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Abstract
In this project, we consider the shape optimization of a dielectric scatterer aim-
ing at efficient directional routing of light. In the studied setting, light interacts
with a penetrable scatterer with dimension comparable to the wavelength of
an incoming planar wave. The design objective is to maximize the scattering
efficiency inside a target angle window. For this, a Helmholtz problem with a
piecewise constant refractive index medium models the wave propagation, and
an accurate Dirichlet-to-Neumann map models an exterior domain. The strategy
consists of using a high-order finite element (FE) discretization combined with
gradient-based numerical optimization. The latter consists of a quasi-Newton
(BFGS) with backtracking line search. A discrete adjoint method is used to com-
pute the sensitivities with respect to the design variables. Particularly, for the
FE representation of the curved shape, we use a bilinear transfinite interpola-
tion formula, which admits explicit differentiation with respect to the design
variables. We exploit this fact and show in detail how sensitivities are obtained
in the discrete setting. We test our strategy for a variety of target angles, differ-
ent wave frequencies, and refractive indexes. In all cases, we efficiently reach
designs featuring high scattering efficiencies that satisfy the required criteria.
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1 INTRODUCTION

In the transition from electronics to photonics technology, the ability to control the propagation, confinement, and
emission of light has become of paramount importance in the development of faster and more reliable technologies.
Specifically, the so-called light routing has application in photovoltaics, on-chip light routing for integrated optical cir-
cuits, field-enhanced and surface-enhanced spectroscopy, ultracompact nanoantennas, as well as metalenses to name a
few. Of particular interest is the directional routing of light or directional scattering by dielectric scatterers, which is the
main topic of this work.

The problem setup consists of a penetrable scatterer that is illuminated by an incoming planar wave. We are par-
ticularly interested in cases where the source wavelength is of the order of the size of the scatterer, and thus near field
computations are required. The time harmonic Maxwell equations models the physical phenomena and, for nonmagnetic
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materials, the scattering strength is described by the dielectric constant. The problem is reduced to a scalar Helmholtz
equation by considering cylindrical scatterers of infinite length and requiring a transverse polarization of the incoming
wave.

The objective of the optimization is to find the shape of the scatterer that maximizes the scattering efficiency at a
target angle window when illuminated by a plane wave of fixed frequency. Here the scattering efficiency is the quotient
between the time-averaged Poynting vector over a target angle window and its complement. The problem falls under the
class of PDE-constrained shape optimization problems, where the sensitivity of the shape of the scatterer is driven by the
scattered wave, which is constrained to satisfy Helmholtz equation subject to an outgoing wave condition.

The PDE is discretized by a high-order polynomial version of the finite element method and the outgoing wave con-
dition is modeled by an accurate Dirichlet-to-Neumann (DtN) map. We use a fixed number of elements, which has the
advantage of avoiding difficulties related with remeshing. The objective function is evaluated after a solution to the PDE
is computed, and the sensitivities of the design variables are obtained by using a discrete adjoint method. The numerical
optimization consists of the BFGS method with backtracking line search.

1.1 Overview

The optimization of the scattering properties of a given shape prototype has traditionally been pursued by employing
intuition-based approaches. The aim is to enhance specific features of the scattering response of a candidate shape by
tuning a small set of its characteristic parameters, which can be tested by using representation formulas. The end result
are devices that exhibit extraordinary optical properties.

The shape prototype is often selected from a gallery of candidates by having some a priori knowledge on its scat-
tering response. Thereafter, a small set of design variables is defined to contain few of the geometrical parameters
(radius of a cylinder,1-3 eccentricity of an spheroid/ellipsoid,4-8 or thickness of a coating layer4,6) and material parame-
ters (metal3,4,6,9,10 or all-dielectric1,2,5,6,8). Finally, for a given frequency, the design variables are fine-tuned in order to
satisfy an optimal criteria. Common goals are the maximization or minimization of the so-called back-scattering and
forward-scattering.1,5-9,11,12

On scatterers with simple convex shapes the scattering of incident waves can be expressed by the use of representation
formulas, where the scattering amplitude is given as a function of the evaluation point and the frequency of the incoming
wave. The optical constants and the geometrical parametrization of the scatterer enter the formulas as parameters of
the model. The so-called Mie series1,5,6,13 or multipole expansions3,9,12,14 are commonly used for the optimization of the
directional scattering of light. After truncation of the series, the representation formulas result in a relatively simple
system of algebraic equations at the evaluation point. The scattering efficiency can be optimized by direct manipulation
of the resulting equations, which allows for the fine-tuning of the design variables.

An alternative approach is to combine the individual scattering response of few highly symmetric shapes such that
the resulting interference from each of the representation formulas1,4,5,8-10,14 yield the desired scattering properties.

Although traditional approaches are successfully in use today, they suffer from important limiting factors. An
optimization framework relying on representation formulas may be too restrictive. An early truncation of the series
representation may lead to missing important features of the problem, and working with many terms may render the
optimization strategy impractical. Additionally, there is no clear path on how to propose new candidates into the gallery
of templates, or how to achieve better functionality of a known prototype.

Instead of the techniques described above, an optimal design strategy can be employed. Then, the problem is modeled
as a PDE, and a set of design variables is used to represent the refractive index profile. Finally, the search for the optimal
shape requires the computation of the sensitivities of a target objective function with respect to the design variables.
Alternative formulations for gradient-based numerical optimization are the so-called density-based topology optimization
(Jensen and Sigmund15) and the Level-set topology optimization (Burger et al.16). For these schemes, the number of
design variables is typically proportional to the number of elements in the FE mesh and the dimension of the employed
FE space, respectively.

In density-based topology optimization, the permittivity function is typically represented as a piecewise constant func-
tion. That is, at each element of the FE mesh, a constant permittivity value is assigned. The optimal design consists of
a permittivity profile that optimizes the objective function. To avoid nonphysical regions with intermediate permittivi-
ties and obtain desired results, the solution scheme for the density-based approach typically includes a penalization step
and a filtering process. To achieve high design freedom using a piecewise constant permittivity, density-based topology
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optimization typically employs a large number of elements and design variables. A large number of elements motivates
the use of a low-order FE, which has some drawbacks discussed below.

In the level set method, a given design is described by splitting the physical domain Ω into level sets of a function that
varies continuously over space. Then, by introducing a binary splitting, a partitioning is defined depending on the sign
of the level set function. The interface between the different media is represented as the set of points where the level set
function is zero. To search for an optimal design, the level set function is evolved either through an equation of motion or
via gradients until a local minimum is reached. For a recent review on design optimization in nanophotonics see Molesky
et al.17

In the current work, the proposed strategy focuses on the displacement of the nodal values at the shape interface. A
finite Fourier parametrization is used for the geometrical representation of shapes, which can be easily enlarged to allow
for complex shapes. The set of design variables are the coefficients of the finite Fourier representation. At the discrete
level, we employ a transfinite interpolation, which allows the opportunity for using a high-order FE discretization of the
PDE. Finally, an exact discrete adjoint method is used for obtaining the sensitivity of a target objective function with
respect to the design variables.

The advantage of high-order FEM for wave scattering problems with smooth interfaces is greatly experienced when
comparing dispersive pollution error of low-order versus high-order FE. Pre asymptotic error estimation predicts that
increasing the polynomial degree p is more efficient than decreasing the mesh size h. The works by Araújo et al.18,19

present results for scattering resonance computations by comparing the resulting errors obtained by refining p and h,
respectively. Particularly, h refinements consists on fixing p and decreasing h uniformly over the mesh, and p refinements
consists of increasing p uniformly and keeping h fixed. For resonators with smooth interfaces the results from computa-
tions indicate that using a uniform high polynomial degree combined with coarse cells is overall a better strategy than
using a low polynomial degree combined with a fine mesh. This, from the accuracy of the solutions and performance of
the solver.18,19 These conclusions can also be drawn for the scattering problems treated in this work. We emphasize this
point in Section 3.5.1 where formula (62) gives a pre asymptotic estimate for controlling the pollution error.

