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SUMMARY

Studies of memory trajectories using longitudinal data often result in highly nonrepresentative samples
due to selective study enrollment and attrition. An additional bias comes from practice effects that result
in improved or maintained performance due to familiarity with test content or context. These challenges
may bias study findings and severely distort the ability to generalize to the target population. In this study,
we propose an approach for estimating the finite population mean of a longitudinal outcome conditioning
on being alive at a specific time point. We develop a flexible Bayesian semiparametric predictive estimator
for population inference when longitudinal auxiliary information is known for the target population. We
evaluate the sensitivity of the results to untestable assumptions and further compare our approach to other
methods used for population inference in a simulation study. The proposed approach is motivated by
15-year longitudinal data from the Betula longitudinal cohort study. We apply our approach to estimate
lifespan trajectories in episodic memory, with the aim to generalize findings to a target population.

Keywords: BART; Memory; MNAR; Nonignorable dropout; Population inference; Sensitivity analysis; Truncation
by death.

1. INTRODUCTION

Studies of lifespan trajectories in memory using longitudinal data present numerous methodological
challenges including highly nonrepresentative samples, due to selective study enrollment and attrition,
and practice effects, which results in improved or maintained performance due to familiarity with the test
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(Weuve and others, 2015). These challenges may bias study findings and severely distort the ability to
generalize to the target population, even in well-designed studies.

Improvements in test scores upon repeated assessment due to practice effects (PEs) are well documented
in the cognitive aging literature (e.g., Salthouse, 2010). PEs arise from increased familiarity with the
assessment tools and may result in underestimating memory decline in longitudinal studies. Common
statistical approaches for handling PEs include: ignoring, specifying an indicator for the first assessment,
or modeling a linear trend (Vivot and others, 2016). These approaches however remain controversial due
to, for example, the strong assumption that the practice gains are the same across the age range or the
difficulties in separating effects of within-person change from PEs (Weuve and others, 2015; Hoffman
and others, 2011).

Attrition is inevitable especially if individuals in the studied population are followed over a long time
period. Standard methods often rely on the assumption of missing at random (MAR) which is invalid
if the missingness is missing not at random (MNAR) or due to death. MNAR missingness can be dealt
with in any analysis of incomplete data by exploring sensitivity to deviations from the MAR assumption.
This can be accomplished in a Bayesian setting, by introducing sensitivity parameters that incorporate
prior beliefs about the differences between respondents and nonrespondents and assigning an appropriate
prior distribution (Daniels and Hogan, 2008). However, attrition due to death must be treated differently
if a participant’s death during follow-up truncates the outcome process (Kurland and others, 2009). For
example, in research on cognitive aging, cognition after death is not defined and not of interest to study.
Joint models with additional postprocessing, that truncate participants outcomes after death, have been
proposed to address the combination of dropout and death (Rizopoulos, 2012). Two approaches for this
type of mortal cohort inference are partly conditional inference, where focus is on the subpopulation
who are still alive at that time point (Kurland, 2005), and principal stratification, where focus is on
the subpopulation that would survive irrespective of exposure (Frangakis and Rubin, 2002; Frangakis
and others, 2007). The latter approach has been proposed to handle truncation by death when interest
is in estimating the survivors average causal effect (e.g., Josefsson and others, 2016; McGuinness and
others, 2019; Shardell and Ferrucci, 2018). In contrast, partly conditional inference has been proposed
for estimating noncausal associations. For example, by using augmented inverse probability weighting
for longitudinal cohort data with truncation by death and MAR dropout (Wen and others, 2018) as well
as MNAR dropout (Wen and Seaman, 2018). In addition, Li and Su (2018) proposed an approach for
semicompeting risk data with MNAR missingness and death. This type of inference can for example be
of interest, when the studied outcome is related to the health of all individuals who are alive. For example,
in studies of health promotion and/or disease prevention among the elderly. These methods, however,
fail to account for the complex nature of the sampling design such as selective study enrollment. While
death is not viewed as a source of bias in longitudinal studies, because the objective is to generalize
to those who are alive, selection and nonresponse bias (and additionally practice effects) often are, and
therefore need to be addressed. Post-stratification is an approach to adjust for discrepancies between the
sample and the population by using auxiliary information on the finite population. A classical weighting
estimator for finite population inference is the Horvitz–Thompson (HT) estimator (Horvitz and Thompson,
1952). Although the HT estimator is design unbiased, it can potentially be very inefficient. In contrast, a
model-based (MB) approach specifies a model for the study outcome, usually a regression model, which
is then used to make predictions for the population, and hence, finite population quantities. Predictions
are calculated by plugging in the auxiliary variables for all units in the population in the working model.
Model-based approaches will generally perform equally good or better as weighting approaches if the
model is correctly specified (Little, 2004). However, the correct model specification can be difficult when
there is a large set of regressors, the relationship is nonlinear and/or includes interaction terms, and there
are multiple observation times. Several approaches for post-stratification adjustment in a cross-sectional
setting have shown improved performance compared to the HT and the MB regression estimator. Multilevel
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374 M. JOSEFSSON AND OTHERS

regression combined with post-stratification (MRP; e.g., Gelman and Little, 1997, Park and others, 2004)
have shown improved performance compared to standard weighting and MB regression estimators and
was used for producing accurate population estimates from a nonrepresentative sample (Wang and others,
2015). The general regression estimator (GREG; Deville and Särndal, 1992) is a dual-modeling strategy
that combines prediction and weighting. The approach requires both a model for the outcome and the
participation mechanism and is double robust in the sense that it remains consistent if either one of
the models is correctly specified. Bisbee (2019) combined a semiparametric machine learning approach
[Bayesian Additive Regression Trees (BART); Chipman and others, 2010] with post-stratification for
predicting opinions using cross-sectional data. Kern and others (2016) showed in a simulation study
that BART and inverse probability weighting using random forests performed better than approximately
doubly robust estimators for estimating the target population average treatment effect. Although showing
improved performance compared to MRP and GREG, previous semiparametric approaches for population
inference are not valid for longitudinal data with dropout and deaths.

In this study, we propose an approach for estimating the finite population mean of a longitudinal con-
tinuous outcome conditioning on being alive at a specific time point, i.e., the population partly conditional
mean (PPCM). Specifically, we develop a flexible Bayesian semiparametric predictive estimator, when
longitudinal auxiliary information is known for all units in the target population. The approach is to specify
observed data models using BART and then to use assumptions with embedded sensitivity parameters to
identify and estimate the PPCM. We evaluate the sensitivity of the results to untestable assumptions on
MNAR dropout and PEs and further compare our approach to other methods used for population inference
in a simulation study.

