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Abstract 

Context: Pancreatic beta-cell glucose sensitivity is the slope of the plasma glucose-
insulin secretion relationship and is a key predictor of deteriorating glucose tolerance 
and development of type 2 diabetes. However, there are no large-scale studies looking 
at the genetic determinants of beta-cell glucose sensitivity.
Objective: To understand the genetic determinants of pancreatic beta-cell glucose 
sensitivity using genome-wide meta-analysis and candidate gene studies.
Design: We performed a genome-wide meta-analysis for beta-cell glucose sensitivity 
in subjects with type 2 diabetes and nondiabetic subjects from 6 independent cohorts 
(n = 5706). Beta-cell glucose sensitivity was calculated from mixed meal and oral glucose 
tolerance tests, and its associations between known glycemia-related single nucleotide 
polymorphisms (SNPs) and genome-wide association study (GWAS) SNPs were 
estimated using linear regression models.
Results: Beta-cell glucose sensitivity was moderately heritable (h2 ranged from 34% to 
55%) using SNP and family-based analyses. GWAS meta-analysis identified multiple 
correlated SNPs in the CDKAL1 gene and GIPR-QPCTL gene loci that reached genome-
wide significance, with SNP rs2238691 in GIPR-QPCTL (P value = 2.64 × 10−9) and rs9368219 
in the CDKAL1 (P value = 3.15 × 10−9) showing the strongest association with beta-cell 
glucose sensitivity. These loci surpassed genome-wide significance when the GWAS 
meta-analysis was repeated after exclusion of the diabetic subjects. After correction for 
multiple testing, glycemia-associated SNPs in or near the HHEX and IGF2B2 loci were 
also associated with beta-cell glucose sensitivity.
Conclusion: We show that, variation at the GIPR-QPCTL and CDKAL1 loci are key 
determinants of pancreatic beta-cell glucose sensitivity.

Key Words: Glucose intolerance, diabetes progression, beta-cell function, incretin, mathematical model

Decreased insulin secretion secondary to impaired pancreatic 
beta-cell function is an essential element in the development of 
abnormal glucose tolerance and type 2 diabetes. Using a pro-
gressive, stepped intravenous glucose infusion, a dose-response 
curve can be generated for insulin secretion rates against 

plasma glucose levels. In cross-sectional studies, the slope of 
this curve (termed beta-cell glucose sensitivity) progressively 
decreases from normal to impaired glucose tolerance, and 
through to type 2 diabetes (1). An analogous dose-response 
relationship can be derived from standard oral glucose and 
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mixed meal tolerance tests (OGTT and MMTT, respectively) 
using C-peptide kinetic analysis to measure insulin secretion 
rates (2). This approach offers several advantages. First, it as-
sesses beta-cell glucose sensitivity under conditions that reflect 
daily living in contrast to intravenous glucose–based methods 
that exclude the incretin system. Second, it is independent of 
potential confounders, such as hepatic insulin clearance, that 
can influence circulating insulin levels and impact on measures 
of beta-cell function that examine changes in insulin levels in 
response to a glucose challenge.

In line with the studies using intravenous glucose in-
fusion, we have shown that the model-based beta-cell 
glucose sensitivity decreases with progressive glucose in-
tolerance using cross-sectional data (3). Crucially, beta-cell 
glucose sensitivity was a strong, independent predictor of 
deteriorating glucose tolerance (4) and the development 
of type 2 diabetes (5) in longitudinal follow-up studies of 
people free from diabetes. Furthermore, beta-cell glucose 
sensitivity, together with a model-derived measure of whole-
body insulin sensitivity, was found to completely replace 
the classical clinical risk factors (such as obesity and plasma 
glucose concentrations) as predictors of deteriorating glu-
cose tolerance (4). In view of the emerging importance of 
beta-cell glucose sensitivity as a predictor of deteriorating 
glucose tolerance, we conducted a genome-wide analysis to 
understand the genetic basis of this phenotype.

The aims of this study were to define the herit-
ability of beta-cell glucose sensitivity and to perform 
genome-wide association and candidate gene (known 
diabetes and glycemic risk loci) association analyses 
for beta-cell glucose sensitivity across a range of glu-
cose tolerance.

