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ALK ligand ALKAL2 potentiates MYCN-driven
neuroblastoma in the absence of ALK mutation
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Abstract

High-risk neuroblastoma (NB) is responsible for a disproportionate
number of childhood deaths due to cancer. One indicator of high-
risk NB is amplification of the neural MYC (MYCN) oncogene, which
is currently therapeutically intractable. Identification of anaplastic
lymphoma kinase (ALK) as an NB oncogene raised the possibility of
using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients
with activating ALK mutations. 8–10% of primary NB patients are
ALK-positive, a figure that increases in the relapsed population.
ALK is activated by the ALKAL2 ligand located on chromosome 2p,
along with ALK and MYCN, in the “2p-gain” region associated with
NB. Dysregulation of ALK ligand in NB has not been addressed,
although one of the first oncogenes described was v-sis that shares
> 90% homology with PDGF. Therefore, we tested whether ALKAL2
ligand could potentiate NB progression in the absence of ALK
mutation. We show that ALKAL2 overexpression in mice drives ALK
TKI-sensitive NB in the absence of ALK mutation, suggesting that
additional NB patients, such as those exhibiting 2p-gain, may
benefit from ALK TKI-based therapeutic intervention.
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Introduction

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase

that is activated by the ligands ALKAL1 (FAM150A/AUGβ) and

ALKAL2 (FAM150B/AUGα) (Morris et al, 1994; Iwahara et al, 1997;

Guan et al, 2015; Reshetnyak et al, 2015). Oncogenic ALK was initi-

ally described as a nucleophosmin (NPM)-ALK fusion in anaplastic

large cell lymphoma (ALCL) (Morris et al, 1997). Many other ALK

fusion proteins have since been described in different cancer forms,

such as non-small-cell lung cancer, diffuse large B-cell lymphoma

(DLBCL) and inflammatory myofibroblastic tumour (IMT) (Hallberg

& Palmer, 2013; Umapathy et al, 2019). Aberrant activation of ALK

has also been reported in the childhood cancer neuroblastoma (NB),

where both germline and somatic point mutations, predominantly

in the kinase domain of the receptor, have been reported (Caren

et al, 2008; Chen et al, 2008; George et al, 2008; Janoueix-Lerosey

et al, 2008; Mosse et al, 2008).

High-risk NB is notoriously difficult to treat and typically exhibits

a low mutation load as many paediatric cancers (Brodeur, 2003;

Maris et al, 2007; Pugh et al, 2013; Grobner et al, 2018; Ma et al,

2018). In contrast, chromosomal aberrations such as deletions of

parts of chromosome arms 1p and 11q, 17q gain, triploidy, as well

as MYCN and ALK amplifications, are important for prognosis in NB

(Brodeur, 2003; Vandesompele et al, 2005; Michels et al, 2007;

Caren et al, 2008, 2010; Janoueix-Lerosey et al, 2008; De Brouwer

et al, 2010). One long accepted indicator of high-risk NB and poor

prognosis is amplification of the currently therapeutically intractable

MYCN oncogene on chromosome 2p24, which is observed in

20–30% of all NB cases (Schwab et al, 1984; Brodeur, 2003; Maris

et al, 2007). The identification of ALK as an oncogene in both

1 Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
2 Department of Molecular Biology, Ume�a University, Ume�a, Sweden
3 Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
4 Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
5 Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
6 Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
7 Clinical Genomics, Science for life laboratory, University of Gothenburg, Gothenburg, Sweden

*Corresponding author. Tel: +32 9 3324855; E-mail: jimmy.vandeneynden@ugent.be
**Corresponding author. Tel: +46 31 7863815; E-mail: bengt.hallberg@gu.se
***Corresponding author (lead contact). Tel: +46 31 7863906; E-mail: ruth.palmer@gu.se
†These authors contributed equally to this work as first authors
‡Present address: Department of Biological Sciences, Alexandria University, Alexandria, Egypt

ª 2021 The Authors. Published under the terms of the CC BY 4.0 license The EMBO Journal 40: e105784 | 2021 1 of 21

https://orcid.org/0000-0002-8299-5659
https://orcid.org/0000-0002-8299-5659
https://orcid.org/0000-0002-8299-5659
https://orcid.org/0000-0002-6084-7962
https://orcid.org/0000-0002-6084-7962
https://orcid.org/0000-0002-6084-7962
https://orcid.org/0000-0003-2117-0677
https://orcid.org/0000-0003-2117-0677
https://orcid.org/0000-0003-2117-0677
https://orcid.org/0000-0002-9713-3074
https://orcid.org/0000-0002-9713-3074
https://orcid.org/0000-0002-9713-3074
https://orcid.org/0000-0001-9433-3655
https://orcid.org/0000-0001-9433-3655
https://orcid.org/0000-0001-9433-3655
https://orcid.org/0000-0003-0002-5614
https://orcid.org/0000-0003-0002-5614
https://orcid.org/0000-0003-0002-5614
https://orcid.org/0000-0003-2032-2616
https://orcid.org/0000-0003-2032-2616
https://orcid.org/0000-0003-2032-2616
https://orcid.org/0000-0002-2735-8470
https://orcid.org/0000-0002-2735-8470
https://orcid.org/0000-0002-2735-8470
http://crossmark.crossref.org/dialog/?doi=10.15252%2Fembj.2020105784&domain=pdf&date_stamp=2021-01-07


familial and somatic NB raised the possibility of using ALK tyrosine

kinase inhibitors (TKIs) in the treatment of NB patients who

harbour activating ALK mutations. Initial clinical results with the

first-generation ALK TKI crizotinib were disappointing in spite of

some responses (Mosse et al, 2013). However, a number of studies

have since examined next-generation ALK TKIs such as ceritinib,

lorlatinib, brigatinib, alectinib and repotrectinib in a preclinical

setting, identifying more potent inhibitors for the ALK mutant vari-

ants found in NB (Guan et al, 2016; Infarinato et al, 2016; Iyer et al,

2016; Siaw et al, 2016; Guan et al, 2018; Alam et al, 2019; Cervan-

tes-Madrid et al, 2019). While the number of ALK mutation-positive

NB patients on primary diagnosis is in the range of 8–10%, this fig-

ure increases substantially in the relapsed patient population

(Martinsson et al, 2011; Schleiermacher et al, 2014; Eleveld et al,

2015). Since considerable morbidity is associated with high-risk NB

protocols, it is important to thoroughly explore and identify all NB

patient populations that may benefit from clinical use of ALK TKIs.

Activation of ALK signalling by ALKAL ligands has been shown

to be important in the developing zebrafish neural crest, the tissue

from which NB arises (Guan et al, 2015; Reshetnyak et al, 2015; Mo

et al, 2017; Fadeev et al, 2018). In the human genome, ALKAL2 is

located on the distal portion of chromosome 2 (at 2p25), along with

ALK and MYCN, in the “2p gain” region that has been associated

with NB (Jeison et al, 2010; Javanmardi et al, 2019). We know from

previous work that ALK activation drives transcription of MYCN

and potentiates MYCN-driven NB in mouse and zebrafish models

(Weiss et al, 1997; Berry et al, 2012; Heukamp et al, 2012; Schon-

herr et al, 2012; Zhu et al, 2012; Cazes et al, 2014; Ono et al, 2019),

and this is supported by analysis of NB tumours where coexistence

of ALK activating mutations and MYCN amplification forms a high-

risk NB group with poor prognosis (De Brouwer et al, 2010). While

our advances in genetic profiling of tumours have led to significant

advances, this approach does not address signalling activity in

cancer cells that may not be reflected by genetic mutation (Yaffe,

2019). As illustration, it is unclear whether ALK activity in the

absence of mutation drives NB progression, and this could hypothet-

ically be achieved by misregulation of ALK ligands. Indeed, one of

the first oncogenes described was v-sis, which causes glioblastoma

in marmoset monkeys and shares more than 90% homology with

the PDGFB ligand (Doolittle et al, 1983; Waterfield et al, 1983;

Heldin et al, 2018). Since this finding, PDGF ligand dysregulation

has been described in several human cancers, including glioblas-

toma and the rare skin tumour dermatofibrosarcoma protuberans

(DFSP) where a chromosomal translocation event between PDGFB

and collagen 1A1 results in a tumour promoting PDGF-like protein

(Heldin et al, 2018). Thus, our considerable body of knowledge

regarding PDGF ligands and their receptors in tumorigenesis high-

lights a potential scenario, whereby aberrant regulation of ALK

ligands may activate ALK signalling via autocrine or paracrine stim-

ulation to promote NB development. Indeed, in support of this

scenario it has been reported that many NB exhibits high ALK

expression in the absence of mutation and that these high levels

correlate with poor progression (Lamant et al, 2000; Osajima-Hako-

mori et al, 2005; Janoueix-Lerosey et al, 2008; Mosse et al, 2008;

Passoni et al, 2009; Duijkers et al, 2012; Wang et al, 2013; Regairaz

et al, 2016; Javanmardi et al, 2019).

In this work, we have tested the hypothesis that ALKAL ligand

overexpression is able to drive NB progression in the absence of

ALK receptor mutation. We show by RNA-Seq, total proteomics and

phosphoproteomics that ALKAL stimulation of NB cell lines results

in an ALK signalling response that is sensitive to ALK TKIs. Having

characterized the ALKAL2/ALK signalling response in vitro, we

tested the hypothesis that ALKALs drive ALK signalling in vivo. For

this, we employed the Th-MYCN mouse model in which overexpres-

sion of MYCN in the neural crest drives NB development in mice

(Weiss et al, 1997). Critically, the appearance of NB in Th-MYCN

mice displays (i) incomplete penetrance and (ii) late onset (Weiss

et al, 1997). We show here that overexpression of ALKAL2 is suffi-

cient to drive rapid onset and highly penetrant Th-MYCN-driven NB

in the absence of Alk mutation. Remarkably, these Alkal2;Th-

MYCN-driven NBs are similar to ALK gain-of-function-driven NB as

assessed by RNA-Seq and moreover respond to ALK TKI treatment.

Together, these results indicate that aberrant regulation of the

ALKAL2 ligand can drive NB, and most importantly suggest that a

proportion of “ALK mutation-negative” NB patients may also benefit

from ALK TKI-based therapeutic intervention.

Results

ALKAL2 stimulates ALK downstream signalling in NB cells

We and others have previously shown that ALKAL2 stimulates ALK

in NB cells (Guan et al, 2015; Reshetnyak et al, 2015). In addition,

several studies have reported changes in ALK downstream signal-

ling in response to ALK TKI treatment in NB cells (Emdal et al,

2018; Van den Eynden et al, 2018). We therefore performed a

comprehensive analysis of NB cells stimulated with ALKAL2 ligand.

For this analysis, we employed NB1 and IMR-32 cells, which both

express a wild-type (WT) ALK receptor.

