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Bacterial extracellular vesicles (EVs) have a vital role in bacterial pathogenesis.

However, to date, the small RNA-cargo of EVs released by the opportunistic pathogen

Staphylococcus aureus has not been characterized. Here, we shed light on the

association of small RNAs with EVs secreted by S. aureus MSSA476 cultured

in iron-depleted bacteriologic media supplemented with a subinhibitory dosage of

vancomycin to mimic infection condition. Confocal microscopy analysis on intact RNase-

treated EVs indicated that RNA is associated with EV particles. Transcriptomic followed

by bioinformatics analysis of EV-associated RNA revealed the presence of potential gene

regulatory small RNAs and high levels of tRNAs. Among the EV-associated enriched small

RNAs were SsrA, RsaC and RNAIII. Our finding invites new insights into the potential role

of EV-associated RNA as a modulator of host-pathogen interaction.

Keywords: Staphylococcus aureus, transcriptomic analysis, small RNAs, tRNA, extracellular vesicle

INTRODUCTION

Staphylococcus aureus (S. aureus), a Gram-positive bacterium, is a frequent colonizer of anterior
nares of the healthy human population. This bacterium can cause various infections ranging
from minor superficial skin infections to severe life-threatening infections such as osteomyelitis,
pneumonia, endocarditis, bacteremia and sepsis (Wertheim et al., 2005; Mccaig et al., 2006; Foster
et al., 2014). The adaptation of diverse lifestyles and the ability to cause diseases is due to the fact that
S. aureus harbors arsenals of virulence factors involved in adhesion, invasion and dissemination
(Novick, 2003).

Small RNA (sRNA) are heterogeneous small-sized transcripts (50–500 nucleotides) expressed
under stressful environmental conditions which play important roles in growth processes,
metabolism, stress adaptation and virulence (Tomasini et al., 2014; Westermann, 2018).
Prokaryotic sRNAs are often non-coding and mainly originate from intergenic regions (Wagner
and Vogel, 2003). They generally form secondary structures such as hairpins and stem-loops
(Wagner and Romby, 2015). There are varieties of techniques to identify and characterize sRNAs
(Lagos-Quintana et al., 2001; Wang et al., 2009; Li et al., 2012). Mizuno et al. first reported sRNAs
with regulatory functions in Escherichia coli in 1980’s, and a decade later Novick et al. reported
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regulatory sRNAs in S. aureus (Mizuno et al., 1984; Novick
et al., 1989). Currently, there are about 250 sRNAs discovered in
various strains of S. aureus grown under different experimental
conditions, and the biological functions of most of them are
yet to be determined (Guillet et al., 2013; Hermansen et al.,
2018). Still, novel sRNA transcripts are reported from S. aureus
strains, and the number is increasing with the advancement
of high-throughput sequencing technology as well as robust
computational methods (Liu W. et al., 2018; Westermann, 2018).

Extracellular Vesicles (EVs) are nanosized-proteolipids, with
a spherical shape that are heterogeneous in size ranging from 50
to 500 nm (Askarian et al., 2018). Sometimes fusion of vesicles
have resulted in formation of filamentous structures, also known
as nanopods or nanotubes (Dongre et al., 2011; Dubey and Ben-
Yehuda, 2011; Gill et al., 2018). EVsmay contain virulence factors
(Devos et al., 2015; Askarian et al., 2018; Wagner et al., 2018;
Nadeem et al., 2020), such as toxins (Rivera et al., 2010; Coelho
et al., 2019) as well as other enzymes (Smalley and Birss, 1987;
Elhenawy et al., 2014), quorum sensing molecules (Mashburn
and Whiteley, 2005; Brameyer et al., 2018; Morinaga et al., 2018)
and nucleic acids such as DNA (Hagemann et al., 2014; Bitto
et al., 2017; Langlete et al., 2019) and RNA (Sjöström et al., 2015;
Koeppen et al., 2016; Choi J.-W. et al., 2017). Their content may
vary depending on species and growth conditions (Bager et al.,
2013; Ghosal et al., 2015; Koeppen et al., 2016). EVs might act
as a decoy against antimicrobial peptides and phages (Manning
and Kuehn, 2011), and are also involved in co-operation and/or
competition with other pathogens (Lynch and Alegado, 2017;
Choi et al., 2020). EVs can also influence biofilm formation and
modulate host-immune responses (Manning and Kuehn, 2013;
Schwechheimer and Kuehn, 2015; Liu Y. et al., 2018).

EVs from Gram-negative bacteria harbor sRNA involved in
intra-species (microbe-microbe) (Whitworth, 2018) and inter-
kingdom (microbe-host) interactions (Koeppen et al., 2016;
Frantz et al., 2019) as well as pathogenicity (Song and Wai,
2009). However, scant functional and analytical data exist to
support these claims in Gram-positive bacteria (Ghosal et al.,
2015; Sjöström et al., 2015; Koeppen et al., 2016; Choi et al., 2018;
Malabirade et al., 2018).

During infection, the availability of iron is strictly controlled
by the host, and in order to survive pathogens must adapt their
transcriptomic and metabolic pathways accordingly (Wilderman
et al., 2004; Oglesby-Sherrouse and Murphy, 2013; Mäder et al.,
2016). Nutrient limitation and antibiotics is furthermore known
to increase vesiculation (Toyofuku et al., 2019). Subinhibitory
concentrations of the last resort anti-staphylococcal antibiotic,
vancomycin, has been shown to influence physiology, growth and
toxin production by S. aureus (Hsu et al., 2011; Cafiso et al., 2012;
He et al., 2017), and has been found to increase EV production
in another Gram-positive species, Enterococcus faecium (Kim

Abbreviations: ATCC, American type culture collection; AFM, Atomic Force
Microscopy; KEGG, Kyoto Encyclopedia of Genes and Genomes; IGV, Integrative
Genomics Viewer; EVs, Extracellular vesicles; NTA, Nanoparticle Tracking
Analysis; EVs, Extracellular Vesicles; rRNA, Ribosomal RNA; RNA-Seq, RNA
Sequencing; sRNA, Small RNA; TEM, Transmission Electron Microscopy; tRNA,
transfer RNA; UTRs, Untranslated regions.

et al., 2019). Hence, in this study, we used iron-chelated media
supplemented with vancomycin to evaluate whether the EVs
produced by S. aureusMSSA476 are associated with sRNAs when
grown in conditions that mimic an infection that is being treated
with an antibiotic.

MATERIALS AND METHODS

Strain and Growth Conditions
S. aureus subsp. aureusRosenbachMSSA476 was purchased from
LGC standard AB (ATCC- BAA-1721) (Sweden). The bacteria
were grown at 37◦C on BHI agar plate, BHI broth, or in trace
metal-depleted BHI broth containing 0.5µg/mL of vancomycin.
The trace metals including divalent cations such as iron were
lowered by treating the BHI broth with 2 g/L of chelex-100
resin (Bio-Rad, Californa, USA). The medium was subsequently
filtered according to the manufacturer’s instructions.