Methods

Cohort description

The discovery cohorts were 2 multicenter prospective co-
hort studies within the Innovative Medicines Initiative 
Diabetes Research on Patient Stratification (IMI DIRECT) 
Consortium (6), which were specifically designed to 
address the molecular basis to glycemic deterioration. The 
IMI DIRECT cohorts include detailed information and bio-
materials suitable for the analysis of genetic and nongenetic 
biomarkers for glycemic deterioration before and after 
the onset of type 2 diabetes. Cohort 2.1 (n  =  2233) en-
rolled people with normal and dysregulated, but not dia-
betic, glucose homeostasis based on HbA1c (5.7%–6.4%, 
40–48 mmol/mol) and OGTT, while cohort 2.2 consisted 
of those (n = 784) who had been recently diagnosed with 
type 2 diabetes at the time of enrollment. The study design 
and sample selection are previously described (7).

The data for the replication analyses (which has been 
meta-analyzed with the discovery cohorts) came from 4 

independent cohorts, consisting of a mix of volunteers 
spanning a range from normal glucose tolerance to type 
2 diabetes. These were the Relationship between Insulin 
Sensitivity and Cardiovascular disease (RISC) study (8), 
the ADIGEN study (9) the 1936-cohort (10) and the 
Family study (11). The RISC study is a prospective study 
of 1276 men and women with normal glucose tolerance of 
European ancestry, aged from 30 to 60 years, from 20 cen-
ters in 13 European countries (8). The ADIGEN study was 
a follow-up examination at around the age of 50 years of 2 
groups of young men assessed for military service at around 
19 years of age between 1943 and 1977 in the metropol-
itan area of Copenhagen (Denmark); 1 group were the most 
obese in that population (n = 248) and the control group 
(n = 320) was a random selection of 0.5% of that popula-
tion. The study was designed to investigate frequent func-
tional genetic variants that influence the development of 
obesity. The 1936-cohort is a population-based prospective 
age-specific cohort that consists of 1198 Danish subjects 
born in 1936, who were resident in municipalities nearby 
Glostrup Hospital (Denmark) in 1976. In the present study, 
we included subjects participating in the 20-year follow-up 
in 1996 (12). The purpose of the study was to follow and 
examine the association between insulin sensitivity and the 
development of cardiovascular diseases. The Family study 
consists of approximately 95 families from the Copenhagen 
area, including a total of 533 individuals, of whom 336 in-
dividuals were included in the present study. Families were 
recruited if one parent had type 2 diabetes. The study was 
designed to identify genetic loci influencing glucose homeo-
stasis using linkage methods in families with type 2 diabetes. 
OGTT and MMTT were conducted as previously described 
(7-11). Briefly, following an overnight fast, blood was sam-
pled at baseline (0 minutes) and at 30-minute intervals for 2 
hours following the oral glucose/meal challenge. Blood was 
assayed for plasma glucose, insulin, and C-peptide at a cen-
tral quality control laboratory for each cohort.

Glucose sensitivity measurement

Beta-cell function was assessed from the OGTT and MMTT 
(see Table 1) using a model that describes the relationship 
between insulin secretion and glucose concentration, which 
has been described in detail previously (2, 3). Glucose sen-
sitivity measures were determined from the baseline OGTT 
and MMTT data for each cohort. Glucose sensitivity is the 
mean slope over the observed glucose range of the model-
determined dose-response that relates insulin secretion to 
glucose concentration during the OGTT or MMTT. As 
shown in previous studies (13), glucose sensitivity reflects 
both intrinsic beta-cell function, as tested by intravenous glu-
cose infusion, and the effects of incretin hormones. All ana-
lyses were conducted by 3 operators supervised by A. Mari.