To verify whether ALK signalling was indeed induced by

ALKAL2, we first stimulated NB1 and IMR-32 cells with ALKAL2 for

30 min and 24 h, and monitored ALK activation by immunoblotting

against pY1278-ALK and downstream signalling with pAKT, pERK

and pS6 (Appendix Fig S1). ALK signalling in response to ALKAL2

ligand stimulation was rapid, and both pY1278-ALK and stimulation

of downstream molecules could be observed in NB1 cells at

30 min with some response remaining at 24 h (Appendix Fig S1).

A much stronger response was noted in NB1 cells, likely due to

amplification of ALK and increased ALK receptor expression in

comparison to IMR-32 cells. As expected, addition of the ALK TKI

lorlatinib led to a complete inhibition of ALKAL2-induced signals

(Appendix Fig S1).

Having confirmed that ALKAL2 stimulation results in the activa-

tion of ALK signalling that is inhibited by ALK TKI treatment, we

performed RNA-Seq, harvesting samples at 1, 6 and 24 h time points

(Fig 1A, Table EV1). At 1 h, we noted 34 and 13 genes that were

upregulated (log2FC > 2 at 1% FDR) in NB1 and IMR-32 cells,

respectively (no downregulation was observed; Fig 1B and C). We

identified a set of six transcription factors (EGR1, EGR2, EGR3, ARC,

FOS and FOSB) that were upregulated in both cell lines, and whose

upregulation was sensitive to lorlatinib, suggesting that these effects

were mediated via the ALK receptor (Fig 1B and C). This transcrip-

tional response to ALKAL2 stimulation was transient and was no

longer observed at either 6- or 24-h time points (Fig 1D). In line

with our findings, a downregulation of these genes was observed

2 of 21 The EMBO Journal 40: e105784 | 2021 ª 2021 The Authors

The EMBO Journal Marcus Boren€as et al



when ALK-driven cell lines CLB-BAR and CLB-GE were treated with

lorlatinib, providing further support for the ALK specificity of this

response ((Van den Eynden et al, 2018), Fig EV1). Additional

protein validation experiments in both NB1 and IMR-32 cells con-

firmed the rapid lorlatinib-sensitive induction of EGR1 and FOS on

ALKAL2 stimulation (Figs 1E and EV2). To predict the upstream

transcription factors responsible for the observed expression

changes, we performed a gene set enrichment analysis (GSEA). The

strongest enrichment was observed for serum response factor (SRF),

which targets all 6 identified genes (Fig 1F). Because phosphoryla-

tion has been suggested as a mechanism of SRF activation in

response to growth factor stimulation (Treisman, 1990), we hypoth-

esized that ALKAL2 activates SRF through phosphorylation. We

could indeed confirm a rapid and lorlatinib-sensitive appearance of
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Figure 1. ALKAL2 stimulates ALK signalling and transcriptional responses in NB cells.

A RNA-Seq-based differential gene expression (DE) was measured in NB1 and IMR32 NB cell lines in response to ALKAL2 stimulation. See Table EV1 for detailed results.
B Volcano plot showing DE 1 h after NB1 (top) and IMR32 (bottom) cell treatment with ALKAL2. Dashed lines show DE thresholds. Up-/downregulated genes indicated

in blue. Six genes that are DE in both cell lines and sensitive to the ALK inhibitor lorlatinib are indicated and labelled in red.
C Venn diagram indicating the number of DE genes between different conditions as indicated. Outer circles (labels below diagram) indicate the number of DE genes

after ALKAL2 addition for NB1 cells (34 genes) and IMR32 cells (13 genes). Inner circles (labels on top) correspond to the number of DE genes after addition of
lorlatinib. Six genes that are DE in both cell lines and sensitive to lorlatinib are indicated.

D Temporal dynamics of ALKAL2-induced transcription of ARC, EGR1-3, FOS and FOSB in NB1 and IMR32 cells in the presence and absence of lorlatinib, as indicated.
E Immunoblot validation of ALKAL2 induction of EGR1 and FOS at the protein level in NB1 cells. Cells were treated for 0, 1 and 6 h in the presence and absence of

lorlatinib as indicated.
F Transcription factor prediction based on a gene set enrichment analysis (GSEA) of the identified six-gene set. Bar plot shows the log10(q) values of all enriched

transcription factors at 10% FDR.
G Immunoblot analysis of ALKAL2 induction of pSRF in NB1 cells. Cells were treated for 0 and 1 h in the presence and absence of lorlatinib as indicated.

Data information: RNA-Seq analysis was performed using three biological repeats. Immunoblots are representative of at least three independent experiments.
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pSRF in NB cells stimulated with ALKAL2 (Figs 1G and EV2). We

also examined SRF expression levels in NB patient tumours, employ-

ing the R2 database (http://r2.amc.nl). Investigation of two separate

cohorts showed a trend of increased expression of SRF that corre-

lated with poor prognosis in NB (Fig EV3); however, this does not

take into account modulation of SRF activity at the post-transcrip-

tional level.

Systematic characterization of ALK downstream signalling in NB

cells based on a phosphoproteomic analysis has recently been

reported (Emdal et al, 2018; Van den Eynden et al, 2018). To evalu-

ate whether these signalling responses are similar after ALKAL2

induction, we stimulated NB1 cells in the absence or presence of

lorlatinib and examined both the total proteomic (7,796 proteins)

and phosphoproteomic (7,054 sites in 2,693 proteins) responses at

1 and 24 h (Fig 2A; Table EV2). Differential protein expression was

most pronounced 24 h after ALKAL2 addition and sensitive to lorla-

tinib inhibition. Upregulation was observed for VGF, TNC, IGFBP5,

FOSL2 and VIP (Fig 2B). Interestingly, apart from its upregulation

after ALKAL2 stimulation, VGF was downregulated in response to

lorlatinib, suggesting baseline ALK-dependent expression, consis-

tent with earlier observations in NB1 cells (Emdal et al, 2018). In

keeping with our proteomics dataset, we were able to verify induc-

tion of VGF protein at 24 h in NB1 cells that was abrogated on addi-

tion of lorlatinib (Fig 2C). Similarly, VGF protein levels in the ALK-

driven CLB-BAR and CLB-GE cell lines were decreased in the pres-

ence of lorlatinib (Fig 2D). In parallel, we also performed a phos-

phoproteomic analysis which identified 80 phosphorylated and 40

dephosphorylated sites in response to 1 h ALKAL2 stimulation

(Fig 2E). Among the most prominent phosphorylated targets, we

found ALK, STAT3, CRK, FOXO3, RAB13, EIF1B and RPS6KC1,

which have been reported to be modulated at the level of phospho-

rylation in response to ALK pathway inhibition in NB cells (Emdal

et al, 2018; Van den Eynden et al, 2018). These differentially phos-

phorylated proteins were found to be enriched for several RTK

pathways that have been related to ALK signalling such as NGF,

FGFR, ERBB and AKT signalling pathways as well as neuronal

development (Fig 2F, Appendix Fig S2). The phosphorylation

response was ALK-dependent, as suggested by lorlatinib-sensitivity

and, remarkably, very similar to the dephosphorylation response

observed after ALK inhibition in NB1 or CLB-BAR cells (Fig EV4)

(Emdal et al, 2018; Van den Eynden et al, 2018). Interestingly, in

addition to the modulation of FOXO3 phosphorylation we also

noted a lorlatinib-sensitive decrease in FOXO3 protein levels in

response to ALK activation by ALKAL2 that could be seen at 24 h

after ALKAL2 stimulation in NB1 cells (Fig 2G and H), highlighting

the complex protein dynamics involved. One of the most prominent

tyrosine phosphorylated targets in response to ALKAL2 stimulation

was Y705 on STAT3. Phosphorylation of STAT3 was induced at 1 h

and remained highly phosphorylated at 24 h after addition of

ALKAL2 (Fig 2I). In the presence of lorlatinib, pY705-STAT3 was

not detected (Fig 2I).

Alk-F1178S mice are viable and exhibit sympathetic
ganglion hyperplasia

Previous reports have shown that ALK collaborates with MYCN to

drive NB in mouse models (Berry et al, 2012; Heukamp et al, 2012;

Zhu et al, 2012; Cazes et al, 2014). Mutation of human ALK-F1174

in the ALK kinase domain, a hot spot in human NB, to either L/S/I/C
or V, has been described as an aggressive mutation that is observed

predominantly in sporadic NB cases (Hallberg & Palmer, 2013). The

ALK-F1174S mutation was first described in a relapsed NB patient

where ALK mutation correlated with aggressive disease progression

(Martinsson et al, 2011). We generated an Alk-F1178S mouse by

homologous recombination, leading to point mutation of residue

F1178 of mouse ALK, a sequence equivalent to F1174 in human

ALK (Appendix Fig S3). This results in an activated Alk-F1178S RTK

under the control of physiological transcriptional regulation

elements at the Alk locus. Alk-F1178S homozygous mice were

obtained with expected Mendelian ratios, and a colony of Alk-

F1178S mice was established. Since previous reports of Alk gain-of-

function mice have reported hyperplasia in the sympathetic ganglia

(Cazes et al, 2014; Ono et al, 2019), we investigated ganglia from

Alk-F1178S mice and WT siblings at developmental stage P9. Alk-

F1178S heterozygous caeliac ganglia were significantly enlarged and

displayed hyperplasia when compared with controls, which was

enhanced in Alk-F1178S homozygous animals (Fig 3A–C). Neither
homozygous (n = 161) or heterozygous (n = 416) Alk-F1178S

animals exhibited spontaneous tumours at birth. Further observa-

tion of heterozygous (n = 13 > 18 months) and homozygous (n =
19 > 18 months) Alk-F1178S animals up to 18 months of age did

not reveal development of NB or any other type of cancer. Thus,

while no gross tumour development is observed in Alk-F1178S mice,

significant hyperplasia can be detected in Alk expressing neural

crest-derived structures during development, such as the sympa-

thetic ganglia, which is in agreement with other reports (Cazes et al,

2014; Ono et al, 2019).

Alk-F1178S collaborates with Th-MYCN to drive neuroblastoma

Alk-F1178S animals were bred with Th-MYCN transgenic mice

expressing MYCN under the control of the tyrosine hydroxylase

(Th) promoter, and tumour development was followed. No gross

tumour development was observed in heterozygous Alk-F1178S

mice (Fig 3D). As previously reported, hemizygote Th-MYCN mice

developed NB presenting as stroma-poor unilateral, single paraspi-

nous masses enriched in small blue round cells in approximately

50% of mice at 40 wk (Fig 3D and E). Combining Alk-F1178S with

Th-MYCN resulted in a significant increase in the aggressiveness of

tumour development, exemplified by complete tumour penetrance

at 30 wk together with markedly earlier tumour onset, averaging 8

wk (Fig 3D and E). Histologically, Alk-F1178S;Th-MYCN tumours

were similar to those observed in Th-MYCN mice, although they

were generally less bloody. We also examined sympathetic gang-

lion morphology in Alk-F1178S, Th-MYCN, Alk-F1178S;Th-MYCN

mice and WT siblings at P9. Hyperplasia was observed in Alk-

F1178S caeliac ganglia and was further increased in the presence

of Th-MYCN (Fig 3F and G). Using Ki67 as a marker for cell prolif-

eration, we noted significantly increased reactivity in Alk-F1178S;

Th-MYCN, compared with Th-MYCN tumours, suggesting that the

increased potential for tumour development is initiated at early

stages in the sympathetic ganglia of animals bearing both oncoge-

nes (Fig 3F and G). Therefore, in agreement with previous

reports, we conclude that the activation of Alk under the control

of its endogenous regulatory elements potentiates Th-MYCN-driven

NB development.
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Figure 2. ALKAL2 stimulation of downstream ALK signalling in NB cells at the post-transcriptional level.

