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Abstract: Developing accurate models is necessary to optimize the operation of heating systems. A
large number of field measurements from monitored heat pumps have made it possible to evaluate
different heat pump models and improve their accuracy. This study used measured data from a
heating system consisting of three heat pumps to compare five regression and two artificial neural
network (ANN) models. The models’ performance was compared to determine which model was
suitable during the design and operation stage by calibrating them using data provided by the
manufacturer and the measured data. A method to refine the ANN model was also presented. The
results indicate that simple regression models are more suitable when only manufacturers’ data
are available, while ANN models are more suited to utilize a large amount of measured data. The
method to refine the ANN model is effective at increasing the accuracy of the model. The refined
models have a relative root mean square error (RMSE) of less than 5%.

Keywords: heat pump; artificial neural network; regression model; modeling; field measurements

1. Introduction

Heat pumps are an efficient way to provide heating and cooling. In recent years,
they have become more environmentally and economically viable due to an increasing
share of renewable sources in the energy mix and decreasing electricity prices [1,2]. The
use of large heat pumps as a part of heat networks has also increased in recent years as
they enable the use of low-temperature heat sources, such as waste heat from industry [3].
Additionally, heat pumps can convert excess electricity into heat, which can be stored and
used later [4,5]. Adding large heat pumps to the energy network will allow us to include
up to 40% of fluctuating renewable energy sources, such as solar and wind power, without
losing efficiency [6]. As a result, we can expect the size and complexity of heat pumps to
increase.

The accurate models of heat pumps can be used to improve the operation of heat
pumps, as demonstrated in several studies [7,8]. With an increasing number of large heat
pumps, the number of field measurements has also increased [5,9,10], which provided an
opportunity to improve the accuracy of the heat pump models. However, not all models
can use the additional data effectively. Hence, the choice of model is important.

Underwood [10] described four different types of heat pump models: balanced-state,
steady-state, fitted, and dynamic-state models. Balanced-state models use a constant coeffi-
cient of performance (COP) and are used to evaluate the seasonal or annual performance
of a heat pump. Refrigeration cycle-based steady-state models and regression-based fitted
models are used for optimizing the long-term operation of a heat pump, which requires a
time resolution of one hour. Dynamic models consider the heat pump’s transient behavior
and are suited for control system design, which requires a second scale-time resolution.

Refrigeration cycle-based models [11,12] use a simplified vapor compression cycle
to calculate the thermodynamic states of the refrigerant. Steady-state models of each
component, compressor, expansion valve, and heat exchanger (condenser and evaporator)
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are developed based on the thermodynamic states of the refrigerant and the efficiency of
the components. One of the drawbacks of such models is that they require a large number
of parameters related to the refrigerant and the components of the heat pump, which are
not available in many cases [9,11,13,14]. Jin [11] proposed the calibration of the model
parameters using performance data provided by the manufacturer as a solution to this
dilemma. Cimmino and Wetter [13] further refined the optimization process. Refrigeration
cycle-based models are not restricted by the range of data used for calibration, hence they
perform well in a wide range of operating conditions. However, the assumptions used to
simplify the refrigeration cycle-based models limit their accuracy. Therefore, regression
models are often preferred over refrigeration cycle models as they have higher accuracy
when good quality data that cover the entire range of operation of the heat pump are
available [10,15] and they are easier to generate [10].

Regression models are obtained by mapping the heat pumps’ performance to inputs,
such as condenser and evaporator temperature. The simplest regression model is the
bilinear model with COP as the output and evaporator and condenser temperatures as
input. Even this simple regression can provide a good fit [10]. However, a second-degree
polynomial with two or three inputs is used in most cases [16–18]. Some of the regression
models are presented in Section 3. The main drawback of regression models is low accuracy
when extrapolating. Ruschenburg et al. [19] showed that this problem could be reduced
by using a bilinear model for extrapolation and a biquadratic model for interpolation.
Regression models can be classified into black-box and gray-box models. The form of
gray-box models are bases on physical principals, hence the fitted coefficients of such
models have a physical significance. In comparison, the coefficients of black-box models
have no physical significance.

Several studies have compared different heat pump models. Carbonell Sánchez et al. [15]
compared a biquadratic regression model with a refrigeration cycle model. They concluded
that the regression model was better at predicting the COP within the limits of the training
data. However, the refrigeration cycle model demonstrated an advantage in predicting
the COP outside the training data. Lee and Lu [20] compared three regression models and
three gray-box models and found that the regression models had a better fit than gray-box
models. Among the regression models, biquadratic regression had the best performance.
Swider [14] compared three regression models—one gray-box model and two artificial
neural network (ANN) models—and showed that the ANN models are more accurate than
the regression models and gray-box models. Additionally, they found that the accuracy of
ANN models was better in a more complex case.

ANNs are data-driven models that vaguely mimic a network of biological neurons.
ANNs consist of multiple layers of neurons, and each neuron uses the output of the previous
layer as input. Each neuron has a summation function that calculates the weighted sum of
the inputs and an activation function that transforms the weighted sum. Figure 1 shows a
schematic of an ANN. Mohanraj et al. [21] present an introduction to ANNs and a review
of their application in heat pumps, refrigeration, and air conditioning.
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There are several examples of ANNs being used to model heat pumps, especially in
complex cases. Bechtler et al. [22] used a generalized radial basis function ANN model to
predict a heat pump’s performance with evaporator outlet temperature, condenser outlet
temperature, and evaporator capacity as inputs. Bechtler et al. [22] developed the model
for three different refrigerants using experimental data and demonstrated that the ANN
was an acceptable alternative to refrigeration cycle-based models. Arcaklioğlu et al. [23]
used a multilayer feed-forward network with a sigmoid transfer function to model heat
pumps with binary refrigerant mixtures. They included the mixing ratio as input and thus
found that the model accurately predicted the heat pump’s performance with different
mixing ratios. Esen et al. [24] and Benli [25] modeled ground-source heat pumps using
a multilayer feed-forward network with a hyperbolic tangent sigmoid transfer function.
Esen et al. [26,27] also used other machine learning techniques for modeling ground-source
heat pumps. The model predicted the COP of the heat pump using air temperature at
the inlet and outlet of a condenser fan-coil unit and ground temperatures at two different
depths as inputs. These examples show that ANNs can be a viable option to model a
variety of heat pumps. However, in the above-reviewed cases, the training data set was
obtained under laboratory conditions and not actual field measurements.

Both black-box models and grey-box models require parameters that must be deter-
mined for individual heat pumps. The parameters are obtained using either laboratory data
or data generated by simulations. Zhang et al. [28] demonstrated that using manufacturers’
data to develop regression models can lead to high uncertainty. Zhang et al. [28] trained
13 regression models on the manufacturers’ data and showed that all models had a good fit.
However, when the models were used to predict a dynamic load, they deviated from each
other by up to 30%. Deviations among the models were reported to be due to non-standard
operating conditions such as operating below the design load, i.e., partial load operation,
and operating temperatures outside the specified limits. The influence of partial load was
included in some models using part-load efficiencies [29] for scroll compressors and on–off
cycle degradation [18].

However, the performance of heat pumps’ field operation is different from that in a
laboratory, not only due to non-standard operating conditions but also due to other reasons
such as transients, faults, or improper installation. Corberan et al. [30] validated their
regression model using field measurements. They noted that the condenser power of the
model deviated by up to 13.8% from the field measurements, mainly due to transients.
Ruschenburg et al. [19] compared monthly COP values simulated using a regression model
with field measurements for five similar installations and found that the average deviation
varied from 2% to 13%.

Using field measurements to calibrate the regression models can reduce the model’s
inaccuracy by accounting for variations in individual installations. The traditional heat
pumps market is single and multi-family houses that use small heat pumps, which are not
monitored. However, there has recently been a lot of effort to integrate large heat pumps
into district heating and cooling networks [2]. Large heat pumps are usually monitored,
and hence we now have the opportunity to calibrate the heat pump models using field
measurements. ANN-based models have an advantage over traditional regression models
when a large amount of monitored data are available as they can characterize the more
complex behavior of the heat pumps without explicitly defining the relationship between
the inputs and the outputs. The models developed using the field measurements can be
useful for fault detection or optimizing the operation of a heating system. Models for
optimizing the operation of a heating system can be particularly important when there is
flexibility in the heating system. For example, in the present case study, the domestic hot
water and space heating system of the building consists of a ground source heat pump and
heat from a district heating network, hence an accurate model of the heat pump can be
used to optimize the heat load distribution between the two sources of heat.

This study will present a comparison of seven models—five regression models, and
two ANN models—calibrated using both field measurements and manufacturers’ data.
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The objective of this comparison was to show how suitable the models are during the
design phase, when only manufacturers’ data are available, and during the operation,
when measured data are available. To the best of the authors’ knowledge, such a compar-
ison is not available in the literature. The insight provided by the comparison will help
practitioners choose the right model. The models were developed for a large ground-source
heat pump system, which has been monitored since 2017. We also demonstrated how to
refine the ANN models for heat pumps to utilize the field measurements more effectively.

2. Description of the Studied Facility

The geothermal heating system is a supplement to the heating and cooling provided
by the district heating and cooling network at the university hospital in Umeå, Sweden.
The installation consists of three heat pumps and a borehole heat exchanger consisting
of 125 boreholes. In summer, the heat from space cooling and the excess heat from the
heat pump are injected into the borehole heat exchanger; and in winter, the borehole
heat exchanger acts as a source of heat for the heat pumps. A detailed explanation of
the borehole heat exchanger and its model is presented in separate articles [31,32]. The
geothermal heat pump was designed to satisfy 95% of the hospital’s cooling load (5 GWh)
and 20% of the heating load (7 GWh). The heating and cooling provided by the geothermal
heat pump for a typical year are shown in Figure 2. The cooling load does not vary much
with the seasons, whereas the heating load decreases significantly during the summer.