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/106/1/80/5908126 by U
m

ea U
niversity Library user on 16 February 2021



The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. 106, No. 1 83

Genotyping and imputation methods

Pre-imputation quality control was standardized across all 
the 6 cohorts with minor allele frequency cutoff of 0.01, 
and sample and single nucleotide polymorphism (SNP) call 
rate of >0.98. Genotype imputation involved a 2-step pro-
cess: (i) the genotypes to be imputed were “pre-phased” (a 
statistical method is applied to genotype data to infer the 
underlying haplotypes of each individual) using SHAPEIT 
(14); and (ii) IMPUTE (15) was then used to combine the 
inferred haplotypes with a reference panel of haplotypes 
and impute the unobserved genotypes in each sample 
using the 1000 Genomes Phase 3 (October 2014 release). 
Imputation was carried out in chunks of 1 Mb with a 500-
kb buffer region. Imputed variants in each nonoverlapping 
part of each chunk were concatenated into per chromo-
some files.

Statistical analysis

Heritability estimation. Narrow-sense heritability for 
glucose sensitivity was estimated using the GCTA software 
(16) and the directly genotyped markers from the 2 IMI 

DIRECT cohorts. We then estimated univariate heritability 
of glucose sensitivity by the restricted maximum likelihood 
method in GCTA (with sex and age at baseline included 
as covariates). The heritability thus estimated is also 
known as “narrow-sense” or “chip” heritability which is 
an indicator of additive genetic contribution from all SNPs. 
We estimated the heritability of beta-cell glucose sensitivity 
in the Family study using the tool SOLAR (17). We used 
2 different models to estimate the heritability of the trait 
in the Family study. The first model includes the additive 
genetic influence and the unique environment (AE model). 
The second model uses the additive genetic influence, the 
shared environment (household effect), and the unique 
environment (ACE model).

Candidate gene selection and analysis. For candidate 
gene analysis, we selected 155 SNPs associated with 
type 2 diabetes and glycemic and insulin-related traits 
reported in previous studies (18, 19). This SNP set was 
used by a recent GWAS of first-phase insulin secretion, 
measured by intravenous glucose tolerance tests (20). 
Linear regression models adjusted for age, sex, body mass 

Table 1. Demographic Characteristics and Key Metabolic Parameters of the Study Population for the GWAS Meta-analysis of 

Beta-Cell Glucose Sensitivity (n = 5706)

IMI DIRECT 2.1 IMI DIRECT 2.2 RISC study 1936 birth cohort ADIGEN study Family study

(n = 2233) (n = 784) (n = 1276) (n = 622) (n = 455) (n = 336)

Age, years, mean (±SD) 62.2 (±6.50) 61.9 (±7.91) 44.06 
(±8.34)

60.5 (±0.46) 48.9 (±5.81) 44.7 (±13.3)

Ethnicity Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian
Women, % 24% 43% 54% 53% 0% 56%
% with diabetes 0% 100% 0% 6% 10% 9.5%
BMI, mean (±SD) 28.1(±4.01) 30.49 (±4.99) 25.68 

(±4.13)
26.7 (±3.99) 30.2 (±6.78) 26.8 (±4.90)

Oral challenge OGTT MMTT OGTT OGTT OGTT OGTT
Glucose sensitivity,   
pmol min-1 m-2 mmol/L-1, 

(median±SD)

97.7 (±1.6) 69.1 (±1.8) 107.1 (±1.8)85.1 (±66) 69.1 (±43.6) 61.6 (±40.7)

Platform Illumina Human -
Core array

Illumina Human-
Core array

Affymetrix llumina HumanCore 
Exome-24 BeadChip

Human610-Quad 
v.1.0 BeadChip

 Illumina 
Human Core 
Exome-24 
BeadChip

pHWE exclusion <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Imputation software IMPUTE IMPUTE IMPUTE IMPUTE IMPUTE IMPUTE
GWAS software SNPTEST SNPTEST SNPTEST SNPTEST SNPTEST Mixed model 

using GCTA 
version 
1.91.2

NCBI Build for 
imputation

GRCh38 GRCh38 GRCh38 GRCh38 GRCh38 GRCh38

Abbreviations: BMI, body mass index; pHWE, P value for Hardy-Weinberg equilibrium; IMI DIRECT, Innovative Medicines Initiative Diabetes Research on 
Patient Stratification; RISC, Relationship between Insulin Sensitivity and Cardiovascular disease study.
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index (BMI), first 3 principal components of ancestry, 
and study center were used to test the association of each 
SNP with glucose sensitivity. For this analysis, a P value ≤ 
0.0003 (0.05/number of tests) was considered statistically 
significant.