A Differential protein expression and phosphorylation was determined in NB1 cells in response to ALKAL2 stimulation. See Table EV2 for detailed results.
B Volcano plots showing differential protein expression 1 and 24 h after ALKAL2 in the presence or absence of lorlatinib stimulation as indicated. Dashed lines

indicate differential expression thresholds. Differentially expressed proteins indicated in blue. Most pronounced responding proteins indicated in black and labelled.
C, D Immunoblot analysis of VGF protein in NB cells. (C) NB1 cells after 24 h stimulation with ALKAL2 in the presence or absence of lorlatinib. (D) CLB-BAR and CLB-GE

cells after 24 h inhibition with lorlatinib.
E Volcano plots showing differential phosphorylation. Labelling colours as in (B).
F GSEA network graph with nodes representing the enriched reactome pathways (at 25% FDR). Node sizes correlate to the normalized enrichment scores, node

colours indicate P values (as in colour legend), and edge widths correspond to the number of overlapping genes between the connected nodes.
G Graphical representation of FOXO3 dynamics, indicating S253 phosphorylation and total FOXO3 protein levels in response to ALKAL2 stimulation, in the presence or

absence of lorlatinib.
H, I Immunoblot validation of FOXO3a and STAT3 in response to ALKAL2 stimulation in the presence or absence of lorlatinib as indicated. The slower migrating FOXO3a

band in SDS–PAGE in (H) likely reflects FOXO3a phosphorylation that is not seen in the presence of lorlatinib.

Data information: Proteomic analysis was performed using three biological repeats. Immunoblots are representative of at least three independent experiments.
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Overexpression of ALKAL2 potentiates MYCN oncogenic
activity in vivo

Since ALKAL stimulation of human NB cells results in a similar

modulation of downstream signalling, as observed in ALK gain-of-

function cells treated with ALK TKIs, we asked whether ALKAL

ligands were able to drive NB development in mouse models. We

first confirmed that the mouse ALKAL2 ligand was able to activate

the mouse ALK RTK, as has previously been shown for human

ALKAL2 and ALK (Guan et al, 2015; Reshetnyak et al, 2015). In

both cell culture and an exogenous Drosophila fly eye assay, mouse

ALKAL2 was able to robustly activate both the human and mouse

ALK RTKs (Fig EV5). Next we generated transgenic mice expressing

ALKAL2 (Rosa26_Alkal2; Appendix Fig S4). Rosa26_Alkal2

homozygous mice were obtained with expected Mendelian ratios,

and a colony was established. Similar to Alk-F1178S, no gross

tumour development was observed in mice carrying the Rosa26_

Alkal2 transgene alone. Rosa26_Alkal2 mice were bred with

Th-MYCN transgenic mice and progeny monitored for tumour

development. As expected from our previous results, Alk-F1178S;

Th-MYCN mice displayed highly penetrant NB and rapid lethality

(median survival 8.4 wk) when compared to Th-MYCN mice (Fig 4

A). Strikingly, mice heterozygote for Rosa26_Alkal2 and Th-MYCN

also showed a high tumour penetrance as well as a rapid lethality

(Fig 4A) and a median survival of 10.1 wk even though they have a

WT ALK receptor. No Rosa26_Alkal2, Alk-F1178S or WT mice

developed tumours, and all remained healthy throughout the 200-

day study. Tumours arising in Rosa26_Alkal2;Th-MYCN were indis-

tinguishable in their presentation from those arising in Th-MYCN

and Alk-F1178S;Th-MYCN animals. They appeared to originate

primarily in the abdominal paraspinal ganglia, developing as locally

invasive abdominal masses that only occasionally involved the

adrenal glands (Fig 4C). 10% of Rosa26_Alkal2;Th-MYCN tumours

(n = 20 examined) and 30% of Alk-F1178S;Th-MYCN (n = 10 exam-

ined) exhibited involvement of one or more adrenal gland. Histolog-

ical and immunoblot analysis revealed small round blue cell

tumours poor in stroma that expressed NCAM1, synaptophysin

(SYP), Chromogranin A (CGA) and MYCN in Rosa26_Alkal2;Th-

MYCN tumours, in agreement with NB (Fig 4D and E). Tumours

also expressed ALKAL2 protein (Fig 4E), in keeping with our previ-

ous findings of ALKAL2 protein in human NB cells (Javanmardi

et al, 2019). Careful monitoring of our mouse colony over time iden-

tified five out of 45 Rosa26_Alkal2;Th-MYCN animals that did not

develop tumours at 200 days, prompting us to carefully review

tumour occurrence in all genotypes. Taken together, analysis of Th-

MYCN, Alk-F1178S;Th-MYCN and Rosa26_Alkal2;Th-MYCN mice

revealed a high level of tumour penetrance in both Alk-F1178S;Th-

MYCN (98% at 200 days) and Rosa26_Alkal2;Th-MYCN (89% at

200 days), relative to that observed in Th-MYCN mice (46% at

200 days; Fig 4F). Moreover, estimated median survival for

Rosa26_Alkal2;Th-MYCN and Alk-F1178S;Th-MYCN animals was

similar, 10 and 10.4 wks, respectively, compared with that of Th-

MYCN alone (median survival not reached at 200 days; Fig 4F).

Since human NB often exhibits chromosomal aberrations, we

investigated genomic DNA of the various NB arising in our mice by

whole genome sequencing (WGS). In general, there was a low

mutational burden and lack of larger recurrent or syntenic copy

number alterations. In total, 55 SNVs were detected among the eight

tumours analysed with an average of 6.9 SNV per tumour (range

1–12; Table EV3). No gene was affected by recurrent SNVs in multi-

ple samples, and no mutation was detected in well-established

cancer genes. All 8 murine tumours had overall flat copy number

alteration profiles, lacking larger segmental copy number aberra-

tions and numerical alterations (Appendix Fig S5). No alterations

associated with Tert or Atrx, nor alterations of areas syntenic to

human chromosomal regions 17q, 11q or 1p were observed.

However, 30 smaller focal deletions or gains were detected

(Table EV3), with recurrent alterations affecting thee different

genomic loci. These included deletions of Tcf4, Macrod2 and a

region distal to Tenm3 (Appendix Fig S6).

Taken together, our data show that ALKAL2 ligand overexpres-

sion is able to collaborate with MYCN to drive NB in the absence of

activating ALK mutations.

ALKAL2-induced NB exhibits a transcriptional signature similar to
that of activated ALK

ALKAL2-induced tumours were further investigated by RNA-Seq

analysis. Tumour samples from Th-MYCN, Alk-F1178S;Th-MYCN

and Rosa26_Alkal2;Th-MYCN mice were harvested and RNA-Seq

data compared. The expression of the codon-optimized Alkal2 trans-

gene was first confirmed in Rosa26_Alkal2;Th-MYCN tumours (me-

dian 1.01 (0.79–1.07) reads per million versus 0 in the other 2

tumour types; Fig 5A). The expression of Chga, Th, Dbh, Syp,

Ncam1 and Alkal2 was also observed in the tumour transcriptome

of all three genotypes (Table EV4), which is in agreement with our

histological analysis (Fig 4D). Tumour identity was further investi-

gated by comparison of the overall gene expression signature with 6

◀ Figure 3. Alk-F1178S collaborates with Th-MYCN to drive NB in mouse models.

A Haematoxylin and eosin staining of longitudinal sections of P9 pups at the central part of the left caeliac ganglion.
B Quantification of the area of caeliac ganglia cross sections. Largest sections from the central part of left caeliac ganglions of different individuals were chosen for the

analysis. **P < 0.01, one-way ANOVA followed by Tukey multiple comparison test. Data shown represent mean � SD.
C Hyperplasia quantification in central sections of P9 left caeliac ganglions shown as a per cent of hyperplastic regions areas per ganglion cross section. **P < 0.01,

****P < 0.0001, one-way ANOVA followed by Tukey multiple comparison test. Data shown represent mean � SD.
D Kaplan–Meier survival curve of mice resulting from intercrosses of Th-MYCN hemizygotes and Alk-F1178S heterozygote mice (P < 0.0001; log-rank test). Wild-type

littermates were excluded.
E Gross appearance, haematoxylin and eosin as well as Ki67-stained sections of representative Th-MYCN and Alk-F1178S;Th-MYCN tumours. Scale bars indicate 250 μm.
F Ki67 immunohistochemical staining of P9 caeliac ganglia in mice of the indicated genotype (quantified in G).
G Quantification of hyperplastic areas (shown as per cent of hyperplastic regions per ganglion cross section) and Ki67 expression (shown as positive for Ki67 staining

areas per total area of the section through the ganglion central part at P9). (*P < 0.05, ***P < 0.001, ****P < 0.0001, one-way ANOVA followed by Tukey multiple
comparison test. Data shown represent mean � SD).
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common human cancer types using a principal component analysis,

revealing the highest similarity with human NB tumours, underlin-

ing the validity of our mouse model (Fig 5B). We then compared

the transcriptional effects of Rosa26_Alkal2;Th-MYCN with Th-

MYCN and identified 23 upregulated and 17 downregulated genes

(log2FC threshold 2 at 1% FDR; Fig 5C and Table EV4). While this

number of responding genes was an order of magnitude lower as

compared to the Alk-F1178S;Th-MYCN tumours (381 differentially

expressed genes), 52.5% (21/40) differentially expressed genes in

Rosa26_Alkal2;Th-MYCN overlapped with the response in Alk-

F1178S;Th-MYCN tumours (P = 6.9e-27, Fisher’s exact test; Fig 5D).

In general, the transcriptional signature of Rosa26_Alkal2;Th-MYCN

tumours was less pronounced but overall very similar to the signa-

ture in Alk-F1178S;Th-MYCN tumours (Fig 5E). We also noted
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Figure 4. ALKAL2 collaborates with MYCN to drive NB in mouse models.

A The oncogenic activity of MYCN is potentiated by overexpression of ALKAL2. Kaplan–Meier survival curves for Rosa26_Alkal2;Th-MYCN, Alk-F1178S;Th-MYCN and Th-
MYCN mice. Also shown are Rosa26_Alkal2N, Alk-F1178S and control (Ctrl) mice. Comparison of survival of Th-MYCN alone and Rosa26_Alkal2;Th-MYCN curves
showed a significant difference (P = 0.003; log-rank test).

