𝑀2).

epa 2014 2015 2016 2017 Mean

SE1 0.6579 0.6935 0.6005 0.6173 0.6423
SE2 0.7633 0.7216 0.7235 0.7480 0.7391
SE3 0.6730 0.6546 0.6605 0.6921 0.6700
SE4 0.6340 0.6147 0.6575 0.6881 0.6486
Avg. 0.6820 0.6711 0.6605 0.6864 0.6750

Table B.4
Average estimates of technical efficiency (bias-corrected) by ownership, Swedish local
distribution service operators, 2014–2017. (𝑀2).

Ownership 2014 2015 2016 2017 Mean

Municipal 0.7056 0.6841 0.6981 0.7251 0.7032
Private 0.6508 0.6224 0.6229 0.6626 0.6397
Economic org 0.5664 0.5659 0.5617 0.5894 0.5708
Avg. 0.6409 0.6241 0.6276 0.6590 0.6379

From a policy perspective, our findings of no effect of small and
icro-scale generation on the efficiency of electricity distribution is

ood news as Sweden’s ambition is to increase renewable genera-
ion further, and thus more small/micro-scale units, in the electricity
roduction system. Our results suggest that this will not harm the
fficiency of the DSOs, and that the regulator does not need to take this
nto account when regulation distribution firms, at least not in the short
un. However, the share of small and micro-scale generation in Sweden
re still relatively small, and our findings of no effect of such distributed
eneration on the efficiency of electricity distribution may change as
hese shares continue to increase. Here, a more structural model of
lectricity distribution in relation to small and micro-scale generation
ould be used to predict the long-term effects, and is suggested for
urther research. Another suggestion for further research is to explore
he effects of small and micro-scale generation on regional grids and
he transmission grid.

ppendix A. Additional descriptive statistics

Tables A.1–A.5

ppendix B. Additional results, DEA model
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Tables B.1–B.4
Table C.1
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). (𝑀1 with interaction term)

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.7277*** (0.6889, 0.7671)
Large firm 0.0520*** (0.0331, 0.0710)
Customer density 0.0049*** (0.0036, 0.0062)
Vertical integration 0.0004 (−0.0001, 0.0010)
Small scale production 0.0003 (−0.0004, 0.0011)
Large firm ×small scale production 0.0002 (−0.0015, 0.0019)
Micro scale production −0.0029 (−0.0086, 0.0029)
Power distributed to border point −0.0006 (−0.0017, 0.0004)
Price area SE2 0.0144 (−0.0326, 0.0617)
Price area SE3 −0.0825*** (−0.1220, −0.0449)
Price area SE4 −0.1427*** (−0.1839, −0.1028)
y2015 −0.0183 (−0.0390, 0.0036)
y2016 −0.0022 (−0.0238, 0.0192)
y2017 0.0282** (0.0065, 0.0506)
Sigma 0.0959*** (0.0900, 0.1021)
Log likelihood: 582.1 on 15 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

Table C.2
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). (𝑀1 with interaction term).

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.7255*** (0.6869, 0.7662)
Large firm 0.0509*** (0.0347, 0.0674)
Customer density 0.0053*** (0.0038, 0.0068)
Vertical integration 0.0005* (−0.0001, 0.0010)
Small scale production 0.0017** (0.0002, 0.0032)
Customer density ×small scale production −0.0002* (−0.0004, 0.0000)
Micro scale production −0.0026 (−0.0082, 0.0032)
Power distributed to border point −0.0007 (−0.0018, 0.0004)
Price area SE2 0.0090 (−0.0371, 0.0558)
Price area SE3 −0.0823*** (−0.1228, −0.0444)
Price area SE4 −0.1441*** (−0.1876, −0.1037)
y2015 −0.0186* (−0.0403, 0.0025)
y2016 −0.0022 (−0.0246, 0.0204)
y2017 0.0283** (0.0050, 0.0511)
Sigma 0.0958*** (0.0900, 0.1019)
Log likelihood: 582.8 on 15 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

Table C.3
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). 𝑀1 without vertical integration.

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.7264*** (0.6840, 0.7680)
Large firm 0.0536*** (0.0373, 0.0705)
Customer density 0.0051*** (0.0038, 0.0064)
Small scale production 0.0004 (−0.0003, 0.0011)
Micro scale production −0.0031 (−0.0087, 0.0030)
Power distributed to border point −0.0001 (−0.0010, 0.0008)
Price area SE2 0.0154 (−0.0324, 0.0624)
Price area SE3 −0.0811*** (−0.1220, −0.0426)
Price area SE4 −0.1411*** (−0.1849, −0.0996)
y2015 −0.0181 (−0.0407, 0.0048)
y2016 −0.0017 (−0.0227, 0.0201)
y2017 0.0292** (0.0062, 0.0518)
Sigma 0.0960*** (0.0901, 0.1020)
Log likelihood: 581.6 on 13 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

Appendix C. Additional results, regression model

Tables C.1–C.9
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Table C.4
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). 𝑀1 with quadratic small scale production.