Genome-wide association analysis. We performed 
genome-wide association study (GWAS) of beta-cell 
glucose sensitivity in 5706 individuals of European 
descent. In the primary analyses, glucose sensitivity 
measures were fitted in a linear regression model with age, 
gender, and study center (for RISC and DIRECT studies, 
which were conducted at multiple centers), BMI, and the 
first 3 principal components for race/ethnicity (derived 
from EIGENSTRAT) included as covariates. We also ran 
the analysis without adjustment for BMI in an attempt 
to identify loci associated with glucose sensitivity via 
adiposity. The glucose sensitivity was normalized by log10 
transformation. To account for imputation uncertainty, 
we used the 1000 Genomes imputation allele dosage in 
linear models.

Meta-analysis of genome-wide association studies. We 
used the METAL program (21) to meta-analyze individual 
studies by combining the study-specific P values across 
studies taking sample size and direction of effect into 
account. In total, 8 978 282 SNPs passed quality control 
(minor allele frequency [MAF] 2% in individual cohorts; 
imputation quality >0.3 in MACH or >0.4 in IMPUTE) 
and were included in the meta-analysis. METAL was also 
used to assess heterogeneity across the 3 cohorts for the 
top signals.

eQTL analyses. To identify potential effector transcripts 
mediating the activity of the top associated variants, we 
extracted cis-expression quantitative trait loci (eQTLs) 
information available from each of the top associated 
SNPs in 43 GTEx tissues (22) and pancreatic islets (23). 
Since these studies reported multiple genes associated 
with each SNP, we selected the most strongly associated 
eQTLs per SNP that generated a nominal P value, before 
calculating a corrected P value with the p.adjust function 
in R and using the Bejamini-Hochberg method.

Results

Demographic and key metabolic characteristics 
of the study population

Table 1 summarizes the demographic characteristics of the 
study population (n = 5706). All the participating cohorts 
comprised individuals of both genders, except the ADIGEN 
study which recruited just males.

Heritability estimates for beta-cell glucose 
sensitivity

The SNP-based heritability (narrow-sense heritability) 
of beta-cell glucose sensitivity in the combined discovery 
cohort, type 2 diabetes, and prediabetes population 
(n  =  3017) after adjustments for age, sex, and BMI was 
34% (h2 = 0.34 [±0.09] P value = 2.33 × 10−10).

In the Family study, after adjustments for age, sex, and 
BMI and using the inverse transformed phenotype in an AE 
model, we obtained a heritability of 55% (standard error 
[SE] 13%; P value = 7.12 × 10−9). Analysis with the ACE 
model did not change the result, with zero shared environ-
mental effect (C). The heritability was also calculated using 
only people with normal glucose tolerance (n = 252) with 
the same parameters. Both the AE model and the ACE model 
(with zero variance explained by shared environment) gave 
a heritability of 52% (SE 12%; P value  =  2.73  ×  10−8). 
Thus, the heritability did not seem to be affected by altered 
glucose tolerance.

Genome-wide association study and 
meta-analysis

Figs. 1 and 2 show the Manhattan and Q-Q plots, respect-
ively, for the GWAS meta-analysis across the 6 cohorts. The 
Q-Q plots for individual cohorts are shown in Supplementary 
Figure 1 (6). The GWAS meta-analysis showed multiple cor-
related SNPs on chromosome 6 in the CDKAL1 gene locus 
and on chromosome 19 in the GIPR-QPCTL gene region 
reaching the accepted level of significance for GWAS with 
P value < 10–8 (all significant SNPs listed in Supplementary 
Table 1 (6)). Greatest significance was seen for SNP 
rs2238691 (Z-score = −5.953, P value = 2.64 × 10−9) within 
the GIPR-QPCTL region and for rs9368219 (Z-score −5.9, 
P value = 3.15 × 10−9) in the CDKAL1 region (Figs 3 and 4, 
respectively). The effect estimates for these SNP were com-
parable across the replication and discovery cohorts. The 
SNPs with a P value between >10–8 and <10–7 are summar-
ized in Supplementary Table 2 (6).