We are motivated by the Betula study, a prospective cohort study on memory, health, and aging. The
aim of the current article is to extend previous results on cognitive lifespan trajectories (e.g., Rönnlund
and others, 2005, Gorbach and others, 2017) by considering population partly conditional inference with
MNAR missingness and practice effects. By using longitudinal micro-data from Statistics Sweden and
the National Board of Health and Welfare, for both the sample and the target population, we are able to
adjust for potential discrepancies in auxiliary variables and thereby improve the generalizability of study
findings.

The remainder of the article is organized as follows. In Section 2, we present a motivating example.
In Section 3, we present an MB approach for estimating the PPCM using longitudinal data with dropout
and deaths, and in Section 4, we describe a Bayesian semiparametric modeling approach. In Section 5,
we provide results from a simulation study and in Section 6 results from the empirical example using the
Betula data. Conclusions are given in Section 7.

2. MOTIVATING EXAMPLE

The aim of the empirical study is to estimate lifespan trajectories in episodic memory, with the goal to
generalize findings to a target population. Two separate sources of data are available for this study; a
longitudinal cohort study and a longitudinal database covering the target population.

The Betula study is a population-based cohort study with the objective to study how memory functions
change over time and to identify risk factors for dementia (Nilsson and others, 1997). The participants were
randomly recruited, stratified by age, from the population registry in the Ume municipality of Sweden.
We consider longitudinal data from the first sample (S1) and four waves of data collection (T1–T4). There
were 5 years in between each wave and the first wave of data collection was initiated in 1988–1990. A total
of n = 1000 participants were included, 100 participants from each of the 10 age-cohorts: 35, 40, . . . , 80.
In order to obtain a total of 100 subjects in each of the 10 different cohorts, 1976 persons had to be
contacted. Of the 976 that never entered the study, 259 could not be reached, 130 had an illness (including
dementia) to the extent that they could not participate, and 481 declined to participate (Nilsson and others,
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1997). Memory was assessed at each wave using a composite of five episodic memory tasks, range: 0–76,
where a higher score indicates better memory (Josefsson and others, 2012).

The second data source is the Linneaus Database (Malmberg and others, 2010), a longitudinal database
covering every Swedish resident. The database includes annual data from Statistics Sweden and the
National Board of Health and Welfare (similar information as for the Betula sample). In this study,
we consider microdata for every unit of the population in the Ume municipality who were alive and
nondemented in 1990 as the target population (N = 9203). Although longitudinal data is available
annually, we restrict data to the years: 1990, 1995, 2000, and 2005, approximately corresponding to the
years of testing in the Betula study.

A set of continuous and categorical auxiliary variables, linked to both selective study enrolment and
memory, are included in both data sources. From the cause of death register, we know the death year
for each deceased individual. In the Betula sample, 29.1% died during the study period and 20.0% of
the target population, and there were 128 and 806 dementia cases (12.8% and 8.8%) in the sample and
population, respectively.

3. A MODEL-BASED APPROACH FOR POPULATION INFERENCE

3.1. Cross-sectional setting

Consider a finite population U = {1, 2, . . . , N }. For each individual i ∈ U , a [1 × K] vector of auxiliary
information xi is observed.A probability sample c of size n is drawn from U . Let yi be the continuous study
variable which is observed if i ∈ c, and p(yi | ·) refers to a probability density function. Suppose interest
is in studying the finite population mean, μU = N −1

∑
i∈U yi. If we assume the participation mechanism

is ignorable in the sense that yi and i ∈ c are conditionally independent given xi (Rubin, 1976), the joint
distribution of the outcome, participation mechanism, and auxiliary information can be factored into three
conditional distributions

∏
i∈U p(yi | xi)p(i ∈ c | xi)p(xi).

A model-based (MB) prediction estimator incorporates the relationship between x and y into the
estimation of the population mean by m(xi) = E(Yi | Xi = xi) and considers the finite population values
{yi; i ∈ U } to be realizations of the model. Conditional on the auxiliary variables xi, let p(yi | xi) be
a model of the form yi = m(xi) + εi, where εi are uncorrelated and E(εi) = 0 and Var(εi) = σ 2.
The predictions for each individual in the population, ŷi, are calculated by plugging in their auxiliary
information xi for all i ∈ U in the working model m(xi). A MB estimator of the population mean is
obtained by μ̂MB = 1

N

∑
i∈U m̂(xi), where m̂(xi) is the estimated mean function. We consider a setting with

two separate data sources. Thus, we can not separate out the sample participants in the data covering the
target population. Predictions must therefore be made for all participants in the target population.

3.2. Longitudinal data with dropout and death

We now consider the problem of finite population inference in the context of longitudinal data with dropout
and death. Death must be treated differently than nonresponse since postdeath outcomes are truncated
(and do not exist). Here, we consider partly conditional inference and, as such, are interested in estimating
the finite population mean given survival up to that time point, that is, the population partly conditional
mean (PPCM).

First we need some additional notation. For individual i at time point t = 0, 1, . . . T , denote the outcome
variable and the vector of auxiliary information by yit and xit , respectively. The history of the time-varying
variables are denoted with an overbar. For example, the outcome history for individual i up to and including
time point t is denoted by ȳit = {yi0, yi1, . . . , yit}. Let sit denote survival, where sit = 1 if an individual is
alive at time t and 0 otherwise. Let rit be a response indicator, where rit = 1 if individual i participates in
the study at time t and 0 otherwise. We assume monotone missingness, so if rit = 0, rik = 0 for k > t,
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and of course similarly for sit . Note that, sit is observed for all i ∈ U and rit is observed if i ∈ c. Note that,
the number of individuals in the population decreases over time due to deaths.

Initially, we further assume the nonresponse mechanism to be missing at random conditional on being
alive at time t (MARS). That is, p(yit | ȳit−1, r̄it−1, rit = 0, sit = 1, x̄it) = p(yit | ȳit−1, r̄it = 1, sit = 1, x̄it).
However, unlike previous works using MAR conditional on being alive (e.g., Wen and others, 2018), here,
time of death is known for all individuals in the population; hence, is does not need to be modeled.

