o

http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at EuroSys '21: Sixteenth European
Conference on Computer Systems, Online, UK, April, 2021.

Citation for the original published paper:

Saleh Sedghpour, M R., Klein, C., Tordsson, J. (2021)

Service mesh circuit breaker: From panic button to performance management tool

In: HAOC '21: Proceedings of the 1st Workshop on High Availability and Observability
of Cloud Systems (pp. 4-10). Association for Computing Machinery (ACM)
https://doi.org/10.1145/3447851.3458740

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-182614



Service mesh circuit breaker:
from panic button to performance management tool

Mohammad Reza Saleh Sedghpour
Cristian Klein
Johan Tordsson
{msaleh,cklein,tordsson}@cs.umu.se
Department of Computing Science, Umea University
Ume3d, Sweden

Abstract

Site Reliability Engineers are at the center of two tensions:
On one hand, they need to respond to alerts within a short
time, to restore a non-functional system. On the other hand,
short response times is disruptive to everyday life and lead
to alert fatigue. To alleviate this tension, many resource
management mechanisms are proposed to help a system
overcome faults and handle overload. One recent such mech-
anism is circuit breaking in service meshes. Circuit breaking
rejects incoming requests to protect latency at the expense
of availability, but in many scenarios achieve neither due to
the difficulty of knowing when to trigger circuit breaking in
highly dynamic microservice environments.

We propose an adaptive circuit breaking mechanism, im-
plemented through an adaptive controller, that not only
avoids overload, but keeps the tail response time below a
given threshold while maximizing service throughput. Our
proposed controller is experimentally compared with a static
circuit breaker across a wide set of overload scenarios in a
testbed based on Istio and Kubernetes. The results show that
our controller maintains tail response time below the given
threshold 98.49% of the time (including cold starts) on aver-
age with an availability of 70.79% with 29.18% of requests
circuit broken. This compares favorably to a static circuit
breaker configuration, which features a 63.97% availability,
30.85% circuit broken requests, and more than 5% of requests
timing out.

Keywords: micro-services, circuit breaker, performance man-
agement, control theory

1 Introduction

Site reliability engineers (SRE) are responsible for ensuring
the service behaves reasonably even in the face of high de-
mand [19]. To achieve this goal, SRE teams should respond
to alerts according to service level objective, meanwhile the
essence of their duties can be daunting and highly stress-
ful. For instance, if the SRE team response time is defined 5
minutes, then the SRE needs to be connected to network all
the the time, while if the SRE team response time is defined
30 minutes, the SRE can leave their home for a short com-
mute [6]. To create automatic capacity management tools

that alleviate SRE teams, various resource management tech-
niques has been proposed, such as 1. Scheduling of resources,
2. Resource utilization estimation, 3. Application scaling and
provisioning and 4. Workload management [11]. Some tech-
niques are based on changing available resources such as
autoscaling techniques, others on making more efficient use
of resources such as scheduling techniques, yet others on
restricting access to resources to cap performance such as
circuit breaking in service mesh.

A service mesh is an infrastructure layer comprising a set
of configurable proxies to which services connect. In this
way, the network is completely abstracted, providing a sin-
gle point of network interaction for each service. Service
mesh mechanisms are responsible for load balancing, pro-
cessing network requests, service discovery, authentication,
authorization, circuit breaking, and etc. [18]. Circuit breakers
provide conditional logic to disallow traffic on a per request
level, enabling reactions to overloads that are much faster
than those achievable through capacity auto-scaling. This
helps prevent poor performance during load spikes [13]. In
a chained micro-service architecture, a fault may cascade
through multiple layers [24], which can be prevented by
using circuit breakers.

Dropping requests for the sake of performance is not a new
idea; for example, RED (random early detection) has been
used in network routers for many years [7]. The challenge
is figuring out when to drop a request in a large dynamic
distributed system. This is further complicated by the fact
that circuit breaker technologies such as in Istio [1], and
Linkerd [3] only allow thresholds to be defined in terms of
the number of queued requests or similar metrics that are
difficult to map to intuitive measures of service performance,
such as response times. Because many factors can affect
service performance, even a carefully tuned static circuit
breaker threshold can quickly become obsolete.