A clear advantage of the Fourier parametrization is that we can obtain very complex shapes by using a relatively small
number of design variables. Thus the linear system solve at each iteration of the BFGS is relatively inexpensive, which
can be compared with the cost of using BFGS with, for example, the gradients arising in the density-based or the level set
topology optimization formulations. The latter methods use many design variables and typically require additional steps,
such as filtering or reinitializations.

In the following sections, we describe in detail the employed methodology and finalize by showing the numerical
results for a range of experiments over frequency, refractive indexes, and target angles.

2 OPTIMIZATION PROBLEM AND PARAMETRIZATION

2.1 Governing equations

In the following, we consider nonmagnetic, locally homogeneous, and isotropic materials, and assume the time harmonic
ansatz e−i𝜔t, with 𝜔 ∈ R a given frequency. From the Maxwell equations, we obtain a decoupled wave equation20,21 for
the electric field E

∇ × ∇ × E −
(
𝜔

c

)2
𝜀 E = 0, (1)

where c is the speed of light in vacuum, and the complex relative permittivity 𝜀 accounts for the description of dielectrics
and metals in the optical regime.22

2.1.1 Infinite length along the x3-axis

Dielectric cylinders with infinite length along the x3-axis are represented by using 𝜀 = 𝜀(x1, x2, 𝜔), which is independent
of x3. This particular symmetry suggests the following explicit separation of variables

E ∶= Ẽ(x1, x2)eik3x3 . (2)
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Moreover, we assume that the incoming plane wave has the following polarization:
Transverse magnetic (TM) polarized waves: In this case the electric field has the explicit form Ẽ ∶= (0, 0,u)⊤.

From (1) and (2), we obtain the equivalent problem

−Δu − 𝜔2n2u = 0, for x ∈ R
2, (3)

where n2 ∶= 𝜀(x, 𝜔)∕c2 is the square of the refractive index. From the suggested cylindrical symmetry, the
three-dimensional vector problem (1) is reduced to the equivalent two-dimensional scalar problem (3).

2.2 Description of the scattering problem

The solution u that satisfies the Helmholtz equation (3) is denoted the total wave. By using the scattered and incoming
wave components, the total wave is split as u= us +ui, where the scattered wave us satisfies an outgoing wave condi-
tion. Existence and uniqueness of solutions to problem (3) have been shown23,24 by using the Lippmann–Schwinger
formulation [ 25, ch. 8] of the problem.

If we let Ωa ∶= B(x0, r = a), then an exact outgoing wave condition can be defined through the use of the
Dirichlet-to-Neumann operator (𝜔) [ 26, ch. 3] defined for x ∈ Γa ∶= 𝜕Ωa. Then, the equation for the scattered wave
reads

−Δus − 𝜔2n2us = f , x ∈ Ωa,

∇us ⋅ n = (𝜔)us, x ∈ Γa,
(4)

where n is the outward unit vector. For a piecewise constant index of refraction n ∈ L∞(Ωa) a dielectric scatterer can
be defined as Ωs ∶= supp(n2 − 1), which is assumed compact within Ωa. Particularly, we set n= 1 for x ∈ Ωa ⧵Ωs, and
n=ns ≠ 1 constant for x ∈ Ωs. A sketch of the problem is presented in Figure 1.

F I G U R E 1 Scattering
corresponding to the design Ωs optimized
for 𝜃c = 60◦, w = 15◦ ns = 2, 𝜔 = 3, and
N = 5. In the upper panels, we present (A)
a sketch featuring the final design Ωs and
the parametrizations for the box
constraints and target angle windows
employed in the optimization problem.
The corresponding visualization of |us|2 is
given in (B) with us the solution of
problem (4). In the lower panels, we
present the corresponding visualizations
for (C) Re ui the incoming wave and (D)
Re u the total wave from the splitting
u ∶= us + ei𝜔x1
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In the case of illumination by an incoming plane wave ui = ei𝜔x1 , then the source f ∈ L2(Ωa) is given by f ∶= 𝜔2(n2 −
1)ei𝜔x1 . The effect of the operator (𝜔) applied on us reads

(𝜔) us ∶= 1
2𝜋

∞∑
𝜈=−∞

𝜔
H′

𝜈(𝜔a)
H𝜈(𝜔a)

ei𝜈𝜃 ∫
2𝜋

0
us(a, 𝜃′) e−i𝜈𝜃′ d𝜃′, (5)

where H𝜈 is the Hankel function of first kind and order 𝜈.
In practice, an approximation l is used instead of the full series (5), where the accuracy of the FE computation

depends critically on the number of terms used in the truncation of the series [ 26, sec. 3.2.3]. Convergence of FE meth-
ods for Helmholtz problems with a truncated DtN map as boundary condition was proven by Melenk.27 Numerical
studies for scattering26 and resonance problems18 suggest that the truncation rule |𝜈| = l > ⌈𝜔a⌉ results in accurate FE
computations.

The implementation of the truncated DtN operator used in this work is based on the implementation by Araújo et al.18

2.3 Geometrical description of the scatterers

Consider a smooth star-shaped domain Ωs ⊂ Ωa as the region contained inside the closed smooth curve 𝜕Ωs as depicted
in Figure 1. We restrict our attention to scatterers that deviate from a circle with radius rm, and can be described
by polar coordinates (r, 𝜃) from its center. For this, we introduce a single dielectric scatterer Ωs with boundary 𝜕Ωs,
defined by the representation x ∶= x0 + R(𝜃) ⋅ [cos 𝜃, sin 𝜃]⊤. We only allow designs that are bounded by the annular
region defined by the fixed values r1 and r2, as shown in dotted lines in Figure 1. That is, the designs satisfy 0 < r1 <

R(𝜃) < r2 < a, and we set rm:= (r1 + r2)/2. In this setting it is natural to use the following Fourier representation of the
scatterer

R(𝜃) = rm +
N∑

j=1
(𝛼2j−1 cos(j𝜃) + 𝛼2j sin(j𝜃)), (6)

from where the parameters 𝜶 = (𝛼1, … , 𝛼2N)⊤ are chosen as the design variables.

2.4 Objective function

The so-called Poynting’s vector S ∶= E × H specifies the pointwise direction of wave propagation and its magnitude is
equivalent to the electromagnetic energy flux. In our setting, and with u :=E3, we write for x ∈ Γa

S ∶= E × H = E ×
( 1

i𝜔
∇ × E

)
= − 1

i𝜔
u∇ū. (7)

The energy of the electromagnetic scattered wave leaving Ωa is proportional to the functional

Re ∫
2𝜋

0
S ⋅ n d𝜃 = 1

𝜔
Im ∫

2𝜋

0
u∇ū ⋅ n d𝜃, (8)

where n = [cos 𝜃, sin 𝜃]⊤ is the outer normal vector to Ωa. Similarly, the output energy over a window Ik ⊂ [0, 2𝜋) is
proportional to

Jk(𝜶) ∶= Im ∫Ik

u ∇ū ⋅ n d𝜃 = 1
2i∫Ik

(u ∇ū − ū ∇u) ⋅ n d𝜃, k = 1, 2, (9)

where u solves the governing equation (4) for the design/shape defined by 𝜶. Then, by letting the target window of length
2w centered at the angle 𝜃c be defined as the interval I1 = [𝜃c − w, 𝜃c + w], and its complement as I2 = [0, 2𝜋) ⧵ I1, we
introduce the so-called scattering efficiency as
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J(𝜶) ∶= J1(𝜶)
J2(𝜶)

. (10)