Isolation of Bacterial Extracellular Vesicles
The bacterial EVs were isolated by a procedure described
earlier (Askarian et al., 2018; Wagner et al., 2018), with slight
modifications. A fresh overnight culture of the methicillin-
susceptible S. aureus MSSA476 (1:100 dilution) was inoculated
into 500mL BHI (normal conditions) or Chelex-treated BHI
broth containing 0.5µg/mL of vancomycin (stressed conditions)
at least two to five different days. The cultures were grown with
shaking at 37◦C for 16 h. The cultures were then centrifuged
at 6,000 × g for 30min. Bacterial pellets were discarded, and
the supernatants was filtered through 0.2µm filters (Millipore
ExpressTM Plus, USA) and ultra-centrifuged at 100,000 × g for
3 h at 4◦C in a 45 Ti rotor (Beckman, USA). EV pellets from each
isolation were re-suspended in 500 µL RNAlater (Thermo Fisher
Scientific, Massachusetts, USA) or in Phosphate-buffered saline
(PBS) if EVs were to be used for microscopy or Nanoparticle
Tracking Analysis, and kept at −80◦C until further use. Prior
to RNA isolation for RNA-seq, EVs from several isolations
were thawed, pooled and concentrated using ultrafiltration (10
kDa Vivaspin 20, Sartorius, Germany). An overview of EV
isolations from bacteria grown under stressed conditions and its
downstream applications is provided in Supplementary Table 1.

Transmission Electron Microscopy (TEM)
TEM was performed as described previously (Cavanagh et al.,
2018; Wagner et al., 2018). Briefly, 5 µL of purified EVs
were applied to Formvar coated 75 mesh hexagonal copper
grids (Electron Microscopy Science, Pennsylvania, USA) and
incubated for 5min. Grids were washed with MQ water, and
negatively stained with 2%methylcellulose and 3% uranyl acetate
in a ratio of 9:1. The excess of stain was blotted away, and grids
were then left to dry at room temperature. The samples were
then visualized with a JEOL JEM 1010 transmission electron
microscope (JEOL, Tokyo, Japan) operated at 80 kV.

Atomic Force Microscopy (AFM)
The EVs were imaged by AFM, as described previously
(Lindmark et al., 2009; Ahmad et al., 2019). Briefly, EVs were
deposited onto a freshly cleaved mica surface (Goodfellow
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Cambridge Ltd., Cambridge, UK). Prior to imaging, EVs on mica
were dried in a desiccator for about 2 h. Images were recorded on
aMultimode 8 Nanoscope AFM equipment (Bruker AXS GmbH,
Karlsruhe, Germany) using TappingMode. Images were gathered
by NanoScope software using ScanAsyst in air with ScanAsyst
cantilevers, at a scan rate of ∼0.8–1.5Hz. The final images were
plane fitted in both axes and presented in a surface plot of the
height mode.

Nanoparticle Tracking Analysis (NTA)
The size distribution of EVs were determined using NanoSight
NS300 (Malvern Instruments Ltd., Worcestershire, UK)
equipped with CMOS camera and a blue laser module (488 nm,
LM12 version C) (Jamaly et al., 2018). Briefly, EV samples were
thawed and diluted (500×) in PBS to obtain a concentration
within the recommended measurement range (1–10 × 108

particles/mL). Using a 1mL syringe, the sample was injected into
the instrument and videos were captured in triplicate for 30 s.
The mean values for size and concentration were analyzed using
the NanoSight (NTA software, version 3.0).

Labeling of Extracellular Vesicles
The EVs were stained using a previously described protocol with
slight modifications (Nicola et al., 2009; Vdovikova et al., 2017).
The vesicles were either untreated or treated with RNase (Roche
diagnostics, Basel, Switzerland) to remove extracellular RNA then
stained with lipid-specific dye, PKH2 or DiD (Sigma Aldrich)
and subsequently with RNA specific dye SYTO RNASelect Green
(Thermo Fisher Scientific, Massachusetts, USA). The stained
vesicles were then ultra-centrifuged at a speed of 100,000 ×

g for 1 h at 4◦C. The stained EVs were resuspended in PBS.
Samples were mounted on a glass slide and examined by Leica
SP8 inverted confocal system (Leica Microsystems) equipped
with a HC PL APO 63 ×/1.40 oil immersion lens. Images
were captured and processed using LasX (Leica Microsystems).
Fluorescence intensity profiles were generated using the plot
profile command in ImageJ-FIJI distribution (Schindelin et al.,
2012) For quantification, EVs from 8 randomly selected fields
(180 µm2) were counted. Results were pooled from two
independent experiments and data are expressed as percentage.

Bacterial Growth Curve and Viability Assay
A single colony of MSSA476 was inoculated into two 5mL of
BHI broth and grown overnight with shaking at 37◦C. The
5mL cultures were used to inoculate 500mL BHI (normal) and
500mL iron depleted BHI containing antibiotics (stressed). The
cultures were incubated with shaking at 37◦C, and optical density
was measured every 30min for 16 h. For the viability assay,
500 µL of each culture of bacteria grown under normal and
stressed conditions for 16 h, were harvested. Viable plate count
was carried out by plating 20 µL of 10-fold serial dilutions (from
10−5 to 10−10) on blood agar plates, which were incubated for
24 h at 37◦C. Dilutions containing 10–100 colonies were counted,
and the concentration was calculated as CFU/mL.

Live and Dead Count
Bacterial cultures grown for 16 h in BHI (normal) and iron
depleted BHI containing antibiotics (stressed) were analyzed for
live and dead cells using LIVE/DEAD BacLight bacterial Viability
and Counting Kit (Thermo Fisher Scientific, Waltham, USA)
and BD LSRFortessa flow cytometer. Each bacterial culture was
diluted 1,000-fold in 1mL 0.85% filtered NaCl, which contain
0.5 µL SYTO 9, 2.5 µL Propidium iodide (PI), and 10 µL
beads of size 6µm. Beads had a concentration of 1 × 108/mL
and were diluted 100-fold. Cells were stained for 10–15min
at room temperature. Stained bacteria were analyzed using BD
LSRFortessa flow cytometer using a voltage of 600, 250, 400, and
800 for forward scatter (FSC), side scatter (SCC), AF488 and
PI, respectively. All scales were set to logarithmic amplification
with gain voltages of 300, 250 and 200 for FSC, SSC, and
AF488, respectively. Data were recorded for 1,000 bead events.
Total events were recorded and density of bacterial culture in
terms of bacteria/mL was calculated as (numbers of events in
bacterial region) × (dilution factor)/(numbers of events in the
bead region× 10−6).