The working model for making predictions under MARS becomes

ŷit =
∫

ȳt−1

m̂t(ȳit−1, sit = 1, x̄it) ×
t−1∏
k=0

p(yik | yik−1, sik = 1, x̄ik)dȳit−1. (3.1)

Monte Carlo integration is used to integrate over the outcome history ȳt−1. To do this we factor the joint
distribution of ȳt−1 into a sequence of 1D conditional distributions. Population outcome data is then
sequentially sampled from each of these, for all i ∈ U . Finally, predictions for ŷit are obtained by plugging
in ȳit−1 and x̄it given sit = 1 in the estimated model m̂t(ȳit−1, sit = 1, x̄it).

The MB estimator of the PPCM at time t is given by PPCMMB
t = 1∑

i∈U sit

∑
i∈U ŷitsit . Note that, in

context of the Betula study interest is not the PPCMt at a specific test wave, but rather the age-specific
PPCM aggregated over test waves. That is,

PPCMMB(age) =
∑

i∈Uaget
sit∑T

t=1

∑
i∈Uaget

sit

T∑
t=1

PPCMMB
t (age),

where i ∈ Uaget is the subset of individuals in age-cohort age at test wave t, and PPCMMB
t (age) =

1∑
i∈Uaget

sit

∑
i∈Uaget

ŷitsit .

3.3. Nonignorable dropout among survivors and practice effects

We introduce a set of sensitivity parameters to assess the impact of violations to the MARS assumption for
the missingness mechanism. We additionally introduce a sensitivity parameter that accounts for practice
effects (PEs). The general strategy is to model the observed data distribution and to use priors on the
sensitivity parameters to identify the full-data model.

Previous studies of the Betula data suggests that individuals who drop out have lower performance
and steeper decline in memory (Josefsson and others, 2012). Thus, we expect dropout to be missing not
at random conditioning on survival (MNARS). To allow for deviations from the MARS assumption, we
introduce a parameter γit to identify the expected outcome for dropouts among survivors. That is, for all
t > 0, E(Yit | ȳit−1, r̄it−1, rit = 0, sit = 1, x̄it) = E(Yit − γit | ȳit−1, r̄it = 1, sit = 1, x̄it). Note that, after we
condition on r̄it−1 we implicitly assume yit is conditionally independent of the wave at which the drop-out
occurred. If γit = 0 this implies a MARS assumption on the expectation for the outcome, and if γit > 0
this implies a negative location shift in the outcome at the unobserved test wave.

Practice effects (PEs) arise from increased familiarity with the assessment tools and may result in
underestimating the decline in memory in longitudinal studies. Let y∗

it denote the observed memory score
(in contrast to yit which denotes an individual’s actual memory function) and δit denote a sensitivity
parameter. Then, for t > 0, E(Yit | ȳit−1, r̄it = 1, sit = 1, x̄it) = E(Y ∗

it − δit | ȳit−1, r̄it = 1, sit = 1, x̄it),
where δit > 0 implies an overestimated memory performance due to practice effects. Note that we assume
no PEs at the initial testing.

Our approach allows to explore sensitivity to the unverifiable assumptions by specifying informative
priors for the sensitivity parameters γi1, . . . , γiT , and δi1, . . . , δiT . We specify triangular distributed priors
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conditioning on auxiliary variables, γit ∼ Tri(At(x̄it), 0, At(x̄it)) and δit ∼ Tri(0, Bt(x̄it), Bt(x̄it)), where the
three parameters of the Triangular distribution are the minimum, the mode and the maximum. We restrict
the parameters of the Triangular distribution to a plausible range of values, reflecting the analysts’ beliefs.
Note that, using this distribution we are able to place more prior weight at one of the endpoints while
still only needing to specify a lower- or an upper bound (and not an explicit variance parameter). In the
Analysis of the Betula data, we specify values of At(x̄it) and Bt(x̄it) in context of the study.

With the sensitivity parameters, identification of the PPCM based on the working model in (3.1), uses

ŷit =
∫

ȳ∗
t−1

∑
r̄it

{[
mt(ȳ

∗
it−1, r̄it , sit = 1, x̄it) − γit I(rit=0) − δit

] ×

t−1∏
k=0

p(y∗
ik − γik I(rik =0) | y∗

ik−1, r̄ik , sik = 1, x̄ik)×

p(rik | ȳ∗
ik−1, r̄ik−1, x̄ik , sik = 1)

}
dȳ∗

ik−1. (3.2)

An implication of (3.2) is that Monte Carlo integration is implemented over both the outcome history,
ȳt−1, and the response history, r̄t . The sensitivity parameters, γt and δt , must also be sampled for all i ∈ U .
If rik = 0, ŷik is shifted downwards by γik for k = 1, . . . , t. Predictions for ŷit are similarly obtained by
plugging in ȳit−1 and x̄it in the estimated model given sit = 1. Note that, for t ≥ 1, ŷit is further shifted
downwards by δit , thereby adjusting for PEs.

4. A SEMIPARAMETRIC APPROACH FOR ESTIMATING THE PPCM

We propose a Bayesian semiparametric modeling approach based on Bayesian Additive Regression Trees
(BART; Chipman and others, 2010) for the working model in (3.2) using the observed data and the
sensitivity parameters.

4.1. Semiparametric estimation of the outcomes and dropout

We specify BART models for the conditional distributions of the time-varying variables yit and rit . The
distribution of the continuous outcome, p(yit | ȳit−1, sx̄it) is specified as normal, yit ∼ N

(
mt(ȳit−1, x̄it), σ 2

t

)
,

for the subset that satisfies r̄it = 1 and sit = 1. The mean function at wave t, mt(ȳit−1, x̄it), is given by the
sum of k = 1, . . . , Kyt regression trees, denoted by gk

yt

(
(ȳit−1, x̄it); T k

yt
, M k

yt

)
. Each regression tree consists

of a set of decision rules (a tree structure), denoted by T k
yt

, leading down to bk terminal node parameters,
denoted by M k

yt
= (ρk

yt
(1), . . . , ρk

yt
(bk)). Hence, an individual’s values for (ȳit−1, x̄it) is linked to a single

terminal node by following the decision rules for each tree and is assigned the associated terminal node
parameter. Similarly, the BART models for the binary response indicators rit are specified as probit models,

πit(ȳit−1, x̄it) = �
(∑Krt

k=1 grt

(
(ȳit−1, x̄it); T k

rt
, M k

rt

))
, where � denotes the cumulative density function of

the standard normal distribution and πit(ȳit−1, x̄it) is the probability of being observed at wave t given
(ȳit−1, x̄it) for the subset that satisfies r̄it−1 = 1 and sit = 1. Note that, ri0 = 1 and si0 = 1 for all
individuals, and that πit = 0 if rit−1 = 0.