To further explore the top associated variants, we ex-
tracted cis-expression quantitative trait loci (cis-eQTLs) as-
sociations from 43 GTEx tissues (22) and pancreatic islets 
from the InsPIRE study (23). Cis-eQTLs analysis is used to 
explore candidate genes mediating the activity of GWAS 
variants. By extracting the most significant eQTLs per tissue 
for each of the SNPs included in Supplementary Table 1 (6), 
we found that the most strongly associated eQTLs were all 
expressed in pancreatic islets (Supplementary Table 3 (6)), 
although no individual eQTL was significant after correction 
for multiple testing.

In view of the potential secondary metabolic effects 
of the diabetic state on pancreatic beta-cell function, the 
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GWAS meta-analysis was repeated in nondiabetic subjects 
(n = 4544) after excluding the IMI DIRECT 2.2 cohort and 
the known diabetic patients in the other cohorts listed in 
Table 1. There was no change in the SNPs that achieved 
genome-wide significance (Supplementary Table 4 (6)), al-
though the top SNPs identified in each of the CDKAL1 

and GIPR-QPCTL regions were different (rs1040558 and 
rs35541137, respectively).

Candidate gene association tests

Table 2 shows the association of known glycated hemoglobin 
A1c (HbA1c), glycemic traits (fasting and 2-hour plasma glu-
cose) and type 2 diabetes SNPs with beta-cell glucose sensi-
tivity (P < 0.01). After correction for multiple testing, type 
2 diabetes–associated SNPs in or near HHEX, CDKAL1, 
IGF2B2, fasting glucose–associated SNPs in or near CDKAL1 
and IGF2BP2, and a 2-hour glucose post-OGTT–associated 
SNP at the GIPR locus were all associated with beta-cell 
glucose sensitivity. The association of these SNPs was direc-
tionally consistent with the expected underlying biology. For 
instance, the “T” allele at rs1111875 in the HHEX locus is 
protective for diabetes and is associated with higher beta-cell 
glucose sensitivity. This SNP was nominally associated with 
the expression of the MARK2P9 gene in pancreatic islets (P 
value = 6.35 × 10−3), but not with eQTLs in other tissues 
(Supplementary Table 5 (6)). Other variants included in the 
analysis were also significant cis-eQTLs in pancreatic islets, 
this being the only tissue with significant eQTLs after mul-
tiple testing for the candidate SNPs listed in Table 2. The as-
sociations of the 155 known loci for type 2 diabetes HbA1c 
and other glycemic traits with beta-cell glucose sensitivity are 
summarized in Supplementary Table 6 (6). The heterogeneity 

Figure 1. Manhattan plot of genome-wide P values of association for beta-cell glucose sensitivity: horizontal upper and lower lines represent the 
suggestive genome-wide significance thresholds of p <10−7 and p <10–5, respectively.

Figure 2. Q-Q plot of genome-wide P values of association for beta-cell 
glucose sensitivity of the observed versus expected P values given the 
number of statistical tests performed for beta-cell glucose sensitivity.
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Figure 3. Regional association plot of GIPR-QPCTL gene region. Plot produced in Locus Zoom with the most strongly associated SNP (rs2238691) 
shown as the purple diamond.

Figure 4. Regional association plot of CDKAL1 gene region. Plot produced in LocusZoom with the most strongly associated SNP (rs9368219) shown 
as the purple diamond.
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in the effect sizes for the top SNPs in Table 2 across the co-
horts was not significant (Supplementary Table 7 (6)).

The same candidate gene analyses were repeated in just 
the nondiabetic subjects. The associations between SNPs 
and beta-cell glucose sensitivity observed in the whole 
cohort (Table  2) remained in the nondiabetic subjects 
(Supplementary Table 8 (6)), albeit at generally lesser de-
grees of statistical significance.