Extraction of RNAs
The crude collection EVs was stored in RNAlater; which is a
preservative compatible with RNA isolation and downstream
applications such as RNA sequencing and Reverse transcription.
The EVs were centrifuged using Vivaspin R© ultrafiltration spin
columns (cutoff 10000MWCO) at 5,000 RPM for 15min.
The concentrated EVs were treated with RNaseA (50µg/mL)
for 30min at room temperature to degrade all forms of
extracellular RNA. Thereafter, to stop the RNase activity, EVs
were treated with 5 µL of RNase inhibitor (Applied Biosystems,
Massachusetts, USA) for 15min at 37◦C. Then the small RNA
from S. aureus EVs were isolated by miRNeasy kit (Qiagen,
Hilden, Germany), according to the manufacturer’s instruction.
Trizol and Chloroform used during RNA isolation are sufficient
to remove traces of RNAlater. The concentration of RNA was
measured by Qubit HS kit, which quantify sample concentration
ranging from 250 pg/µL to 100 ng/µL (Thermo Fisher Scientific,
Waltham, USA), and the quality of RNA was assessed by
Nanodrop (Thermo Fisher Scientific, Waltham, USA, USA). A
260/280 ratio of 1.8 or higher was considered optimal. In our
RNA prep it was found to be 1.85. In order to evaluate whether
the isolated RNA was extravesicular or associated with EVs, RNA
concentration was measured on crude EVs, RNase treated EVs
and finally in RNA isolated from the RNase-treated EVs.

rRNA Depletion, Library Preparation, and
Sequencing
The isolated EV-associated RNA was treated with Ribo-zero
rRNA removal kit (Illumina, Munich, Germany) according
to the manufacturer’s instructions to reduce ribosomal RNA
(rRNA). Thereafter, the concentration of RNA was measured
using Experion RNA HighSense Chips (Bio-Rad Laboratories,
Inc, USA). The depleted RNA was cleaned and concentrated
using RNeasy MinElute Cleanup kit (Qiagen, Hilden, Germany)
and RNA clean & concentrator-5 kit (Zymo Research, California,
USA). The rRNA-depleted RNA was fragmented, and reverse
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transcribed into cDNA using high capacity cDNA reverse
transcription kit (Applied Biosystems, California, USA), and
sequenced on an Illumina NextSeq550 platform.

RNA Preparation, cDNA Synthesis, and
qPCR
qPCR was used to confirm the presence of the three enriched
sRNAs (SsrA, RSaC, and RNAIII). The EV-associated RNA
was isolated as described above and treated with DNase
(ArcticZymes, Tromsø, Norway) before RNA integrity and
quantity were measured both by NanoDrop and Qubit. cDNA
was prepared by reverse transcription kit (Applied Biosystems)
using 100 ng RNA. qPCR reactions were performed in
technical duplicates for pooled EV samples using SYBR Green
master mix (Applied Biosystem) with the following primer
pairs: SsrA-F/R: CACTCTGCATCGCCTAACAG/ GCGTCCAG
AGGTCCTGATAC, RsaC-F/R: CAAAGGAAAGGGGCATAC
AA/ ACGCCATTCCCTACACACTC, RNAIII-F/R: AGTTTC
CTTGGACTCAGTGCT/ GGGGCTCACGACCATACTTA. To
perform qPCR, briefly, 2 µL of cDNA was used as a template
for each 20 µL reaction, which was carried out with 100 nM of
primers. Cycling conditions were as follows: initial denaturation
10min at 95◦C, 40 cycles of 15 s at 95◦C and 60◦C for 1min
as annealing and elongation temperature. The data were treated
and analyzed with the Applied Biosystems (7300 Real-Time PCR
System) to determine the Ct.

PCR and Sanger Sequencing
RT-PCR was carried out in a Thermal Cycler (Applied
Biosystems, Foster City, CA) in order to verify the three
PCR amplicons (SsrA, RsaC and RNAIII) by agarose gel
and DNA sequencing. The PCR was performed in a 20 µL
reaction, containing gene-specific primers mentioned above and
DreamTaq Green PCR Master Mix (Thermo Fischer Scientific,
USA) according to the manufacturer’s instruction. One µL of
cDNA was used as the template. The cycling conditions were
performed as follows: after an initial denaturation step of 2min
at 95 ◦C, 40 cycles were performed for 30 s at 95 ◦C, 60 s at 60
◦C, and 1min at 72 ◦C. A final extension step for 10min at 72 ◦C
was used. PCR products were further separated on a 1% agarose
gel, stained with GelRed and visualized using SyngenGel Imaging
(Bio-Rad Laboratories Inc, USA). The PCR product was cleaned
using PCR Clean-Up Kit (Promega, Norway). Sequencing
reactions were performed in using a BigDye Terminator version
3.1 kit (Applied Biosystems) according to the manufacturer’s
instructions with the same primers as for the real-time PCR assay.
Sequencing was performed on an Applied Biosystems 3,130 × l
genetic analyzer.

Bioinformatics Analysis
The fastQ files obtained after paired-end sequencing was
checked for quality using the Galaxy webserver (https://galaxy-
uit.bioinfo.no). Bcl2fastq program supplied by Illumina was
used to convert bcl files to fastQ files, which automatically
trims the adapters and generates clean reads. The clean reads
were aligned with the reference genome (MSSA476; GenBank
accession no. NC_002953.3) using Bowtie 2 (Langmead and

Salzberg, 2012).Mapping of the EV reads to the reference genome
resulted in a Sequence Alignment Map file that was converted
to a Binary Alignment Map (BAM) file. The BAM and its
associated annotation files of the reference genome were loaded
into Artemis where manual searches for sRNAs were performed.
Visualization and manual inspection of reading coverage were
conducted using Artemis version 1.0 (Rutherford et al., 2000).
All the sRNAs are listed based on genomic coordinates provided
from the bacterial small regulatory RNA repository BSRD (http://
kwanlab.bio.cuhk.edu.hk/BSRD). The sRNAs identified from
Artemis were run separately for Rfam search in Artemis to gather
information about RNA families and RNA elements, including
accession numbers. In addition, the Rockhopper tool (Tjaden,
2019) was used to identify transcripts and operons and to
elucidate bacterial transcriptomes. Transcripts from Rockhopper
were visualized (.wig files) in the Integrative Genomics Viewer
(IGV) (Robinson et al., 2011).

RESULTS

RNA Is Associated With S. aureus-Derived
EVs
The MSSA476 bacterial growth in BHI (normal condition) or
trace metal-depleted BHI supplemented with a subinhibitory
concentration of vancomycin mimicking infection (stress
condition) were compared and found to be similar at
16 h (Supplementary Figure 1). The viability of bacteria was
evaluated by flow cytometry and colony-forming units (CFU)
enumeration and showed similar viability which was above 99.6%
(Table 1, Supplementary Figure 2).