To illustrate the complexity of configuring static thresh-
olds for circuit breaking, we present an experiment (for de-
tails, see Section 4) in which we run a simple application with
a circuit breaker carefully tuned for a service using 2 CPUs
in a Kubernetes cluster. On this cluster, despite overload, we
obtain a 95th percentile response time below 500 ms (left



2 CPUs 1CPU
2.500
—— RTO0.95
RT 0.99
—— RT0.50
2.000

1.500

Response Time (Seconds)

1.000 ‘ |

0500 ‘

N

0 10 20 30 0 10 20 30
Time (Minutes) Time (Minutes)

Figure 1. Average (RT50) and tail (RT95 and RT99) response
times of a simple service on two servers of different capaci-
ties, but equivalent load, with a static circuit breaker tuned
for the left-hand scenario.

part of Fig. 1) along with good availability (not shown). How-
ever, substantially higher 95th percentile response times and
poor availability were observed when deploying the same
application on another system with 1 CPU allocation (right
part of Fig. 1) using an identically tuned circuit breaker, even
though the workload was scaled down proportionally to the
reduced CPU allocation. Similarly, changes to the application
itself (which may be frequent due to the wide use of con-
tinuous integration and continuous deployment pipelines)
would also invalidate the tuning of the circuit breaker.

To solve the problem of finding the optimal circuit breaker
configuration, we define a controller that protects the tail re-
sponse time by dynamically adjusting circuit breaker queue-
length thresholds. The proposed dynamic controller is com-
pared to a static circuit breaker in multiple experiments on
an isolated environment with a 3-node Kubernetes cluster.
Over 12 hours’ worth of experiments are presented, with
more than 13M generated requests. Our approach is shown
to maintain response times below the threshold 98.49% of the
time (including the cold start time required for the controller
to adapt to the operating conditions) in diverse scenarios,
while the controller availability is 70.79% and static config-
uration’s availability is 63.97%. Regarding failed requests,
29.18% of requests are circuit broken using our controller,
while 30.85% of requests are circuit broken in static configu-
ration using Istio and Kubernetes.

2 Related Works

Dynamic performance management for clouds has attracted
considerable attention and there have been several notable

reviews of the literature in this area, focusing on autoscal-
ing [16], scheduling [5], and the field in general [11]. Some
particularly notable individual studies are highlighted below.

Zhou et al. [25] proposed the DAGOR overload control
system for microservice architectures. DAGOR uses the aver-
age waiting time of requests in the pending queue to profile
the load status of a server. Server overload is detected based
on an empirically determined average request queuing time
threshold.

Qui et al. [20] proposed a framework that monitors micro-
services and leverages machine learning methods to detect
the root causes of Service Level Objective (SLO) violations
before taking action to mitigate those causes via dynamic
reprovisioning. Unfortunately, this framework has some lim-
itations in terms of scalability and usability that may not be
alleviated without making changes inside the code.

Aquino et al. [4] demonstrate the advantages of the cir-
cuit breaker pattern using a traffic light system prototype,
in which the circuit breaker significantly improved perfor-
mance, availability, and accuracy. Montesi et al. [17] distin-
guished three variations of the circuit breaker pattern. The
first is the client-side circuit breaker, in which each client
includes a separate circuit breaker for intercepting calls to
each external service that the client may call. The second is
the service-side circuit breaker, in which all client invocations
received by a service are first processed by an internal cir-
cuit breaker that decides whether the invocation should be
processed. Finally, there is the proxy circuit breaker strategy,
where circuit breakers are deployed in a proxy service that
sits between clients and services and handle all incoming
and outgoing messages. Service mesh-based technologies
fall into the latter category because they add a sidecar proxy.

Sun [23] proposed a routing algorithm to improve the
latency of service meshes. Moreover, Envoy has a configu-
ration named adaptive concurrency control filter [2], which
dynamically adjusts the number of requests that can be out-
standing (concurrency) for all hosts in a given cluster at any
time. Concurrency values are calculated by latency sampling
of completed requests and comparing the samples measured
in a given time window to the expected latency for hosts in
the cluster [10]. To incorporate Envoy into an architecture,
it must be manually added and configured for each service.
Istio currently uses Envoy as a sidecar proxy but does not
support an adaptive concurrency control filter.