Energies 2021, 14, x FOR PEER REVIEW 4 of 24 

 

monitored. However, there has recently been a lot of effort to integrate large heat pumps 

into district heating and cooling networks [2]. Large heat pumps are usually monitored, 

and hence we now have the opportunity to calibrate the heat pump models using field 

measurements. ANN-based models have an advantage over traditional regression models 

when a large amount of monitored data are available as they can characterize the more 

complex behavior of the heat pumps without explicitly defining the relationship between 

the inputs and the outputs. The models developed using the field measurements can be 

useful for fault detection or optimizing the operation of a heating system. Models for op-

timizing the operation of a heating system can be particularly important when there is 

flexibility in the heating system. For example, in the present case study, the domestic hot 

water and space heating system of the building consists of a ground source heat pump 

and heat from a district heating network, hence an accurate model of the heat pump can 

be used to optimize the heat load distribution between the two sources of heat. 

This study will present a comparison of seven models—five regression models, and 

two ANN models—calibrated using both field measurements and manufacturers’ data. 

The objective of this comparison was to show how suitable the models are during the 

design phase, when only manufacturers’ data are available, and during the operation, 

when measured data are available. To the best of the authors’ knowledge, such a compar-

ison is not available in the literature. The insight provided by the comparison will help 

practitioners choose the right model. The models were developed for a large ground-

source heat pump system, which has been monitored since 2017. We also demonstrated 

how to refine the ANN models for heat pumps to utilize the field measurements more 

effectively. 

2. Description of the Studied Facility 

The geothermal heating system is a supplement to the heating and cooling provided 

by the district heating and cooling network at the university hospital in Umeå, Sweden. 

The installation consists of three heat pumps and a borehole heat exchanger consisting of 

125 boreholes. In summer, the heat from space cooling and the excess heat from the heat 

pump are injected into the borehole heat exchanger; and in winter, the borehole heat ex-

changer acts as a source of heat for the heat pumps. A detailed explanation of the borehole 

heat exchanger and its model is presented in separate articles [31,32]. The geothermal heat 

pump was designed to satisfy 95% of the hospital's cooling load (5 GWh) and 20% of the 

heating load (7 GWh). The heating and cooling provided by the geothermal heat pump 

for a typical year are shown in Figure 2. The cooling load does not vary much with the 

seasons, whereas the heating load decreases significantly during the summer. 

 

0

200

400

600

800

1000

1200

1/Jan 2/Mar 1/May 30/Jun 29/Aug 28/Oct 27/Dec

Lo
ad
(K
W
)

Heating Cooling

Figure 2. Measured heating and cooling loads of the geothermal heat pump.

Two heat pumps provide heat and cold for space heating and cooling, while the third
heat pump provides additional heat for space heating during cold days and heat for hot
water production. Figure 3 shows a schematic of the facility. The heat from the condensers
of heat pumps 1, 2, and 3 are used for space heating in three stages. The heat from the
sub-cooler of heat pumps 1 and 2 is used as a heat source for heat pump 3 and preheating
the domestic hot water. In the winter season, the heat extracted from the borehole heat
exchanger and minor space cooling demand of the hospital provides the heat required for
the evaporators of heat pumps 1 and 2. In the summer season, the cooling load dominates
the heat pump operation. Because the space heating load is lower than the heat released
by the condenser of heat pumps 1 and 2, the excess heat is injected into the borehole heat
exchanger. Additionally, the borehole heat exchanger is also used as a pre-cooler for the
evaporators of heat pumps 1 and 2.
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Heat pumps 1 and 2 have similar operating temperatures, while heat pump 3 has
a higher temperature range and a lower heat load. Hence, heat pumps 1 and 2 use the
same model of heat pump, model EMA from the manufacturer EnergyMachines, Gävle,
Sweden. Heat pumps 1 and 2 (HP1&2) have two loops (circuits), and each circuit has
twin compressors, as shown in Figure 3. The refrigerant in HP1&2 is R410A. Heat pump 3
(HP3) uses a different heat pump model, EMB from EnergyMachines, which consists of
two circuits with a single compressor, shown in Figure 3. The refrigerant in HP3 is R134a.
Although HP1&2 provide both heating and cooling, we will consider that the primary
purpose of each heat pump is heating and thus develop the models accordingly.

The installation has been operating since mid-February 2016, and it has been fully
monitored since January 2017. Table 1 shows a list of measurements that were performed
continuously. Since HP1&2 have a common condenser and evaporator for both circuits,
they have the same inlet and outlet water temperatures. HP3 has a separate condenser and
evaporator for each circuit. Compressor utilization time is the cumulative amount of time
the compressor has been turned on. The compressor utilization time is not measured for
HP3. The average hourly value of each measurement in Table 1 is calculated and stored in
a database.

Table 1. List of measured values.

Measurement Heat Pumps 1 and 2 Heat Pump 3

Evaporator refrigerant temperature (TER) Each circuit Each circuit
Condenser refrigerant temperature (TCR) Each circuit Each circuit

Evaporator power (QE) Each circuit Each circuit
Condenser power (QC) Each circuit Each circuit
Sub-cooler power (QSC) Each circuit Each circuit
Compressor power (P) Each circuit Each circuit

Evaporator water inlet temperature (TEWin) Each heat pump Each circuit
Evaporator water outlet temperature (TEWout) Each heat pump Each circuit

Condenser water inlet temperature (TCWin) Each heat pump Each circuit
Condenser water outlet temperature (TCWout) Each heat pump Each circuit
Sub-cooler water inlet temperature (TSCWin) Each heat pump None

Sub-cooler water outlet temperature (TSCWout) Each heat pump None
Compressor utilization time (UT) Each compressor None
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The data are not continuous for the whole period of measurement due to faults in
the monitoring system. The malfunctioning of one or more sensors or the monitoring
system’s shut down for maintenance and upgrade caused these faults. For example, the
evaporator and condenser power measurements are not available from March 2019. Each
of the heat pumps is considered separately, enabling us to use the data from one heat pump
even when the measurement of another heat pump is incomplete. HP1&2 have 14,151 and
10,865 h of complete data, respectively. The majority of the data are from the period of
April 2017–March 2019. HP3 operates intermittently as it is only used during the coldest
hours and to produce domestic hot water. Hence, there are fewer hours with complete
data for HP3. However, the two circuits of HP3 operate almost independently and can be
considered as separate heat pumps. Circuit 1 and circuit 2 of HP3 have 2952 and 6915 h of
complete data, respectively. The measured data for a typical summer and winter day are
included in Appendix B.

We divided the measured data into two sets. One set was used for training the models,
and the other was used for testing. For HP1&2, the period from April 2017 to March 2019
has most of the continuous data. We must have at least one year of data to ensure that
the training data has the full range of variation in load and temperatures; hence, the data
until April 2018 were used for training, and the remaining data were used for testing. The
resulting training data set contained 54% of the data points, while the other 46% was used
for testing. The available data set for heat pump 3 was smaller and scattered over time. We
therefore randomly sorted the data for HP3 into two equal sets to ensure that both training
and testing data sets had similar variation.

The power delivered by the heat pumps was divided between the sub-cooler and the
condenser. However, many models used in this study do not consider a sub-cooler, and
therefore, the sub-cooler power is not considered in the calculation of COP.

3. Description of Models

Seven data-driven models for heat pumps are chosen for this study, including five
regression models and two neural network models. Table 2 compiles a list of the models
and their corresponding equations.

Table 2. List of models.

Model Equation Inputs

Bilinear [10] COP = (b0 + bTE)× (b2 + bTE) TCR, TER
Biquadratic 1 [20] 1

COP = b0 + b1
1

QC
+ b2QC + b3

Tc
Qc

+ b4
T2

c
Qc

+ b5TC + b6QCTC + b7T2
C + b8QCT2

C
TCR, QC

Biquadratic 2 [18]
QC = bq1 + bq2TE + bq3TC + bq4TETC + bq5T2

E + bq6T2
C

P = bp1 + bp2TE + bp3TC + bp4TETC + bp5T2
C + bp6T2

C
COP = QC/P

TCR, TER

Multivariate Polynomial [14,20] COP =
b0 + b1QC + b2TE + b3TC + b4Q2

C + b5T2
E + b6T2

C + b7QcTE + b8QCTE + b9TETC
TCR, TER, QC

ASHRAE [28] 1
COP = b0 + b1

(TC−TE)
QC

+ b2
(TC−TE)

2

QC
+ b3

1
QC

+ b4QC + b5(TC − TE) TCR, TER, QC

Neural Network 2 (NN_2) - TCR, TER
Neural Network 3 (NN_3) - TCR, TER, QC

The bilinear model was the simplest model used in this study. The model does not
include higher-order terms, but Underwood [33] showed that the bilinear model could
have good accuracy. The models’ simplicity also reduces the chances of overfitting, and
hence the model has good accuracy while extrapolating [19]. The second model uses a
biquadratic equation with condenser temperature and condenser power as inputs. This
model had the best fit among six black-box and gray-box models compared in an earlier
investigation [20]. Another form of the biquadratic model often used [18] has the evaporator
and condenser temperatures as input and the condenser and compressor power as output.
The multivariate polynomial is another model that previous studies have shown to have
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good performance [14,20]. This model uses three inputs, condenser power and evaporator
and condenser temperatures. The ASHRAE (American Society of Heating, Refrigerating
and Air-Conditioning Engineers) model is a biquadratic model with the temperature
difference between the condenser and evaporator as one input and condenser power as the
other input. The output of the Biquadratic 2 model and the ASHRAE model were converted
to COP to compare the different models. Note that the models presented above can be
used with the temperatures from either the refrigerant or the water sides. We used the
refrigerant temperatures since the data provided by the manufacturer used the refrigerant
side temperatures. The subscript R in the “inputs” columns represents that we used the
refrigerant side temperatures.