Then, EVs were isolated from S. aureus grown for 16 h
under normal or stressed conditions. EVs were obtained from
bacteria grown under both conditions. However, the number of
particles, as well as protein concentration, was increased when
bacteria were stressed (Supplementary Figure 3). Unfortunately,
the yield of sRNA obtained from EVs isolated bacteria grown
under normal condition was too low for RNA-seq. Therefore,
we focused the study on EVs isolated from stressed bacteria.
The morphology of EVs was evaluated by AFM and TEM.
Aligned with other studies on MSSA476 (Gurung et al., 2011;
Askarian et al., 2018), EVs were spherical in shape, though minor
fusions were observed (Figures 1A,B, Supplementary Figure 4).
In addition, the size distribution of vesicles was measured
using NTA which revealed that the sizes ranged from 20 nm to
200 nm, although the majority of vesicles are between 100 and
150 nm. The analysis also showed some particles with sizes above
200 nm (Figure 1C), whichmight be due to aggregation or fusion
of EVs.

Next, we wanted to evaluate whether RNA is associated with
the EVs. The EVs were left untreated or treated with RNase to
remove extravesicular RNA, and thereafter stained with RNA
specific dye (green). EVs are known to contain lipids (Ghosal
et al., 2015), and were therefore stained with a lipid-specific dye
(red). The RNA and lipid-stained particles, which we assumed
to be aggregated EVs (Ter-Ovanesyan et al., 2017), were then
analyzed by confocal microscopy. As seen in Figures 2A,B and
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TABLE 1 | Summary of bacterial counts using flow cytometry and total plate count method.

Sample Flow cytometry data Plate count (CFU)

Bacterial count

(bacteria/mL)

Live bacteria (%) Dead bacteria (%)

S. aureus grown under

normal condition

1.8 × 1010 99.9 0.1 3.0 × 1010

S. aureus grown under

stress condition

8.8 × 109 99.6 0.4 2.3 × 1010

FIGURE 1 | S. aureus MSSA 476 grown under infection mimicking condition produces spherical EVs of various sizes. (A) Low and (B) high magnification TEM images

of crude EVs isolated from bacteria grown in iron-depleted BHI supplemented with subinhibitory concentration of vancomycin (black arrow indicates vesicles) (C) NTA

showing total number and size distribution of EVs (mean in nm ± SD) isolated from S. aureus MSSA476. E6 particles/ml is the standard NTA output, and means 106

particles/ml.

Supplementary Figures 5, 6, RNA and lipid stain co-localized in
the majority of EVs. To confirm the sensitivity of the method, the
fluorescence intensity (Figure 2C) was determined in co-stained
and only lipid stained EVs indicated with dotted line (Figure 2B).
Finally, we quantified co-localization of RNA and lipid particles
by counting 8 random microscopic fields in both untreated and
RNase-treated EVs. In RNase- treated EVs, we observed ∼70%
co-localization of RNA and lipid stained particles, while ∼20%
percent of the lipid stained particles were without any RNA stain
(Figure 2D, Supplementary Figure 6B). Approximately 20% of
the particles were only RNA-stained in untreated EVs, while

only 6% of the RNase-treated EV particles were stained by RNA-
specific stain only, supporting the efficacy of RNase treatment
(Figure 2D, Supplementary Figure 6B). This low level of RNA
stained particles in RNase-treated EVs might represent either
non-specific aggregations of RNA dye, or a leakage of RNA from
broken EVs during sample preparation, or the presence of small
amounts of extra-vesicular RNA even after RNase treatment
(Figure 2D).

Having found that RNA was associated with RNase-treated
EVs, we isolated sRNA which was analyzed further by
bioanalyser. A smear of RNA in size range 50–200 bp was seen
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FIGURE 2 | Confocal microscopy of (A) enlarged extracellular vesicle particles/aggregates and (B) multiple EV particles/aggregates from the field of view. The vesicles

were stained with lipid specific dye, PKH2 (red) and RNA-specific dye, SYTO RNASelect (green). Scale bar, 1µm [zoom 1µm of (A)]. (C) Line graph showing

fluorescence intensity profile of the dotted line across the extracellular vesicles in panel (B). Arrowhead indicates absence of SYTO RNASelect fluorescence in the

PKH2 stained extracellular vesicle. (D) Quantification of RNA and lipid positive particles. Data points from two different experiments and 8 fields of view.

(Figure 3A). The obtained RNA was treated using the rRNA
depletion kit, which reduced the average concentration of RNA
from 77 to 40 ng/µL. Further analysis of the rRNA-depleted
samples using bioanalyser revealed appearance of four peaks
(Figure 3B, black arrows) at 24–28 s, known to be typical peak for
< 200 bp sRNA. Of note, no strong peaks appeared for ribosomal
RNA (16S and 23S), indicating efficiency of sRNA enrichment
by the miRNA kit and subsequent depletion of rRNAs.
Hence, our data demonstrated that sRNA are associated with
S. aureus EVs.

tRNAs and sRNAs Were Enriched in
S. aureus Derived EVs
The transcriptome profiling of the sRNA content in EVs
was performed using RNA-seq analysis. Paired-end sequencing
resulted in ∼458,000 reads with lengths varied from 35 to
151 nucleotides. Eighty-seven percentage of the reads were
aligned and found to be well-distributed over the reference
genome of S. aureus strain MSSA476 (GenBank accession no.
NC_002953.3) (Supplementary Table 2 - mapping statistics)
(Supplementary Figure 7). The majority of reads corresponded
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FIGURE 3 | Analysis of the sRNA isolated from S. aureus EVs. (A) Virtual gel like image from bioanalyser. L, Ladder and lane 2 shows the RNA of the EVs. (B)

Electropherogram displaying sRNA. The first peak in the electropherogram represent lower marker that is used as an alignment to RNA ladder. Other four small peaks

appearing at the interval of migration time 24–28 s represent sRNA.

to protein encoding RNAs, while 4 and 3.5% corresponded to
rRNAs and tRNAs, respectively, 0.5% of the reads obtained
by RNA-seq corresponded to sRNAs (Supplementary Figure 8).
The sRNA reads corresponded to sRNAs with size distribution
from 20 to 500 nt (Supplementary Figure 9).

A total of 62 RNAs, 276 5′ untranslated regions (5′ UTRs)
and 276 3′ untranslated regions (3′ UTRs) were detected.
Similarly, further aligning of the reads against S. aureusMSSA476
plasmid pSAS resulted in detection of five RNAs, seven 5′

UTRs, and 11 3′ UTRs (Supplementary Table 2 - Summary
Rockhopper output). Next, operons in the S. aureus genome
were defined as regions with continuous coverage of whole
transcript reads by RNA-seq. This resulted in identification of
486 multi-gene operons consisting of 2–18 genes (for a total
of 1,415 genes) (Supplementary Table 2 - operon Rockhopper
output). Phage RNAs, e. g, transcripts encoding terminase
subunits, tail proteins and portal protein, were detected
among the protein encoding RNAs (Supplementary Table 2

- Rockhopper transcript output). Since our focus is on
sRNAs, we chose to further describe only the tRNA and
sRNA content.