Some aspects of service mesh technologies in need of fur-
ther research have been highlighted in [15]. As noted by
Sheikh et al. [22], an important advantage of service meshes
is that they can separate the functionality of run-time opera-
tions and micro-services without requiring changes inside
the code.

In contrast to the works mentioned above, this paper pro-
poses a controller solution for adaptive circuit breaking that
can be applied to arbitrary black-box services in order to
maintain acceptable response times and throughput.



20

g Iy Iy
S =) ™

Requests per second as a multiple of peak capacity
=
[N}

1.0

Time (Minutes)

Figure 2. The generated traffic scenario

3 Solution Framework

We design a controller that uses a circuit breaker to main-
tain response times below a predefined threshold. The con-
troller’s inputs are (tail) response times and queue length,
which can be easily monitored from within the service mesh.
The actuator is the queue length threshold at which the cir-
cuit breaker activates and starts dropping requests. To model
the non-linear relationship between tail response time and
queue length, we introduce a simple parameter alpha, which
is the ratio of these two quantities. The controller tunes this
parameter online using an exponential smoothing function
in order to adapt to changes in workload, server capacity, or
service complexity.

Algorithm 1: Controller design

Result: Circuit breaker configuration

Parameters: TRT, p;

while Service is running do

wait 5 seconds;

retrieve currentResponseTime,
currentQueueLength;

notSmoothAlpha = (currentResponseTime /
currentQueueLength);

smoothAlpha = (p * smoothAlpha) + (1-p) *
notSmoothAlpha;

circuitBreakerThreshold = TRT / smoothAlpha;

set circuitBreakerConfiguration;

end

The design of the proposed controller is shown in Algo-
rithm 1. The controller is configured with two parameters:
the Target Response Time (TRT) and a smoothing factor (p).
The smoothing factor controls the trade-off between con-
troller responsiveness (maximized when p approaches 0) and

Number Of CPUs

2CPUs Factorial Values

Fac{15000)

50 ms 150 ms

Target Response Time

Fac(5000) .,
* (1 CPU, Fac(10000), 100ms)

0.5 CPUs

Figure 3. The three-dimensional experimental design space.

controller reactivity (maximized when p approaches 1). The
default queue length is 1024, and the initial values for both
smooth and non-smooth alpha are both calculated such that
they are equal to this default value. Every 5 seconds, we
monitor the current response time and queue length, and
recalculate both alpha and smooth alpha. The smooth alpha
is used to prevent noisy controller behavior. If the smooth
alpha increases, the queue length threshold in the circuit
breaker is increased, and vice versa. Finally, we use the con-
troller output to configure the number of queued requests
in the circuit breaker.

4 Performance Evaluation

In this section, we evaluate the proposed controller’s perfor-
mance with respect to response time and throughput. We
first present the experimental setup. Then we explain how
we tune the controller, i.e., how we choose the parameter p.
Finally, we compare the controller to a static circuit break-
ing approach in terms of tail response time and throughput.
The experiments collectively take over 12 hours to run and
generate over 13M requests.

4.1 Experiment Setup

To evaluate our proposed method, we test a factorial service
in an isolated environment. While a factorial service is cer-
tainly not a common workload, we chose it, since it allows
us to experiment with the resource demand per request, as
required to compare our approach in a variety of scenarios.