A similar architecture was chosen for the two neural network models used in this
study: one hidden layer with five nodes and one node in the output layer. The output of
the neural network models was COP. The hyperbolic tangent function was used as the
activation function for the hidden layer. The difference between the neural network models
was the number of inputs; the neural network 2 (NN_2) model uses two inputs, evaporator
and condenser temperatures, while the neural network 3 (NN_3) model uses three input,
evaporator temperature, condenser temperatures, and condenser power. The trust region
algorithm was used to train the models. The algorithm finds local minima, and the result
of the optimization depends on the initial weights of the network, which are assigned
randomly. Hence, the algorithm was run 100 times with different initial weights, and the
solution with the lowest training error was chosen.

4. Development and Evaluation of Models

Models for HP1&2 and HP3 were determined from both the measured training set
described in Section 2 and the performance data supplied by the manufacturer. Both sets of
models were then evaluated by testing them on the measured testing data set. In the design
phase, the only data available for modeling the heat pump operation were the performance
data supplied by the manufacturer. Therefore, the models fitted using the manufacturer’s
data inform us about the deviation of actual performance from the design calculations.

The performance data supplied by the manufacturer were the data for full load and
steady-state operation of the heat pump within its theoretical operating range. The data
included every combination of evaporator temperature and condenser temperature with
a resolution of 1 ◦C. The performance data included the evaporator temperature (TER),
condenser temperature (TCR), condenser power, compressor power, and COP. Table 3
shows the operating temperature range of the heat pumps. Note that the manufacturer’s
data were not laboratory measurements but data obtained using their model of the heat
pump, which was calibrated using laboratory data. Sample data from the manufacturer
are presented in Appendix B.

Table 3. Range of manufacturer’s data.

Heat Pump Model Evaporator Temperature
Range

Condenser Temperature
Range

HP1&2 (Heat Pump 1&2) −20 ◦C to 20 ◦C 20 ◦C to 60 ◦C
HP3 (Heat Pump 3) −25 ◦C to 25 ◦C 10 ◦C to 90 ◦C

The manufacturer’s data for HP3 contain some data points where the condenser
temperature is lower than the evaporator temperature, so these data points were not
included in the fitting process. The data points were used to determine the parameters by
least-squares methods, i.e., the sum of the square of errors was minimized.

Results

Table 4 shows the training error of models for HP1&2 and HP3, trained using the
manufacturer’s data (Manu_fit) and the measured data (Meas_fit). The error was expressed
as the root mean square error (RMSE) of the models for their respective training data and
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percentage of error, which was calculated as the percentage of RMSE with respect to the
average COP of the training data set.

Table 4. Training error of HP1&2 and HP3 models.

Models
RMSE Train % Error

Manu_fit Mes_fit Manu_fit Mes_fit

HP1&2

Bilinear 0.18 0.32 3.6 6.8
Biquadratic 1 0.03 0.43 0.5 8.9
Biquadratic 2 0.07 0.34 1.4 7.0
Multivariate
polynomial 0.04 0.30 0.8 6.3

ASHRAE 0.27 0.34 5.2 7.2
NN 2 0.01 0.30 0.2 6.2
NN 3 0.01 0.25 0.2 5.2

HP3

Bilinear 0.91 0.40 20.6 8.3
Biquadratic 1 0.13 0.41 3.0 8.4
Biquadratic 2 0.28 0.42 6.3 8.7
Multivariate
polynomial 0.39 0.36 8.9 7.4

ASHRAE 0.43 0.37 9.8 7.5
NN 2 0.03 0.39 0.7 8.0
NN 3 0.03 0.35 0.6 7.1

As seen from the first column of Table 4 and the right side of Figure 4, the models
that best represented the performance data supplied by the manufacturer (Manu_fit) were
the two neural network models, and among the regression models, biquadratic 1 had the
best fit. The ANN model NN_3 performed slightly better than NN_2, which was probably
because NN_3 had an additional input, QC.

The ability of the different models to represent the measured data (Meas_fit) was
fairly equal, as seen in the left side of Figure 4, but in general, worse than the models
based on Manu_fit. The NN_3 model had the best fit in the case of Meas_fit as well as
for Manu_fit. However, the choice of model was less important in the case of Meas_fit.
The manufacturer’s data were obtained from an ideal setting in which only the specified
inputs affected the COP, so a good model can thus accurately represent its behavior. In
actual operation, the heat pumps have to satisfy a dynamic load and have a sub-cooler.
Such non-standard operating conditions, along with measurement errors, influences the
measured COP of the heat pumps. Hence, the fact that the choice of the model is not
important for Meas_fit indicates that the variables not considered in the model influence
the results more than the choice of model.

We see that the Manu_fit models have a better fit for HP1&2 than for HP3. The
main difference between HP1&2 and HP3 is that the temperature range specified by the
manufacturer of HP3 is higher than HP1&2. Due to its higher temperature range, HP3 is
expected to require a more complex function to represent the relationship between COP
and the input variables. This is a plausible explanation of why the Manu_fit models of HP3
have a higher RMSE than HP1&2. Since ANN models are better than regression models
at representing a complex function, the difference in performance between the regression
models and the neural network models is higher for HP3. The Meas_fit models for both
HP1&2 and HP3 have similar RMSEs since the temperature range of the heat pumps’ actual
operation is lower than the operating range specified by the manufacturer.
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Figure 4. Training error of (a) HP1&2; and (b) HP3.

The models described above have been tested on the test set described in Section 2,
and the results are presented in Table 5 and Figure 5. Following the naming convention of
Table 4, Manu_fit refers to the models fitted using data from the manufacturer, and Meas_fit
refers to models trained using the measured data. The Meas_fit models have a lower RMSE
than the Manu_fit models. Among the Manu_fit models, the bilinear model has the least
RMSE. The models that use condenser power as one of the inputs, i.e., biquadratic 1,
multivariate polynomial, ASHRAE, and NN_3, have a higher RMSE than the models that
use only evaporator and condenser temperatures. This can be explained by the fact that
the condenser power during real operation is outside the range of the manufacturer’s data
since the heat pumps are not working at 100% load all the time. Using measured data to fit
the models eliminates this issue. Therefore, the NN_3 and multivariate polynomial models
have the lowest RMSE among the Meas_fit models. The same two models had the worst
performance in Manu_fit, which emphasizes the importance of choosing the complexity of
the model based on the availability of data.
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Table 5. Error of models for testing data.

Models
RMSE Test % Error

Manu_fit Meas_fit Manu_fit Meas_fit

HP1&2

Bilinear 0.37 0.36 7.6 7.5
Biquadratic 1 1.73 0.43 35.7 8.8
Biquadratic 2 0.55 0.36 11.3 7.4
Multivariate
polynomial 1.79 0.37 36.9 7.7

ASHRAE 0.63 0.36 12.9 7.4
NN_2 0.55 0.36 11.4 7.5
NN_3 0.58 0.31 11.9 6.4

HP3

Bilinear 0.69 0.41 14.2 8.5
Biquadratic 1 0.99 0.45 20.3 9.2
Biquadratic 2 0.58 0.48 11.9 9.9
Multivariate
polynomial 6.72 0.37 137.9 7.6

ASHRAE 0.79 0.37 16.2 7.6
NN_2 0.78 0.42 16.0 8.6
NN_3 7.36 0.36 151.2 7.5
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5. Refining ANN Models

In the previous section, we noted that using the measured data could improve the
model accuracy. The neural network model with three inputs, NN_3, has the highest
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accuracy among the models, as seen in Table 5. This shows that the neural network model
is capable of utilizing the measured data better than traditional models. Another advantage
of neural network models over traditional regression models is that we can easily refine
the model to better utilize the measured data set and identify more patterns within the
measured data. However, there are many possible combinations of inputs, outputs, and
architectures for ANN. It can be a challenging task to come up with a strategy to optimize
the ANN model. Both the selection of inputs and optimizing the architecture of ANN are
active research fields [34,35]. The modeling of a heat pump is a relatively simple problem
for ANN. Hence it does not require a complex ANN architecture. Therefore, we will
describe a methodology to refine neural network models, which is appropriate for the
problem of heat pump modeling.

To select suitable measures to improve the ANN model, we first examined the error
of the NN_3 meas_fit model. The training error of the model for HP1&2 and HP3 models
was 5.2% and 7.1%, respectively, and the testing error of the model for HP1&2 and HP3 is
6.4% and 7.5%, respectively. The error of the testing set is only 0.4% higher than that of
the training set for HP3. The difference is higher for HP1&2. However, the difference is
due to change in operating conditions over the two years. Randomly dividing the data
into training and testing sets resulted in training and testing errors of 6.4% and 4.7%,
respectively, indicating that the model was not overfitting to the measured data. The low
difference in training and testing errors indicates that the model has low-variance and is
unable to capture the variations in the data. We can increase the variance of the model by
adding more input variables that explain the variations or by increasing the complexity of
the model by increasing the number of hidden layers. A high testing error would indicate
that the model was overfitting to the data. Overfitting can be reduced by regularization,
reducing the model’s complexity by reducing the size of the hidden layer, using a larger
training set. Changing the output variable from COP to compressor power was also tested
since a change in output will affect the ANN model.

5.1. Additional Inputs

Adding additional inputs that explain the variations in COP will increase the accuracy
of the model. The advantage of the neural network model compared with other models is
that the additional inputs can be included without explicitly defining the relation between
the input and output, which can be a complicated and time-consuming process.

The inputs are added to the model by changing the number of nodes in the input layer
without changing the architecture of the other layers, i.e., five nodes in the hidden layer
and one output layer. Three main inputs that may affect the heat pump’s performance are
considered, namely partial operation, sub-cooler operation, and COP from the manufac-
turer’s data. An input used to improve the accuracy of the model should have a correlation
to the output. However, it should not have a high correlation to the other inputs, as the
new input must add information not available in other inputs. To select the inputs, we
used a greedy forward selection process, in which the best inputs are sequentially added to
the model until the improvement in the model is below a threshold [36,37].

5.1.1. Inputs Tested

When the heating/cooling requirements are lower than the heat pump’s design load,
the heat pump is partially or completely switched off. This influences the performance
of the heat pump since the partial load operation of a heat pump is different from a full
load operation. Moreover, the steady-state of the heat pump is disturbed by switching
the compressor on/off. While the parameter Qc includes information about the partial
operation of the heat pump, an explicit variable to represent the fraction of operation may
improve the accuracy of the model.