Recall that our main objective is to maximize the scattering efficiency.
Feasible designs satisfy the constraints r1 < R(𝜶, 𝜃) < r2 for 𝜃 ∈ [0, 2𝜋). The constrained optimization problem is cast

as an unconstrained optimization problem by introducing a penalization that increases when R(𝜶, 𝜃) oscillates away
from rm and grows unbounded as R(𝜶, 𝜃) tends to r1 or r2. In order to enforce the bound constraints, we introduce the
logarithmic well

Jc(𝜶) ∶= −∫
2𝜋

0
log |R(𝜶, 𝜃) − r1| + log |r2 − R(𝜶, 𝜃)| d𝜃. (11)

Moreover, to promote optimal designs with less oscillatory shapes we use the following penalization term

Jp(𝜶) ∶= ∫
2𝜋

0

(
d 2R
d𝜃2

)2

d𝜃 = 𝜋

N∑
j=1

j4(𝛼2
2j−1 + 𝛼2

2j), (12)

where we have used the orthogonality of trigonometric functions and representation (6).
We define the objective function as

min
𝜶

− J(𝜶) + 𝜂Jc(𝜶) + 𝛾Jp(𝜶), (13)

for given parameters 𝜂, 𝛾 > 0.

3 VARIATIONAL FORMULATION AND DISCRETIZATION

The variational formulation to problem (4) reads: For given f ∈ L2(Ωa), 𝜔 ∈ R, and n ∈ L∞(Ωa), find us ∈ H1(Ωa) such
that

∫Ωa

∇us ⋅ ∇v dx − 𝜔2∫Ωa

n2(x) usv dx − ∫Γa

l(𝜔) usv dx = ∫Ωa

f v dx, (14)

for all v ∈ H1(Ωa).
Let the domain Ωa ⊂ R2 be covered with a regular and quasi-uniform finite element mesh  (Ωa) consisting of NK

quadrilateral elements {Kj}
NK
j=1. The mesh is shape regular [ 28, sec. 4.3] and designed such that n2 is constant in each

Kj. Let hj be the length of the largest diagonal of the noncurved primitive Kj and denote by h the maximum mesh size
h ∶= maxjhj. Additionally, p denotes the space of polynomials on R2 of degree ≤p in each space coordinate. Finally, we
define the N𝛾 dimensional finite element space as

V𝛾 (Ωa) ∶= {u ∈ H1(Ωa) ∶ u|Kj
∈ p(Kj) for Kj ∈  }. (15)

We introduce the shape functions {𝜑j}
N𝛾

j=1 and the representation uh =
∑N𝛾

1 uj𝜑j, by defining the solution vector u ∶=
(u1,u2, … ,uN𝛾

)⊤.
To use the exact parametrization of shapes we employ curvilinear elements29 and bend the edges of an

initial mesh of good quality. Curved boundaries or interfaces are implemented by using a bilinear transfinite
interpolant,30,31 where the parametrization of curved edges are available. The use of transfinite interpolation does
not guarantee a one-to-one mapping, however, difficult cases due to nonuniqueness seem to appear only in
extreme cases that are not experienced in the current project. For reference, computational details and appli-
cation to FE assembly can be found in the paper by Gordon and Hall30 as well as in the reference book by
Solin [32, sec. 3.2].
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3.1 Details on the FE discretization

The outgoing condition is set up by using the definition (5). We compute along the circle Γa

(𝜑j, 𝜑i)Γa =
1

2𝜋

l∑
𝜈=−l

𝜔
H′

𝜈(𝜔a)
H𝜈(𝜔a)∫Γa

𝜑i(a, 𝜃) ei𝜈𝜃 ∫
2𝜋

0
𝜑j(a, 𝜃′) e−i𝜈𝜃′ d𝜃′ ds

=
l∑

𝜈=−l
𝜔

H′
𝜈(𝜔a)

H𝜈(𝜔a)

(
1√
2𝜋∫Γa

𝜑i ei𝜈𝜃 ds

)(
1

a
√

2𝜋∫Γa

𝜑j e−i𝜈𝜃′ ds′
)

=
l∑

𝜈=−l
𝜔a

H′
𝜈(𝜔a)

H𝜈(𝜔a)
�̂�𝜈

j
̄̂𝜑
𝜈

i , (16)

where we have used ds′ = a d𝜃′ and �̂�𝜈
j = 1

a
√

2𝜋
∫Γa

𝜑j e−i𝜈𝜃 ds.
From the variational form (14), we obtain our FE matrices A, M, and Q𝜈 and load vector b with entries

Aij = (∇𝜑j,∇𝜑i)Ωa , Mij = (n2𝜑j, 𝜑i)Ωa , Q𝜈
ij = �̂�𝜈

j
̄̂𝜑
𝜈

i , and bi = (f , 𝜑i)Ωa , (17)

respectively.
The truncated DtN matrix is

Gl(𝜔) ∶=
l∑

𝜈=−l
𝜔a

H′
𝜈(𝜔a)

H𝜈(𝜔a)
Q𝜈 . (18)

The state equation, or discrete scattering problem, becomes

S(𝜔) u ∶=
(
A − 𝜔2M − Gl(𝜔)

)
u = b, (19)

with system matrix S ∈ CNh×Nh and load vector b ∈ CNh .
In the discrete case, the functional (9) is evaluated as

Jk(𝜶) ∶=
1
2i

u⊤Wku, for k = 1, 2, (20)

with the antisymmetrical window matrices

{Wk}ij ∶= ∫Ik

(𝜑i ∇𝜑j − 𝜑j ∇𝜑i) ⋅ n d𝜃 = ∫
2𝜋

0
(𝜑i ∇𝜑j − 𝜑j ∇𝜑i) ⋅ n 𝜒k(𝜃) d𝜃, for k = 1, 2, (21)

where 𝜒k is the characteristic function of the interval Ik. In the implementation, we replace 𝜒k with its mollified version
𝜒k.

3.2 Numerical sensitivities

For simplicity of the presentation the derivatives with respect to design variables are referred to as sensitivities. The
sensitivities for the objective function (13) are

∇f ∶=
(

𝜕f
𝜕𝛼1

,
𝜕f
𝜕𝛼2

, … ,
𝜕f

𝜕𝛼2N

)⊤

, with
𝜕f
𝜕𝛼j

∶= − 𝜕J
𝜕𝛼j

+ 𝜂
𝜕Jc

𝜕𝛼j
+ 𝛾

𝜕Jp

𝜕𝛼j
. (22)

The sensitivities corresponding to the penalization terms can be written as follows. For the logarithmic well, we write
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𝜕Jc

𝜕𝛼j
= −∫

2𝜋

0

(
1

R(𝜶, 𝜃) − r1
− 1

r2 − R(𝜶, 𝜃)

)
𝜕R
𝜕𝛼j

d𝜃, (23)

and for the penalization of oscillatory shapes, we write

𝜕Jp

𝜕𝛼m
= 2𝜋j4𝛼m, with j ∶= ⌈m

2
⌉. (24)

Next, we briefly describe how to obtain an exact expression that allow us to compute the sensitivities (22) by using
an exact discrete adjoint method [33, sec. 6.2.1]. The state u(𝜶) solves the system S(𝜶)u(𝜶) = b(𝜶), which allows us to
evaluate J(𝜶) using expression (10).