The incoming traffic is generated using the HTTPMon
traffic generator [12], which selects a think-time and a num-
ber of users, and maintains a number of client threads equal
to the number of users. Each client thread runs an infinite
loop that waits for a random time and then issues a request
for an item or a story. The random waiting time is chosen
from an exponential distribution whose rate parameter is



2.000
2.500 | ! HH
/L R 1.000J’

Fac(15000)
RT-95 (Seconds)

0.000 0.000
4.000 A 2.000
2,000 L _ 1.000 0

Fac(10000)
RT-95 (Seconds)

1CPU

2 CPUs
0.750 |

(' o500 L LT
- - -~

~

0.100~ -~ 0.100~ 2 ~ -
0.100

0.000

0.500

L 0.250 2 ! o

A

0.100«[ - 0.100«[ : ‘ - O.lOO«;M//

0.000 0.000 0.000

% 0.750 : 0.300 100 —=——Dynamic

-E 0.500 : ‘ — Static
g8 T WL~ 0.200~ - 50~ g
3L
g8 100 Lk J -7 0.0257 1 . <o 11 L
- E L.;.-.."“"\' “)"‘*wvv\\ e '~’-"«‘»J‘;-‘A.A‘M,\L l'J'-‘u‘«‘/;‘lV\iAAA«.n‘.’«

10 20 30 0 10 20 30 0 10 20 30

Time (Minutes)

Time (Minutes)

Time (Minutes)

Figure 4. Tail response times for the proposed controller (blue lines) and the static circuit breaking configuration (orange
lines) with applications of differing complexity (rows) and different system sizes (columns).

the reciprocal of the think-time. The generated traffic sce-
nario is shown in Fig. 2. As discussed before, SRE teams may
not be available all the time, thus the SRE response time
of 30 minutes seems reasonable. Therefore, the duration of
each scenario is 30 minutes. Experiments were conducted
with differing numbers of CPUs, different factorial values,
and different target response times, giving rise to the three-
dimensional experimental design space shown in Fig. 3.

All experiments are performed on a bare-metal machine
with 32GB of RAM, an Intel Core i7-7700 3.6 GHz CPU with
four cores and hyper-threading, and a 256 GB NVMe hard
drive running Ubuntu 18.04 LTS. We set up three Virtual
Machines using KVM and libvirt. In the experiments, each
Virtual Machine is allocated two CPU cores, four GB of RAM,
and 40 GB of storage; the virtualized operating system is
Ubuntu Linux 20.04. To isolate the processes of each virtual
machine, we configure CPU affinity for them. The cluster is
set up with Kubernetes 1.19.6, Docker 19.03, and Istio 1.8.1.

A factorial service is deployed on a worker node with no
other non-required services. The factorial service takes a
number as a parameter and responds with its factorial; it
performs no caching. The whole stack is monitored using
Prometheus. We deploy our proposed proportional controller

on the Master node. The controller queries Prometheus to ob-
tain the queue length and response time, and then tunes the
maximum number of queued requests in the circuit breaker’s
configuration (HTTPMaxRequest).

4.2 Metrics

Our controller needs the current queue length and tail re-
sponse time as input to work. We measure tail response times
based on the 95th percentile of the response time distribution
(RT95), because it correlates well with user experience [8]
while providing a less noisy signal than higher percentiles.
Specifically, we extract this metric from Istio’s istio_re
quest_duration_milliseconds_bucket. To measure the
queue length, we use envoy_http_inbound_downstream
_rq_active from Istio. To evaluate our controller, we use
latency and availability metrics with help of aforementioned
metrics and istio_requests_total from Istio.

4.3 Tuning the controller

Various methods for controller tuning have been proposed [14].
However, the use of such methods is outside the scope of
this work because we focus on comparing the proposed con-
troller to static circuit breaking. To find suitable controller



0.5CPU
600 600

400 400

Successful
Requests (rps)

400 400

200 200

Circuit Broken
Requests (rps)

,.,-,.-.,vmw\/"“ﬁ
0

—~ 150 150
(%2}
2
= ¢ 100 100
L3 50 50
Q
m r
0 10 20 30 0

Time (Minutes)

200 200 /\»W’W’\WM&A,W 200 |

1CPU 2 CPUs

600 Ve imesiets

[y

400
= Dynamic
‘ Static
0
o
400 A4

200 L

150
100

50

10 20 30 o 10 20 30
Time (Minutes)

Time (Minutes)

Figure 5. Throughput achieved with the proposed controller (blue lines) and the static circuit breaking configuration (orange
lines) for different request statuses (rows) and system sizes (columns).

settings based on well-defined metrics, we deploy the Fac-
torial service and our controller (designed as specified in
Algorithm 1) on a server with 1 CPU. We use RT95 as the
input of our controller and generate traffic as in Fig. 2, setting
a target RT95 value of 100ms. Finally, we run a series of ex-
periments varying the value of the parameter p. From these
experiments, we conclude that setting p = 0.9 gives a bet-
ter trade-off between stability and responsiveness than the
other two tested values (0.1 and 0.5). This is consistent with
our intuition that the controller should preferentially avoid
drastic output changes and be rather stable. Accordingly, p
is set to 0.9 in all other experiments discussed herein.