Two different values are used to quantify the fraction of the heat pump’s operation:
the fraction of time the compressors are switched on in each circuit (UTr) and the ratio
of actual condenser power to design condenser power (Qcr). Each circuit of HP1&2 has
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two compressors, which can be switched on and off independently. The parameter UTr
is calculated using the average utilization time (UT) of both the compressors, measured
every hour.

The ratio of condenser load to design condenser load, Qcr, is an alternative input that
can be used to estimate the fraction of operation. The design condenser load at each TCR
and TER is calculated using the manufacturers’ data. Qcr can be used for both HP1&2 and
HP3, unlike UTr, which is only available for HP1&2. Moreover, Qcr can be estimated before
the measurements are available, using estimated and designed condenser load. Qcr can
therefore be used for a wider range of applications.

A sub-cooler is used in both HP1&2 and HP3. The heat from the sub-cooler in HP1&2
acts as the source for HP3 and as a preheater for domestic hot water production, while
in HP3, the heat from the sub-cooler is used to preheat the water for space heating. To
include the effect of the sub-cooler in the model, we used the sub-cooler power (QSC)
and sub-cooler temperature (TSC) as additional inputs. TSC is calculated as the average
of sub-cooler water inlet temperature (TSCWin) and outlet temperature (TSCWout). TSCWin
and TSCWout were only available for HP1&2. Note that the sub-cooler temperature is more
important in the case of HP1&2 since the heat capacity in the sub-cooler of HP1&2 is higher
than the heat capacity in the sub-cooler of HP3.

The temperature range of the evaporator and condenser specified by the manufacturer
is larger than the temperature range used in real operation. Hence, including the COP
obtained from the manufacturer’s model (COPmanu) as input to the neural network model
may improve the model’s range. COPmanu obtained from the NN_2 inputs model trained
on the manufacturer’s data was used as the additional input, as illustrated in Figure 6.
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5.1.2. Selection of Inputs

The additional inputs were selecting using greedy forward feature selection. In this
process, the best input is added to the model in each step. We defined the best input as the
input that gives the largest reduction in relative RMSE for the testing set. All the inputs
were tested in each step, and the best input was added to the model. We defined two
criteria to stop the forward selection process. The first was a threshold of 1% reduction
in relative RMSE, and the second was a threshold of 0.1%. Therefore, we will select two
models for each of HP1&2 and HP3 at the end of the forward selection. Five inputs, namely
UTr, Qcr, QSC, TSC, and COPmanu, were tested for HP1&2. Three inputs were tested for
HP3 since UTr and TSC were not available for HP3.

In the first step, the first additional input for NN_3 was chosen by adding each of
the inputs to the NN_3 model. Table 6 shows that the model with QSC as the fourth input
has the lowest relative RMSE for the testing set of both HP1&2 and HP3. Adding QSC
to NN3 results in a 1.5% reduction in relative RMSE for the testing set of HP1&2 and a
0.5% reduction for HP3. According to the first stopping criteria, we can stop the forward
selection process and select the NN_3 model as one of the selected models for HP3.
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Table 6. Step 1 of forward selection.

Model Inputs

% Error

HP1&2 HP3

Train Test Train Test

NN_3 TER, TCR, QC 5.2 6.4 7.1 7.5
NN_4 UTr TER, TCR, QC, UTr 5.1 6.3
NN_4 Qcr TER, TCR, QC, Qcr 5.1 6.2 7.1 7.5
NN_4 QSC TER, TCR, QC, QSC 4.7 4.9 6.9 7.0
NN_4 TSC TER, TCR, QC, TSC 4.6 5.1

NN_4 COPmanu TER, TCR, QC, COPmanu 5.1 6.2 7.1 7.4

In the next step, the second additional input was chosen by adding each of the
remaining inputs to NN_4 QSC. The results of step 2 are shown in Table 7. Adding TSC
to the NN_4 QSC model reduced the relative RMSE for the testing set of HP1&2 by 0.3%.
NN_4 QSC was chosen for HP1&2 using the first stopping criteria. Adding a fifth input to
the HP3 model reduced the training error of the model, but it did not improve the testing
error. In fact, the relative RMSE for the testing set increased when the fifth variable was
added. This implied that the model started overfitting the training data. Therefore, the
NN4_QSC model was chosen for HP3 according to the second stopping criteria.

Table 7. Step 2 of forward selection.

Model Inputs

% Error

HP1&2 HP3

Train Test Train Test

NN_4 QSC TER, TCR, QC, QSC 4.7 4.9 6.9 7.0
NN_5 QSCUTr TER, TCR, QC, QSC, UTr 4.4 4.8
NN_5 QSCQcr TER, TCR, QC, QSC, Qcr 4.4 4.8 6.7 7.6
NN_5 QSCTSC TER, TCR, QC, QSC, TSC 4.3 4.6

NN_5
QSCCOPmanu

TER, TCR, QC, QSC,
COPmanu

4.4 5.0 6.8 7.1

We tested the effect of adding a third additional input to the HP1&2 model, as shown
in Table 8. Since both the stopping criteria for the HP3 model were satisfied, HP3 is not
included in step 3. The remaining three variables were added to the NN_5 QSCTSC model
for HP1&2. Adding a sixth variable increases the relative RMSE for the testing set. Hence,
the forward selection processes are stopped, and NN_5 QSCTSC is chosen as the second
model for HP1&2. Therefore, the models chosen for HP3 are NN_3 and NN_4 QSC using
the 1% and 0.1% stopping criteria, respectively, and the models chosen for HP1&2 are
NN_4 QSC and NN_5 QSCTSC, using the 1% and 0.1% stopping criteria, respectively.

Table 8. Step 3 of forward selection.

Model Inputs

% Error

HP1&2

Train Test

NN_5 QSCTSC TER, TCR, QC, QSC, TSC 4.3 4.6
NN_5 QSCTSCUTr TER, TCR, QC, QSC, TSC, UTr 4.3 5.3
NN_5 QSCTSCQcr TER, TCR, QC, QSC, TSC, Qcr 4.2 4.8

NN_5 QSCTSCCOPmanu
TER, TCR, QC, QSC, TSC,

COPmanu
4.2 5.4

The inputs that are selected by the method gives us some insights into the heat
pumps. Adding the sub-cooler data QSC and TSC as inputs significantly improves the
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model accuracy for HP1&2. The improvement in the accuracy of HP3 is less significant.
Including the effects of the sub-cooler is more important for HP1&2 since the relative QSC
is higher for HP1&2 than for HP3, QSC/QC for HP1&2 is 0.13, as compared to 0.08 for HP3.
QSC is higher for HP1&2 than for HP3 due to the difference in how the sub-coolers are
used, as seen in Figure 3 of Section 2. The sub-cooler of HP1&2 is cooled by the evaporator
of HP3, which is at around 13.5 ◦C lower than the inlet water temperature of the condenser.
The temperature drop in the sub-cooler of HP1&2 is therefore significant. However, the
sub-cooler of HP3 acts as a pre-cooler to the condenser, and the temperature drop in the
sub-cooler of HP3 is expected to be lower than HP1&2.

The variables that consider the partial operation of the heat pumps, UTr and Qcr, were
not considered as significant inputs. This implies that Qc, which is already input in the
reference model, is sufficient to account for the effects of the partial operation. Additional
inputs to account for the inefficiencies during the partial operation are not necessary.
COPmanu is the other input that was not selected. COPmanu was included as an additional
variable in the NN_3 model as it may help to improve the model accuracy for extrapolation.
Therefore, the results imply that the training and testing set are similar, and the amount of
extrapolation required is minimal.

5.2. Change of Output

In the above models, COP was used as the output of the models to compare the
models with the standard regression models. However, in many cases, compressor power
is a more useful output since it represents a physical quantity that can be used for other
analyses. We therefore studied whether changing the output to compressor power has any
effect on the accuracy of the models.

The four models selected in the previous section were tested with compressor power
as output instead of COP. Table 9 shows that using the compressor power for HP1&2
models results in a lower training error but higher testing error. However, changing the
output for HP3 models results in significantly lower training and testing errors. The testing
error reduces by 2.7% and 2.4% for NN_3 and NN_4 QSC, respectively. Hence, the models
with compressor power as output were selected for HP3. The models will be referred to as
NN_3_PO and NN_4_QSC_PO.

Table 9. Changing the output.

Model

% RMSE

COP Output Power Output

Train Test Train Test

HP1&2
NN_4 QSC 4.7 4.9 3.7 5.3

NN_5 QSCTSC 4.3 4.6 3.5 5.8

HP3
NN_3 7.1 7.5 4.6 4.8

NN_4 QSC 6.9 7.0 4.5 4.6

5.3. Number of Hidden Nodes

All of the above models use one hidden layer with five nodes. The model might
learn more complex relations between inputs and output if the number of nodes in the
hidden layer or the number of hidden layers is increased. However, there is also a risk of
overtraining the model to the training data. Therefore, the number of nodes in the hidden
layer was increased for each of the four selected models until the testing error was reduced.

Table 10 shows that increasing the number of nodes in the hidden layer reduces the
relative RMSE of the training set. The testing error initially decreases as the number of
nodes increases but increasing the number of nodes further results in overfitting, and the
testing error increases. Hence, the optimal number of nodes for NN_4 QSC is 15 and 10 for
the other three models, NN_5 QSCTSC, NN_3 PO, and NN_4 QSC PO.
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Table 10. Optimizing the number of hidden nodes.