For the known SNPs associated with type 2 diabetes and 
glycemic traits (P < 0.01), we examined the overlap between 
their association with beta-cell glucose sensitivity in our study 
and the early peak insulin response to an intravenous glucose 
challenge (IVGTT) as previously reported (19). As shown in 
Supplementary Figure 2 (6), SNPs in GIPR, G6PC2, JAZF1, 
and FADS1 are associated with pancreatic beta-cell glu-
cose sensitivity but not with early insulin response during 
the IVGTT, while SNPs in ABCB11, CDKAL1, IGF2BP2, 
ARAP1, HHEX, PDX1, and GRB10 show an association 
with both phenotypes. Conversely, variants in MNTR1B and 
TCF7L2 were strongly associated with the early insulin re-
sponse during the IVGTT, but variation in these type 2 diabetes 
susceptibility loci was not associated with pancreatic beta-cell 
glucose sensitivity after correction for multiple testing.

Discussion

This is the first study to conduct a genome-wide associ-
ation meta-analysis of pancreatic beta-cell glucose sensi-
tivity. The key finding is that variation at the CDKAL1 and 
GIPR-QPCTL regions showed the strongest associations 
with beta-cell glucose sensitivity in the entire study cohort, 

and when the analysis was limited to nondiabetic subjects. 
These findings were corroborated by the candidate gene 
analyses, which also found a strong association between 
known variants at the HHEX locus and beta-cell glucose 
sensitivity. In addition, we observed that pancreatic islet 
eQTLs clustered with the top GWAS SNPs, while multiple 
variants from the candidate gene SNPs were individually 
associated with islet eQTLs.

We have previously shown that type 2 diabetes risk 
variants in CDKAL1 and HHEX were associated with de-
creased beta-cell glucose sensitivity in nondiabetic individ-
uals (24); however, these associations have not been tested 
in a larger cohort that includes subjects with abnormal glu-
cose tolerance. Lyssenko and colleagues reported similar 
findings in a large longitudinal cohort study but measured 
the acute insulin response to an oral glucose load rather 
than beta-cell glucose sensitivity (25).

CDKAL1 represents one of the strongest signals of as-
sociation with type 2 diabetes across diverse ancestries, 
with minimal heterogeneity in allelic effects between 
populations (26-30). The role of CDKAL1 in pancreatic 
beta-cell function remains to be fully defined. However, it 
is strongly expressed in human adult pancreatic islets rela-
tive to other tissues (31), and CDKAL1 gene deletion is ac-
companied by modestly impaired insulin secretion during 
high-fat feeding in mice (28). There is emerging evidence 
that CDKAL1 encodes a methylthiotransferase that regu-
lates tRNALys function and proinsulin synthesis in pancre-
atic beta cells (32).

A large GWAS (33) identified the GIPR-QPCTL 
(rs10423928) locus to be associated with 2-hour blood 

Table 2. Association of the Known SNPs for Type 2 Diabetes, HbA1c, and Glycemic Traits With Beta-Cell Glucose Sensitivity

Phenotype CHR SNP Position Effect allele Z-score P value Gene

2-hr glucose 19 rs11672660 46180184 t -5.92 3.21E-09 GIPR
Fasting glucose 6 rs9368222 20686996 a -4.907 9.25E-07 CDKAL1
T2D 6 rs7756992 20679709 a 4.902 9.47E-07 CDKAL1
T2D 10 rs1111875 94462882 t 4.661 3.15E-06 HHEX
Fasting glucose 3 rs7651090 185513392 a 3.753 1.75E-04 IGF2BP2
T2D 3 rs4402960 185511687 t -3.751 1.76E-04 IGF2BP2
FGFproinsulin 11 rs11603334 72432985 a 3.366 7.62E-04 ARAP1
T2D 11 rs1552224 72433098 a -3.366 7.63E-04 ARAP1
Fasting glucose 13 rs11619319 28487599 a 3.16 1.58E-03 PDX1
Fasting glucose 2 rs560887 169763148 t -3.097 1.95E-03 G6PC2
T2D 7 rs849135 28196413 a 2.926 3.43E-03 JAZF1
HbA1c 2 rs552976 169791438 a -2.902 3.71E-03 ABCB11
Fasting glucose 7 rs6943153 50791579 t 2.85 4.37E-03 GRB10
T2D 19 rs8108269 46158513 t 2.794 5.20E-03 GIPR
Fasting glucose 11 rs174550 61571478 t -2.769 5.63E-03 FADS1
Fasting glucose 11 rs174576 61603510 a 2.607 9.15E-03 FADS1