Coverage of tRNA upstream of a regulatory region is shown
in Supplementary Figure 10. The read counts of tRNAs in EVs
varied from 4 to 984, with cove scores from 36.67 to 101.60
(Supplementary Table 2 - tRNAs in EVs). The most enriched
tRNAs includes tRNA for Met, Asp, Leu, Tyr, Ser, Thr, Gly, and
Phe (Table 2).

The 67 sRNAs identified by Rockhopper software were
manually checked with Artemis and 49 sRNAs were validated
using the Rfam database. The MSSA476-derived EVs carried
several sRNAs with read counts varying from 1 to 80
(Supplementary Table 2 - small RNA in EVs). 6S RNA and
SsrA showed the highest read counts of 80 and 65, respectively
(Table 3, read density of SsrA, 6S RNA, RNAIII, and RsaC are
shown in Supplementary Figure 11).

Validation of S. aureus SrrA, RsaC, and
RNAIII RNA Associated With EVs
Among the enriched sRNA were SsrA, RsaC, and RNAIII
(Table 3). SsrA and RsaC RNAs are involved in antibiotic
resistance through their modulation of RNA fate and protein
activity (Lalaouna et al., 2014), while RNAIII, not only have
regulatory function but also encode 26 amino acid long δ-toxin
(Novick et al., 1993; Caldelari et al., 2013). To validate our
results obtained from transcriptomic analyses, we performed
qPCR on RNA obtained from EVs using primers targeting SsrA,
RsaC and RNAIII. The results presented in boxplot (Figure 4A)
are based on three biological repeats (Supplementary Table 3)

which confirmed presence of these three transcripts associated
with EVs. The presence was finally confirmed by PCR of cDNA
yielding DNA fragments of expected sizes (Figure 4B), and by
Sanger sequencing which confirmed the identity of ssrA, RsaC,
and RNAIII (Supplementary Figure 12).

DISCUSSION

S. aureus harbors a multitude of virulence factors that are
tightly regulated during infection. Several studies have shown
that exposure to sub-MIC antibiotic concentrations enhances
S. aureus ability to adapt to physiological changes, survive and
persist in human hosts (Kaplan et al., 2012; Howden et al., 2013).
One of the mechanisms modulating virulence and pathogenicity
of S. aureus is via the release of EVs (Gurung et al., 2011; Thay
et al., 2013; Askarian et al., 2018; Schlatterer et al., 2018; Andreoni
et al., 2019). Virulence factors such as hemolysin, loaded as
vesicular cargo, are delivered to host cells via fusion of vesicles
with the host cholesterol-rich membrane. In addition, S. aureus-
derived EVs also release lipoproteins, which play a significant role
in modulating TLR2 activation and are involved in pathogenesis.
In general, various pathophysiological functions ranging from
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TABLE 2 | The most enriched MSSA476 EV-associated tRNAs based on read counts.

Element Genomic

coordinates

Full name

(anticodon)

Cove score Read count GC content Bases of selection

tRNA 1937102..1937175 tRNA Met

(CAT)

75.92 984 62.16 CGCGGGATGGAGCAGTTCGGTAGCTCGTCGGGCTCATAA

CCCGAAGGTCGGTGGTTCAAATCCGCCTCCCGCAA

tRNA 1937017..1937092 tRNA Asp

(GTC)

83.32 859 61.84 GGTCTCGTAGTGTAGCGGTTAACACGCCTGCCTGTC

ACGCAGGAGATCGCGGGTTCGATTCCCGTCGAGACCGCCA

tRNA 533919..534007 tRNA Leu

(TAA)

75.33 607 61.80 GCCGGGGTGGCGGAACTGGCAGACGCACAGGACTTAAA

ATCCTGCGGTGAGAGATCACCGTACCGGTTCGATTCC

GGTCCTCGGCACCA

tRNA 1937971..1938059 tRNA Leu

(TAA)

76.44 590 61.80 GCCGGGGTGGCGGAACTGGCAGACGCACAGGACTTAAAAT

CCTGCGGTGAGTGATCACCGTACCGGTTCGATTCCGGT

CCTCGGCACCA

tRNA 1936757..1936837 tRNA Tyr

(GTA)

69.29 525 61.73 GGAGGGGTAGCGAAGTGGCTAAACGCGGCGGACT

GTAAATCCGCTCCTTCGGGTTCGGCAGTTCGAATCTGC

CCCCCTCCA

tRNA 1937190..1937282 tRNA Ser

(TGA)

74.09 829 61.29 GGAGGAATACCCAAGTCCGGCTGAAGGGATCGGT

CTTGAAAACCGACAGGGCCTTAACGGGCCGCGGGGGT

TCGAATCCCTCTTCCTCCGCCA

tRNA 1937407..1937496 tRNA Ser

(TGA)

61.04 657 60.00 GGAGGAATACCCAAGTCCGGCTGAAGGGATCGGTCTT

GAAAACCGACAGGGGCTTAACGGCTCGCGGGGGTTCG

AATCCCTCTTCCTCCG

tRNA 1936843..1936918 tRNA Thr

(TGT)

92.93 560 55.26 GCCGGCCTAGCTCAATTGGTAGAGCAACTGACTTGTAAT

CAGTAGGTTGGGGGTTCAAGTCCTCTGGCCGGCACCA

tRNA 533837..533911 tRNA Gly

(GCC)

86.82 518 54.67 GCAGAAGTAGTTCAGCGGTAGAATACAACCTTGCCAAG

GTTGGGGTCGCGGGTTCGAATCCCGTCTTCTGCTCCA

tRNA 1936926..1936998 tRNA Phe

(GAA)

76.42 635 50.68 GGTTCAGTAGCTCAGTTGGTAGAGCAATGGATTGAA

GCTCCATGTGTCGGCAGTTCGACTCTGTCCTGAACCA

See Supplementary Table 2 for the full list of tRNAs.

cellular inflammation to host cell death could be mediated by S.
aureus EVs (Hong et al., 2011; Kim et al., 2012).

The first report of RNA associated with EVs was published
in 1989 in Neisseria gonorrhoeae (Dorward and Garon, 1989).
Henceforth, many intensive studies have been conducted to
characterize RNAs and their functions (Scanlan, 2014; Sjöström
et al., 2015; Blenkiron et al., 2016; Koeppen et al., 2016; Choi et al.,
2018; Malabirade et al., 2018).