The sensitivities of Jk(𝜶) are written by employing the chain rule for complex valued problems

𝜕Jk

𝜕𝛼j
= 1

2i

(
(Wku)⊤ 𝜕u

𝜕𝛼j
+ (W⊤

k u)⊤ 𝜕u
𝜕𝛼j

)
= 1

2i

(
(Wku)⊤ 𝜕u

𝜕𝛼j
− (Wku)⊤ 𝜕u

𝜕𝛼j

)
= Im

{
(Wku)⊤ 𝜕u

𝜕𝛼j

}
, (25)

for k= 1, 2, where we have used the antisymmetric property W⊤

k = −Wk. By differentiating the state equation (19), we
obtain

𝜕S
𝜕𝛼j

u + S 𝜕u
𝜕𝛼j

= 𝜕b
𝜕𝛼j

, and define g ∶= 𝜕b
𝜕𝛼j

− 𝜕S
𝜕𝛼j

u. (26)

Let D := c1W1 − c2W2, with constants c1 = 1∕J2, and c2 = J1∕J2
2 . Then, we write the sensitivities of J(𝜶) as

𝜕J
𝜕𝛼j

= Im
{
(Du)⊤ 𝜕u

𝜕𝛼j

}
= Im

{
(Du)⊤S−1g

}
. (27)

In the adjoint method, we define the adjoint vector 𝝀 ∈ C
N𝛾 as the solution to the so-called adjoint equation

S⊤𝝀 = Du. (28)

Then, Equations (27) and (28) are combined to obtain

𝜕J
𝜕𝛼j

= Im
{
𝝀⊤g

}
. (29)

We describe in Section 3.4 how the sensitivities for the system matrix and load vector, used in (29), are computed.

3.3 Numerical optimization strategy (BFGS)

The chosen numerical optimization strategy, which we describe below, is a variant from the so-called BFGS method,34

where a correction is added in the case when an update leads to an unfeasible design.
Assume that we are at iteration n and let fn ∶= f (𝜶n), be the corresponding evaluations of the objective function at

each iteration of the optimization scheme, and Bn be a low rank positive definite approximation to to the Hessian matrix
∇2f (𝜶n). The proposed numerical optimization strategy, as well as standard BFGS, consists in performing the following
steps each iteration

Bnpn = −∇fn, 𝜶n+1 = 𝜶n + 𝜇npn, (30)
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where 𝜇n is the step length in the computed search direction pn. The matrix is updated as

Bn+1 = Bn −
Bnsns⊤n Bn

s⊤n Bnsn
+

yny⊤
n

y⊤
n sn

, (31)

with sn = 𝜶n+1 − 𝜶n, yn =∇f n+ 1 −∇f n, and with B0 = I the identity matrix.
To determine the step length 𝜇n, we apply an inexact line search by using backtracking and require 𝜇n to satisfy the

Armijo condition

f (𝜶n + 𝜇npn) ≤ f (𝜶n) + c1𝜇np⊤
n∇fn for c1 > 0. (32)

The standard approach is to use as initial guess 𝜇n = 1 and verify (32). However, in our case this may lead to unfea-
sible shapes. So, if r1 < R(𝜶n + pn, 𝜃) < r2 ∀𝜃 we use 𝜇n = 1 as initial guess, else we set the initial 𝜇n to the largest
constant c∈ (0, 1) such that r1 < R(𝜶n + cpn, 𝜃) < r2. In our setting the feasibility check is computationally inexpen-
sive compared to solving the governing equation (19). For the Armijo condition (32) we use the recommended34 value
c1 = 10−4.

We employ a so-called continuation approach for the logarithmic well parameter 𝜂. That is, instead of a single problem
we solve for designs in a sequence of problems that approach in each step the original unconstrained problem. Then, in
the first stage of the iterative scheme a design is computed from a problem penalized with 𝜂j and it is used as an initial
guess for a new problem with 𝜂j+1. The starting penalization is chosen as 𝜂0 = 1, and it is updated as

𝜂j+1 = 𝜂j∕2 when ||∇𝜶f || < TOL𝜂. (33)

The updating parameter is chosen as TOL𝜂 = 10−2, for 𝜂j ≥ 10−3. Then, for 𝜂j < 10−3 the iterations are stopped once||∇ 𝜶f || < 10−5.

3.4 Master element and transfinite interpolation

Let  ∶= (−1, 1)2 denote the master element, where chart points 𝝃 ∈  are assigned the coordinates 𝝃 = (𝜉, 𝜂)⊤. Consider
a point x = (x, y)⊤ in a physical element K. Let XK ∶ (𝜉, 𝜂) → (x, y) be the mapping transforming coordinates from the
master to physical element. In the case where K is a quadrilateral, the transformation is a simple bilinear mapping.
Furthermore, when K has curved edges, then we represent XK() by a bilinear transfinite interpolation.

In the matrix assembly process, integrals over K are mapped to the reference element by using the XK ’s Jacobian
matrix J and its determinant |J| = det J [32, sec. 3.4]. At element K, we have

J ∶=
⎡⎢⎢⎣
𝜕XK,1

𝜕𝜉

𝜕XK,1

𝜕𝜂

𝜕XK,2

𝜕𝜉

𝜕XK,2

𝜕𝜂

⎤⎥⎥⎦ , Q ∶=
⎡⎢⎢⎣

𝜕XK,2

𝜕𝜂
− 𝜕XK,2

𝜕𝜉

− 𝜕XK,1

𝜕𝜂

𝜕XK,1

𝜕𝜉

⎤⎥⎥⎦ , J−1 = 1|J|Q, and |J| ∶= det J. (34)

In this setting, integrals transform as

∫K
f (x) dx = ∫

f◦XK(𝝃) |J(𝝃)| d𝝃. (35)

We denote by 𝜑j and ∇𝜑j the shape functions and shape gradients corresponding to the physical mesh. Similarly, 𝜙j and
∇ 𝝃𝜙j denote the Lagrange basis functions and gradients corresponding to . The assembly of the FE matrices given in
Section 3.1 is performed by adding local FE matrices computed at each element. Then, at element K the local stiffness
matrix is computed as

AK
ij = ∫K

∇𝜑j(x) ⋅ ∇𝜑i(x) dx = ∫
J−1∇𝝃𝜙j(𝝃) ⋅ J−1∇𝝃𝜙i(𝝃) |J(𝝃)| d𝝃, (36)

where we have used the properties 𝜙j(𝝃) = 𝜑j◦XK(𝝃) and ∇ 𝝃𝜙j = J∇𝜑j.
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3.4.1 Explicit computation of sensitivities

In this section, we describe in detail how the sensitivities from the state equation are computed. Let us begin with the
local load vector at element K

bK
i = ∫K

f (x)𝜑i(x) dx = ∫
f◦XK(𝝃) 𝜙i(𝝃) |J(𝝃)| d𝝃. (37)

We use the following property

𝜕

𝜕𝛼m
f (x) =

𝜕f
𝜕x

dXK,1

d𝛼m
+

𝜕f
𝜕y

dXK,2

d𝛼m
= (∇f◦XK(𝝃)) ⋅

𝜕

𝜕𝛼m
XK(𝝃) (38)

and compute the sensitivities as

𝜕bK
i

𝜕𝛼m
= 𝜕

𝜕𝛼m ∫K
f (x)𝜑i(x) dx

= 𝜕

𝜕𝛼m ∫
f◦XK(𝝃) 𝜙i(𝝃) |J(𝝃)| d𝝃

= ∫
𝜕

𝜕𝛼m
(f◦XK(𝝃) |J(𝝃)|)𝜙i(𝝃) d𝝃

= ∫
𝜙i(𝝃)

{
(∇f◦XK(𝝃)) ⋅

𝜕

𝜕𝛼m
XK(𝝃) |J(𝝃)| + f◦XK(𝝃)

𝜕|J|
𝜕𝛼m

}
d𝝃. (39)

Similarly, we can compute the sensitivities of the local mass matrix as

𝜕MK
ij

𝜕𝛼m
= 𝜕

𝜕𝛼m ∫K
n2

K𝜑j(x)𝜑i(x) dx = n2
K∫

𝜙j(𝝃)𝜙i(𝝃)
𝜕|J|
𝜕𝛼m

d𝝃, (40)

where we have used that n(x) is an elementwise constant function in Ωa; that is, n(x) ≡ nK for all x ∈ K.
The computation of the sensitivities of the local stiffness matrix is somewhat more involved as it is illustrated below