Model No. of Hidden Nodes
% RMSE

Train Test

HP1&2

NN_4 QSC

5 4.7 4.9
10 4.2 4.8
15 4.1 4.6
20 4.0 4.6

NN_5 QSCTSC

5 4.3 4.6
10 4.0 4.5
15 3.8 4.6
20 3.8 4.8

HP3

NN_3 PO

5 4.6 4.8
10 4.1 4.4
15 4.1 4.4
20 4.1 4.4

NN_4 QSC PO

5 4.5 4.6
10 4.1 4.3
15 3.9 4.4
20 3.9 4.5

6. Sensitivity Analysis

The partial correlation coefficients of the four models were calculated to understand
the influence of the inputs on the outputs. The correlations were calculated using the
measured inputs of the models and the simulated output of each of the four models.

Figure 7 shows the partial correlation coefficients between the inputs and outputs
of the models for HP1&2 and HP3. The plots show that for the HP1&2 model, which
calculates the COP, the condenser and evaporator temperatures are the most important
inputs. Introducing the fifth variable, TSC, to the NN_4 QSC model reduced the correlation
coefficient of QC and QSC. This indicates that TSC is correlated to QC and QSC. Since the
model is trained on actual measurements where QSC, TSC and QC vary simultaneously is
hard for the model to learn the influence of the individual input variables. The correlation
coefficient of QC is higher for HP3 compared to HP1&2 since the models for HP3 output
compressor power. Increasing TCR increases the COP but a high TCR is also correlated
to high QC and hence a higher compressor power. This demonstrates the difficulty in
interpreting the results of a black-box model.
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7. Discussion

Section 4 shows that ANN models have the lowest training error among the models,
when only the manufacturer’s data are available. However, when the models trained on
manufacturer’s data were tested on the measured data, the bilinear model has a lower
testing error than almost all the other more complex models. This shows that the idealized
operation represented in the manufactured data does not include many of the variations
present in the real operation represented in the measured data. Hence, the additional
knowledge learned by the more complex models compared to the bilinear model does not
help in predicting the measured operation. Another interesting result in Section 4 is that
the models that do not use Qc as an input perform better than the models that use Qc. This
could be because the models with Qc, as one of the inputs, must extrapolate in part-load
condition since the manufacturers’ data consist of only full load condition. Due to these
reasons, a simple model is suitable in the design phase, when only the manufacturer’s data
are available.

During the operation of the heat pump, the models can be trained on the measured
data. The measured data are generally a larger data set that includes the heat pump’s actual
range of operation. Moreover, the measured data also include many inefficiencies and non-
standard operating conditions of the real heat pump. The results of Section 4 demonstrate
that it is justified to use more complex models when measured data are available. Among
the models, the NN_3 model has the lowest testing error. Hence, the NN_3 model is better
than the regression models in utilizing the larger size and range of the measured data.

The NN_3 model performed better than the regression models, but the difference
between the accuracy of the models was small. To utilize the measured data effectively, we
must refine the models to utilize the measured data. Since ANN models do not require
an explicit relation between the inputs and the outputs, it is easier to refine ANN models
compared to regression models. We can change the inputs, outputs, and architecture of the
model. This gives ANN models an advantage over traditional regression models.

In Section 5, a method to refine the ANN model is presented. The method first
identified an appropriate set of measures for improving the ANN by examining the error
of the model. The measures were then tested and applied sequentially to the model. First,
additional inputs to the model were selected through greedy forward selection. Then, a
different output was tested for the model. In the last step, the number of nodes in the
hidden layer was optimized. We were able to achieve an error of less than 5% for both heat
pump models using this method. The relative RMSE for the test set reduced from 6.4% to
4.5% for HP1&2 and from 7.5% to 4.3% for HP3. The possibility of adding more inputs
to suit the application makes ANN models suitable for a wide variety of applications,
especially when the standard models cannot include some of the causes of variability in
the performance of the heat pump.

ANN models can be accurate and flexible, but they also have some inherent limitations.
The dependence of ANN models on training data is demonstrated in Section 4. The
ANN models trained on manufacturer’s data had a high RMSE when tested on measured
data. This is because the manufacturer’s data from an idealized simulation were not
representative of the measured heat pump operation. This alludes to a more general issue
with ANN models that the training data set must be representative of the testing data.
A modification to the heat pump will require the retraining of all the model parameters.
Since the behavior of the ANN model is hard to explain, we cannot retain/modify the
parameters of an ANN model of a heat pump to represent a similar heat pump without
retraining the model. Hence, ANN models are suitable in applications that do not aim to
modify the heat pump. Some applications in which ANN models are suitable are the fault
detection and optimization of heat pump operation by controlling the inputs.

In this study, we used the evaporator and condenser temperature of the refrigerant
side as input in the models. The refrigerant-side temperatures were provided by the
manufacturer and measured during actual operation. It was therefore convenient to use
refrigerant-side temperatures in our case. However, in most cases, it was more convenient
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to use evaporator inlet temperature (TEWin) and condenser outlet temperature (TCWout) on
the water side instead of TER and TCR. The advantage of using TEWin and TCWout over TER
and TCR is that they are easier to access. The source temperature determines TEWin, and
the temperature requirement of the building gives TCWout. We therefore tested how using
TEWin and TCWout instead of TER and TCR in the NN_3 model affects the accuracy of the
model. Changing the inputs from TER and TCR to TEWin and TCWout reduced the relative
RMSE for the testing data set from 6.4% to 6.5% for the HP1&2 model and 7.5% to 8.3% for
HP3. The accuracy of the model decreased in the water temperature case, but the decrease
in relative error was less than 1% of the average COP. This suggests that models can be
modified to use the water temperatures instead of the refrigerant temperatures without
any major reduction in accuracy.

8. Conclusions

In this study, we compared the accuracy of different regression and ANN models,
trained on the manufacturer’s data and the measured data. The study highlighted the
importance of considering the quantity and quality of data while choosing a regression or
an ANN model. The study showed that in the design phase, when only the manufacturer’s
data are available, simple models have an advantage. However, the more complex models
have higher accuracy compared to the simple models when measured data from actual
operation become available. An ANN model with three inputs has the lowest relative error
among the models.

We systematically refined the ANN model to utilize the measured data effectively. We
obtained an error of less than 5% for ANN models of both heat pumps using this method.
The flexibility in the selection of inputs and outputs makes ANN models an attractive
option for many applications that require additional inputs to model the operation of the
heat pump. However, the need for representative data to train the model is a constraint for
the application of ANN models.

Author Contributions: Conceptualization, A.R.P., S.A., R.Ö. and T.O.; methodology, A.R.P., S.A., R.Ö.
and T.O.; software, A.R.P.; formal analysis, A.R.P.; investigation, A.R.P.; resources, T.O.; data curation,
A.R.P.; writing—original draft preparation, A.R.P.; writing—review and editing, A.R.P., S.A., R.Ö.
and T.O.; visualization, A.R.P.; supervision, S.A, R.Ö. and T.O.; project administration, T.O.; funding
acquisition, T.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Industrial Doctoral School at Umeå University and Umeå
Energi AB.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from Region Västerbotten and are available at https://controlmachines.cloud/projects (accessed on
21 March 2021) with the permission of Region Västerbotten.

Acknowledgments: We would like to thank Region Västerbotten for providing the field measure-
ments from the heating system at Norrland’s university hospital.

Conflicts of Interest: The authors declare no conflict of interest.

https://controlmachines.cloud/projects


Energies 2021, 14, 1750 18 of 26

Nomenclature

TER Evaporator refrigerant temperature
TCR Condenser refrigerant temperature
TE Evaporator temperature
TC Condenser temperature
QE Evaporator power
QC Condenser power
QSC Sub-cooler power
COP Coefficient of performance
P Compressor power
TEWin Evaporator water inlet temperature
TEWout Evaporator water outlet temperature
TCWin Condenser water inlet temperature
TCWout Condenser water outlet temperature
TSCWin Sub-cooler water inlet temperature
TSCWout Sub-cooler water outlet temperature
TSC Average of sub-cooler water inlet temperature and outlet temperature
UT Compressor utilization time
UTr Ratio of compressors on time to total time
Qcr Ratio of actual condenser power to design condenser power
COPmanu COP from the manufacturer’s model
NN_X Artificial neural network model with X inputs

Abbreviations

ANN Artificial neural network
RMSE Root mean square error
HP1&2 Heat pumps 1 and 2
HP3 Heat pump 3
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
Manu_fit Models fitted using data from the manufacturer
Meas_fit Models trained using the measured data

Appendix A. Sample Measured Data
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Table A1. Sample data from HP1 for a typical winter day.

TER TCR QE QC QSC P UT

Time TER1 TER2 TCR1 TCR2 QE1 QE2 QC1 QC2 QSC1 QSC2 P1 P2 UT11 UT12 UT21 UT22 TEWin TEWout TCWin TCWout TSCWin TSCWout
◦C ◦C ◦C ◦C kW kW kW kW kW kW kW kW Hr Hr Hr Hr ◦C ◦C ◦C ◦C ◦C ◦C