A crude EV pellet was used as the source material to enable
isolation of sufficient sRNA for sequencing. The crude EV
pellet was further concentrated using ultrafiltration columns
with cutoff of 10 kDa, which remove lipoprotein aggregates
(Ramirez et al., 2018). The crude EVs were RNase treated to
remove any RNA that is not associated with EVs, before sRNA
was isolated for high-throughput RNA sequencing. Adequately
replicated RNA quantification isolated from EVs and RNase-
treated EVs confirmed a reduction in RNA fromRNase treatment
(Supplementary Table 1). Since staining of RNase-treated EVs
with RNA and lipid dyes showed RNase-mediated reduction in
particles that were only RNA stained, the ∼70% co-localization
of RNA and lipid particles were assumed to be EVs (Figure 2,
Supplementary Figures 5, 6). We could isolate sRNA from
RNase-treated EVs, and thus we concluded that sRNA is
associated with EVs. RNA-seq data revealed that SsrA, RsaC,
and RNAIII were among the most enriched sRNAs associated
with the EVs. To validate our findings, we repeated isolation
of sRNA in triplicates from RNase treated EVs and confirmed

presence SsrA, RsaC, and RNAIII by qPCR, conventional
PCR and Sanger sequencing of the PCR products (Figure 4,
Supplementary Table 1).

We also identified phage-like sequences in EVs by RNA-seq
(Supplementary Table 2). The presence of these might be due to
vancomycin-induced activation of one or two of the prophages
harbored by S. aureus MSSA476 (Holden et al., 2004), which
then pelleted with the vesicles. This agrees with others, who also
obtained phage or phage tail particles in EVs when bacteria were
exposed to antibiotics (Kharina et al., 2015; Devos et al., 2017;
Andreoni et al., 2019). One of the limitations of using the crude
pellet as the source of EVs for isolation of RNA is that it not
only contains EVs, but also other nanoscale contaminants (e.g.,
the filaments and bacteriophages). We assumed that the source
of RNA, in our study, is predominantly from RNase-treated
EVs, but it is conceivable that some sequences are from other
nanoscale contaminants pelleted along with the EVs, in a form
that is protected from RNase, and at a concentration or of a size
that is not visible by the fluorescence microscopy.

In bacteria, 16S and 23S rRNA are the most abundant RNAs
that accounts for more than 90% of the total RNA biotype
(Petrova et al., 2017). The abundance of rRNA reduces the
sequencing depth for other RNA classes, thus an rRNA depletion
strategy was implemented to ensure sufficient coverage of the
transcriptome from bacterial RNA-seq data. Although in our
study, fragments of mRNA were most abundant, we focused
on characterizing sRNA, given they play important roles in EV
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TABLE 3 | The most enriched MSSA476 EVs- associated small RNAs ranked based on read countsa.

Element RFAM

accession

Description Functions Genomic

coordinates

Gene

length (nt)

Strandb

(F/R)

Read

countc
Bit score GC content

(%)

6S RNA RF00013 Protein-binding

small RNA

Involved in antibiotic

resistance (Lalaouna et al.,

2014)

1685656..1685846 197 R 80 97.5 42.41

SsrA RNA RF00023 Protein-binding

small RNA

Rescues stalled ribosomes

during translation of

defective mRNAs and

biosynthesis of pigment (Liu

et al., 2010; Guillet et al.,

2013)

837496..837857 362 F 65 162.6 43.92

RsaC RF0188 Trans-encoded

antisense RNA

Oxidative stress and

metal-dependent nutritional

immunity (Lalaouna et al.,

2019)

673626..674066 441 R 33 555.6 35.37

T-box RF00230 Regulatory

elements

Involved in amino acid

metabolism (Schoenfelder

et al., 2013)

1674489..1674687

385924..386088

386093..386293

1199542..1199714

12486..12696

178

165

201

173

211

R

F

R

F

F

32

24

22

16

13

90.55

96.6

114.2

80.94

93.3

34.27

31.52

39.8

34.10

33.65

4.5S RNA RF00169 Trans-encoded

antisense RNA

Processing of tRNAs

(Szafranska et al., 2014)

485461..485730 270 F 24 69.1 48.52

FMN

riboswitch

RF00050 Regulatory

element

Controls expression of de

novo riboflavin

1551305..1551439 135 R 23 121.7 46.67

SAM

riboswitch

RF00162 Regulatory

element

Involved in amino acid

(methionine) metabolism

2372869..2372964 96 R 21 78.2 47.92

fstAT RF01797 Trans-encoded

antisense RNA

Type I toxin-antitoxin system

that interfere with bacterial

membrane (Schuster and

Bertram, 2016)

1873399..1873493 95 R 19 90.2 42.11

rli28 RF01492 Trans-encoded

antisense RNA

Role in virulence (Romby

and Charpentier, 2010)

2205592..2205772 181 R 19 123.8 34.25

L19_leader RF00556 Regulatory

element

NA 1254259..1254301 43 F 18 50.0 41.86

yjdF RF01764 Regulatory

element

Regulate gene expression

upon binding with

heterocyclic aromatic

compounds (Li et al., 2016).

423980..424080 101 F 17 92.9 38.61

rli28 RF01492 Trans-encoded

antisense RNA

Role in virulence (Romby

and Charpentier, 2010)

2030445..2030623 179 R 17 85.6 37.43

TPP

riboswitch

RF00059 Regulatory

element

Involved in biosynthesis and

transport of thiamine

(Sudarsan et al., 2005)

2155664..2155766 103 F 16 70.9 40.78

T-box leader RF00230 Regulatory

element

Involved in amino acid

metabolism

1791148..1791366 203 R 15 80.52 31.53

RNAIII RF00503 Trans-encoded

antisense RNA

Involved in virulence

(hemolysins) (Boisset et al.,

2007)

2086458..2086973 516 R 14 472.2 28.68

RsaJ RF01822 Trans-encoded

antisense RNA

NA 2479454..2479740 287 F 13 332.1 30.66

Lysine

riboswitch

RF00168 Regulatory

element

Regulate expression of

lysine biosynthesis and

transport genes (Blount

et al., 2007)

1732415..1732590 176 F 12 104.6 31.82

fstAT RF01797 Trans-encoded

antisense RNA

Type-I toxin-antitoxin

systems (Blenkiron et al.,

2016)

2483979..2484075 97 F 12 78.12 40.21

L10_Leader RF00557 Regulatory

element

NA 566720..566866 127 F 10 86.8 31.21

See Supplementary Table 2 for the full list of sRNAs.
aThe cutoff value was assigned as >10, bDirection of strand alignment, F, Forward; R, Reverse; cThe total number of sRNA sequence reads. NA, Not available.
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FIGURE 4 | Real Time PCR validation analysis. (A) Boxplot representation of Ct values for SsrA, RsaC and RNAIII isolated from S. aureus EVs. Boxes represent

interquartile range, central line is median, Whiskers are upper and lower adjacent values and Dots represent number of data points. (B) Agarose gel electrophoresis of

the RT-PCR products obtained from RNA isolated from RNase-treated EVs. The expected amplicon sizes for SsrA, RsaC, and RNAIII are 204, 204, and 202 bp,

respectively. The left lane shows molecular weight markers.

biogenesis and virulence (Diallo and Provost, 2020; Lécrivain and
Beckmann, 2020).