𝜕AK
ij

𝜕𝛼m
= 𝜕

𝜕𝛼m ∫K
∇𝜑j(x) ⋅ ∇𝜑i(x) dx

= 𝜕

𝜕𝛼m ∫
J−1∇𝝃𝜙j(𝝃) ⋅ J−1∇𝝃𝜙i(𝝃) |J(𝝃)| d𝝃

= 𝜕

𝜕𝛼m ∫
Q∇𝝃𝜙j ⋅ Q∇𝝃𝜙i

1|J(𝝃)| d𝝃

= 𝜕

𝜕𝛼m ∫
(∇𝝃𝜙j)⊤Q⊤Q∇𝝃𝜙i

1|J(𝝃)| d𝝃

= ∫
(∇𝝃𝜙j)⊤

(
𝜕Q⊤

𝜕𝛼m
Q + Q⊤ 𝜕Q

𝜕𝛼m
− 1|J(𝝃)| 𝜕|J(𝝃)|𝜕𝛼m

Q⊤Q
)
∇𝝃𝜙i

1|J(𝝃)| d𝝃. (41)

Finally, after local-to-global assembly, the sensitivities of the system matrix read

𝜕S
𝜕𝛼m

= 𝜕A
𝜕𝛼m

− 𝜔2 𝜕M
𝜕𝛼m

. (42)

Remark 1. The cells containing edges on the boundary Γa are curved by using the mapping XK . However, the bending is
fixed following the circle Γa and does not depend on the design variables 𝜶. This implies that the DtN representation and
window matrices Wk are not sensitive to variations of the shape. That is, for any m the following holds

𝜕Gl(𝜔)
𝜕𝛼m

≡ 0 and 𝜕Wk

𝜕𝛼m
≡ 0 for k = 1, 2. (43)
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Remark 2. In a numerical optimization strategy, Remark 1 implies that the matrices Gl and Wk only need to be assem-
bled once and should not be updated in the iterative scheme. Additionally, the assembly of the sensitivities (42) may be
performed only over cells that have an edge belonging to the shape Ωs. For this, at the creation of the triangulation  (Ωa),
we label cells according to their corresponding domain.

3.4.2 Sensitivities of the Jacobian matrix

To derive the sensitivities of the local FE matrices, we need to delve into the details of the mapping XK . Here, we con-
sider the physical (quadrilateral) element K with primitive edges e1, … , e4 and vertices x1, … , x4. Curved scatterers are
represented on a FE cell K by enforcing its edges to follow smooth curves. These are defined by the parametrizations
Xe1(𝜁), … ,Xe4(𝜁) ⊂ R2, 𝜁 ∈ [−1, 1]. More precisely, the vector valued bilinear transfinite interpolation formula is given
by

XK(𝝃) ∶=

(
XK,1(𝝃)
XK,2(𝝃)

)
=1 − 𝜉

2
Xe1(𝜂) + 1 + 𝜉

2
Xe2(𝜂) + 1 − 𝜂

2
Xe3 (𝜉) + 1 + 𝜂

2
Xe4(𝜉)

− (1 − 𝜉)
2

(1 − 𝜂)
2

x1 −
(1 − 𝜉)

2
(1 + 𝜂)

2
x4

− (1 + 𝜉)
2

(1 − 𝜂)
2

x2 −
(1 + 𝜉)

2
(1 + 𝜂)

2
x3, (44)

satisfying XK(− 1,−1)= x1, XK(1,−1)= x2, XK(1, 1)= x3, XK(−1, 1)= x4 (see References 30,31 and [32, sec. 3.3]). This is,
at corners the mapping XK corresponds to the value of the physical nodes.

In the blended formula (44), the parametrizations Xe1 , … ,Xe4 are explicit functions of the design variables 𝜶, so that
XK has an explicit form depending on 𝜉, 𝜂, and 𝜶. In order to compute the Jacobian matrix J, we need the following
derivatives

𝜕XK

𝜕𝜉
= −1

2
Xe1(𝜂) + 1

2
Xe2(𝜂) + 1 − 𝜂

2
𝜕Xe3

𝜕𝜉
+ 1 + 𝜂

2
𝜕Xe4

𝜕𝜉

+ 1
4
[(1 − 𝜂)(x1 − x2) + (1 + 𝜂)(x4 − x3)] , (45)

and

𝜕XK

𝜕𝜂
= 1 − 𝜉

2
𝜕Xe1

𝜕𝜂
+ 1 + 𝜉

2
𝜕Xe2

𝜕𝜂
− 1

2
Xe3(𝜉) + 1

2
Xe4(𝜉)

+ 1
4
[(1 − 𝜉)(x1 − x4) + (1 + 𝜉)(x2 − x3)] . (46)

Finally, as described in Section 3.4.1, we obtain exact sensitivities for the FE matrices and vectors by computing

𝜕J
𝜕𝛼m

and
𝜕|J|
𝜕𝛼m

, which require 𝜕

𝜕𝛼m

(
𝜕XK

𝜕𝜉

)
, and 𝜕

𝜕𝛼m

(
𝜕XK

𝜕𝜂

)
. (47)

3.4.3 Parametrization and sensitivities of the curved interface

In this subsection, we describe how to obtain the sensitivities (47) needed for the assembly of local matrices in the master
element. We show how to take advantage of the fact that the transfinite interpolation formula (44) is explicit. This allows
for the straightforward differentiation with respect to the design variables once the parametrizations Xe1(𝜶), … ,Xe4(𝜶)
are known. The sensitivities (47) of the Jacobian matrix and its determinant (34), require the assembly of each term in
the Equations (45) and (46).
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For convenience, we sketch in Figure 2 the situation where an element K with vertices x1, … , x4 is bent following
a shape represented by Xe1 . In this case, the vertices x1 = (x1, y1)⊤ and x2 = (x2, y2)⊤ are constrained to follow the shape
described by 𝜶. In the primitive edge (before bending) we have the interpolated points[

x
y

]
= Xp(𝜁) =

(1 − 𝜁)
2

[
x1

y1

]
+ (1 + 𝜁)

2

[
x2

y2

]
, (48)

with −1 ≤ 𝜁 ≤ 1. Furthermore, since we represent shapes in polar coordinates, we introduce

𝜃(x, y) ∶= angle(x, y) with derivative d𝜃
d𝜁

= 𝜕𝜃

𝜕x
dx
d𝜁

+ 𝜕𝜃

𝜕y
dy
d𝜁

, (49)

from where it is obtained

d𝜃
d𝜁

= 1
2(x2 + y2)

=∶g(x,y)

(x ⋅ (y2 − y1) − y ⋅ (x2 − x1))
=∶h(x,y)

. (50)

For simplicity of the presentation in the following derivations, we have introduced the functions h and g in formula
(50). For the bending function, we employ the shape representation corresponding to the face of K that follows the
shape

Xe(𝜁) ∶=

[
x0

y0

]
+ R(𝜃)

[
cos 𝜃
sin 𝜃

]
. (51)

As described in Section 3.4.1, we make use of the Jacobian matrix and its determinant (34) to map integrals into the
reference element . In our implementation, we have used 𝜃 as the global parameter describing our shapes. In turn, all
local vertices and edges attached to the shape depend on 𝜃 and also do the sensitivities. Then, differentiation is performed
by using the chain rule, which will be employed several times below.