B–E Tumours harvested from Rosa26_Alkal2;Th-MYCN, Alk-F1178S;Th-MYCN and Th-MYCN mice express NB markers. Tumours from all three genotypes were large, in
most cases filling the abdominal cavity (B). Dissection post-mortem revealed that the majority of Rosa26_Alkal2;Th-MYCN (18/20) and Alk-F1178S;Th-MYCN (7/10)
tumours did not involve the adrenal glands (C). Histological examination of Rosa26_Alkal2;Th-MYCN, Alk-F1178S;Th-MYCN and Th-MYCN tumours revealed positive
staining for NCAM1, synaptophysin (SYP) and Chromogranin A (CGA) (D) that was confirmed for NCAM1 and SYP along with MYCN, ALK and ALKAL2 by
immunoblotting (E). Scale bars indicate 100 μm. Immunoblots are representative of three independent technical analyses.

F Accumulated Kaplan–Meier survival curves are shown for all monitored Rosa26_Alkal2;Th-MYCN, Alk-F1178S;Th-MYCN and Th-MYCN mice over time, estimating
tumour penetrance (P < 0.001; log-rank test).
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increased levels of VGF both in Alk-F1178S;Th-MYCN and

Rosa26_Alkal2;Th-MYCN tumours (Fig 5F and G), in agreement

with our earlier observation of strongly upregulated VGF protein

levels in NB1 cells stimulated with ALKAL2 (Fig 2, Table EV2) and

a previous report of increased Vgf mRNA levels in an ALK gain-of-

function NB mouse model (Cazes et al, 2014). Since VGF has

recently been reported to promote survival and growth of glioblas-

toma cells (Wang et al, 2018), we examined VGF expression levels

in NB patient tumours, employing the R2 database (http://r2.amc.

nl). Investigation of two separate cohorts showed a correlation of

increased expression of VGF with poor relapse-free (RF) and event-

free (EF) survival probability NB (Fig 5H). We also noted a
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Figure 5. ALKAL2-driven tumours share a transcriptional signature with ALK-F1178S-driven NB.

RNA-Seq-based differential gene expression analysis of tumours arising in Rosa26_Alkal2;Th-MYCN (Alkal2) [n = 6], Alk-F1178S;Th-MYCN (AlkF1174S) [n = 6] and Th-MYCN
(MYCN) mice [n = 4]. See Table EV4 for detailed results.
A Read coverage of the codon-optimized Alkal2 transgene, confirming Alkal2 expression in Alkal2 tumours.
B Principal component (PC) analysis of the expression signature of human neuroblastoma (NB) and five other human cancers (BRCA: breast adenocarcinoma; COAD:

colon adenocarcinoma; LUAD: lung adenocarcinoma; KIRC: kidney renal clear cell carcinoma; GBM: glioblastoma multiforme) with mice tumour samples mapped
independently using PC coordinates. MYCN amplified NB samples are indicated by circles, and non-amplified samples are indicated by squares.

C, D Volcano plot showing differential expression (DE) between Alkal2 and MYCN tumours. Differentially expressed genes are shown in blue (DE in Alkal2 tumours only)
or black (DE in both Alkal2 and AlkF1174S tumours, as shown in [D]). Top ranked genes labelled. Dashed lines represent DE cut-offs.

E DE heatmap based on unsupervised hierarchical clustering of 400 DE genes (rows) and 16 samples (columns, as indicated on top). Sample colour legend as in (A).
Colour key shown on top left.

F Boxplot showing Vgf expression in the three tumour types as indicated. Box plots indicate median values and lower/upper quartiles with whiskers extending to 1.5
times the interquartile range. P values calculated using Wald test as reported by DESeq2.

G Histological examination of Th-MYCN, Rosa26_Alkal2;Th-MYCN and Alk-F1178S;Th-MYCN tumours revealing positive staining for VGF. Scale bars indicate 100 μm.
H Kaplan–Meier relapse-free (RF) and event-free (EF) survival probability curves from two different NB cohorts, the Versteeg 88 cohort (left panel) and the Kocak 649

cohort (right panel), as derived from the R2 platform. Patients with higher VGF expression are highlighted in blue, whereas patients with lower expression are
highlighted in red. The log-rank test P values are indicated.
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significant correlation of high VGF with poor prognosis in terms of

overall survival (log-rank test P = 3.3e-16 for the Kocak cohort and

log-rank test P = 5.2e-05 for the Versteeg cohort).

ALKAL2-driven tumour-derived NB cell lines respond to ALK
TKI treatment

To investigate whether ALKAL2-driven NB is sensitive to ALK TKI

treatment, we first established murine NB cell lines from tumours

harvested from Rosa26_Alkal2;Th-MYCN and Alk-F1178S;Th-MYCN

mice. Cell line #3456 was generated from an Alk-F1178S;Th-MYCN

NB, while cell line #3540 was generated from Rosa26_Alkal2;Th-

MYCN tumour tissue. Increased levels of ALKAL2 protein expression

were confirmed in the Rosa26_Alkal2;Th-MYCN derived #3540 cell

line (Fig 6A). To investigate their response towards ALK TKI treat-

ment, cells were treated with brigatinib (a second-generation ALK

TKI) and their growth monitored. Addition of brigatinib resulted in

a significant growth suppression on these newly generated NB cell
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lines in a dose-dependent manner (Fig 6B). In order to more closely

mimic the NB tissue and microenvironment, the effect of brigatinib

was tested on both spheroid formation ability and viability in 3D

tumour spheroid cultures. Brigatinib significantly inhibited spheroid

formation and viability in both NB cell lines (Fig 6C–F). We also

observed that smaller Rosa26_Alkal2;Th-MYCN spheroids were

more sensitive to brigatinib treatment when compared to larger ones

(Fig 6E). The effect of ALK inhibition on downstream signalling

pathways was determined by immunoblotting, with decreased phos-

phorylation levels of ALK, downstream signalling (phospho-ERK1/
2), as well as MYCN expression after 6 h of ALK TKI treatment

(Fig 6G). In sum, both murine NB cell lines, harbouring either the

ALK-F1178S gain-of-function mutation (Alk-F1178S;Th-MYCN) or

with ALKAL2 ligand overexpression (Rosa26_Alkal2;Th-MYCN),

were sensitive to ALK inhibition, suggesting that ALKAL2-driven NB

may respond to ALK TKI treatment.

ALKAL2-driven NB responds to ALK TKI treatment

As Rosa26_Alkal2;Th-MYCN tumour-derived NB cells are sensitive

to ALK TKI inhibition, we tested whether NB tumour development

could be inhibited in mice. We have previously shown that

tumour growth of Th-ALK-F1174L;Th-MYCN-driven NB is inhibited

by treatment with lorlatinib (Guan et al, 2016). Cells dissociated

from NB tumour tissue arising from either Rosa26_Alkal2;Th-

MYCN and Alk-F1178S;Th-MYCN were subjected to increasing

doses of either brigatinib or lorlatinib. Tumour cells of both geno-

types displayed dose-dependent sensitivity to lorlatinib as well as

brigatinib (Fig 7A). To test whether ALKAL2-driven NB was sensi-

tive to ALK TKI treatment in vivo, we treated NB tumours arising

in Rosa26_Alkal2;Th-MYCN mice with lorlatinib (10 mg/kg body

weight, 2× per day) for a period of 14 days and monitored

tumour growth by ultrasound. Tumour growth was significantly

inhibited in the lorlatinib-treated group as compared to controls

(Fig 7B). No significant weight loss was observed in the lorlatinib-

treated group (Fig 7C). Both ultrasound and MRI analyses allowed

visualization of highly aggressive rapidly growing NB in

Rosa26_Alkal2;Th-MYCN animals that within 14 days filled the

abdominal cavity (Fig 7D and E). This can be compared with the

restricted growth of NB tumours in Rosa26_Alkal2;Th-MYCN when

treated with lorlatinib (Fig 7D and E). Histological analysis of

lorlatinib-treated tumours further supported a reduced rate of

growth, with a significant decrease in phospho-histone H3 (pH3)-

positive cells in treated tumours when compared with controls

(Fig 7F). These data indicate that ALKAL2-driven NB is sensitive

to ALK TKI treatment.

Discussion

Our appreciation of the importance of developmental processes in

NB tumorigenesis has increased over the last decade. One of the

best studied NB models is the Th-MYCN mouse. This model exhibits

late onset and variable penetrance, dependent on genetic back-

ground (Weiss et al, 1997). A number of groups have shown that

ALK collaborates with MYCN to drive NB when overexpressed in

mice (Berry et al, 2012; Heukamp et al, 2012). The first report of an

ALK GOF mouse knock-in showed that a single point mutation in

the ALK kinase domain was sufficient to drive NB in collaboration

with MYCN overexpression (Cazes et al, 2014). Our findings here

confirm that mice harbouring ALK GOF knock-in (in this case

F1178S, corresponding to human F1174S (Martinsson et al, 2011))

also exhibit enlarged sympathetic ganglia and drive NB in collabora-

tion with MYCN.

Given the strong body of evidence implicating ALK activation in

NB development, it is also important to address the potential role of

ligands for this RTK. While much attention to date has focused on

identification of ALK activating mutations, overexpression and acti-

vation of ALK in the absence of kinase domain mutations has also

been reported (Janoueix-Lerosey et al, 2008; Mosse et al, 2008;

Duijkers et al, 2012; Chang et al, 2020). Tumour development

driven by misregulation of receptor ligands is an important consid-

eration in NB, underscored by the fact that one of the first oncoge-

nes described was the v-sis oncogene that shares more than 90%

homology with the PDGF ligand (Heldin et al, 2018).

Since the identification of the ALK ligands (Guan et al, 2015;

Reshetnyak et al, 2015), the question of whether ALKAL misregula-

tion has consequences in NB has remained unanswered. A role for

ALKAL ligands in the development of the vertebrate neural crest,

the tissue from which NB arises, has been reported in the zebrafish

◀ Figure 6. Cell lines derived from ALKAL2-driven NB respond to ALK TKI treatment.

Murine NB cell lines were generated from tumours arising in Rosa26_Alkal2;Th-MYCN (#3540) and Alk-F1178S;Th-MYCN (#3456) mice.
A Alkal2 expression in cells derived from Rosa26_Alkal2;Th-MYCN (#3540) and Alk-F1178S;Th-MYCN (#3456) NB. Immunoblotting analysis for ALKAL2 and tubulin in

the indicated mouse NB cell lines. Whole cell lysates (30 μg) were analysed in each lane.
B The effect of increasing concentrations of brigatinib on cell confluence was analysed by IncuCyte Live Cell Analysis of both Rosa26_Alkal2;Th-MYCN (#3540) and

Alk-F1178S;Th-MYCN (#3456) cell lines. Data are presented as mean � SEM from three independent experiments. *P < 0.05, **P < 0.005; two-tailed paired
Student’s t-test.