The observed EV sizes agreed with other studies from S.
aureus (Gurung et al., 2011; Askarian et al., 2018; Wang et al.,
2018; He et al., 2019). Antibiotics and other stressful conditions
are considered as trigger factors for EV formation (Maredia
et al., 2012; Prados-Rosales et al., 2014; Andreoni et al., 2019).
In agreement with this, we observed a higher yield of EVs when
the bacteria were grown in iron-limited media supplemented
with vancomycin compared to typical bacteriologic media
(Supplementary Figure 3).

Since we inoculated iron-chelated BHI media with an
overnight grown inoculum in 1:100 dilutions, there is the
possibility of transfer of trace amounts of iron. However, it has
been shown that S. aureus utilizes a large proportion of iron
within 6 h of aerobic growth in tryptic soy broth media (Ledala
et al., 2014). Iron utilization by S. aureus in BHI might be similar.
In addition, the traces of iron transferred through the inoculum
would have been utilized by growing S. aureus, leaving media
chelated for iron after a 16 h incubation (Ledala et al., 2010
and Ledala et al., 2014). It will, however, be interesting in the
future to explore other culture media, such as RPMI 1640, which
may better reflect infection conditions (Dauros-Singorenko et al.,
2017).

Although there are multiple studies in Gram-positive bacteria
showing altered sRNA expression due to antibiotic treatment
(Felden and Cattoir, 2018; Gao et al., 2020), few studies have
evaluated RNA content associated with EVs upon antibiotics
exposure. Exposure to antimicrobials such as ciprofloxacin,
tetracycline and melittin treatment of Acholeplasma laidlawii
resulted in very variable numbers of sequence reads of
predominantly 14–60 nt RNAs associated with EVs. In addition,

tRNA fragments (mainly tRNA-Leu, tRNA-Arg, tRNA-Asn, and
tRNA-Met) were predominant (Chernov et al., 2018) which is
in line with our study. There are also few reports in eukaryotic
exosomes and protozoal EVs confirming that exosome RNA
levels altered by cellular stress (Bayer-Santos et al., 2014).

In general, RNAs are unstable and prone to degradation
by RNase present in the extracellular milieu. However, recent
reports indicate that RNAs encapsulated in EVs are protected
from degradation by the exogenous RNase (Weber et al., 2010;
Dauros-Singorenko et al., 2018), which support our results where
we could isolate RNA from the RNase-treated EVs. Our RNase
treatment of EVs would also facilitate degradation of eventual
contaminating RNA that might passively have been released from
the 0.4% dead cells in the culture used for vesicle isolation.
Nevertheless, some of the RNA-protein complex sticking to
the EVs might still have been protected from RNase treatment
(Ramirez et al., 2018).

Transcriptome analysis of the EVs revealed the presence of
tRNAs and sRNAs (Tables 2, 3 and Supplementary Table 2).
Based on the read counts, the tRNA fragments were found to
be most abundant. Abundant reads of tRNA fragments have
previously been found in EVs released by bacteria (Ghosal et al.,
2015; Koeppen et al., 2016), fungi (Paracoccidiodes brasiliensis,
Histoplasma capsulatum) (Da Silva et al., 2015; Alves et al., 2019)
and protists (Trypanosoma cruzi, Leishmania species) (Garcia-
Silva et al., 2014; Lambertz et al., 2015). Interestingly, EVs of
Pseudomonas aeruginosa also contained tRNA-Met fragments
which entered the host cell and inhibited IL-8 secretion, which
are considered as a chemoattractant of neutrophils (Koeppen
et al., 2016).

There has been discussed whether RNAs associated with EVs
are “intact,” fragmented or specifically processed products. EVs
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have been found to be associated with various fragments derived
from mRNAs, rRNA and tRNA (Mateescu et al., 2017), which
is in agreement with our study. Due to the small size of vesicles
(20–200 nm), we might speculate that inside EVs, mostly smaller
fragmented RNAs should be enriched. However, we cannot
exclude the possibility of having full length RNA, given Buck
and colleagues reported full length YRNAs exclusively inside
Nematode-derived EVs (Buck et al., 2014). In our case, we see
fragment lengths of 35–150 nt.

It has been reported that sRNA present in Vibrio and other
Gram-negative bacteria play a role in vesicle biogenesis (Song
et al., 2008; Choi H.-I. et al., 2017). MicA from E. coli induce
EV biogenesis. Likewise, Song and collaborators also identified
VrrA, a homolog of E. coli MicA in Vibrio cholera that controls
EV formation and contributes to bacterial fitness in certain
stressful environments (Song et al., 2008). Besides sRNAs, Sle1, an
autolysin, has been shown to facilitate vesicle biogenesis (Wang
et al., 2018).

The presence of EV-associated sRNA (SsrA, RsaC, and
RNAIII) was confirmed by RNA-seq, qPCR, RT-PCR, and
sequencing of obtained replicons. Among these, SsrA is involved
in defective mRNAs decay, rescue of stalled ribosomes, support
of phage growth, and modulation of the activity of DNA binding
proteins (Karzai et al., 2000; Janssen and Hayes, 2012). Earlier
reports have shown an increase of SsrA RNA in Streptococcus
pyogenes and Helicobacter pylori in the presence of antibiotics
(Steiner and Malke, 2001; Thibonnier et al., 2008). In our study,
the high coverage of SsrA RNA associated with S. aureus EVs
might be due to the use of vancomycin stress prior to vesicle
isolation. 6S RNA plays an important role in cell survival and
persistence during the stationary phase (Wassarman and Storz,
2000; Trotochaud and Wassarman, 2004) and was also found
associated with the EVs. Interestingly, RNAIII (Table 3), which
has major roles in virulence and pathogenicity (Boisset et al.,
2007; Toledo-Arana et al., 2007), was also associated with EVs
of S. aureus. The validation of RNAIII associated with EVs
of S. aureus opens further study on the possibility of sRNA-
mediated interspecies communication, as RNAIII has already
been proved to be involved in the regulation of quorum sensing
communication systems to coordinate the expression of virulence
factors (Diallo and Provost, 2020; Lécrivain and Beckmann,
2020). Indeed, EVs could be used as communication vehicles only
if they could transfer associated RNA into host cells and have a
functional effect. Another possibility is that bacteria utilize EVs to
eliminate unwanted RNAs, including sRNA and tRNA fragments
(Groot and Lee, 2020).