4.2. Algorithm

The estimator of the PPCM as described in Section 3 can be computed using the algorithm in Table 1.
In practice, draws from the posterior distribution of the BART models are generated using Markov chain
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Table 1.Algorithm for estimation of the PPCM as described in Sections 3 and 4.

1. Models for the outcomes and response mechanisms:
For t = 1, . . . , T , sample from the observed data posteriors for the parameters of the
conditional distribution of yt and rt using DART.

2. Sensitivity parameters:
For all i ∈ U and t = 1, . . . , T , sample one set from the prior distributions for γit

and δit .
3. Compute predicted means:

For all i ∈ U and t = 1, . . . , T , compute ŷit in [3.2] as follows:
Sequentially (in t) sample response and outcome data from r∗

it ∼ Ber
(
πit

)
and

y∗
it−1 = m̂t−1(ȳ∗

it−2, r̄∗
it−1, sit−1 = 1, x̄it−1) + γt−1I(r̂it−1=0) + ε∗

it . The conditional
probability πit conditions on x̄it , ȳ∗

it−1, r̄∗
it−1. For all sit = 1, compute

ŷit = m̂t(ȳ∗
it−1, r̄∗

it , sit = 1, x̄it) − γit I(r∗it=0) − δit .
4. Compute the PPCM :

Compute one posterior sample of PPCM = 1∑T
t=1

∑
i∈U sit

∑T
t=1

∑
i∈U ŷitsit .

5. Repeat steps 2–4 for each posterior sample.

Monte Carlo (MCMC). The parameters of the models for yit and rit are assumed independent and thus
their posteriors can be sampled simultaneously. We use the sparse Dirichlet splitting rule prior for BART
[the sparse Dirichlet splitting rule prior for Bayesian Additive Regression Trees (DART); Linero, 2018]
to encourage parsimony, implemented in the R package BART for continuous and binary responses. To
simplify notation we denote the conditional probability πit(ȳit−1, x̄it) by πit and the conditional expectation
for the outcome at time t, μit(ȳit−1, x̄it) by μit .

5. SIMULATION STUDY

In this simulation study, we compare five estimators for population inference. The sample and population
size, the response rate, and the strength of association between ŷit and yit (i.e., the R2 estimated using
BART) are chosen to mirror the Betula study.

5.1. Data generating process

We consider a finite population of size N = 10 000, a sample of size n = 1000, and 1000 simulated data sets
were generated. The auxiliary variables are generated independently as follows, x1, x2 ∼ Bernoulli(0.5)

and x3, x4, . . . , x8 ∼ Uniform(−1, 1), where x5 − x8 are uncorrelated with the outcome. We consider
two time points (t = 0, 1). The response rate for yi1 was set to approximately 75%. Here, interest is in
estimating the population mean at t = 1, μU = N −1

∑
i∈U yi1. The approaches are compared in terms of

bias, standard deviation (SD), mean squared error (MSE), and coverage of 95% credible intervals. We
consider five true outcome models:

1. Generalized linear additive models for the sample selection, response mechanism, and outcomes.
Given the auxiliary variables x1 − x8, the outcome values for i ∈ U were generated as y0i =
−1− x1i + x2i + x3i + x4i + εi1 and y1i = −1− x1i + x2i + x3i + x4i −0.3y0i + εi2, where εi ∼ N (0, 1).
The sample selection was generated from the following model logit(π c

i ) = −2.67−0.4x1i +0.4x2i +
0.4x3i +0.4x3i. In each selected sample, for i ∈ c nonresponse to the study variable y1 was generated
from the following model logit(π r

i ) = −2.7 + 1.2x1i + 1.2x2i + 1.2x3i + 1.2x4i − 1.2y0i.
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2. Interaction and nonlinear dependencies for the response mechanism. y0i, y1i, and π c
i were generated

as for Scenario 1. The response mechanism was generated from the following model logit(π r
i ) =

−2.7 − x1i + x2i + x3i + x4i + y0i + x3ix4i + x3ix1i + y0ix1i.
3. Interactions, nonlinear dependencies and skew normal error terms. y0i, π r

i , and π c
i were generated

as for Scenario 2. y1i was generated according to y1i = −0.87 − 0.4x3i + 0.8x2
3i + 0.8x3

3i + 0.4x4i +
0.8x1i +0.8x2i +0.4y0i −0.4x1iy0i +εit , where εit were generated from the skew normal distribution,

such that εit ∼ SN (−1.6 × 5√
1+52

×
√

2
π

, 1.6, 5) for t=0,1, i.e. a right skewed variable with 0 mean,

a variance of 1 and a skewness of 1.3.
4. Interactions, nonlinear dependencies and practice effects. y0i, π r

i and π c
i were generated as for

Scenario 3. For the outcome y1i, we added a moderate PE of 0.1 to Scenario 3.
5. Interactions, nonlinear dependencies, and deaths. While y0i, y1i, π r

i , and π c
i were generated as for

Scenario 3, survival at t = 1, si1, was generated from
logit(π s

i ) = 1.7 + 0.35x1i + 0.35x2i + 0.35x3i + 0.35x4i, for a overall death rate of 12%.

5.2. Estimators for population inference

We compare five estimators for population inference. Our semiparametric model-based approach (MB-
sp), was implemented as described in Section 4 and Table 1, but fixing the sensitivity parameters to 0.
However, for the fourth scenario, we used the PE sensitivity parameter and specified a triangular prior
reflecting practice effects, δi1 ∼ Tri(0, b, b) with b = 0.05, 0.1, 0.15. Note that for the other approaches
the sensitivity parameters were set to 0 for all scenarios. Details of the other four estimators (MB-lm, HT,
MRP, and GREG) for longitudinal data are given in Appendix A of the Supplementary materials. Briefly,
MB-lm, is a parametric version of the MB-sp, specifying the working models as Bayesian additive linear
regression models instead of using DART. Default uninformative priors were used. HT is an extension of the
classic Horvitz–Thompson weighting estimator, where the inclusion weights were replaced by longitudinal
probability of participation weights. The general regression estimator (GREG), combines prediction and
longitudinal weighting. For GREG, the weights were computed as for HT and the prediction models
were estimated using additive linear regression models. MRP is an extension of multilevel regression and
post-stratification (Gelman and Little, 1997), where the binary covariates and the outcome at t = 0 were
added to the model as fixed effects and the six continuous variables were first categorized into quartiles
and added to the model as random effects.