15-01-18 0:00 −4.1 −3.8 42.9 42.8 227 222 282 276 48 45 59 59 1.00 0.83 0.83 1.00 3.7 0.1 34.6 40.0 12.9 33.6
15-01-18 1:00 −4.1 −3.9 42.4 42.3 227 221 281 275 47 44 58 58 0.83 1.00 1.00 0.83 3.6 0.0 34.1 39.7 12.9 33.3
15-01-18 2:00 −4.1 −3.9 43.1 42.9 228 222 283 277 49 46 59 59 0.83 0.83 0.83 1.00 3.6 0.0 34.8 40.1 12.4 33.5
15-01-18 3:00 −4.1 −3.8 43.0 42.9 227 222 282 277 47 44 59 59 1.00 1.00 1.00 0.83 3.7 0.1 34.6 40.2 13.3 33.8
15-01-18 4:00 −4.1 −3.8 42.7 42.6 228 223 283 277 48 45 59 58 0.83 1.00 1.00 1.00 3.7 0.0 34.4 39.8 12.6 33.3
15-01-18 5:00 −4.1 −3.8 42.5 42.4 229 223 283 277 48 45 59 58 0.83 0.83 0.83 0.83 3.7 0.1 34.1 39.6 12.8 33.2
15-01-18 6:00 −3.9 −3.6 43.1 43.0 230 224 285 279 49 46 59 59 1.00 1.00 0.83 0.83 3.9 0.2 34.7 40.3 12.8 33.8
15-01-18 7:00 −3.6 −3.3 43.2 43.1 232 227 287 283 48 46 60 59 0.83 0.83 1.00 1.00 4.2 0.5 34.8 40.3 13.3 34.2
15-01-18 8:00 −3.3 −3.0 43.2 43.1 236 231 291 287 50 48 60 59 1.00 1.00 0.83 0.83 4.6 0.8 34.8 40.5 12.3 34.2
15-01-18 9:00 −2.8 −2.5 43.2 43.1 240 235 295 291 51 48 60 59 1.00 0.83 1.00 1.00 5.2 1.3 34.6 40.2 12.3 34.5
15-01-18 10:00 −2.8 −2.5 43.3 43.2 239 235 294 290 51 48 60 59 0.83 0.83 0.83 1.00 5.1 1.3 34.8 40.4 12.3 34.4
15-01-18 11:00 −2.6 −2.3 43.3 43.2 241 236 296 292 51 49 60 59 1.00 1.00 0.83 0.83 5.4 1.5 34.8 40.4 12.2 34.6
15-01-18 12:00 −2.6 −2.3 43.1 43.0 243 238 298 293 52 49 60 59 0.83 0.83 1.00 1.00 5.5 1.5 34.6 40.1 11.6 34.3
15-01-18 13:00 −2.9 −2.6 43.0 42.9 239 234 294 289 50 47 60 59 0.83 1.00 0.83 0.83 5.1 1.2 34.5 40.1 12.7 34.4
15-01-18 14:00 −3.3 −3.0 43.4 43.3 236 230 292 285 51 48 60 59 1.00 1.00 1.00 0.83 4.6 0.8 35.0 40.6 12.5 34.3
15-01-18 15:00 −3.3 −3.0 43.7 43.6 234 229 291 284 50 47 60 60 0.83 0.83 1.00 1.00 4.6 0.8 35.3 40.9 13.0 34.7
15-01-18 16:00 −3.8 −3.5 43.7 43.6 231 225 288 280 49 46 61 60 1.00 1.00 0.83 0.83 4.0 0.3 35.5 41.0 13.2 34.6
15-01-18 17:00 −4.0 −3.7 43.7 43.6 229 224 286 280 50 47 61 60 0.83 0.83 1.00 0.83 3.8 0.2 35.5 41.0 12.7 34.3
15-01-18 18:00 −4.2 −4.0 43.6 43.5 226 220 282 275 49 46 60 60 1.00 0.83 0.83 1.00 3.5 −0.1 35.4 40.5 13.3 34.2
15-01-18 19:00 −4.4 −4.2 43.2 43.1 226 219 281 275 49 46 60 59 1.00 1.00 0.83 0.83 3.3 −0.2 35.0 40.3 12.7 33.6
15-01-18 20:00 −4.5 −4.3 42.9 42.8 224 218 278 273 47 44 59 59 0.83 0.83 1.00 1.00 3.2 −0.4 34.7 40.1 13.2 33.4
15-01-18 21:00 −4.8 −4.6 42.9 42.8 222 215 277 270 47 44 59 59 0.83 0.83 0.83 1.00 2.9 −0.6 34.7 40.2 13.1 33.3
15-01-18 22:00 -4.9 -4.6 43.0 42.9 221 214 276 268 47 44 59 59 1.00 1.00 1.00 0.83 2.8 -0.7 34.8 40.3 13.3 33.4
15-01-18 23:00 -4.9 -4.7 43.0 42.9 222 215 277 269 47 44 59 59 0.83 0.83 0.83 1.00 2.8 -0.7 34.9 40.3 12.9 33.3
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Table A2. Sample data from HP2 for a typical winter day.

TER TCR QE QC QSC P UT

Time TER1 TER2 TCR1 TCR2 QE1 QE2 QC1 QC2 QSC1 QSC2 P1 P2 UT11 UT12 UT21 UT22 TEWin TEWout TCWin TCWout TSCWin TSCWout
◦C ◦C ◦C ◦C kW kW kW kW kW kW kW kW Hr Hr Hr Hr ◦C ◦C ◦C ◦C ◦C ◦C

15-01-18 0:00 −5.0 −2.6 47.5 44.4 196 125 256 151 51 30 64 30 0.83 0.83 1.00 0.00 3.5 0.5 40.0 44.2 12.7 33.4
15-01-18 1:00 −5.0 −2.6 47.1 44.0 195 124 254 150 50 29 63 30 1.00 1.00 0.83 0.00 3.4 0.5 39.6 43.8 12.7 33.1
15-01-18 2:00 −5.0 −2.6 47.7 44.6 195 125 255 151 51 31 64 30 0.83 0.83 1.00 0.00 3.5 0.5 40.2 44.4 12.1 33.2
15-01-18 3:00 −5.0 −2.5 47.6 44.5 195 124 255 151 50 30 64 30 1.00 0.83 0.83 0.00 3.5 0.5 40.1 44.3 13.1 33.7
15-01-18 4:00 −5.0 −2.5 47.3 44.3 196 125 255 151 51 30 64 30 0.83 1.00 0.83 0.00 3.5 0.5 39.8 44.0 12.3 33.1
15-01-18 5:00 −5.0 −2.5 47.1 44.0 197 126 256 151 50 30 64 30 0.83 0.83 1.00 0.00 3.5 0.5 39.6 43.8 12.6 33.1
15-01-18 6:00 −4.8 −2.4 47.7 44.7 197 126 257 153 51 30 65 30 1.00 1.00 0.83 0.00 3.6 0.6 40.2 44.4 12.6 33.6
15-01-18 7:00 −4.5 −2.1 47.8 44.8 198 127 259 154 51 30 65 30 0.83 0.83 1.00 0.00 4.0 0.9 40.3 44.5 13.2 34.1
15-01-18 8:00 −4.3 −1.7 47.9 44.9 202 131 263 156 53 32 65 31 1.00 1.00 1.00 0.00 4.3 1.2 40.3 44.6 12.1 34.1
15-01-18 9:00 −3.8 −1.3 47.9 44.9 206 133 266 157 54 32 65 31 0.83 1.00 0.83 0.00 4.8 1.7 40.3 44.5 12.1 34.5
15-01-18 10:00 −3.9 −1.3 47.9 45.0 205 133 265 157 54 32 65 31 1.00 0.83 1.00 0.00 4.8 1.7 40.4 44.6 12.1 34.5
15-01-18 11:00 −3.7 −1.1 48.0 45.0 207 134 268 157 55 32 65 31 1.00 1.00 0.83 0.00 5.0 1.9 40.4 44.7 11.9 34.7
15-01-18 12:00 −3.6 −1.0 47.8 44.9 209 134 269 157 55 33 65 30 0.83 0.83 0.83 0.00 5.1 1.9 40.2 44.5 11.3 34.4
15-01-18 13:00 −3.8 −1.3 47.7 44.8 206 132 266 156 53 32 65 30 1.00 1.00 1.00 0.00 4.8 1.7 40.2 44.4 12.4 34.6
15-01-18 14:00 −4.2 −1.8 48.1 45.1 203 130 264 155 53 32 66 31 0.83 0.83 0.83 0.00 4.3 1.3 40.5 44.8 12.3 34.3
15-01-18 15:00 −4.2 −1.6 48.3 45.3 201 131 262 156 53 32 66 31 1.00 0.83 1.00 0.00 4.3 1.3 40.8 45.0 12.8 34.9
15-01-18 16:00 −4.7 −2.3 48.4 45.3 199 127 260 153 52 31 66 31 0.83 1.00 0.83 0.00 3.8 0.8 40.9 45.1 13.0 34.4
15-01-18 17:00 −4.9 −2.4 48.3 45.3 197 126 259 153 53 31 66 31 0.83 0.83 1.00 0.00 3.6 0.6 40.9 45.1 12.5 34.0
15-01-18 18:00 −5.1 −2.5 48.2 44.9 195 125 256 151 51 31 66 31 1.00 1.00 0.83 0.00 3.3 0.4 40.8 44.9 13.1 34.5
15-01-18 19:00 −5.3 −2.9 47.8 44.7 195 125 255 150 51 30 65 30 0.83 1.00 1.00 0.00 3.2 0.2 40.4 44.6 12.5 33.3
15-01-18 20:00 −5.3 −3.0 47.5 44.4 193 122 253 149 50 29 65 30 1.00 0.83 0.83 0.00 3.0 0.1 40.1 44.2 13.0 33.2
15-01-18 21:00 −5.6 −3.3 47.5 44.4 192 120 252 147 49 29 65 30 1.00 1.00 1.00 0.00 2.7 −0.1 40.1 44.2 12.9 32.9
15-01-18 22:00 −5.7 −3.4 47.6 44.4 191 120 251 147 49 29 65 30 0.83 0.83 0.83 0.00 2.6 −0.2 40.1 44.3 13.2 33.0
15-01-18 23:00 −5.7 −3.3 47.6 44.5 191 121 251 148 50 29 65 30 1.00 0.83 0.83 0.00 2.6 −0.2 40.2 44.3 12.7 32.8
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Table A3. Sample data from HP3 for a typical winter day.