4.4 Comparing response time

To compare the response times achieved with our proposed
controller to those for the static configuration, we consider
RT95 as the measures of performance. In the response time
experiments, we deploy the same service while varying the
application complexity and system capacity. Application
complexity is varied by setting the factorial parameter to
5000, 10000, or 15000, while the system capacity is varied
by setting the number of allocated CPU cores on our Kuber-
netes cluster to 0.5, 1, or 2. For each experiment, we emulate
the traffic, as shown in Fig. 2. The results for the dynamic

and static configurations on different testbeds are shown in
Fig. 4. The response times for the static configuration vary
widely with the system size and service complexity, whereas
the proposed controller maintains the response time below
the target value. When the system is underloaded (i.e. when
the factorial parameter is set to 5000), identical results are
obtained with the dynamic and static circuit breakers be-
cause the system is not overloaded sufficiently to activate
the circuit breaker, but there are some instability in static
configuration in case of half CPU allocation. These results
show that our controller successfully maintains acceptable
response times in setups with widely varying capacities and
applications.

To summarize the results of all experiments, the average
50th percentile of the response time distribution for our
controller is 4.77 ms while for static configuration is 112.78
ms and the average 95th percentile of the response time
distribution for our controller is 49.98 ms while for static
configuration is 1263.38 ms.

4.5 Comparing throughput

We also compare the numbers of successful requests (200
HTTP status codes), failed requests (5xx HTTP Status codes),
and circuit broken requests (503 HTTP Status codes with UO



50 ms Target

Response Time
0.600

0.500
-~

ﬁ
\

~~ 1.800~

0.060-1 -~ 0.090-1

RT-95 (ms)

0.020 0.030

0.020

0.010
0.010

0 10 20 30
Time (Minutes)

100 ms Target
Response Time

0.080 0.160
0.050
0.070 0.140
0.040 0.060 0.120
0.050 0.100
0.030 \
0.040 0.080
0 10 20 30

Time (Minutes)

150 ms Target
Response Time

1.750
- 1500~ -
01801 -

—— Fac(15000)
—— Fac(10000)
= Fac(5000)

0.060

0.040

0.020 L

0 10 20 30
Time (Minutes)

Figure 6. Tail response times achieved using the proposed controller for Fac(15000) (blue lines), Fac(10000) (orange lines), and
Fac(5000) (green lines) with different target response times (columns).

flag) for the dynamic and static circuit breaker configurations
using the three system sizes (0.5, 1, and 2 allocated CPUs)
considered in the previous experiments. In this case, the ap-
plication complexity is held constant by setting the factorial
parameter to 10000 and we emulate the same workload as in
the response time experiments. As shown in Fig. 5, our con-
troller yields more successful requests for most system sizes,
while the static configuration drops more requests. When
the system size is 0.5 CPU, there are some failed requests in
the static configuration but not in the dynamic configuration.
Our controller thus has negligible effects on throughput.

To summarize the results of all experiments, 70.79% of
requests get the served successfully, 29.18% requests are
circuit broken and 0.01% of requests fail to get a response
due to timeout when using our controller. In contrast, the
static configuration obtains an availability of 63.97%, with
30.85% of requests being circuit broken and 5.17% of requests
timing out.

4.6 Comparing different target response times

To determine the effect of varying the target response time
on the performance of our controller, we deploy the same
service as in the response time experiments with the factorial
parameter set to 5000, 10000, and 15000 on a system with 1

CPU. Three target response times are tested: 50 ms, 100 ms,
and 150 ms. As shown in Fig. 6, the dynamic configuration
generally maintains the RT95 response time below 50, 100,
and 150 ms independently of the factorial parameter.