The inclusion weights used in HT and GREG must be estimated using cell weight adjustment. To avoid
sparse cells only x1 − x4 were considered for computing the weights, hence, the uncorrelated variables
x5 − x8 were omitted. The continuous variables x3 and x4 were first categorized into tertiles. Every unique
combination of the categorized variables constituted an adjustment cell. Sparse cells, nj < 20, were
combined with their nearest, nonsparse neighbor, i.e., the cell that has the most similar combination of
auxiliary variables. Weights larger than 30 were trimmed.

The HT and GREG estimators and their 95% confidence intervals were estimated using the mase
package in R, the working models for MB-lm and MRP were fitted using the MCMCpack package and
MCMCglmm package in R (R Core Team, 2018). MCMC convergence and mixing were monitored using
trace plots.

5.3. Simulation results

We present the bias, empirical standard deviation (SD; calculated as the standard deviation of the parameter
estimates), mean-squared error (MSE), and coverage probabilities for the 95% credible intervals (CP) from
the 1000 simulations in Table 2. The results show that inferences using the sample are highly biased, have
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Table 2. Results from 1000 simulations with a finite population of size 10 000 and a sample size of 1000.
Bias, empirical standard deviation (SD; calculated as the standard deviation of the parameter estimates),
mean-squared error (MSE), and coverage probabilities in % for the 95% credible intervals (CP). Bias
and SD are multiplied by 100 for ease of presentation. Sample: inference using the sample. MB-sp, a
semiparametric model-based approach using DART; MB-lm, a parametric model-based approach using
additive linear regression; MRP, multilevel regression and post-stratification; GREG, general regression
estimator; HT, the Horvitz–Thompson estimator.

Method Scenario 1 Scenario 2

Bias SD MSE CP Bias SD MSE CP
Sample 18.8 5.3 3.8 3.7 18.8 5.1 3.8 3.1
MB-sp 0.5 4.2 0.2 93.6 0.4 4.3 0.2 94.2
MB-lm 0.2 3.9 0.2 95.2 −0.1 4.2 0.2 94.5
MRP 1.6 4.3 0.2 89.6 1.6 4.6 0.2 88.9
GREG 0.1 4.1 0.2 89.6 −0.1 4.2 0.2 89.5
HT 4.8 4.7 0.4 86.7 7.2 4.7 0.7 73.9

Scenario 3 Scenario 4

Bias SD MSE CP Bias SD MSE CP
Sample 41.1 5.6 17.2 0.0 51.0 5.5 26.3 0.0
MB-sp 1.5 4.9 0.3 91.6 11.8 4.6 2.6 23.3
MB-lm 11.8 5.1 1.7 33.0 21.7 5.0 5.0 0.9
MRP 19.7 5.4 4.2 1.9 29.6 5.7 9.1 0.1
GREG 9.1 5.4 1.1 45.5 18.6 5.2 3.7 2.1
HT 21.2 6.4 4.9 6.9 30.9 6.3 9.9 0.3

the highest MSEs and the lowest coverage probabilities under all four scenarios (≤ 3.7%). The weighting
approach (HT) performs poorly with large bias, SDs and MSEs, and the lowest CPs compared to the other
four approaches across Scenario 1–4.

Scenarios 1 and 2 give similar findings for MB-sp, MB-lm, MRP, and GREG. That is, all approaches
are unbiased, or nearly unbiased, and have similar SDs and MSEs. MB-sp and MB-lm have CPs above or
close to 95%, while MRP and GREG have CPs just below 90%. Under Scenario 3 and 4, MB-lm, MRP
and GREG are severely biased and their CPs are low (Scenario 3: 6.9–42.0% and Scenario 4: 0.1–2.1%).
MRP has the highest biases and MSEs, and the lowest CPs. In contrast, under Scenario 3 our MB-sp
approach is nearly unbiased, has the lowest MSE, and a CP of 91.6%. Under Scenario 4 (where the true
PE was 0.1), our MB-sp approach revealed a bias of 0.118 (SD = 0.046) and a CP of 23.3%. Which was
nevertheless best among all the approaches. For the analyses adjusting for practice effects, when the upper
bound (and mode) of the Triangular prior was set to 0.05, the bias was 0.087 (SD = 0.048). If the upper
bound was set to the true PE, 0.1, the bias was further reduced to 0.045 (SD = 0.043). Finally, if the upper
bound was set to 0.15 (with a mean equal to the true PE) the bias was 0.019 (SD = 0.047) and the CP
was 90.1%, which is comparable to Scenario 3. The CPs were 50.0% and 85.2% for the upper bounds of
0.05 and 0.1, respectively. These results demonstrate the importance of the PE adjustment. For Scenario
5, adjusting for truncation due to death, we compared, for simplicity of implementation, results for the
three model-based approaches. MB-sp, MB-lm, and MRP revealed results comparable to Scenario 3, i.e.,
MB-sp: bias= 0.023 (SD = 0.047) and CP=92.3%, MRP: bias = 0.195 (SD = 0.06) and CP = 2.4%, and
MB-lm: bias = 0.115 (SD = 0.050) and CP = 32.6%.
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6. ANALYSIS OF THE BETULA DATA

We applied the proposed semiparametric approach for estimating the PPCM(age) to the Betula data. Here,
interest is in estimating the average memory performance across the adult lifespan among nondemented
individuals given survival up to a specific age. Note, that both death and dementia are considered to be
sources of truncation in the analysis. We consider population inference in the context of longitudinal
cohort data in the presence of practice effects, nonignorable dropout, and death. Longitudinal auxiliary
data for both the sample and target population is available for four waves of data collection. These include
the baseline variables age, sex, having children (Y/N), and highest level of education, and additionally,
several income variables, benefits received from the government, and marital status were treated as time
varying. Details of baseline characteristics are found in Table 3. Details of the International Classification
of Diseases codes are given in Appendix B of the Supplementary material available at Biostatistics online.

6.1. Sensitivity parameters

We explore sensitivity to default assumptions by specifying informative priors for the sensitivity param-
eters. Since there is generally little information about the distributional form for the SPs, the prior
distributions are often chosen by the analyst reflecting prior beliefs about the departures from the default
assumptions.