C, D Brigatinib suppressed tumour spheroid formation and spheroid viability. Cells (#3456 or #3540) were treated with brigatinib (0, 150 nM) for 4 days in ultra-low
attachment plates. The spheroid number was analysed by IncuCyte Live Cell Analysis. Data are presented as means � SEM from three independent experiments.
*P < 0.05, two-tailed unpaired Student’s t-test. Scale bar (C) is 200 μm.

E Tumour spheroids formed from either Rosa26_Alkal2;Th-MYCN (#3540) or Alk-F1178S;Th-MYCN (#3456) were formed at indicated cell number in ultra-low
attachment plates for 3 days and followed by brigatinib (0 or 150 nM) for 10 days. Inhibitor was re-fed every other day. Cell viability was determined by CellTiter-
Glo 3D cell viability kit and data are presented as mean � SEM from five independent experiments. *P < 0.05, ****P < 0.0001, two-tailed unpaired Student’s t-test.

F Cell viability. Mouse tumour-derived cell lines #3540 (Rosa26_Alkal2;Th-MYCN) and #3456 (Alk-F1178S;Th-MYCN) were treated with brigatinib (125 or 500 nM), and
viability was evaluated by using a resazurin-based assay. Data are presented as mean � SEM from three independent experiments. *P < 0.05, **P < 0.005; two-
tailed paired student t-test.

G Brigatinib treatment (0 or 150 nM) for 6 h resulted in inhibition of ALK phosphorylation, and of activation of downstream signalling (ERK1/2), as well as MYCN
expression. Cell lysates (Rosa26_Alkal2;Th-MYCN (#3540) and Alk-F1178S;Th-MYCN (#3456)) were immunoblotted with the indicated antibodies.
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Danio rerio (Mo et al, 2017; Fadeev et al, 2018). Moreover, analysis

of NB cell lines and tumour samples has highlighted expression of

ALKAL2 mRNA and protein in NB (Reshetnyak et al, 2015; Javan-

mardi et al, 2019). Indeed, the ALKAL2 genetic locus lies on chro-

mosome 2p, in a region harbouring ALKAL2, MYCN and ALK that is

often subject to chromosomal gain—so called “2p-gain”—in NB

(Javanmardi et al, 2019).

Given the observation that “2p-gain” patients exhibit a poor

prognosis within the NB patient population, our hypothesis was

that ALKAL2 dysregulation may be able to promote initiation and
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Figure 7. ALKAL2-driven NB is sensitive to treatment with the ALK TKI lorlatinib in vivo.

A Cells derived from tumours arising in Rosa26_Alkal2;Th-MYCN (#4953) and Alk-F1178S;Th-MYCN (#4938) mice are sensitive to both lorlatinib and brigatinib. The effect
of increasing concentrations of each ALK TKI (as indicated) on cell confluence was analysed by IncuCyte Live Cell Analysis. Data are presented as mean � SEM from
three independent experiments. *P < 0.05, **P < 0.005; two-tailed paired Student’s t-test.

B Tumour volume changes over time for Rosa26_Alkal2;Th-MYCN mice treated with lorlatinib (10 mg/kg; twice daily) or vehicle control. Tumour volume was measured
by ultrasound on Days 0 and 7, and by direct measurement at Day 14. Day 0 (lorlatinib n = 7, Ctrl n = 6), Day 7 (lorlatinib n = 2, Ctrl n = 5) and Day 14 (lorlatinib
n = 7, Ctrl n = 6). Data shown represent mean � SD. **P < 0.005; two-tailed unpaired Student’s t-test.

C Rosa26_Alkal2;Th-MYCN animals treated with lorlatinib did not display any significant loss of body weight compared with vehicle controls. Data shown represent
mean � SD.

D Representative ultrasound images of tumours observed in Rosa26_Alkal2;Th-MYCN mice with annotated measurements at Day 0 and Day 7. Tumours arise in the
retroperitoneal space ventral to the aorta, Ao.

E Representative MRI imaging of Rosa26_Alkal2;Th-MYCN tumours in response to lorlatinib at 4 and 14 days.
F Rosa26_Alkal2;Th-MYCN tumours from lorlatinib or vehicle controls were analysed for phospho-histone H3 (pH3). A representative field of view for each tumour at

40× (175.740 μm2) was manually counted. Data shown represent mean � 95% CI. P = 0.0286; Mann–Whitney test.
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progression of NB (Jeison et al, 2010; Javanmardi et al, 2019). This

is supported by a number of observations over the last decade

reporting that high ALK expression and/or activity are important for

NB cell growth as well as predictive of poor prognosis in patients

(Lamant et al, 2000; Osajima-Hakomori et al, 2005; Janoueix-

Lerosey et al, 2008; Mosse et al, 2008; Passoni et al, 2009; Duijkers

et al, 2012; Wang et al, 2013; Regairaz et al, 2016). This is further

reinforced by a recent report in which 41% of NB tumour samples

expressed high levels of ALK protein, which is in excess of the esti-

mated 8–10% of primary NB that harbours an ALK mutation

(Chang et al, 2020). It is clear from genetic and functional studies

that two of the loci at 2p, ALK and MYCN, are intimately involved

in the development of NB. From a mechanistic point of view, ALK

regulates the expression of MYCN, and MYCN regulates the expres-

sion of ALK (Schonherr et al, 2012; Hasan et al, 2013). A third loci

at 2p, ALKAL2, encodes for the ALKAL2 ligand that robustly stimu-

lates ALK (Guan et al, 2015; Reshetnyak et al, 2015). Here, we

show that ALKAL2 overexpression collaborates with Th-MYCN,

driving highly aggressive and rapid onset NB, similar to that

observed in Alk-F1178S;Th-MYCN animals. Indeed, estimated

median survival for Rosa26_Alkal2;Th-MYCN and Alk-F1178S;Th-

MYCN animals was similar, reached at 10 and 10.4 wks, respec-

tively, which compares with an undefined median survival in the

Th-MYCN animals (Fig 4F).

Our overall findings indicate a high level of NB penetrance in

Rosa26_Alkal2;Th-MYCN animals in our survival experiment. Anal-

ysis of Alkal2- and Alk-F1178S-induced mouse tumours at the DNA

level led to the detection of very few genetic alterations. Impor-

tantly, we did not observe any alterations of areas syntenic to chro-

mosomal regions reported in human NB, such as 17q, 11q or 1p or

in either Tert or Atrx. Nor did we detect any Alk mutations, poten-

tially activating or otherwise, in NB arising in Rosa26_Alkal2;Th-

MYCN animals. Previous characterization of Th-MYCN tumours has

identified several partial and chromosomal gains and losses (Weiss

et al, 1997; Hackett et al, 2003; Heukamp et al, 2012; Rasmuson

et al, 2012). In genetically engineered Alk knock-in models, variable

genetic alterations were noted dependent on genetic background,

with more aggressively arising NB exhibiting less chromosomal

aberrations (Heukamp et al, 2012; Cazes et al, 2014). While our

identification of small focal deletions in Tcf4 in ALKAL2-driven NB

analysed is interesting, further investigation will be required to

determine whether this has any functional significance. In general,

the lack of widespread genetic alterations observed in either

ALKAL2- or ALK-F1178S-induced NB in this study is in keeping with

the highly penetrant and aggressive NB observed.

ALK TKIs are currently employed in NB, particularly in patients

in which ALK mutations are identified, and a number of clinical

studies are ongoing (https://clinicaltrials.gov). The first clinical

study in NB employed the first-generation inhibitor crizotinib

(Mosse et al, 2013). Since then, a range of ALK TKIs including ceri-

tinib, lorlatinib, brigatinib, alectinib and repotrectinib have been

explored in a preclinical NB setting as well as in several published

clinical case reports (Heukamp et al, 2012; Guan et al, 2016; Infari-

nato et al, 2016; Iyer et al, 2016; Siaw et al, 2016; Guan et al, 2018;

Alam et al, 2019; Cervantes-Madrid et al, 2019). While ALK muta-

tions are identified in less than 10% of primary NB cases, this

number is now appreciated to be far higher in the relapsed NB

population (Schleiermacher et al, 2014; Eleveld et al, 2015).

However, we are currently unable to define the number of NB cases

in which ALK signalling is activated and contributing to NB develop-

ment. This is particularly relevant for NB cases that exhibit

“2p-gain”, in which ALKAL2, MYCN and ALK are potentially

misregulated. In addition to showing that ALKAL2 collaborates with

MYCN in our genetically engineered mouse models, we also provide

evidence that ALK TKI treatment inhibits growth of ALKAL2-driven

NB. Our experiments here have mostly employed lorlatinib, an ALK

TKI that is currently used clinically. These results show for the first

time that additional NB patient populations may benefit clinically

from ALK-targeted therapy. This finding has important implications,

since ALK TKIs appear to be generally well tolerated (Mosse et al,

2013; Mosse et al, 2017; Guan et al, 2018). While our focus here has

been on ALK TKIs, several studies have investigated antibody based

approaches that target that ALK extracellular domain, which would

be interesting to test in our ALKAL2-driven NB models (Carpenter

et al, 2012; Sano et al, 2019).

Our results show ALKAL2 stimulation of NB cells results in the

activation of ALK downstream signalling pathways, as measured at

the level of RNA and protein responses. Many of the targets identi-

fied in our study have previously been identified on addition of ALK

TKIs to NB cells, such as STAT3, CRK, FOXO3 and PTPN11 (Emdal

et al, 2018; Van den Eynden et al, 2018). Our datasets identify a set

of early response transcription factors that are upregulated by

ALKAL2 stimulation in an ALK-dependent manner, and these core

transcription factors are also highly responsive to inhibition of ALK

in ALK-driven NB cell lines that harbour ALK activating mutations

(Van den Eynden et al, 2018). Our investigation of total protein

levels in response to ALKAL2 also identified FOXO3 as being down-

regulated at the protein level in response to ALKAL2 stimulation,

highlighting the complexity of regulation at both transcriptional and

protein regulatory levels downstream of ALK activation. It is inter-

esting that the ALKAL2-induced transcriptomic response observed

in Rosa26_Alkal2;Th-MYCN is weaker than that seen in Alk-F1178S;

Th-MYCN tumours. It is possible that the mutant ALK-F1178S recep-

tor displays different signalling and trafficking kinetics that may

result in a stronger response. While further investigation is needed

to understand this better, previous work has noted abnormal traf-

ficking of mutant ALK (Mazot, Cazes et al, 2012).

At the molecular level, our data identified robust upregulation

of VGF in both ALKAL2-driven NB cell lines and mouse tumours, a

finding also noted by Cazes and coworkers (Cazes et al, 2014).

The VGF locus encodes a precursor polypeptide, which is processed

to generate a complex variety of secreted products with functions

that are not well understood at this time (Lewis et al, 2015).

However, the increased levels of VGF observed in both ALKAL2-

and ALK-F1178S-driven NB are of interest given a recent report

that VGF expression in glioblastoma promotes tumour survival and

growth (Wang et al, 2018). Although we have been unable to

define a role for this interesting secreted molecule in this work, we

show that high levels of VGF expression correlate significantly with

poor prognosis in NB patient data. Thus, the role of VGF in tumori-

genesis seems worthy of future more in-depth investigation in the

context of NB.