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.7305*** (0.6898, 0.7708)
Large firm 0.0525*** (0.0361, 0.0697)
Customer density 0.0047*** (0.0035, 0.0060)
Vertical integration 0.0005* (−0.0000, 0.0011)
Small scale production −0.0014* (−0.0028, 0.0002)
Small scale production squared 0.0000** (0.0000, 0.0001)
Micro scale production −0.0018 (−0.0077, 0.0037)
Power distributed to border point −0.0006 (−0.0017, 0.0005)
Price area SE2 0.0148 (−0.0334, 0.0609)
Price area SE3 −0.0800*** (−0.1206, −0.0411)
Price area SE4 −0.1406*** (−0.1839, −0.0993)
y2015 −0.0182 (−0.0399, 0.0051)
y2016 −0.0013 (−0.0228, 0.0217)
y2017 0.0292** (0.0066, 0.0528)
Sigma 0.0956*** (0.0897, 0.1016)
Log likelihood: 583.8 on 15 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

Table C.5
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). (𝑀2 with interaction term).

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.5511*** (0.5116, 0.5918)
Large firm 0.0449*** (0.0259, 0.0635)
Customer density 0.0132*** (0.0118, 0.0147)
Vertical integration 0.0001 (−0.0004, 0.0007)
Small scale production −0.0000 (−0.0008, 0.0007)
Large firm ×small scale production 0.0006 (−0.0010, 0.0022)
Micro scale production −0.0007 (−0.0065, 0.0051)
Power distributed to border point −0.0018*** (−0.0028, −0.0007)
Price area SE2 0.0705*** (0.0248, 0.1175)
Price area SE3 −0.0614*** (−0.1002, −0.0219)
Price area SE4 −0.1108*** (−0.1515, −0.0690)
y2015 −0.0156 (−0.0372, 0.0059)
y2016 −0.0050 (−0.0270, 0.0173)
y2017 0.0234** (0.0017, 0.0462)
Sigma 0.0958*** (0.0903, 0.1014)
Log likelihood: 583.6 on 15 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

Table C.6
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). (𝑀2 with interaction terms).

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.5520*** (0.5124, 0.5909)
Large firm 0.0484*** (0.0322, 0.0649)
Customer density 0.0130*** (0.0115, 0.0145)
Vertical integration 0.0001 (−0.0005, 0.0007)
Small scale production −0.0004 (−0.0019, 0.0011)
Customer density ×small scale production 0.0001 (−0.0001, 0.0002)
Micro scale production −0.0008 (−0.0067, 0.0047)
Power distributed to border point −0.0017*** (−0.0028, −0.0006)
Price area SE2 0.0726*** (0.0264, 0.1184)
Price area SE3 −0.0616*** (−0.1008, −0.0229)
Price area SE4 −0.1104*** (−0.1517, −0.0702)
y2015 −0.0160 (−0.0370, 0.0061)
y2016 −0.0054 (−0.0272, 0.0157)
y2017 0.0229** (0.0009, 0.0456)
Sigma 0.0958*** (0.0904, 0.1013)
Log likelihood: 583.4 on 15 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.
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Table C.7
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). 𝑀2 without vertical integration.

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.5509*** (0.5127, 0.5911)
Large firm 0.0486*** (0.0328, 0.0651)
Customer density 0.0131*** (0.0117, 0.0146)
Small scale production 0.0001 (−0.0006, 0.0007)
Micro scale production −0.0008 (−0.0064, 0.0050)
Power distributed to border point −0.0016*** (−0.0025, −0.0008)
Price area SE2 0.0702*** (0.0258, 0.1173)
Price area SE3 −0.0610*** (−0.1000, −0.0229)
Price area SE4 −0.1102*** (−0.1519, −0.0672)
y2015 −0.0158 (−0.0374, 0.0054)
y2016 −0.0051 (−0.0275, 0.0172)
y2017 0.0234** (0.0016, 0.0461)
Sigma 0.0956*** (0.0901, 0.1015)
Log likelihood: 584.4 on 13 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

Table C.8
Estimated parameters and confidence intervals for the regression model (dependent
variable: 𝑒𝑖). 𝑀2 with quadratic small scale production.

Independent variables Coefficients Confidence interval (95%)

(Intercept) 0.5537*** (0.5176, 0.5929)
Large firm 0.0483*** (0.0311, 0.0650)
Customer density 0.0129*** (0.0114, 0.0144)
Vertical integration 0.0002 (−0.0003, 0.0008)
Small scale production −0.0014* (−0.0029, 0.0001)
Small scale production squared 0.0000** (0.0000, 0.0000)
Micro scale production 0.0003 (−0.0055, 0.0061)
Power distributed to border point −0.0018*** (−0.0028, −0.0007)
Price area SE2 0.0698*** (0.0231, 0.1172)
Price area SE3 −0.0594*** (−0.0973, −0.0225)
Price area SE4 −0.1089*** (−0.1491, −0.0683)
y2015 −0.0156 (−0.0365, 0.0047)
y2016 −0.0046 (−0.0259, 0.0171)
y2017 0.0240** (0.0020, 0.0467)
Sigma 0.0953*** (0.0897, 0.1009)
Log likelihood: 586.5 on 15 degree of freedom.
Number of observations: 606

Notes: *, **, and *** represent significance at the 10, 5, and 1% levels, respectively.

Table C.9
Estimated relation between costs for netloss and small scale production.

Estimate Std. Error t value Pr(> |𝑡|)

(Intercept) 15.3948 0.2298 66.99 0.0000
Small scale production −0.0616 0.0151 −4.07 0.0001
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