4.7 Comparing the different workloads

To study the impact of different workloads on the behavior of
the static configuration and the proposed controller, we use
a testbed similar to that described above. The results show
that workload variation has no impact on the performance
of either the static circuit breaker or our dynamic approach.

5 Conclusion

This paper applies control theory to circuit breaker design
in order to improve application performance and response
times. The goal of this work is to design a dynamic circuit
breaking mechanism that avoids the problems encountered
using current approaches based on static threshold configu-
rations. We propose an adaptive controller and evaluate it
with over 12 hours of experiments and more than 13 million
requests. Evaluations are performed under various condi-
tions, using different system sizes and static configurations.
We show that our proposed method can be applied to a black
box service and is able to efficiently tune the circuit breaker



configuration. As expected, there is a trade-off between re-
sponse time and throughput, and our controller can easily
be configured to optimize this trade-off.

For future work, we intend to see the behavior of our con-
troller in a more complex environment, including multiple
services and multiple instances of services. In such scenar-
ios, excessive overload due to so called retry storms [21] are
expected to further complicate overload control and circuit
breaking, potentially causing limplock (slowlock) problems

[9].

6 Acknowledgments

This work was partially supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation. Some parts
of the experiments were supported by the Google Cloud
Platform research credits program.

References

[1] [n.d.]. https://istio.io/

[2] [nd.]. Enovy Proxy adaptive Concurrency filter. https:

//www.envoyproxy.io/docs/envoy/latest/configuration/http/http_

filters/adaptive_concurrency_filter

[n.d.]. The world’s lightest, fastest service mesh. https://linkerd.io/

Gibeon Aquino, Rafael Queiroz, Geoft Merrett, and Bashir Al-Hashimi.

2019. The Circuit Breaker Pattern Targeted to Future IoT Applications.

In Service-Oriented Computing, Sami Yangui, Ismael Bouassida Ro-

driguez, Khalil Drira, and Zahir Tari (Eds.). Springer International

Publishing, Cham, 390-396.

[5] AR. Arunarani, D. Manjula, and Vijayan Sugumaran. 2019. Task sched-
uling techniques in cloud computing: A literature survey. Future
Generation Computer Systems 91 (2019), 407 - 415. https://doi.org/10.
1016/j.future.2018.09.014

[6] B.Beyer, N.R. Murphy, D.K. Rensin, K. Kawahara, and S. Thorne. 2018.
The Site Reliability Workbook: Practical Ways to Implement SRE. O’Reilly
Media. https://books.google.se/books?id=fEImDwAAQBA]

[7] Bob Birscoe and Jukka Manner. 2014. Byte and Packet Congestion
Notification. RFC 7141. RFC Editor. 1-40 pages. https://www.rfc-
editor.org/rfc/rfc7141.txt

[8] Jeftrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013), 74-80. https://doi.org/10.1145/2408776.2408794

[9] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat
Patana-anake, and Haryadi S Gunawi. 2013. Limplock: Understanding
the impact of limpware on scale-out cloud systems. In Proceedings of
the 4th annual Symposium on Cloud Computing. 1-14.

[10] Envoyproxy. 2020. Adaptive Concurrency. Adaptive Concurrency
(2020). https://www.envoyproxy.io/docs/envoy/v1.15.0/configuration/
http/http_filters/adaptive_concurrency_filter.html

[11] Brendan Jennings and Rolf Stadler. 2015. Resource management in

clouds: Survey and research challenges. Journal of Network and Systems

Management 23, 3 (2015), 567-619.

Cristian Klein, Martina Maggio, Karl-Erik Arzén, and Francisco

Hernandez-Rodriguez. 2014. Brownout: Building More Robust Cloud

Applications. In Proceedings of the 36th International Conference on

Software Engineering (Hyderabad, India) (ICSE 2014). Association

for Computing Machinery, New York, NY, USA, 700-711.  https:

//doi.org/10.1145/2568225.2568227

[13] Lars Larsson, William Tarneberg, Cristian Klein, Maria Kihl, and Erik
Elmroth. [n.d.]. Towards Soft Circuit Breaking in Service Meshes via
Application-agnostic Caching. ([n.d.]).