We assume triangular priors for δit , reflecting the improvement in memory performance that occur at
repeated testings, i.e., practice effects (PEs). The priors were specified as δi1 ∼ Tri(0, Uδ1(ai1), Uδ1(ai1))

and δi2, δi3 ∼ Tri(0, Uδ2(ai2), Uδ2(ai2)), where Ait = ait is the age of individual i at wave t. The upper bounds
are given by; Uδ1(ai1) = 4.8−0.1×ai1 +5.2∗10−4 ×a2

i1 and Uδ2(ai2) = 11.0−0.3×ai2 +1.9×10−3 ×a2
i2.

Table 3. Baseline descriptive statistics for the Betula sample and the target popula-
tion. Mean (standard deviation) for continuous variables and N (%) for categorical
variables. CVD, cardiovascular disease. * amounts in Swedish kronor rounded to the
nearest thousand.

Sample Population

N 1000 9203
Age 57.5 (14.4) 52.0 (13.3)
Male 470 (47.0) 4431 (48.1)
Having children 856 (85.6) 7952 (86.4)
≤ 9 years of education 308 (30.8) 2505 (27.2)
10–12 years of education 352 (35.4) 3288 (35.7)
> 12 years of education 240 (24.2) 2516 (27.3)
Education level unknown 100 (10.1) 894 (9.7)
Married 628 (63.2) 5960 (64.8)
Widow 149 (14.9) 715 (7.8)
Disposable income* 1021.3 (412.8) 1058.6 (490.5)
Earned income* 868.9 (936.2) 1045.2 (952.6)
Retirement income* 275.1 (404.3) 165.4 (335.0)
Early retirement income* 37.2 (172.6) 29.6 (151.1)
Unemployment benefits* 4.4 (48.3) 9.1 (64.5)
Health benefits* 68.7 (220.0) 86.7 (227.8)
Diagnosed with diabetes prior 1990 14 (1.4) 185 (2.0)
Diagnosed with CVD prior 1990 97 (9.7) 593 (6.4)
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To obtain these we considered two comparable samples (S1 and S3) from the Betula study. The estimated
practice effects were derived as the mean differences in memory performance between participants taking
the test for the 2nd/3rd time (sample S1) versus those taking the test for the 1st/2nd time (sample S3), while
adjusting for age and age squared. Hence, Uδt+1 = E(Yit+1|Ait+1 = ait+1, S1, Rit+2 = 1)− E(Yjt|Ajt =
ajt+1, S3, Rjt+1 = 1), for t = 0, 1, and j = 1, . . . , NS3 refers to individuals in sample S3. By conditioning
on Rit+1 we avoid nonresponse bias. Note that, practice effects were larger for younger participants and
at t = 1 compared to t = 0. We similarly specify a triangular prior for γit ∼ Tri(Lγt (ait), 0, Lγt (ait)),
reflecting a decline in memory after dropping out of the study. The bounds are given by; Lγt (ait) =
−8.0 − 0.3 × ait + 3.9 × 10−3 × a2

it , obtained from estimating, E(Yi1 − Yi0|Ai1 = ai1, S1, Ri1 = 1), i.e.,
the change in memory performance between the first and second wave for responders while adjusting for
age and age squared. Note that, this imply that γit is the same for all t and that older participants decline
more quickly than younger participants after drop out.

6.2. Results

We estimated the PPCM using our proposed Bayesian semiparametric approach with the sensitivity param-
eters. For each chain, the first 1000 iterations were discarded as burn-in, and a total of 1000 posterior
samples of the PPCM were obtained. Convergence of the posterior samples was monitored using trace
plots.

In the main analysis, the priors for the SPs were specified as described in the previous section. For the
sensitivity analysis, we compare the results for different values of the SPs. Specifically, the SPs were set
to (i) γit = 0 while δit was specified as in the main analysis (MARS and PE adjustment), (ii) δit = 0 for
t = 2, 3, 4, while γit was specified as in the main analysis (MNARS and no PE adjustment), (iii) the SPs
were specified as twice as large as in the main analysis (2 × δit for t = 2, 3, 4, and similarly, 2 × γit), and
(iv) γit = 0 and δit = 0 for t = 2, 3, 4 (MARS and no PE adjustment). We moreover compared the results
from our mortal-cohort analysis to an analysis assuming an immortal cohort (Wen and others, 2018),
treating both death and dropout as MAR (γit = 0); hence, deceased participants are implicitly included
after death. In this scenario, only baseline auxiliary variables were considered since xit is missing when
sit = 0 and δit = 0 for all t (no PE adjustment).

The results from the main analysis and the various sensitivity analyses are presented in Figure 1.
The corresponding 95% credible intervals are also plotted for the main analysis, the immortal-cohort
analysis, and for the analysis assuming MARS and no PE adjustment (Figure 1a). For the main analysis,
the age-specific PPCM revealed an initial decline in memory performance between the ages 35 to 65 and
accelerated decline after the age of 65. Assuming an immortal cohort, no PEs and MAR nonresponse
(both for dropout and death) resulted in a significantly higher estimated memory performance across
adulthood, with a slightly greater decline at younger ages and less decline in memory after the age of 65.
An analysis assuming MARS missingness and not adjusting for practice effects resulted in a significantly
higher estimated memory performance between the ages 40–90 compared to the main analysis.

It is apparent in Figure 1b and c that adjusting for both PEs and MNARS dropout resulted in lower
estimated memory performance across adulthood, although the discrepancy varied in magnitude with
respect to age. When the SPs were specified as twice as large as in the main analysis (Figure 1c), we
see an increased reduction in memory performance, this is more pronounced at older ages. As expected,
comparing a PE adjusted analysis to an analysis without PE adjustment (assuming MNARS dropout)
revealed lower memory performance for the PE adjusted analysis, although the discrepancy was more
pronounced at younger ages. Comparing results from an analysis assuming MNARS and MARS while
adjusting for PEs, also revealed lower memory performance, and the difference was more pronounced at
older ages.
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Fig. 1. Estimating lifespan trajectories of memory for the Betula data using our MB-sp approach. (a) PPCM, MNARS,
& PE: the main analysis; PPCM, MARS: the sensitivity parameters were all set to 0; Sample, MAR & immortal cohort:
sample inference assuming MAR missingness for both dropouts and deaths and no practice effects. Panels (b) and (c)
show a sensitivity analysis for k = 1 and k = 2, respectively, comparing the main analysis (PPCM, MNARS, & PE) to
an analysis, where γi = 0 and δit were specified as for the main analysis (PPCM, MARS, & PE), and to an analysis,
where δit = 0, while γi was specified as for the main analysis (PPCM, MNARS).