We move forward by observing that expressions (45) and (46) for the derivatives of the transfinite interpolation formula
(44) require knowledge of the first-order derivatives of the parametrization Xe with respect to 𝜉 and 𝜂. These can be
obtained by using the chain rule

𝜕Xe

𝜕𝜁
= 𝜕Xe

𝜕𝜃
⋅

d𝜃
d𝜁

, with 𝜕Xe

𝜕𝜃
=

(
𝜕R
𝜕𝜃

[
cos 𝜃
sin 𝜃

]
+ R(𝜃)

[
−sin 𝜃

cos 𝜃

])
, (52)

where 𝜁 = 𝜉 or 𝜁 = 𝜂.
The evaluation of the sensitivities of the Jacobian matrix (34) require that we have available explicit formulas for

𝜕𝛼m (𝜕Xe∕𝜕𝜁). For obtaining these, we notice that points on the curved edge are sensitive to changes of the shape

F I G U R E 2 Illustration of (left) the action of the mapping
XK ∶  → K and (right) the corresponding parametrization used for
representing the bending of the edge that belongs to the shape 𝜕Ωs(𝜶)
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parametrization

𝜕Xe

𝜕𝛼m
= 𝜕R

𝜕𝛼m

[
cos 𝜃
sin 𝜃

]
+ 𝜕Xe

𝜕𝜃

𝜕𝜃

𝜕𝛼m
. (53)

Then, we use the chain rule and obtain

𝜕

𝜕𝛼m

(
𝜕Xe

𝜕𝜁

)
= 𝜕

𝜕𝛼m

(
𝜕Xe

𝜕𝜃

𝜕𝜃

𝜕𝜁

)
= 𝜕

𝜕𝛼m

(
𝜕Xe

𝜕𝜃

)
𝜕𝜃

𝜕𝜁
+ 𝜕Xe

𝜕𝜃

𝜕

𝜕𝛼m

(
𝜕𝜃

𝜕𝜁

)
=
(

𝜕

𝜕𝛼m

𝜕Xe

𝜕𝜃
+ 𝜕2Xe

𝜕𝜃2
𝜕𝜃

𝜕𝛼m

)
𝜕𝜃

𝜕𝜁
+ 𝜕Xe

𝜕𝜃

𝜕

𝜕𝛼m

(
𝜕𝜃

𝜕𝜁

)
, (54)

where we can compute directly

𝜕

𝜕𝛼m

𝜕Xe

𝜕𝜃
= 𝜕

𝜕𝛼m

(
𝜕R
𝜕𝜃

)[
cos 𝜃
sin 𝜃

]
+ 𝜕R

𝜕𝛼m

[
−sin 𝜃

cos 𝜃

]
, (55)

and

𝜕2Xe

𝜕𝜃2 =
(
𝜕2R
𝜕𝜃2 − R

)[
cos 𝜃
sin 𝜃

]
+ 2𝜕R

𝜕𝜃

[
−sin 𝜃

cos 𝜃

]
. (56)

Additionally, we have

𝜕𝜃

𝜕𝛼m
= 1

x2 + y2

(
x
𝜕y
𝜕𝛼m

− y 𝜕x
𝜕𝛼m

)
, (57)

and we differentiate the projection formula (48) in order to obtain

𝜕x
𝜕𝛼m

= (1 − 𝜁)
2

𝜕x1

𝜕𝛼m
+ (1 + 𝜁)

2
𝜕x2

𝜕𝛼m
and

𝜕y
𝜕𝛼m

= (1 − 𝜁)
2

𝜕y1

𝜕𝛼m
+ (1 + 𝜁)

2
𝜕y2

𝜕𝛼m
. (58)

Finally, by using the definitions introduced in formula (49), the sensitivities of the remaining terms in Equation (54)
are computed as follows

𝜕

𝜕𝛼m

(
𝜕𝜃

𝜕𝜉

)
=

𝜕g
𝜕𝛼m

h + g 𝜕h
𝜕𝛼m

=
(
𝜕g
𝜕x

𝜕x
𝜕𝛼m

+
𝜕g
𝜕y

𝜕y
𝜕𝛼m

)
h + g 𝜕h

𝜕𝛼m
, (59)

where

𝜕g
𝜕x

= −x
(x2 + y2)2 , and

𝜕g
𝜕y

=
−y

(x2 + y2)2 , (60)

and

𝜕h
𝜕𝛼m

= 𝜕x
𝜕𝛼m

(y2 − y1) + x ⋅
(

𝜕y2

𝜕𝛼m
−

𝜕y1

𝜕𝛼m

)
−

𝜕y
𝜕𝛼m

(x2 − x1) − y ⋅
(

𝜕x2

𝜕𝛼m
− 𝜕x1

𝜕𝛼m

)
. (61)

In this section we have derived all the necessary information required in the formulas for the sensitivities (47) of the
Jacobian matrix (34). Particularly, we have given explicit expressions for all terms required in the formulas (53) and (54),
which in turn, give formulas for the explicit computation of the sensitivities of the local system matrix and local load
vector as described in Section 3.4.1.
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3.5 FE approximation properties and error estimation

Studies for the convergence of the error for Helmholtz problems indicate that the accuracy of a FE approximation
deteriorates with increasing wave number k, and that the use of high polynomial order is advantageous to reduce
this pollution effect.26,35,36 Additionally, for uniform mesh size h and polynomial order p, it has been shown that
under sufficient regularity assumptions the conditions p ≈ log(k) and kh/p< 1 ensure quasi-optimality of the Galerkin
method.37

The derivation of reliable error estimates can be done thoroughly for one-dimensional Helmholtz problems,36 but
this is a difficult task for higher dimensions. Nonetheless, it is still possible to draw a sufficiently accurate picture of
the behavior of FE approximation for the two-dimensional problem that will suffice for the purpose of the current
work.

3.5.1 FE preasymptotic error estimation

Initially, we estimate the requirements for quasi-optimality of our FE discretization individually on each cell in our tri-
angulation. The refractive index is a piecewise constant function, such that it has maximum magnitude in cells defining
Ωs. The spatial frequency of oscillation of solutions is quantified by the wavenumber k = |ns|𝜔. Then, the error for a
polynomial approximation is expected to be worse in cells with high wavenumber.

From Melenk and Sauter’s results,37 we require the condition

(
𝜔|ns|h
𝜎p

)p

< 1, for a given constant 𝜎 > 0, (62)

in order to have sufficiently small pollution in the FE solution. From where we obtain the criterion p > ⌈𝜔|ns|
h∕𝜎⌉.

3.5.2 Error estimation for the shape representation

For a fixed mesh size h, as the number of Fourier terms N increases, it is expected that a higher polynomial degree is
needed in order to obtain an accurate FE solution. Since each component of our Fourier representation (6) satisfies a
one-dimensional Helmholtz equation with periodic boundary conditions, we can reach useful estimates by assuming that
we work in the polar plane (r, 𝜃). We define a polynomial approximation zh and let 𝜌 = 2𝜋∕Ne, with Ne the number of FE
edges that define 𝜕Ωs. Then, we can estimate for the highest frequency j=N the FE requirements for the decay of the error||z− zh|| in the preasymptotic regime. Following this motivation, we use standard preasymptotic FE error estimation [ 26,
sec. 4.7.6] corresponding to one-dimensional wave problems and obtain(

N𝜌

2p

)p

< 1, (63)

which tells us that the FE pollution effect is small provided that the maximum allowed number of Fourier terms is
bounded by N < ⌊2p∕𝜌⌋. The FE triangulation used for this project features 𝜌 = 2𝜋∕8, from where estimate (63) gives
N < ⌊8p∕𝜋⌋.

Finally, the estimates (62) and (63) indicate that for keeping the relative error fixed, then the computational effort is
increased as we require larger values for 𝜔,ns, and N.