Taken together, the findings presented here provide evidence of

ALKAL2-driven NB that is sensitive to ALK TKI treatment. More-

over, this ALKAL2-driven NB occurs in the absence of ALK muta-

tion. Since many neuroblastomas express ALK, our results suggest
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that some “ALK mutation-negative” NB may respond to ALK TKI

treatment. While “2p-gain” identifies one such chromosomal aberra-

tion in NB that may disrupt the delicate balance of ALKAL2/ALK/
MYCN activity in favour of NB development, other mechanisms

leading to misregulation of ALKAL2 may also exist. Currently,

although mutations in the ALKAL2 locus are found in cancer

sequence cohorts, these have not been explored and none have been

reported as having an impact on NB development. We also note that

ALKAL2 has a CpG island in the five prime regions of its promoter

that warrants exploration in future work. Our results suggest that a

more careful analysis of ALK signalling activity in NB tumours in

addition to ALK mutation genetic status may identify NB patients

that would benefit from ALK TKI therapy.

Materials and Methods

Immunoblotting

All NB cell lines were cultured in RPMI 1640 or Dulbecco’s modified

Eagle’s medium with 10% foetal bovine serum and 1% penicillin

and streptomycin. Immunoblotting of cell lysates was performed as

described in Van den Eynden et al (2018). Mouse tumour samples

were lysed according to the manufacturer’s instructions (Qiagen,

cat. #85300). Protein concentration was measured using BCA assay

(Pierce; #23225), and proteins subsequently separated on 7.5%

bis-acryl-tris gels, and transferred to polyvinylidene difluoride

membranes (Millipore, cat.# IPVH00010). After blocking in 5%

bovine serum albumin (BSA; phosphoprotein blots) or 5% milk,

and incubation with primary antibodies (detailed in Table EV5)

overnight at 4°C, secondary antibodies (detailed in Table EV5) were

added for 1 h at RT. Enhanced chemiluminescence substrates were

used for detection (GE Healthcare, cat.# RPN2232). Lorlatinib and

brigatinib were from Selleckchem.

Stimulation of ALK with ALKAL2

NB1 cells were treated with or without 30 nM lorlatinib for 2 h prior

to 30-min stimulation with 1 μg/ml of mouse ALKAL2 (CSB-

YP772138MO, CUSABIO) or 1 μg/ml of ALK agonist monoclonal

antibody mAb46 ((Moog-Lutz et al, 2005), gift from Professor Marc

Vigny). Non-stimulated cells were used as experimental control.

Cells were lysed in 1× SDS sample buffer and then subjected to

SDS–PAGE. PC12 cells (2 × 106 cells per electroporation) were elec-

troporated with 1 μg of pcDNA3 empty vector or 1 μg of pME185-

mALK plasmid and then seeded into collagen-coated six-well plates.

After overnight culture, cells were subjected to serum starvation for

24 h prior to further treatment. Cells were treated with or without

30 nM lorlatinib for 2 h prior to 30-min stimulation with 1 μg/ml of

mouse ALKAL2 (CSB-YP772138MO, CUSABIO) or 1 μg/ml of human

ALKAL2. Cells were directly lysed in 1× SDS sample buffer and then

subjected to SDS–PAGE.

Tumour-derived NB cell culture and ALK TKI treatment

Tumours were harvested and dissociated cells cultured in DMEM

(Gibco BRL, Life Technologies) supplemented with 10% inactivated

foetal bovine serum (Gibco) and 1% penicillin/streptomycin

(Gibco). Cells were seeded in 48-well plates precoated with 0.4%

solution of type I bovine collagen solution (Advanced BioMatrix, lot

no. 7434). The following day, cells were treated with either briga-

tinib (0, 16, 31, 63, 125, 250, 500 nM; Selleckchem) or lorlatinib (0,

16, 31, 63, 125, 250, 500 nM; Selleckchem). ATP content in the

treated cells was determined by CellTiter-Glo 3D cell viability assay

(Promega) according to the manufactures’ protocol.

Tumour-derived NB cell line immunoblotting, spheroid formation
and viability

Cells were seeded into six-well plates precoated with 0.4% type I

bovine collagen solution. The following day, cells were serum

starved for 18 h and then treated with brigatinib (0, 150 nM) for an

additional 6 h. After washing by phosphate-buffered saline (PBS),

cells were lysed by lysis buffer (50 mM Tris–HCl, 100 mM DTT, 2%

SDS with protease/phosphatase inhibitor cocktail [Roche]) on ice for

30 min and then centrifuged at 4°C for 25 min. Spheroid formation

assays were performed by seeding 3 × 105 cells (cell line #3456) or

6 × 105 cells (cell line #3540) into six-well ultra-low attachment

plates (Corning, no. 3471) prior to treatment with brigatinib (0,

150 nM; Selleckchem) for 4 days. The spheroid number was sepa-

rately monitored and analysed by IncuCyte® Live Cell Analysis

(Essen BioScience). Spheroids with diameter > 100 μm were

counted. For spheroid viability analysis, cells were seeded into 96-

well ultra-low attachment plates (Corning, no. 7007) at the indicated

cell number per well for 3 days. Brigatinib (0, 150 nM) was subse-

quently added and re-feed every other day for another 10 days. The

ATP content in the treated cells was determined by CellTiter-Glo 3D

cell viability assay (Promega) according to the manufactures’ proto-

col. For viability assays, cells were plated on 48-well plates (#3456 –
7,500 cells/per well and #3540- 2,500 cells/per well prior to treat-

ment with brigatinib (125 and 500 nM). Cell confluence was moni-

tored and analysed by IncuCyte® Live Cell Analysis. Also, treated

cells were incubated with 55 mM resazurin (Sigma-Aldrich) for 2 h

at 37°C and viability evaluated by fluorescence readout analysed on

a TECAN microplate reader at the indicated time point.

Generation of the Alk-F1178S knock-in mouse

Alk-F1178S mice were custom generated by PolyGene Transgenetics

(Polygene AG, Switzerland), shown schematically in Appendix Fig

S3. Residue F1178 lies within exon 23 that corresponds to nucleo-

tides 3,528–3,657 and amino acids 1,076–1,219 (ALK sequence via

NCBI NM_007439). The targeting vector contained exons 19–22
followed by a loxP site, minigene from exon 23 to the end, polyA,

neo-cassette flanked by FRT sites, the second loxP and mutated

version of exon 23. This construct allowed us to generate both a

conditional knock-in line and non-conditional knock-in by Cre-

recombinase microinjection. The neo-cassette was removed from the

conditional knock-in line by crossing mice with Flp-deleter mice. In

the mouse model generated here, mutation of F1178 in exon 23

results in an activated ALK-F1178S RTK under the control of physio-

logical transcriptional regulation elements at the Alk locus. Animal

genotypes were verified via PCR, Southern and Western blotting

analyses, and the presence of the Alk-F1178S mutation was con-

firmed in the WGS analyses. Heterozygous intercrosses were

performed for the analysis of homozygous mice. Mice of all three
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genotypes (+/+, −/− and +/−) were obtained, with mice homozygous

for the Alk-F1178S mutation born and viable, with expected Mende-

lian ratios. Since both heterozygous and homozygous Alk-F1178S

mutant mice of both genders were fertile, a colony of Alk-F1178S

mice was established. For genotyping the following primers: 50-GA
GAAGACTGCCTCTCACTC-30 and 50–CCCTTTCAGAAGCCAGTCC
TT-30 were used. Mice were backcrossed to 129X1/SvJ strain (JAX

stock #000691).

Generation of the Rosa26_Alkal2 transgenic mouse

Rosa26_Alkal2 mice were custom generated by Ozgene Pty Ltd

(Bentley DC, Australia) through homologous recombination of

codon-optimized Alkal2 cDNA into the ubiquitously expressed Gt

(ROSA)26S locus (Appendix Fig S4). Cre deletion resulted in trans-

genic mice constitutively expressing ALKAL2 (Appendix Fig S4).

Rosa26_Alkal2 mice of Tg/Tg, Tg/T0 and T0/T0 genotypes were born

at the expected Mendelian ratio and were viable and fertile. Trans-

genic Rosa26_Alkal2 animals were backcrossed to 129X1/SvJ (JAX

stock #000691) for at least 5 generations. Rosa26_Alkal2 mice were

genotyped on ear and/or tail at weaning. Genomic DNAwas extracted

employing DNeasy Blood & Tissue Kit (Qiagen Cat. # 69506) and PCR

amplified using primers: primers: 50-CGCTAAATTCTGGCCGTT-30

and 50- ACCAGGTTAGCCTTTAAG-30 producing amplicons of length:

843 bp for Rosa26_Alkal2 allele and 0 bp for wild-type. Insertion of

Alkal2 into the Gt(ROSA)26S locus was confirmed in WGS analyses.

Additional mouse husbandry

Th-MYCN hemizygous mice (Weiss et al, 1997) were on genetic

background 129X1/SvJ. Th-MYCN genotyping was performed with

the following primer pair: 50-TGGAAAGCTTCTTATTGGTAGAAA
CAA-30 and 50-AGGGATCCTTTCCGCCCCGTTCGTTTTAA-30. All

animal experiments were performed in accordance with Animal

Ethics Permits (1890-2018) and (A230-2014).

Ultrasound and MRI imaging

Ultrasound imaging of tumours was carried out using VisualSonics

VEVO-770 high-frequency ultrasound system (VisualSonics) or Vevo

3100 Imaging System (VisualSonics). Acquired 3D images were used

to calculate tumour volume in Vevo Lab (VisualSonics). The diame-

ter of the tumour was noted for three dimensions approximately

perpendicular to each other, and these were used to calculate the

tumour volume by applying the formula of the volume for a ellip-

soid ( Volume¼ 4
3πr1r2r3, where r1, r2 and r3 are the radius of the

three diameters). MRI images were obtained with a 7 Tesla Bruker

BioSpin 70/20 Avance I MR system (Bruker BioSpin GmbH, Ettlin-

gen, Germany), equipped with a maximum 400 mT/m gradient

system and a 30-mm transmit/receive volume coil (RAPID Biomedi-

cal GmbH, Germany) in ParaVision 5.1 software. T2-weighted 2D

RARE images were acquired with Turbo factor 8 and fat suppres-

sion, 3821.9-ms repetition time and 28.236-ms echo time. Forty

axial slices, with 0.5 mm thickness and 0.7 mm interslice distance,

were imaged. The resulting voxel size was 0.2000 × 0.2007

× 0.500 mm3. Images were obtained on day 4 and 14 after treatment

start. For scanning, mice were anesthetized using isoflurane in

oxygen with an induction dose of 4% and a maintenance dose of

2.5%. Respiration was monitored using a pillow-type pressure

sensor (SA Instruments, Inc., NY, USA), and body temperature was

maintained by a heating pad on the animal holder. For 3D volume

reconstruction analysis, MRI images of tumours were processed

with Imaris 7.3.0 (Bitplane, Zurich), using the “Surpass” function.