We compare the results for the Betula data using our approach (MB-sp) with the four other estimators for
population inference, MB-lm, HT, MRP, and GREG. The sensitivity parameters, γit and δit for t = 1, 2, 3,
were for simplicity all set to 0 when estimating the PPCM, i.e assuming MARS missingness and no PEs.
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Fig. 2. Analysis of the Betula data. Results from estimating the population partly conditional mean using (1) MB-sp,
our semiparametric model-based approach using DART; (2) MB-lm, a parametric model-based approach using additive
linear regression; (3) MRP, multilevel regression and post-stratification, (4) GREG, general regression estimator; and
(5) HT, the Horvitz–Thompson estimator. The sensitivity parameters γi, δi2, δi3, and δi4 were all set to 0.

Details of the estimation procedures for MB-lm, HT, MRP, and GREG are described in Section 5.2 and in
Appendix A of the Supplementary material available at Biostatistics online. However, some adjustments
were made. For MRP, the continuous variables were first categorized into quartiles plus an additional
category if the variable was 0 (added to the model as random effects). Due to excessive number of cells
with a small or zero sample size we only used a subset of the baseline auxiliary variables for computing
the cell adjustment weights πi in HT and GREG. These were age, sex, level of education, widowhood,
and history of cardiovascular disease.

Results are found in Figure 2. Compared to our semiparametric approach (MB-sp), the HT estimator
overestimated memory performance across adulthood, and the three other parametric approaches revealed
an accelerated decline in memory performance for individuals 70–95 years old. The large discrepancy in
memory performance for HT, and for GREG at older ages, is likely a result from using only a subset of
the auxiliary variables, dichotomizing continuous variables, and collapsing zero or spars cells, since this
may introduce bias in the weights. Given the findings of the simulation study, we are inclined to believe
the discrepancies for the parametric approaches (MB-lm and MRP) from our semiparametric approach
are likely due to model-misspecification. Note that, MRP gives results most similar to our semiparametric
approach.

7. CONCLUSIONS

This article proposes a Bayesian semiparametric predictive estimator for estimating the population partly
conditional mean when a large set of longitudinal auxiliary variables is known for all units in the target
population. A key feature is the flexible modeling approach that effectively addresses nonlinearity and
complex interactions. Additionally, BART (using the sparse Dirichlet splitting rule prior) demonstrated
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excellent predictive performance when irrelevant regressors were added, diminishing the need to carry
out formal variable or model selection.

Our study is motivated by the fact that it is becoming increasingly difficult to recruit study participants,
which may severely distort the ability to generalize study findings. The increased availability of microdata
covering the population in many countries however, makes postsampling adjustments an attractive tool.
Although weighting is the most popular technique, a large set of auxiliary (possibly continuous) variables
makes cell weight adjustment difficult. In this setting model-based approaches are more attractive, but
put stronger requirements on correct model specification. As expected, the results of the simulation study
showed that the weighting approach (HT) performed poorly across a wide range of scenarios, despite a
simplified scenario where uncorrelated variables were excluded. This is likely a result from collapsing
sparse cells and dichotomizing the continuous auxiliary variables, thereby introducing bias in the weights.
In contrast, the model-based approaches and GREG all performed well under the correct specification
of the outcome model, although, our semiparametric method was the only approach that gave unbiased
results for the more realistic scenario with unknown nonlinearity and interactions. Furthermore, under the
scenario with practice effects our approach performed relatively well compared to the other approaches,
showing the importance of adjusting for practice effects.

The goal of the empirical study was to estimate lifespan trajectories in memory for a target population.
The results revealed an initial decline in memory performance between the ages 35 to 65, in contrast to
previous studies showing stable performance up to the age of 60 (Rönnlund and others, 2005; Gorbach
and others, 2017). Furthermore, the standard approach for estimation in previous literature that assumes
an immortal cohort, no PEs and MAR nonresponse revealed significantly higher memory performance
across the adult lifespan compared to our approach. This suggests that in previous studies the magni-
tude of memory performance across adulthood is likely overestimated while the rate of change is likely
underestimated, especially at older ages. This is due to both selective study enrollment and attrition.

Our approach allows for Bayesian inference under MNAR missingness and truncation by death, as well
as the ability to characterize uncertainty about practice effects. This was accomplished by introducing
sensitivity parameters (SPs) that incorporated prior beliefs. A strength of the current approach is that
inference with SPs and a mortal cohort is relatively easy to implement and communicate to nonstatisticians.
However, specifying an appropriate prior distribution can sometimes be difficult; an alternative approach
could be a tipping point analysis (Yan and others, 2009). In a tipping point analysis, subject matter experts
can discuss whether the tipping point for the SPs are plausible, which may aid in making judgment based
on study findings.

8. SOFTWARE

R code for the main analysis of the Betula data and the simulation study using our approach is available
on https://github.com/m4ryjo/BSP_PS.git.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.

ACKNOWLEDGMENTS

We thank Prof. Rolf Adolfsson and project coordinator Annelie Nordin Adolfsson, Department of Clinical
Sciences at Ume University, for providing data from the Betula project for analyses.

Conflict of Interest: None declared.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/24/2/372/6242670 by U

m
ea universitet user on 16 June 2023

https://github.com/m4ryjo/BSP_PS.git
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab012#supplementary-data
http://biostatistics.oxfordjournals.org


386 M. JOSEFSSON AND OTHERS

FUNDING

The Swedish Foundation for Humanities and Social Sciences (P17-0196:1 to M.J.), and National Institutes
of Health (R01 CA 183854 to M.J.D. and R01 GM 112327 to M.J.D.). The Betula Project is supported
by Knut and Alice Wallenberg foundation and the Swedish Research Council (K2010-61X-21446-01).

REFERENCES

BISBEE, J. (2019). BARP: improving mister p using Bayesian additive regression trees. American Political Science
Review 113, 1060–1065.

CHIPMAN, H. A., GEORGE, E. I., MCCULLOCH, R. E. and others. (2010). BART: Bayesian additive regression trees.
The Annals of Applied Statistics 4, 266–298.

DANIELS, M. J. AND HOGAN, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling
and Sensitivity Analysis. Boca Raton: Chapman and Hall/CRC.

DEVILLE, J.-C. AND SÄRNDAL, C.-E. (1992). Calibration estimators in survey sampling. Journal of the American
Statistical Association 87, 376–382.