Remark 3. It is possible to improve the performance of the numerical optimization scheme and to lessen the memory
requirements by implementing meshes designed a priori by using different FE approximation properties depend-
ing on the refractive index function. The outcome of the strategy is to shorten the preasymptotic phase of the FE
error for Helmholtz problems with constant coefficients as described in Araújo et al.19 For clarity of the exposition,
and simplicity of the proposed numerical optimization strategy we do not incorporate these ideas in the current
work.
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4 IMPLEMENTATION AND VERIFICATION DETAILS

In the remaining of the document, we describe how we set up our implementation and how we implement the ideas
described above. Particularly, we start by performing a convergence study on the polynomial order used for the FE
discretization. Consecutively, we move on to describing the results of the numerical optimization for the different test
cases.

4.1 Convergence of the discretization error

In the current work, optimal shapes Ωs are obtained from the model (4) by the solution of the discrete state equation (19)
and the sensitivity analysis outlined in Section 3.2 by using the results in Section 3.4.1. These designs are optimal with
respect to the model presented in Section 2.2 and depend on the given frequency 𝜔, refractive index ns, target angle 𝜃c
and number N of Fourier terms.

Following the discussion in Section 3.5.2, we can set up the polynomial order in the FE discretization by performing a
study on the FE error convergence for fixed h. First, we select ns = 2 and generate an arbitrary shape consisting of N = 10
in representation (6). Consecutively, we fix 𝜔 and for a sequence of FE discretizations we vary the polynomial order as
p= 4, 5, … , 35. For each p we compute the values s(p):=uHGlu. Then, we compare convergence of s(p) by taking s(35)
as a reference value and define the relative error

E(p) ∶=
|||| s(p) − s(35)

s(35)
|||| . (64)

The results for frequencies 𝜔 = 3, 5, and 8 are plotted in Figure 3, where it is confirmed that the relative error
increases with frequency. Particularly, the relative error for p= 20 is of the order 10−10 for 𝜔 = 3 and 10−9 for
𝜔 = 5.

4.2 Verification against alternative FE software and outgoing condition

The FE discretization employed in the optimization strategy consists of using a high polynomial degree (p= 20),
a small number of quadrilateral FE cells (NK = 28), and as an outgoing condition we use an accurate DtN map
with truncation parameter l = ⌈2𝜔a⌉. Furthermore curvilinear cell edges are used in the representation of the
scatterer Ωs. The implementation is developed by using the FE library deal.II38 and linear algebra package
PETSc.39

To verify the efficiency of resulting optimal designs, we use an alternative FE discretization of the model equation (4),
which is implemented in the well-established FE software NGSolve.40 The discretization used for the verification con-
sists of a low polynomial order (p= 2), a large number of triangular cells (NK ≈ 350, 000) and as outgoing condition we
use an out-of-the box radial PML attached at r = a, featuring thickness 𝓁 = 1, and strength 𝜎0 = 1.41 Additionally, in the
verification code, the edges of the dielectric shape Ωs are linearly interpolated between the vertices defining the shape on
the triangular mesh.

We note that the purpose of the comparison is to verify in the eye-ball norm that the scattering efficiencies predicted
by our implementation are easily reproduced by a standard FE implementation.

F I G U R E 3 Convergence of E(p)
with respect to polynomial degree p as
described in Section 4.1. For the study
we use a shape with N = 10, we fix ns = 2
and perform the computations for
frequencies 𝜔 = 3, 5, and 8
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5 RESULTS

In this section, we describe the numerical computations performed with our implementation and highlight several obser-
vations. In all test cases, w= 15◦ is used as the half-width window; the box constraints have the fixed values r1 = 0.6 and
r2 = 1.4, so rm = 1. Unless otherwise stated, we employ N = 10 for the Fourier representation (6) and penalize oscillatory
designs by setting 𝛾 = 10−2. Finally, the initial design is set to 𝛼j = 0 for j= 1, 2, … , 2N, and the initial logarithmic well
penalization parameter is set to 𝜂0 = 1.

Optimal designs are drawn with a solid line for each test case and the box constraints are dotted. Next to each optimal
design we present its corresponding normalized scattering pattern as a plot depicting |S ⋅n| over Γa.

Convergence of the optimization strategy: Figure 4 illustrates a typical convergence of the proposed numerical
optimization scheme. From left to right we show plots for a) the resulting optimal designs, b) the corresponding final
scattering patterns, and c) iteration history for f (𝜶) drawn with blue stars and log ||∇ 𝜶f || drawn with red circles. The upper
panels show results for the target center angle 𝜃c = 60◦ and refractive index ns = 2, and the lower panels for 𝜃c = 120◦ and
ns = 3.

The converged optimal designs are very efficient as can be seen from their corresponding scattering patterns. These
feature a main peak centered in 𝜃c of width fitting the target window I1 ∶= [𝜃c − w, 𝜃c + w]. Additionally, the optimal
designs display a relatively small-scale scattering pattern over I2 ∶= [0, 2𝜋) ⧵ I1. From the history plots, we observe the
convergence of the numerical optimization strategy. Particularly, the echelon pattern reveals the effect of the dynamic
logarithmic well penalization from formula (11). As described in Section 3.3, in the first stage of the iterative scheme we
set 𝜂0 = 1 and update 𝜂j+1 = 𝜂j∕2 when ||∇ 𝜶f || < 10−2. The second stage starts once 𝜂 < 10−3, then iterations are stopped
after ||∇ 𝜶f || < 10−5 is reached.

The case for 𝜃c = 120◦ and ns = 3 requires a larger number of iterations for reaching convergence of the numerical
scheme compared to 𝜃c = 60◦ and ns = 2, implying that the former case is a challenging problem.

Influence of the number of Fourier terms: The discussion is moved forward by taking into account the influence
of the number of Fourier terms employed for the representation of the optimal designs. Therefore, for the case 𝜃c = 60◦
and ns = 2, we show in Figure 5 a sequence of optimal shapes computed with N = 1, 2, … , 8. It is observed that as N
increases, the resulting designs exhibit larger values for the scattering efficiencies J(𝜶). Optimal designs with lower N (1
and 2) feature scattering patterns with large peaks outside the window I1. Increasing N results in scattering patterns that
converge to a pattern having a main peak confined within I1. Notice that for N > 4 the main modifications in the resulting
optimal shapes take place near the inner constraint.

(A) (B) (C)

F I G U R E 4 Convergence of the numerical optimization scheme: In the upper panels we show results for 𝜃c = 60◦, ns = 2, N = 10 and in
the lower panels we show results for 𝜃c = 120◦,ns = 3, N = 10. From left to right we present (A) optimal designs, (B) scattering patterns, and
(C) history of f (𝜶), log10||∇ 𝜶f || versus iteration
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F I G U R E 5 Comparison with respect to number of Fourier terms N for fixed ns = 2 and 𝜃c = 60◦. For N = 1, 2, … , 8, we show optimal
designs in the upper panel and scattering patterns in the lower panel

In panel (B) of Figure 1 we plot |u|2 from the solution to the scattering problem (4) for an design optimized for
𝜃c = 60◦, 𝜔 = 3, ns = 2, and N = 5. The plot features large values inside the scatterer Ωs and a beam of amplitude that
extends from the scatterer to Γa. On the boundary Γa, it is appreciated that |u2| resembles the scattering pattern presented
in Figure 5 for N = 5. This is, a relatively large amplitude is observed within 𝜃 ∈ [𝜃c − w, 𝜃c + w] and almost zero amplitude
elsewhere.

For reference, we give below the parametrization for the shape optimized for 𝜃c = 60◦, 𝜔 = 3, ns = 2, and N = 5. The
resulting parametrization 𝜶 from the representation (6) is

𝛼1 = 0.0140864, 𝛼2 = 0.204636, 𝛼3 = 0.0409673, 𝛼4 = 0.0760092, 𝛼5 = 0.0953527,
𝛼6 = 0.0961718, 𝛼7 = −0.0692833, 𝛼8 = −0.0383743, 𝛼9 = −0.006564, 𝛼10 = 0.136563.