TER TCR QE QC QSC P

Time TER1 TER2 TCR1 TCR2 QE1 QE2 QC1 QC2 QSC1 QSC2 P1 P2 TEWin TEWout TCWin TCWout TEWin TEWout TCWin TCWout
◦C ◦C ◦C ◦C kW kW kW kW kW kW kW kW ◦C ◦C ◦C ◦C ◦C ◦C ◦C ◦C

15-01-18 0:00 15.0 8.2 48.1 48.6 131 71 156 90 16 8 27 19 22.4 19.6 43.2 46.4 14.9 11.5 43.4 47.4
15-01-18 1:00 15.9 8.2 46.6 48.5 113 73 134 91 13 9 22 21 22.1 19.7 42.7 45.5 15.2 11.6 42.9 47.2
15-01-18 2:00 15.1 7.7 48.3 49.5 132 87 157 110 16 11 28 23 22.6 19.8 43.4 46.6 15.1 11.3 43.6 48.3
15-01-18 3:00 15.6 7.9 48.2 49.4 127 79 151 99 15 10 25 21 23.1 20.2 43.2 46.5 15.3 11.5 43.4 48.0
15-01-18 4:00 16.1 7.6 47.2 49.1 127 82 150 104 14 10 25 22 22.9 20.5 43.0 45.9 15.0 11.3 43.2 47.8
15-01-18 5:00 16.2 7.7 46.6 48.9 116 81 137 101 13 10 22 22 22.9 20.4 42.8 45.5 15.1 11.2 42.9 47.5
15-01-18 6:00 16.0 7.7 47.0 49.1 114 77 136 97 14 9 22 21 22.3 20.0 43.4 46.1 14.5 11.1 43.6 47.9
15-01-18 7:00 16.3 8.4 47.1 48.3 105 66 122 83 12 8 24 19 22.6 20.3 43.5 46.2 14.4 11.4 43.5 47.3
15-01-18 8:00 16.6 7.6 46.4 49.1 102 76 121 95 12 9 18 19 22.1 20.2 43.6 46.0 14.4 11.0 43.8 47.9
15-01-18 9:00 16.5 8.9 45.5 47.6 77 55 91 68 9 7 16 15 21.3 19.6 43.5 45.6 13.9 11.5 43.6 46.6

15-01-18 10:00 16.3 7.5 46.3 49.0 97 76 115 95 11 9 19 20 21.8 19.8 43.6 46.0 14.2 10.9 43.8 47.8
15-01-18 11:00 16.8 7.6 46.0 48.9 85 68 100 85 10 8 19 20 21.9 20.0 43.6 45.9 14.2 11.0 43.8 47.7
15-01-18 12:00 16.8 8.4 44.6 48.1 70 63 82 79 8 8 14 16 20.9 19.4 43.4 45.2 13.9 11.2 43.7 47.0
15-01-18 13:00 16.2 8.5 45.8 47.6 86 59 102 73 10 7 17 16 21.5 19.7 43.5 45.7 14.0 11.5 43.5 46.6
15-01-18 14:00 16.6 8.1 46.0 48.5 94 66 114 82 10 8 19 17 21.7 19.9 43.8 46.0 14.0 11.1 43.9 47.4
15-01-18 15:00 16.5 8.2 47.4 48.7 104 63 123 79 12 7 22 16 22.1 20.0 44.0 46.6 14.1 11.3 44.2 47.7
15-01-18 16:00 15.8 7.8 48.2 49.4 117 68 140 85 14 8 24 19 22.5 20.1 44.0 47.0 14.3 11.2 44.2 48.1
15-01-18 17:00 16.4 7.5 47.3 50.1 106 80 125 101 13 10 21 21 22.5 20.4 44.0 46.8 14.7 11.0 44.2 48.8
15-01-18 18:00 16.5 8.3 47.1 48.9 109 68 130 83 13 8 24 17 22.5 20.3 43.9 46.5 14.5 11.5 44.1 47.8
15-01-18 19:00 16.0 7.5 47.3 49.6 113 84 134 105 13 10 23 22 22.5 20.1 43.5 46.3 14.8 11.1 43.8 48.3
15-01-18 20:00 16.0 7.6 47.3 48.9 108 78 128 98 12 9 22 20 22.6 20.2 43.2 46.0 14.8 11.2 43.4 47.7
15-01-18 21:00 15.8 8.0 47.2 48.8 123 76 145 95 14 9 24 20 22.5 20.0 43.2 46.1 15.0 11.4 43.4 47.6
15-01-18 22:00 15.8 8.5 47.5 48.9 120 73 142 91 14 9 24 19 22.8 20.2 43.3 46.2 15.2 11.8 43.5 47.6
15-01-18 23:00 16.6 8.1 46.8 49.5 108 85 128 106 12 10 22 24 22.7 20.5 43.3 46.0 15.6 11.7 43.5 48.1
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Table A4. Sample data from HP1 for a typical summer day.

TER TCR QE QC QSC P UT

Time TER1 TER2 TCR1 TCR2 QE1 QE2 QC1 QC2 QSC1 QSC2 P1 P2 UT11 UT12 UT21 UT22 TEWin TEWout TCWin TCWout TSCWin TSCWout
◦C ◦C ◦C ◦C kW kW kW kW kW kW kW kW Hr Hr Hr Hr ◦C ◦C ◦C ◦C ◦C ◦C

10-07-18 0:00 1.9 2.8 34.1 33.9 260 265 304 309 8 7 48 48 0.83 1.00 0.83 0.83 11.6 6.4 22.9 30.9 28.2 30.9
10-07-18 1:00 4.9 2.8 33.0 34.6 185 269 205 315 7 13 26 49 0.00 0.83 1.00 1.00 11.5 6.7 24.3 30.8 26.6 31.2
10-07-18 2:00 4.3 4.9 35.7 34.7 209 162 236 185 12 8 33 24 0.67 1.00 1.00 0.00 11.0 7.1 27.6 33.0 27.5 32.7
10-07-18 3:00 5.2 4.9 35.9 35.5 168 158 187 181 9 8 25 25 0.00 0.83 0.83 0.00 10.8 7.4 28.9 33.6 28.8 33.4
10-07-18 4:00 4.7 4.8 36.7 36.0 181 157 203 180 11 9 28 25 0.33 0.83 0.83 0.00 10.9 7.2 29.3 34.0 27.6 33.9
10-07-18 5:00 5.0 4.8 34.6 34.2 169 158 187 180 10 10 24 24 0.00 1.00 1.00 0.00 10.7 7.2 27.6 32.3 26.2 32.1
10-07-18 6:00 3.7 2.5 32.9 33.9 196 248 219 288 11 15 30 45 0.17 1.00 0.83 0.83 10.9 6.1 24.0 31.1 24.3 30.7
10-07-18 7:00 1.7 2.5 33.0 32.6 274 277 317 320 18 17 47 47 0.50 0.83 1.00 0.83 11.4 6.0 21.6 29.6 21.2 29.6
10-07-18 8:00 2.1 3.0 33.4 33.1 273 278 317 322 16 15 47 47 1.00 0.83 0.83 1.00 11.9 6.4 22.0 30.1 22.9 30.1
10-07-18 9:00 2.2 3.0 33.7 33.3 277 282 322 327 19 18 47 48 0.83 0.83 1.00 0.83 12.0 6.4 22.3 30.4 21.0 30.3
10-07-18 10:00 2.3 3.2 33.9 33.6 277 283 321 328 18 17 48 48 1.00 1.00 0.83 1.00 12.1 6.5 22.5 30.6 22.3 30.5
10-07-18 11:00 2.4 3.3 33.9 33.7 278 285 323 329 19 18 48 48 1.00 1.00 0.83 0.83 12.2 6.6 22.6 30.7 21.8 30.7
10-07-18 12:00 2.4 3.2 34.0 33.8 280 288 325 333 22 21 48 48 0.83 0.83 1.00 0.83 12.2 6.6 22.7 30.8 20.1 30.8
10-07-18 13:00 2.4 3.3 34.1 33.9 275 282 320 326 18 17 48 48 0.83 1.00 1.00 1.00 12.3 6.7 22.8 30.9 22.6 30.9
10-07-18 14:00 2.5 3.4 34.2 33.9 274 279 318 323 15 14 48 48 1.00 0.83 0.83 1.00 12.3 6.8 22.8 31.0 24.1 30.9
10-07-18 15:00 2.5 3.5 34.3 34.0 273 278 318 323 14 13 48 48 0.83 0.83 0.83 0.83 12.4 6.8 22.9 31.0 24.7 31.0
10-07-18 16:00 2.5 3.5 34.4 34.0 274 278 319 323 14 13 48 48 1.00 1.00 1.00 0.83 12.4 6.9 23.0 31.1 25.2 31.1
10-07-18 17:00 2.5 3.5 34.5 34.1 273 275 319 320 13 12 49 48 0.83 1.00 0.83 1.00 12.4 6.9 23.1 31.1 25.8 31.2
10-07-18 18:00 2.5 3.5 34.5 34.1 273 276 319 321 12 11 49 48 0.83 0.83 1.00 0.83 12.4 6.9 23.0 31.2 26.1 31.2
10-07-18 19:00 2.5 3.4 34.6 34.2 272 275 317 320 13 12 49 48 1.00 0.83 1.00 1.00 12.3 6.8 23.2 31.2 25.8 31.3
10-07-18 20:00 2.4 3.3 34.5 34.1 270 274 315 320 12 11 49 49 0.83 1.00 0.83 0.83 12.2 6.8 23.1 31.2 26.2 31.2
10-07-18 21:00 2.2 3.1 34.5 34.1 269 272 315 317 12 11 49 48 1.00 0.83 1.00 1.00 12.0 6.6 23.1 31.2 26.5 31.2
10-07-18 22:00 4.0 5.2 33.8 32.7 224 185 257 211 9 6 36 26 1.00 0.83 0.83 0.50 11.7 7.4 24.6 31.0 27.1 30.7
10-07-18 23:00 5.0 5.1 36.1 35.5 176 162 197 184 12 10 28 25 0.67 0.33 0.83 0.00 11.0 7.5 28.8 33.6 26.7 33.3
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Table A5. Sample data from HP2 for a typical summer day.