Individual MRI images were manually labelled to render tumour

volumes.

Tissue preparation for Alk-F1178S/Th-MYCN tumour and
ganglia analysis

Postnatal day 9 animals were euthanized by isoflurane and

dissected trunks fixed in 4% formaldehyde in PBS for 24 h at RT.

After washing in PBS, specimens were decalcified in 0.3 M EDTA

for 24 h, and trunks were cut exactly along the midline of the spine

and placed in embedding cassettes. Decalcification in 0.3M EDTA

was continued for 24–48 more hours. After overnight washing in

PBS, tissues were embedded in paraffin (Lecia TP1020, Lecia

Microsystems, Wetzlar, Germany, Sakura) and cut into longitudinal

7-µm-thick sections and mounted on SuperFrost Plus slides

(Menzel-Gl€aser, Thermo Scientific). Collected tumour tissue was

fixed in 4% formaldehyde in PBS for 4–6 h in room temperature,

then processed and embedded in paraffin (as described above).

After deparaffinization, slides were either stained with haematoxylin

and eosin for ganglia sizes and morphology assessment. Epitope

retrieval was achieved either by HIER in 25 mM Tris, 1 mM EDTA

pH 9.0 – for Ki67 detection. Endogenous peroxidase activity was

blocked by 20-min incubation in 0.3% H2O2 in PBS. After blocking

in 5% milk, 0.1% Triton in PBS for 1 h in room temperature,

sections were incubated overnight 4°C with primary antibody

(detailed in Table EV5). Primary antibody was detected with the

appropriate secondary antibody either coupled to horseradish perox-

idase (HRP; Thermo Scientific Cat. #31463 and #31437). Primary

antibodies were detected with biotinylated secondary antibody (Vec-

tor Labs, Cat. #BA1000) and signals amplified with VECTASTAIN

Elite ABC Kit (Vector Labs, Cat. #PK6100). HRP activity was

detected with the chromogenic substrate ImmPACT DAB (Vector

Labs, Cat. #SK-4105). Central sections through left caeliac ganglia

were chosen for the ganglia morphology analysis. Areas of ganglia

cross section and areas of hyperplastic regions were quantified by

using ImageJ software (Schindelin et al, 2012). For Ki67 expression,

assessment colour threshold adjustment tool of ImageJ was applied.

Mouse tumour monitoring and TKI treatment

Alk-F1178S/Th-MYCN study
Alk-F1178S WT/KI mice (background strain 75% or more of 129X1/
SvJ) were crossed with TH-MYCN TG/0. After weaning, offspring

were abdominally palpated weekly to monitor tumour development.

End points for Kaplan–Meier curves were set as the day at which

the developing tumour was clearly observed without palpation

requiring the animal to be euthanized or the sudden death of an

animal. Kaplan–Meier curves were plotted and statistically analysed

employing GraphPad Prism 6.0 software.

Alkal2/Th-MYCN study
Rosa26_Alkal2 Tg/Tg mice (129X1/SvJ, N5F1) were crossed with

Alk-F1178S KI/KI (129X1/SvJ background strain > N10) to produce
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progeny that were subsequently crossed with Th-MYCN Tg/0.
Offspring were monitored for tumour development by abdominal

palpation and daily observation. End points were defined as the day

at which the mouse showed symptoms requiring the mouse to be

euthanized, the spontaneous death of a mouse or the end of the

study (200–204 days). At end point, animals were euthanized and

tumour samples preserved in 10% neutral buffered formalin solu-

tion (Sigma-Aldrich, Cat. #HT501128), liquid nitrogen and RNAlater

(Invitrogen Cat. # AM7024) for subsequent analyses. Kaplan–Meier

curves were generated and analysed statistically in GraphPad Prism

8.0. The overall Kaplan–Meier (Fig 4F) was produced as follows.

Five wild-type control mice, six Rosa26_Alkal2 and five

Rosa26_Alkal2; Alk-F1178S mice were monitored for > 200 days,

without developing a tumour. Overall, 58 Alk-F1178S animals were

followed, of which 42 were terminated before 200 days without a

tumour. Of 16 Alk-F1178S that were monitored for 200 days, no

animal developed a tumour. Out of 57 Alk-F1178S;Th-MYCN mice,

two were excluded, nine were terminated before 200 days and were

therefore censored, without developing a tumour. 45 Alk-F1178S;

Th-MYCN mice developed a tumour within 200 days and one devel-

oped a tumour after 200 days. Out of 63 Th-MYCN mice, four were

excluded, 29 were terminated before 200 days without developing a

tumour and were censored, 20 mice developed a tumour within

200 days and 10 reached 200 days without developing a tumour.

Out of 50 Rosa26_Alkal2;Th-MYCN mice, five were excluded, 40

mice developed a tumour within 200 days, and five reached

200 days without developing a tumour.

TKI treatment study
Rosa26_Alkal2 Tg/0 mice (N9 or more) were crossed with TH-MYCN

Tg/0. Offspring were screened by ultrasound 2–3 times a week from

approximately 35 days old. Tumours were followed until a size of

3–6 mm in average diameter (14–113 mm3), at which a 3D scan of

the tumour was made and treatment started (Day 0). For 3D scan-

ning, animals were anesthetized with isoflurane and vital parame-

ters were observed in regard to respiration rate, ECG and body

temperature. Mice were treated twice daily with 10 mg/kg lorlatinib

(Selleckchem Cat. #S7536) or the equivalent volume of control by

oral gavage. Treatment consisted of either lorlatinib (2% DMSO,

30% PEG 300 [Aldrich Cat. #202371]) or Control (2% DMSO

[Sigma-Aldrich, Cat. #D4540], 30% PEG 300 [Sigma-Aldrich, Cat.

#202371]). A mid-treatment 3D scan was performed on day 7. At

14 days, mice were euthanized and the tumour measured to obtain

the greatest diameter of the tumour in three dimensions approxi-

mately perpendicular to each other. Volume calculation of the

tumour was carried out as described above. Tumour samples were

stored in 10% neutral buffered formalin solution (Sigma-Aldrich,

Cat. #HT501128), liquid nitrogen and RNAlater™ (Invitrogen, Cat.

#AM7021) for subsequent analysis. Weight was followed every

second day during treatment to detect weight loss. Statistical analy-

sis was carried out in GraphPad Prism 8.

Tumour tissue histopathology and immunohistochemical
staining—Alkal2/Th-MYCN and TKI treatment studies

Tumour samples were fixed for at least 2 weeks in 10% neutral

buffered formalin solution (Sigma-Aldrich, HT501128). After wash-

ing in PBS, samples were dehydrated, cleared and embedded in

paraffin. 4-µm-thick sections were cut and mounted on SuperFrost

Plus slides (Thermo Scientific, Cat. #J1800AMNZ) after which the

slides were baked for 1 h at 65°. Slides were deparaffinized and rehy-

drated then subjected to epitope retrieval through sub-boiling for

45 min in IHC-Tek Epitope Retrieval Steamer Set (IHCWORLD, IW-

1102) containing 0.01 M citric acid, 0.05% Tween 20 (Scharlau, Cat.

#TW00200250), buffer pH6. 5%. Normal goat serum in TBS-T was

used for blocking at room temperature for 1 h. Sections were incu-

bated with primary antibodies (detailed in Table EV5) were diluted

in Signalstain® Antibody Diluent (CST, #8112) over night at 4°.
Sections were incubated with Signalstain® Boost IHC Detection

Reagent (HRP, Rabbit; CST, Cat. #8114) to detect primary antibodies.

Signalstain® DAB Substrate Kit (CST, Cat. #8059) was used to detect

HRP activity. After counterstaining with Mayer’s haematoxylin solu-

tion (Sigma-Aldrich, Cat. #MHS1-100ML), slides were dehydrated

and mounted. Digital images of sections were obtained with Hama-

matsu NanoZoomer-SQ Digital slide scanner. A representative field

of view at 40× (10× for H&E staining) in NanoZoomer Digital Pathol-

ogy viewer was saved as a TIF-file and subsequently cropped in

ImageJ (Schindelin et al, 2012) to 1,000 × 1,000 pixels and again

saved as a TIF-file. Digital images of slides stained with pH3 were

obtained as described above though the slides were afterwards

subjected to manually counting. A representative field of view, for

each tumour (n = 4 lorlatinib treated, n = 4 control), at 40× in

NanoZoomer Digital Pathology viewer was saved as a TIF-file. Each

file was subjected to manual counting applying Affinity Designer.

Whole genome sequencing of tumours

Whole genome sequencing (WGS) was performed on DNA from

eight tumours derived from the three different transgenes; Th-MYCN

(n = 2), Alk-F1178S;Th-MYCN (n = 3) and Rosa26_Alkal2;Th-MYCN

(n = 3). In addition, DNA extracted from spleen from two normal

mice served as control for copy number and somatic variant calling.

Sequencing was performed using TruSeq PCRfree library prepara-

tion (Illumina, San Diego, CA, USA) and Illumina instrumentation

(Illumina) at NGI, SciLife Laboratories, Stockholm, Sweden, for a

median read depth of 25× (range 20–28×) for all samples. Mapping

against mouse reference genome mm10 and single nucleotide vari-

ant (SNV) calling were performed using Sentieon TNscope (Sen-

tieon, Mountain View, CA) while CLC Genomics workbench

(Qiagen, Aahus, Denmark) was used for annotation of called SNV.

Structural variant (SV) calling was performed using the tool Manta

(version 1.1.1) (Chen et al, 2016) for identification of larger struc-

tural variation (deletions, duplications, inversions and transloca-

tions). Calls from the normal DNA were supplied to filter out

germline variation and artefacts. Calling and visualization of copy

number variants (CNV) was done with the tool Canvas (version

1.38.0.1554) (Roller et al, 2016) with coverage calculated using

0,1Mb bins along the genome and normalized to average sequence

coverage of DNA from two normal mice of the used strain.

Only high quality called SNV with a minimum 10% variant allele

frequency and a total read coverage of 10 were kept while discard-

ing all variants not directly affecting protein function (i.e. retaining

non-synonymous and variants affecting canonical splice sites). The

remaining SNVs as wells as SVs were assessed manually through

the Integrative Genomics Viewer (IGV) (Thorvaldsdottir et al, 2013)

for removal of calls due to mapping artefacts and paralogs.
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Sample preparation for RNA-Seq and proteomics analyses

Phosphoproteomics and proteomics were performed on NB1 and

IMR32 cells stimulated with ALKAL2 (1 μg/ml), for 1, 6 or 24 h and

treated with lorlatinib (30 nM) simultaneously. Samples were

performed in duplicate. Cells were washed once with ice-cold PBS

and cell pellets submitted for analysis. Protein concentration of the

lysates was determined using Pierce™ BCA Protein Assay Kit

(Thermo Scientific) and the Benchmark™ Plus microplate reader

(Bio-Rad) with BSA solutions as standards. For RNA-Seq experi-

ments, NB1 and IMR32 cells were stimulated with ALKAL2 (1 μg/
ml), for 1, 6 and 24 h in the presence or absence of lorlatinib

(30 nM) treatment. Samples were performed in triplicate. Mouse

tumour samples were lysed according to the manufacturer’s instruc-

tion (Qiagen, Cat. #85300). Two samples per tumour, located in the

left and right of the tumour, were analysed. Three tumours were

analysed for both Alk-F1178S;Th-MYCN and Rosa26_Alkal2;Th-

MYCN animals, and two tumours were analysed from Th-MYCN

mice. Total RNA was isolated using the Promega Total RNA Isola-

tion Kit (Promega, Cat. #Z6111), and RNA concentration was

measured using NanoDrop (Thermo Scientific, Cat. #ND-2000).