Comparison with respect to target angle: Next, we present optimal designs computed with different target angles
𝜃c = 30◦, 60◦, 90◦, and 120◦. The normalized scattering patterns corresponding to optimal designs are shown by using a
solid black line. These results are verified following the description given in Section 4.2 and we add in all plots the verified
pattern by using a dashed blue line. Both scattering patterns are normalized with the same constant corresponding to the
maximum value at the peak of the black line.
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The resulting optimal designs and their respective scattering patterns are presented in Figure 6 for fixed ns = 2 and
𝜔 = 3. We observe from the figure that scattering patterns optimized for different target angles exhibit remarkable direc-
tional scattering properties. Numerical computations indicate that for low refractive indexes it is easier to reach optimal
designs for 𝜃c < 90◦ compared with designs optimized for 𝜃c ≥ 90◦. In order to obtain designs with similar scattering
efficiencies, we experienced that problems with 𝜃c ≥ 90◦ require finer shape representations compared with shapes opti-
mized for 𝜃c < 90◦. Therefore, in Figure 6, the designs corresponding to 𝜃c = 30◦ and 60◦ were computed with N = 10,
and the designs corresponding to 𝜃c = 90◦ and 120◦ were computed with N = 15.

Comparison with respect to refractive index: To discuss the difference from optimal designs computed with dif-
ferent refractive indexes ns, we present in Figure 7 results optimized for ns = 3, 𝜔 = 3, and N = 10. Comparing the results
in Figure 6 with those in Figure 7, we observe that designs optimized for a higher refractive index appear to be more effi-
cient at reducing the scattering amplitudes outside the target window. Additionally, it can be seen that designs optimized
with lower ns occupy a large feasible region and feature boundaries that are very close to the constraints. The results sug-
gest that using a high refractive index is an effective strategy for obtaining efficient designs even for the most challenging
cases with 𝜃c ≥ 90◦. Finally, we mention that the number of iterations for obtaining a converged design when using high
contrast is larger than when using lower contrast.

Comparison with respect to frequency: The last set of optimal designs is gathered in Figure 8, corresponding to
scatterers optimized for the frequency 𝜔 = 5 and with a fixed refractive index ns = 2. As well as in Figure 6, the designs
corresponding to 𝜃c = 30◦ and 60◦ were computed with N = 10, and the designs corresponding to 𝜃c = 90◦ and 120◦ were

F I G U R E 6 Comparison with respect to 𝜃c for a fixed frequency 𝜔 = 3 and refractive index ns = 2

F I G U R E 7 Comparison with respect to 𝜃c for a fixed frequency 𝜔 = 3 and refractive index ns = 3
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F I G U R E 8 Comparison with respect to 𝜃c for a fixed frequency 𝜔 = 5 and refractive index ns = 2

F I G U R E 9 Scattering corresponding to the design Ωs optimized for 𝜃c = 120◦, w = 15◦ ns = 2, 𝜔 = 5, and N = 15. In panel (A) we
show the corresponding visualization of Re u, in panel (B) Re us, and in panel (C) |us|2, with us the solution of problem (4) and u ∶= us + ei𝜔x1

the total wave

computed with N = 15. Similarly as discussed above, the proposed shape optimization strategy reached very efficient
designs. However, most optimal designs feature scattering tails at 𝜃 = 0◦, and computations with fixed N indicate that
this behavior worsens for higher frequencies specially for the cases 𝜃c ≥ 90◦. To provide better understanding on the
resulting scattering patterns at 𝜃 = 0◦, Figure 9 features plots corresponding to the case 𝜃c = 120◦, 𝜔 = 5, ns = 2. From the
scattered wave (b), it is evident that the scattering tail corresponds to a shadowed region in the total field plot (a). That is,
the scattered wave interferes destructively with the incoming wave. As a consequence, the total wave exhibits a shadow
behind the scatterer. For higher frequencies, stronger tails (scattering) or larger shadowed regions (total) are expected.
As discussed above, these designs may be improved by using a higher refractive index ns. Alternatively, the number of
Fourier terms N may be increased and the penalization 𝛾 decreased, at the expense of obtaining highly oscillatory designs.

Finally, it is apparent from Figures 6, 7, and 8, that computation with low-order FE + PML seems to overestimate the
scattering pattern of the optimal design when we compare it to the scattering pattern computed with high-order FE+DtN.

6 DISCUSSION

The presented framework for the optimization for the strong directional scattering of dielectric nanorods can be extended
in several interesting directions. For example, optimization of multiple rods may result in improved control of the scat-
tering waves compared with what has been achieved here for a single rod. Hence, a possible extension aiming at the
optimization of multiple numbers of rods using the representation (6) can be implemented in several ways. One option
that can be straightforwardly implemented is to define a predefined set of rods (dimer, finite crystal), use a Fourier



3702 ARAÚJO and WADBRO

representation for each cylinder, and run a numerical optimization scheme similarly as employed in this study. The
number of design variables scales linearly with the number of rods. Additionally, one could consider special symmetries
and use a mirror boundary condition on some of the rods for a dimer configuration. In this way, the cylinders can be
represented with the same Fourier coefficients for both shape representations.

Another possibility is to assume an infinite periodic structure consisting of similar rods, as used in this work, where
every rod in the structure has the same shape. To facilitate the computational load, it is feasible to impose periodic bound-
ary conditions, and use a Bloch ansatz to represent the scattering problem. Then, the problem is set up in a unit cell, and
the same numerical optimization scheme can be employed to find the optimal design as it has been presented in this
work. However, we mention that the scattering efficiency evaluation and the adjoint equation must be modified slightly
to fit this formulation.

The proposed optimization strategy can be implemented for acoustic waves or electromagnetic problems in 3D. An
analogous shape representation to formula (6) can be set by employing spherical harmonics. For exterior conditions a PML
or a DtN outgoing condition can be used. In the electromagnetic case, the full Maxwell’s equations must be considered
and the DtN is based on the Silver–Müller conditions. The extension of the shape formula and the transfinite interpolation
in the three-dimensional setting is rather straightforward. The main computational challenges in this direction are the
memory load, efficiency, and performance of the solver.

In general, local methods may be sensitive to the initial guess, but they show quick local convergence. On the other
hand, global optimization algorithms typically require many function evaluations to improve on a candidate solution,
whose corresponding objective function value is close to the globally optimal. Thus, one interesting alternative would be to
combine the proposed method with a global optimization method, such as Bayesian optimization. The task for the global
optimization method is then to produce good initial guesses for the proposed method. In such a case, the global method
does not need to run to full convergence, and we can get the best of both worlds. For all our experiments, fortunately, the
optimized design found using 𝛼j = 0, ∀j as initial guess shows very good performance. For this problem, there was no
need to use the above-mentioned strategy.

It would be interesting to compare the scattering efficiency of the proposed framework for different wave polarizations
and cylinders made of all-dielectric, plasmonic, or mixed materials. Moreover, the current framework can be employed to
design efficient polarization splitters and frequency band filters. Additionally, by performing minor modifications, we can
use the developed framework for the design of efficient plasmonic nanoparticles with the application of cancer treatment
in mind. Finally, the current framework can also be modified to be used for inverse problems in electromagnetics, in the
specific case where the shape bounds of a solid object and its material properties are prescribed.

7 CONCLUSIONS

We have proposed an effective strategy for the shape optimization of scatterers applied to Helmholtz problems. The result-
ing gradient based optimization strategy employs explicit differentiation of shapes with respect to the design variables by
the use of transfinite interpolation and an exact adjoint method for the computation of sensitivities. Numerical compu-
tations indicate that for a wide range of target angles, frequencies, and refractive indexes we are able to obtain designs
with outstanding scattering efficiencies. Overall, we have proposed a numerical strategy for obtaining optimal designs
that exhibit remarkable directional scattering properties and can be used for applications involving light routing.
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