Phenotype refers to the phenotype reported to be associated with this SNP. 
Associations reaching Bonferroni equivalents of P < 0.05 are in bold. Base pair position build-37.p13.
Abbreviations: CHR, chromosome; HbA1c, glycated hemoglobin A1c; SNP, single nucleotide polymorphism; T2D, type 2 diabetes.
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glucose levels after an oral glucose challenge. This study 
also showed that GIPR had strong specific mRNA ex-
pression in the sorted pancreatic beta cells, supporting 
the role of GIPR in insulin secretion. The GIPR-QPCTL 
(rs10423928) locus is in linkage disequilibrium with 
rs2238691 identified in our study (r2 = 41% in HapMap 
CEU Population and r2 = 99% in our study) suggesting that 
these 2 GWAS identified the same signal. Gastric inhibi-
tory polypeptide (GIP) along with glucagon-like peptide-1 
(GLP-1) are incretin hormones that serve to amplify the 
insulin secretory response after food ingestion, and GIPR 
plays a key role in this process. As previously reported, the 
beta-cell glucose sensitivity is in part influenced by the ef-
fects of incretin hormones (13). Interestingly, variation at 
the GLP-1 receptor gene locus was not associated with 
beta-cell glucose sensitivity in this analysis.

A recent study reported a similar approach to in-
vestigate the genetic basis of the early insulin response 
to an IVGTT (20). The strongest associations were in 
or near the MTNR1B and CDKAL1 loci. Taken with 
our findings, the evidence highlights a critical role for 
CDKAL1 in the regulation of pancreatic insulin secre-
tion (Supplementary Figure 2 (6)). Intriguingly, although 
variation in TCF7L2 has been identified as the strongest 
common genetic determinant of type 2 diabetes, it was 
not a significant determinant of beta-cell glucose sensi-
tivity but was associated with the early insulin response 
to an IVGTT (20).

We show that the known loci for HbA1c, such as 
ABCB11, and the established type 2 diabetes loci, 
IGF2BP2, and ARAP1, could mediate their effect on type 2 
diabetes risk by their action on pancreatic beta-cell glucose 
sensitivity. Previous literature has shown the association of 
these loci with glucose homeostasis and cis-eQTLs active in 
pancreatic islets (23). Insulin-like growth factor 2 (IGF2) 
mRNA-binding protein 2 (IGF2BP2) belongs to a family of 
IGF2 mRNA-binding proteins that play an important role 
in pancreatic development (34), while IGF2BP2 mRNA 
levels are associated with glucose and insulin homeostasis 
(35).

A limitation of our study is its modest sample size of 
5706 European samples for a GWAS study, which con-
strains our ability to detect associations with low-frequency 
variants. Another potential concern is that beta-cell glu-
cose sensitivity was determined from OGTT and MMTT. 
However, the MMTT was used only in the DIRECT 2.2 
cohort and GWAS analyses were first conducted separ-
ately within the individual cohorts, and then the cohort 
specific P values were meta-analyzed. Furthermore, when 
the DIRECT 2.2 cohort was excluded as part of the ana-
lysis of the nondiabetic subjects, variation in CDKAL1 and 

GIPR-QPCTL regions remained the strongest determin-
ants of beta-cell glucose sensitivity.

Clearly, the measurement of pancreatic beta-cell glucose 
sensitivity as a predictor of type 2 diabetes would be im-
practical in the clinical setting. The identification, therefore, 
of clinically applicable biomarkers of beta-cell glucose sen-
sitivity is attractive, and as a step toward this goal we have 
explored the genetic architecture of this pancreatic beta-cell 
phenotype.

In summary, CDKAL1 and GIPR-QPCTL loci showed 
the strongest associations with beta-cell glucose sensitivity 
by genome-wide and candidate gene-based approaches, 
and these associations were independent of diabetes status.
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