Samples were performed in triplicate. RNA samples were sent to

Novogene for analysis.

RNA-Seq data analysis

RNA-Seq paired-end reads (read length 150 base pairs) were aligned

to the human GRCh38 (human cell line data) or GRCm38 (mice

data) reference genome using hisat2 (Kim et al 2015). The average

alignment efficiency was 91.1 and 91.0% for human and mice data,

respectively. Genes were annotated using GENCODE 29 (human) or

M22 (mouse) (Harrow et al, 2012) and quantified using HTSeq

(Anders et al, 2015). Only coding genes were used for further analy-

sis. Differential gene expression was determined using DESeq2

(Love et al 2014). Genes were considered differentially expressed if

their absolute log2 fold change values were above 2 at FDR-adjusted

P values below 0.01.

To determine the amount of Alkal2 cDNA expression in

Rosa26_Alkal2 mice, reads were mapped to the 459 nt cDNA

sequence that was used for ALKAL2 overexpression. Coverage was

calculated using the R GenomicAlignments package.

Mice differential expression heatmaps were constructed using

the R gplots package. Hierarchical clustering was performed using

the complete-linkage clustering method and Manhattan distance

function. Only genes that were differentially expressed between

Th-MYCN and either Alk-F1178S/Th-MYCN or Alkal2/Th-MYCN)

were considered.

To compare the mouse tumour gene expression signatures with a

set of human cancers, a principal component analysis (PCA) was

performed using five RNA-Seq datasets from The Cancer Genome

Atlas (breast adenocarcinoma: n = 1,092; colon adenocarcinoma:

n = 456, lung adenocarcinoma: n = 513, renal clear cell carcinoma:

n = 530 and glioblastoma multiforme: n = 154) and one from

TARGET (neuroblastoma: n = 153, 33 MYCN amplified and 120

non-amplified). Human data were downloaded from https://portal.

gdc.cancer.gov/. Mouse gene IDs were mapped to their human

orthologs and 16,708 coding genes for which expression data were

available in all datasets were selected for downstream analysis. PCA

was performed on the 6 human cancers using the R packages Facto-

MineR (Lê et al, 2008) and factoextra based on a set of 3,209 dif-

ferentially expressed genes. These genes were identified by selecting

the 500 most differentially expressed genes between each human

tumour pair and between MYCN amplified and non-amplified

neuroblastoma using the R package Limma (Ritchie et al, 2015).

Mouse gene expression data were then mapped independently using

the PC coordinates.

Proteomics Tryptic digestion and tandem mass tag labelling and
LC-MS/MS analysis

The samples were digested with trypsin using the filter-aided

sample preparation (FASP) method (Wisniewski et al, 2009).

Briefly, 30 μg from each sample was reduced with 100 mM dithio-

threitol at 60°C for 30 min, transferred to 30 kDa MWCO Pall

Nanosep centrifugation filters (Sigma-Aldrich), washed several

times with 8 M urea and once with digestion buffer prior to alkyla-

tion with 10 mM methyl methanethiosulfonate in digestion buffer

for 30 min. Digestion was performed in 50 mM TEAB, 1% sodium

deoxycholate (SDC) buffer at 37°C by addition of 0.3 µg Pierce MS

grade Trypsin (Thermo Fisher Scientific) and incubated overnight.

An additional portion of trypsin was added and incubated for

another 3 h. Peptides were collected by centrifugation and labelled

using tandem mass tag (TMT) 11-plex isobaric mass tagging

reagents (Thermo Scientific) according to the manufacturer instruc-

tions. After pooling of the TMT set, SDC was removed by acidifi-

cation with 10% TFA. The proteins were pre-fractionated into 40

fractions by basic reversed-phase chromatography (bRP-LC) using

a Dionex Ultimate 3000 UPLC system (Thermo Fisher Scientific).

Peptide separation was performed using a reversed-phase XBridge

BEH C18 column (3.5 μm, 3.0 × 150 mm, Waters Corporation) and

a linear gradient from 3 to 40% acetonitrile in 10 mM ammonium

formate buffer at pH 10.00 over 17 min, followed by an increase to

90% acetonitrile over 5 min. The fractions were concatenated into

20 fractions, dried and reconstituted in 3% acetonitrile, 0.2%

formic acid.

The fractions were analysed on an Orbitrap Fusion Tribrid mass

spectrometer interfaced with Easy-nLC1200 liquid chromatography

system (both Thermo Fisher Scientific). Peptides were trapped on

an Acclaim Pepmap 100 C18 trap column (100 μm × 2 cm, particle

size 5 μm, Thermo Fisher Scientific) and separated on an in-house

packed analytical column (75 μm × 30 cm, particle size 3 μm,

Reprosil-Pur C18, Dr. Maisch) using a linear gradient from 5 to

35% B over 75 min followed by an increase to 100% B for 5 min,

and 100% B for 10 min at a flow of 300 nl/min. Solvent A was

0.2% formic acid in water, and solvent B was 80% acetonitrile,

0.2% formic acid. MS scans were performed at a resolution of

120,000, m/z range 380–1,380. MS/MS analysis was performed data-

dependent, with top speed cycle of 3 s for the most intense doubly

or multiply charged precursor ions. Most intense precursors were

fragmented in MS2 by collision-induced dissociation (CID) at a

collision energy of 35 with a maximum injection time of 50 ms, and

detected in the ion trap followed by multinotch (simultaneous)

isolation of the top 10 MS2 fragment ions, with m/z 400–1,400,
selected for fragmentation (MS3) by higher-energy collision dissoci-

ation (HCD) at 65% and detection in the Orbitrap at a resolution of

50,000 and m/z range of 100–500. Precursors were isolated in the
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quadrupole with an isolation window of 0.7 m/z, and a dynamic

exclusion within 10 ppm during 60 s was used for m/z-values
already selected for fragmentation.

Proteomic data analysis

The data files for the TMT set were merged for identification and

relative quantification using Proteome Discoverer version 2.2

(Thermo Fisher Scientific). The search was performed by matching

against the Homo sapiens Swiss-Prot Database (version November

2017, Swiss Institute of Bioinformatics, Switzerland) using Mascot

2.5 (Matrix Science) with a precursor mass tolerance of 5 ppm and

fragment mass tolerance of 0.6 Da. Tryptic peptides were accepted

with zero missed cleavage, variable modifications of methionine

oxidation and fixed cysteine alkylation; TMT-label modifications of

N-terminal and lysine were selected. Percolator was used for the

validation of identified proteins, and the quantified proteins were fil-

tered at 1% FDR and grouped by sharing the same sequences to

minimize redundancy. TMT reporter ions were identified in the MS3

HCD spectra with 3 mmu mass tolerance, and the TMT reporter

intensity values for each sample were normalized on the total

peptide amount. Only peptides unique for a given protein were

considered for quantification.

Differential protein expression was determined using the R ROTS

package (Suomi et al, 2017). A hyperbolic threshold with asymp-

totic values of abs(log2 fold change) = 0.5 and P = 0.05 was consid-

ered to determine differential protein expression. This implied that a

protein was considered differentially expressed when:

�log10P> � log100:05þ
0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlog2FCÞ2�0:52
q :

Gene set enrichment analysis

Gene set enrichment analyses (GSEA) were performed to find Gene

Ontology (GO) enrichments and to predict transcription factors

(TFs) responsible for the observed transcriptional responses. GSEA

was performed using Fisher’s exact test. Ranked GSEA was

performed on the phosphoproteomics data using the R fgsea pack-

age (default parameters, 10,000 permutations) with ranking based

on the absolute value of the ROTS statistic. When data were avail-

able for multiple phosphorylation sites, the protein/gene with the

highest absolute value was selected. Gene Ontology (GO) and reac-

tome pathway information were downloaded from the Molecular

Signatures Database v6.2 (Subramanian et al, 2005), and transcrip-

tion factor target information was derived from RegNetwork (Liu

et al, 2015), downloaded from www.regnetworkweb.org. Network

visualization of the enriched pathways was performed using the R

igraph package (Csardi & Nepusz, 2006).

Neuroblastoma survival data

Kaplan–Meier survival plots by for SRF and VGF gene expression

were generated in the R2:genomics analysis and visualization plat-

form (http://r2.amc.nl). Plots were generated using the KaplanScan

method for both the Versteeg dataset (n = 88, relapse-free survival)

and the Kocak dataset (n = 649, event-free survival).

Ectopic expression in the Drosophila eye

Ectopic expression of human and mouse ALK and ALKAL2 in the

adult fly eye was done with the Gal4-UAS expression system (Brand

& Perrimon, 1993). Briefly, DNA encoding either mouse ALK or

mouse ALKAL2 was cloned into pUAST and verified by sequencing.

Transgenic flies carrying pUAST-mAlk or pUAST-mAlkal2 were

generated by BestGene, Inc.. Ectopic expression of either mouse or

human mAlk/hALK and mAlkal2/hALKAL2 transgenes was driven

by pGMR-Gal4 (Bloomington Stock Center) in the developing eye.

UAS-hALKAL2 together with UAS-hALK (Guan et al, 2015) driven

by pGMR-Gal4 was included as a positive control.

Statistical analysis

Statistical analyses were performed with either GraphPad Prism 7/8
software or R statistical package (v3.6). Wilcoxon rank-sum tests,

Student’s t-tests, ANOVA multiple comparisons and Mantel–Cox
log-rank tests (for Kaplan–Meier curves analysis) were applied as

indicated in the respective sections and figure captions. For paramet-

ric tests, data were checked for normality using Shapiro-Wilk test

and for equality of variance using F test or Browne-Forsythe test.

Multiple testing corrections were performed using the Benjamini–
Hochberg method (Benjamini & Hochberg, 1995).

Data availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE partner (Vizcaino et al,

2016) repository with the dataset identifier PXD021792 (http://

www.ebi.ac.uk/pride/archive/projects/PXD021792). The RNA-Seq

data have been deposited (ArrayExpress, accession no. E-MTAB-

9598 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9598/;

cell line data) and E-MTAB-9600 (http://www.ebi.ac.uk/arrayexpre

ss/experiments/E-MTAB-9600/; mice data)). All other data required

to evaluate the conclusions in the paper are in the paper or Supple-

mentary Materials.

Expanded View for this article is available online.
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