TER TCR QE QC QSC P UT

Time TER1 TER2 TCR1 TCR1 QE1 QE2 QC1 QC2 QSC1 QSC2 P1 P2 UT11 UT12 UT21 UT22 TEWin TEWout TCWin TCWout TSCWin TSCWout
◦C ◦C ◦C ◦C kW kW kW kW kW kW kW kW Hr Hr Hr Hr ◦C ◦C ◦C ◦C ◦C ◦C

10-07-18 0:00 2.4 2.7 40.9 40.1 213 231 262 287 3 4 53 60 0.83 0.83 1.00 0.83 11.6 7.3 31.0 37.9 28.3 37.9
10-07-18 1:00 5.0 3.7 38.7 38.7 156 202 175 248 7 6 25 48 0.00 0.83 0.67 1.00 11.5 7.6 31.3 36.8 26.7 36.7
10-07-18 2:00 4.6 4.9 39.8 38.7 153 140 172 169 13 11 26 31 0.00 1.00 0.00 0.83 11.0 7.9 32.9 37.5 27.6 37.4
10-07-18 3:00 4.4 4.8 40.4 39.3 150 139 169 169 12 10 26 32 0.00 0.83 0.00 1.00 10.7 7.8 33.5 38.2 28.9 38.0
10-07-18 4:00 5.0 4.9 39.7 39.5 129 141 150 171 11 12 24 32 0.83 0.00 0.00 0.83 10.8 8.1 34.1 38.3 27.7 38.2
10-07-18 5:00 4.6 4.7 38.3 37.8 133 142 151 170 12 12 23 30 0.50 0.83 0.00 0.83 10.7 7.9 32.3 36.5 26.3 36.4
10-07-18 6:00 4.1 3.2 38.2 37.9 156 191 176 232 12 11 27 45 0.17 0.67 0.50 1.00 10.8 7.1 30.8 36.1 24.4 36.0
10-07-18 7:00 2.1 2.5 39.5 38.6 223 239 272 293 5 7 53 59 0.50 0.83 0.67 1.00 11.4 7.0 29.7 36.6 21.3 36.5
10-07-18 8:00 2.4 3.0 40.1 39.1 224 239 275 294 4 5 54 59 0.83 1.00 1.00 0.83 11.9 7.4 30.2 37.2 23.0 37.1
10-07-18 9:00 2.6 3.0 40.2 39.3 225 241 275 296 5 7 54 59 1.00 1.00 1.00 0.83 12.0 7.4 30.4 37.3 21.1 37.3
10-07-18 10:00 2.6 3.2 40.4 39.5 223 241 273 296 5 6 54 60 1.00 0.83 0.83 1.00 12.1 7.6 30.6 37.6 22.4 37.6
10-07-18 11:00 2.8 3.2 40.5 39.6 225 242 275 298 5 6 54 60 0.83 1.00 0.83 0.83 12.2 7.7 30.7 37.7 21.8 37.7
10-07-18 12:00 2.8 3.3 40.5 39.6 225 243 276 299 6 8 54 60 0.83 0.83 1.00 1.00 12.2 7.6 30.8 37.8 20.2 37.7
10-07-18 13:00 2.7 3.3 40.8 39.9 224 240 275 296 5 6 55 60 1.00 0.83 0.83 1.00 12.2 7.7 30.9 37.9 22.8 37.9
10-07-18 14:00 2.8 3.4 41.0 40.0 224 240 275 296 4 5 55 61 0.83 1.00 1.00 0.83 12.3 7.8 31.0 38.0 24.1 38.0
10-07-18 15:00 2.9 3.5 41.0 40.1 222 239 274 296 4 4 55 61 0.83 1.00 0.83 0.83 12.3 7.9 31.1 38.1 24.8 38.1
10-07-18 16:00 2.9 3.4 41.2 40.2 222 240 274 297 4 4 55 61 1.00 0.83 1.00 0.83 12.4 7.9 31.2 38.2 25.3 38.2
10-07-18 17:00 2.8 3.4 41.3 40.3 221 238 273 295 4 4 55 61 1.00 0.83 0.83 1.00 12.4 7.9 31.3 38.4 25.9 38.3
10-07-18 18:00 2.8 3.4 41.3 40.3 223 239 275 296 4 4 56 61 0.83 0.83 0.83 1.00 12.3 7.9 31.3 38.3 26.2 38.3
10-07-18 19:00 2.8 3.4 41.4 40.4 221 237 272 293 4 4 55 61 0.83 1.00 1.00 0.83 12.3 7.9 31.3 38.4 25.9 38.4
10-07-18 20:00 2.7 3.4 41.3 40.4 220 237 271 294 4 4 55 61 1.00 1.00 1.00 0.83 12.2 7.8 31.3 38.3 26.3 38.3
10-07-18 21:00 2.7 3.1 41.1 40.3 220 236 272 292 4 4 56 61 1.00 0.83 0.83 1.00 12.0 7.6 31.3 38.3 26.6 38.2
10-07-18 22:00 5.4 4.6 38.0 37.7 163 181 183 220 8 7 26 40 0.83 0.00 0.67 0.83 11.6 8.1 30.8 36.0 27.2 35.9
10-07-18 23:00 8.4 6.7 33.6 35.0 33 113 38 131 3 10 4 21 0.50 0.50 0.17 0.83 11.0 9.7 33.4 34.7 26.8 34.6
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Table A6. Sample data from HP3 for a typical summer day.

TER TCR QE QC QSC P

Time TER1 TER2 TCR1 TCR2 QE1 QE2 QC1 QC2 QSC1 QSC2 P1 P2 TEWin TEWout TCWin TCWout TEWin TEWout TCWin TCWout
◦C ◦C ◦C ◦C kW kW kW kW kW kW kW kW ◦C ◦C ◦C ◦C ◦C ◦C ◦C ◦C

10-07-18 0:00 24.5 29.9 60.9 29.5 59 0 72 0 5 0 16 0 28.6 27.5 58.6 59.3 30.1 29.8 37.4 37.1
10-07-18 1:00 23.6 29.9 60.1 29.5 57 0 70 0 6 0 12 0 27.1 25.9 58.4 58.7 30.2 29.9 36.0 36.1
10-07-18 2:00 24.3 30.0 61.0 29.6 55 0 69 0 6 0 11 0 28.2 27.1 59.0 59.2 30.3 29.9 36.5 36.2
10-07-18 3:00 24.9 30.0 61.2 29.7 60 0 73 0 6 0 19 0 29.2 28.0 58.7 58.9 30.4 29.9 37.1 36.8
10-07-18 4:00 25.0 30.0 60.7 29.7 67 0 81 0 6 0 16 0 29.1 28.0 58.4 58.8 30.5 30.0 37.4 37.3
10-07-18 5:00 22.3 30.0 61.1 29.7 80 0 99 0 8 0 23 0 27.0 25.4 58.4 59.8 30.5 30.1 35.6 35.9
10-07-18 6:00 21.4 30.0 60.8 29.6 68 0 85 0 7 0 20 0 25.4 24.1 58.4 59.4 30.5 30.0 35.3 35.2
10-07-18 7:00 17.5 29.9 62.4 29.6 78 0 100 0 8 0 22 0 23.1 21.3 58.2 60.3 30.4 29.9 35.9 35.6
10-07-18 8:00 21.1 29.8 61.2 29.5 67 0 86 0 7 0 17 0 25.2 24.0 58.3 59.1 30.2 29.7 36.3 36.1
10-07-18 9:00 17.4 29.8 62.3 29.5 82 0 105 0 8 0 27 0 23.4 21.5 58.0 60.3 30.0 29.6 36.5 36.5

10-07-18 10:00 19.4 29.8 62.3 29.5 83 0 105 0 8 0 20 0 24.4 22.9 58.6 60.3 29.9 29.5 36.8 36.7
10-07-18 11:00 19.2 29.7 61.9 29.5 78 0 98 0 7 0 23 0 24.6 22.8 57.9 59.8 29.8 29.4 37.0 36.8
10-07-18 12:00 17.0 29.7 62.1 29.5 83 0 104 0 8 0 27 0 23.0 21.2 57.6 60.0 29.8 29.4 37.1 36.8
10-07-18 13:00 20.4 29.7 61.6 29.5 71 0 89 0 6 0 26 0 25.3 23.8 58.1 59.5 29.8 29.3 37.1 37.0
10-07-18 14:00 21.7 29.6 61.8 29.4 78 0 97 0 7 0 22 0 26.2 24.7 58.4 60.2 29.8 29.3 37.4 37.1
10-07-18 15:00 22.5 29.6 60.9 29.4 63 0 78 0 5 0 14 0 26.4 25.1 58.3 59.3 29.8 29.4 37.4 37.2
10-07-18 16:00 22.2 29.6 61.0 29.4 65 0 79 0 6 0 18 0 26.9 25.4 58.0 59.4 29.8 29.4 37.4 37.4
10-07-18 17:00 23.1 29.7 61.3 29.4 66 0 83 0 6 0 17 0 27.1 25.9 58.9 59.5 29.8 29.5 37.6 37.5
10-07-18 18:00 22.9 29.7 61.1 29.5 64 0 79 0 5 0 20 0 27.5 26.0 58.2 59.3 29.9 29.6 37.7 37.4
10-07-18 19:00 23.0 29.7 61.1 29.5 75 0 91 0 6 0 16 0 27.1 25.8 58.7 59.4 30.0 29.7 37.7 37.5
10-07-18 20:00 23.0 29.8 60.7 29.5 70 0 86 0 6 0 15 0 27.6 26.2 58.1 59.6 30.0 29.7 37.7 37.4
10-07-18 21:00 23.6 29.9 61.1 29.5 57 0 71 0 5 0 13 0 27.5 26.4 59.0 59.0 30.1 29.8 37.6 37.4
10-07-18 22:00 23.3 29.8 60.6 29.5 66 0 81 0 6 0 12 0 27.2 26.1 58.8 58.9 30.2 29.9 35.4 35.7
10-07-18 23:00 23.6 29.9 60.4 29.5 52 0 63 0 5 0 15 0 27.3 26.0 58.9 58.6 30.2 29.9 34.8 34.5
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Appendix B. Sample Data from the Manufacturer

Table A7. Sample data from the manufacturer.

TER (◦C) TCR (◦C) QC (kW) P (kW)

HP1&2 −1 50 243 68
12 40 374 57

HP3 20 55 144 34
15 55 168 32
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