—
BSow
o/

[12

—

[14] Alberto Leva and Martina Maggio. 2009. The PI+p controller structure
and its tuning. Journal of Process Control 19, 9 (2009), 1451 — 1457.
https://doi.org/10.1016/j.jprocont.2009.05.007

[15] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han. 2019. Service Mesh:
Challenges, State of the Art, and Future Research Opportunities. In 2019
IEEE International Conference on Service-Oriented System Engineering
(SOSE). 122-1225.

[16] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. 2014. A
Review of Auto-scaling Techniques for Elastic Applications in Cloud
Environments. Journal of Grid Computing 12, 4 (Oct. 2014), 559-592.
https://doi.org/10.1007/s10723-014-9314-7

[17] Fabrizio Montesi and Janine Weber. 2016. Circuit Breakers, Discovery,
and API Gateways in Microservices. arXiv:1609.05830 [cs.SE]

[18] K. Y. Ponomarev. 2019. Attribute-Based Access Control in Service
Mesh. In 2019 Dynamics of Systems, Mechanisms and Machines (Dy-
namics). 1-4.

[19] Luis Quesada Torres and Doug Colish. 2020. SRE Best Practices for
Capacity Management. login Usenix Mag. 45, 4 (2020). https://www.
usenix.org/publications/login/winter2020/quesada-torres

[20] Haoran Qui, Subho Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained
Resource Management Framework for SLO-oriented Microservices.
Proceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (Nov 2020).

[21] Casey Rosenthal and Nora Jones. 2020. Chaos engineering. O’Reilly
Media, Incorporated.

[22] Ozair Sheikh, Serjik Dikaleh, Dharmesh Mistry, Darren Pape, and
Chris Felix. 2018. Modernize Digital Applications with Microservices
Management Using the Istio Service Mesh. In Proceedings of the 28th
Annual International Conference on Computer Science and Software
Engineering (Markham, Ontario, Canada) (CASCON ’18). IBM Corp.,
USA, 359-360.

[23] Zhen Sun. 2019. Latency-aware Optimization of the Existing Service
Mesh in Edge Computing Environment. Master’s thesis. KTH, School
of Electrical Engineering and Computer Science (EECS).

[24] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Edward Suh, and
Christina Delimitrou. [n.d.]. Sinan: ML-Based & QoS-Aware Resource
Management for Cloud Microservices. ([n.d.]).

[25] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for
Scaling WeChat Microservices. In Proceedings of the ACM Symposium
on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for
Computing Machinery, New York, NY, USA, 149-161. https://doi.org/
10.1145/3267809.3267823


https://istio.io/
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/adaptive_concurrency_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/adaptive_concurrency_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/adaptive_concurrency_filter
https://linkerd.io/
https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1016/j.future.2018.09.014
https://books.google.se/books?id=fElmDwAAQBAJ
https://www.rfc-editor.org/rfc/rfc7141.txt
https://www.rfc-editor.org/rfc/rfc7141.txt
https://doi.org/10.1145/2408776.2408794
https://www.envoyproxy.io/docs/envoy/v1.15.0/configuration/http/ http_filters/adaptive_concurrency_filter.html
https://www.envoyproxy.io/docs/envoy/v1.15.0/configuration/http/ http_filters/adaptive_concurrency_filter.html
https://doi.org/10.1145/2568225.2568227
https://doi.org/10.1145/2568225.2568227
https://doi.org/10.1016/j.jprocont.2009.05.007
https://doi.org/10.1007/s10723-014-9314-7
https://arxiv.org/abs/1609.05830
https://www.usenix.org/publications/login/winter2020/quesada-torres
https://www.usenix.org/publications/login/winter2020/quesada-torres
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823

	Abstract
	1 Introduction
	2 Related Works
	3 Solution Framework
	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Metrics
	4.3 Tuning the controller
	4.4 Comparing response time
	4.5 Comparing throughput
	4.6 Comparing different target response times
	4.7 Comparing the different workloads

	5 Conclusion
	6 Acknowledgments
	References