FRANGAKIS, C. E. AND RUBIN, D. B. (2002). Principal stratification in causal inference. Biometrics 58, 21–29.

FRANGAKIS, C. E., RUBIN, D. B., AN, M.-W. AND MACKENZIE, E. (2007). Principal stratification designs to estimate
input data missing due to death. Biometrics 63, 641–649.

GELMAN, A. AND LITTLE, T. C. (1997). Poststratification into many categories using hierarchical logistic regression.
Survey Methodology 23, 127–136.

GORBACH, T., PUDAS, S., LUNDQUIST, A., ORÄDD, G., JOSEFSSON, M., SALAMI, A., DE LUNA, X. AND NYBERG, L.
(2017). Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiology of
aging 51, 167–176.

HOFFMAN, L., HOFER, S. M. AND SLIWINSKI, M. J. (2011). On the confounds among retest gains and age-cohort
differences in the estimation of within-person change in longitudinal studies: a simulation study. Psychology and
Aging 26, 778.

HORVITZ, D. G. AND THOMPSON, D. J. (1952).A generalization of sampling without replacement from a finite universe.
Journal of the American Statistical Association 47, 663–685.

JOSEFSSON, M., DE LUNA, X., DANIELS, M. J. AND NYBERG, L. (2016). Causal inference with longitudinal outcomes
and non-ignorable dropout: estimating the effect of living alone on cognitive decline. Journal of the Royal Statistical
Society: Series C (Applied Statistics) 65, 131–144.

JOSEFSSON, M., DE LUNA, X., PUDAS, S., NILSSON, L.-G. AND NYBERG, L. (2012). Genetic and lifestyle predictors of
15-year longitudinal change in episodic memory. Journal of the American Geriatrics Society 60, 2308–2312.

KERN, H. L., STUART, E. A., HILL, J. AND GREEN, D. P. (2016). Assessing methods for generalizing experimental
impact estimates to target populations. Journal of Research on Educational Effectiveness 9, 103–127.

KURLAND, B. F., JOHNSON, L. L., EGLESTON, B. L. AND DIEHR, P. H. (2009). Longitudinal data with follow-up
truncated by death: match the analysis method to research aims. Statistical Science: A Review Journal of the
Institute of Mathematical Statistics 24, 211.

LI, Q. AND SU, L. (2018).Accommodating informative dropout and death: a joint modellinsg approach for longitudinal
and semicompeting risks data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 67, 145–163.

LINERO, A. R. (2018). Bayesian regression trees for high-dimensional prediction and variable selection. Journal of
the American Statistical Association 113, 626–636.

LITTLE, R. J. (2004). To model or not to model? competing modes of inference for finite population sampling. Journal
of the American Statistical Association 99, 546–556.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/24/2/372/6242670 by U

m
ea universitet user on 16 June 2023



Bayesian semiparametric inference on the PPCM 387

MALMBERG, G., NILSSON, L.-G. AND WEINEHALL, L. (2010). Longitudinal data for interdisciplinary ageing research.
design of the linnaeus database. Scandinavian Journal of Public Health 38, 761–767.

MCGUINNESS, M. B., KASZA, J., KARAHALIOS, A., GUYMER, R. H., FINGER, R. P. AND SIMPSON, J. A. (2019). A
comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation
study. BMC Medical Research Methodology 19, 223.

NILSSON, L.-G., BÄCKMAN, L., ERNGRUND, K., NYBERG, L., ADOLFSSON, R., BUCHT, G., KARLSSON, S., WIDING,
M. AND WINBLAD, B. (1997). The Betula prospective cohort study: memory, health, and aging. Aging,
Neuropsychology, and Cognition 4, 1–32.

PARK, D. K., GELMAN, A. AND BAFUMI, J. (2004). Bayesian multilevel estimation with poststratification: state-level
estimates from national polls. Political Analysis 12, 375–385.

R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing.

RIZOPOULOS, D. (2012). Joint Models for Longitudinal and Time-to-Event Data, with Applications in R. Boca Raton:
Chapman & Hall/CRC.

RÖNNLUND, M., NYBERG, L., BÄCKMAN, L. AND NILSSON, L.-G. (2005). Stability, growth, and decline in adult life
span development of declarative memory: cross-sectional and longitudinal data from a population-based study.
Psychology and Aging 20, 3–18.

RUBIN, D. B. (1976). Inference and missing data. Biometrika 63, 581–592.

SALTHOUSE, T. A. (2010). Influence of age on practice effects in longitudinal neurocognitive change. Neuropsychol-
ogy 24, 563.

SHARDELL, M. AND FERRUCCI, L. (2018). Joint mixed-effects models for causal inference with longitudinal data.
Statistics in Medicine 37, 829–846.

VIVOT, A., POWER, M. C., GLYMOUR, M. M., MAYEDA, E. R., BENITEZ, A., SPIRO III, A., MANLY, J. J., PROUST-LIMA,
C., DUFOUIL, C. AND GROSS, A. L. (2016). Jump, hop, or skip: modeling practice effects in studies of determinants
of cognitive change in older adults. American Journal of Epidemiology 183, 302–314.

WANG, W., ROTHSCHILD, D., GOEL, S. AND GELMAN, A. (2015). Forecasting elections with non-representative polls.
International Journal of Forecasting 31, 980–991.

WEN, L. AND SEAMAN, S. R. (2018). Semi-parametric methods of handling missing data in mortal cohorts under
non-ignorable missingness. Biometrics 74, 1427–1437.

WEN, L., TERRERA, G. M. AND SEAMAN, S. R. (2018). Methods for handling longitudinal outcome processes truncated
by dropout and death. Biostatistics 19, 407–425.

WEUVE, J., PROUST-LIMA, C., POWER, M. C., GROSS, A. L., HOFER, S. M., THIÉBAUT, R., CHÊNE, G., GLYMOUR,
M. M., DUFOUIL, C., MELODEM Initiative and others. (2015). Guidelines for reporting methodological challenges
and evaluating potential bias in dementia research. Alzheimer’s & Dementia 11, 1098–1109.

YAN, X., LEE, S. AND LI, N. (2009). Missing data handling methods in medical device clinical trials. Journal of
Biopharmaceutical Statistics 19, 1085–1098.

[Received November 24, 2020; revised March 17, 2021; accepted for publication March 17, 2021]

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/24/2/372/6242670 by U

m
ea universitet user on 16 June 2023