Importantly, EVs influence S. aureus virulence over the
course of systemic infection (Askarian et al., 2018). Recently,
RNAs (circulatory/and or EV-associated) were considered as
virulence factors due to their role in the infection process
via multifaceted signaling pathways. The signaling pathways
involved depend upon the delivery of bacterial RNA into the
host cells. It has been shown that bacterial RNA can be delivered
to human cytosol (Vanaja et al., 2014) and the phagosomal
compartment (Cervantes et al., 2013) and EV-associated RNA
has been localized in the human cell nucleus of human bladder
carcinoma cells (Blenkiron et al., 2016). The sRNAs associated

with EVs found in this study has been shown to be involved in
quorum sensing (Novick and Geisinger, 2008), oxidative stress
(Lalaouna et al., 2019), antibiotic resistance and metabolism
(Lalaouna et al., 2014). All these processes are important for
virulence and modulation of bacterial pathogenicity. EVs have
some striking similarities with exosomes that are secreted from
most mammalian cell types. Exosomes are involved in transport
of mRNAs and miRNAs from donor to recipient cells to
modulate gene expression (Zhang et al., 2015; Lu et al., 2019).
They have similar size (around 50–200 nm in diameter) and
carry payloads of proteins, lipids, and genetic materials such
as the bacterial membrane vesicles. Both types can deliver
functional molecules to distant extracellular compartments
and tissues.

Recently, it was described that eukaryotic sRNA profiles of
serum exosomes derived from individuals with tuberculosis can
facilitate the development of potential molecular targets for
detection/diagnosis of latent and active tuberculosis (Lvu et al.,
2019). In addition to eukaryotic sRNA in exosomes, circulating
sRNA (ASdes) from Mycobacterium tuberculosis was found in
patients suffering from active tuberculosis, implicating their
role as diagnostic biomarkers (Fu et al., 2018). This makes us
hypothesize that some of the sRNAs we have validated in EVs
(RNAIII and SsrA) have a potential to be used as biomarkers
for bloodstream infections (Bordeau et al., 2016), joint infections
(osteomyelitis) (Deng et al., 2020), tissues infections (e.g., chronic
biofilm infections) and/or bacterial persistence (Romilly et al.,
2014; Schoenfelder et al., 2019). Identifying sRNAs as biomarkers
should not be limited to pathogenic strains but also to nasal and
other commensal strains.

A previous study compared RNA contents of group A
streptococcal cells vs. their EVs, and found that some RNA
species were differentially abundant (Resch et al., 2016). For
future studies, it would be interesting to do similar studies in
S. aureus, and also to compare whether media or antibiotics
influence the EV cargo. Further investigation is also needed to
address whether RNAs found inside the vesicles are entrapped
during vesicle biogenesis or if there are some sorting of RNA into
the vesicles.

In conclusion, to our knowledge, this is the first study
describing sRNAs associated with S. aureus extracellular vesicles.
Various tRNA and sRNA associated fragments with several
biological or regulatory functions have been identified associated
with the EVs. This study opens further questions concerning
sorting mechanisms by which RNA can be packed inside
EVs and their roles in host-microbe as well as microbe-
microbe interactions. Targeting those sRNA may open avenues
toward a novel anti-virulence strategy to treat intractable
bacterial infections.
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Supplementary Figure 1 | Growth curves of S. aureus grown under BHI (normal

condition) and iron-depleted BHI media with subinhibitory concentration of

vancomycin (stressed condition).

Supplementary Figure 2 | Flow cytometry analysis of S. aureus grown in (A) BHI

(normal condition) (B) iron-depleted BHI media with subinhibitory concentration of

vancomycin (stressed condition) for 16 h. Side scatter is represented on X-axis

and AF488 on Y-axis. Gates P1, P3, and P6 were set for beads, live cells and

dead cells, respectively.

Supplementary Figure 3 | Measurement of EV yield obtained from bacteria

grown in BHI (normal condition) and iron-depleted BHI with subinhibitory

concentration of vancomycin (stressed condition). (A) EV number quantified by

NTA. (B) Protein concentration in EVs measured by Qubit (protein assay kit). The

mean ± SD is shown. The results represent three biological repeats (individual EV

isolations) (NTA and protein concentration measurements). ∗P < 0.05,

unpaired t-test.

Supplementary Figure 4 | AFM image of EVs isolated from bacteria grown in

iron-depleted BHI supplemented with subinhibitory concentration of vancomycin

(White arrow indicates vesicles).

Supplementary Figure 5 | Confocal microscopy on intact RNase-treated EV

particles/aggregates stained with (A) lipid specific dye, DiD (red), and (B)

RNA-specific dye, SYTO RNAselect (green). (C) The image shows the overlay

observed under the microscope. The overall percentage of co-localization in one

microscopic field was found to be 78.3% which is in line with the results using

another lipid specific dye in Figure 2. The white rectangular box and lower panel

highlights the magnified region in the inset. The scale bar is drawn to 7.5µm.

Supplementary Figure 6 | (A) Confocal microscopy of extracellular vesicles

without RNase treatment stained with lipid specific dye, PKH2 (red) and

RNA-specific dye, SYTO RNASelect (green). Arrowhead (white) indicates absence

of PKH2 fluorescence for the particle, while arrowhead (blue) shows

co-localization of PKH2 stained extracellular vesicle with SYTO RNASelect dye.

Scale bar, 1µm. (B) Arrowhead indicates absence of PKH2 fluorescence in the

SYTO RNASelect stained particle. (C) Quantification of RNA and lipid positive

particles. Data points from two different experiments and 8 fields of view.

Supplementary Figure 7 | Transcriptome landscape of S. aureus EVs. RNA
sequencing reads were mapped to reference genome (NC_002953) using

Rockhopper v 2.0.3. The mapped RNAs, UTRs and, multi-gene operons were

visualized in the IGV genome browser. The first red track corresponds to RNA

transcripts. The blue track corresponds to UTRs of protein coding genes. The pink

track corresponds to multi-gene operons. The final purple track at the bottom of

the image corresponds to protein coding genes and RNA genes annotated

in RefSeq.

Supplementary Figure 8 | Distribution of EV RNAs showing percent of reads

mapped to each RNA biotype in S. aureus chromosomes (A) and plasmid

(B), respectively.

Supplementary Figure 9 | (A) Schematic representation of sRNA identification.

(B) Size length distribution of sRNAs associated with EVs of S. aureus.

Supplementary Figure 10 | Read density profiles of tRNAs (pink highlighted

region) downstream of the PerR regulatory region visualized by Artemis genome

browser. The abundant loci close to tRNAs are ribosomal RNA. The X-axis

represent the position in the genome and the Y-axis represent the numbers of

reads mapped (coverage) at that location.

Supplementary Figure 11 | Artemis genome viewer windows showing read

density profiles of (A) SsrA, (B) 6S RNA, (C) RNAIII, and (D) RsaC RNA (pink

highlighted regions). X-axis represent the position in the genome and the Y-axis

represent the numbers of reads mapped (coverage) at the specific location.

Supplementary Figure 12 | Sanger sequencing alignment of SsrA, RsaC and

RNAIII RNAs. Sequences were aligned using BioEdit alignment tool.
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