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Responses and Virulence
Athar Alam, Jeanette E. Bröms, Rajender Kumar and Anders Sjöstedt*

Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå,
Sweden

Bacterial survival within a mammalian host is contingent upon sensing environmental
perturbations and initiating an appropriate counter-response. To achieve this,
sophisticated molecular machineries are used, where bacterial chaperone systems
play key roles. The chaperones are a prerequisite for bacterial survival during
normal physiological conditions as well as under stressful situations, e.g., infection or
inflammation. Specific stress factors include, but are not limited to, high temperature,
osmolarity, pH, reactive oxidative species, or bactericidal molecules. ClpB, a member
of class 1 AAA+ proteins, is a key chaperone that via its disaggregase activity plays a
crucial role for bacterial survival under various forms of stress, in particular heat shock.
Recently, it has been reported that ClpB also regulates secretion of bacterial effector
molecules related to type VI secretion systems. In this review, the roles of ClpB in stress
responses and the mechanisms by which it promotes survival of pathogenic bacteria
are discussed.
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INTRODUCTION AND OVERVIEW

Upon infection of a host, most bacterial pathogens experience drastic changes in their environment,
e.g., with regard to pH, temperature and osmolarity. In addition, host inflammatory responses
recruit phagocytic cells, subjecting pathogens to additional adverse conditions, such as oxidative
and nitrosative stresses. Bacterial survival then depends on molecular adaptations, so called stress
responses, to handle the adverse conditions. Essential to these responses are the heat shock proteins
(Hsps) which act as molecular chaperones to stabilize proteins and assist protein refolding under
stressful conditions (Neckers and Tatu, 2008). DnaJ (Hsp40), GroEL (Hsp60), DnaK (Hsp70), HtpG
(Hsp90), and ClpB (Hsp100) are some of the major bacterial molecular chaperones that function
in cooperation by forming complex molecular networks, thereby maintaining the overall cellular
protein homeostasis (Henderson et al., 2006).

ClpB is a member of the AAA+ family (ATPases associated with diverse cellular activities) that
together with the DnaK system have the ability to disaggregate stress-denatured proteins. Like other
members of the Hsp100 family, ClpB constitutes a hexamer of identical monomers. The monomer
of ClpB comprises four domains: an N-terminal domain connected with the remainder of the
protein by a conserved linker, the first nucleotide binding domain (NBD-1) in which the unique
flexible middle (M) domain is located, and a second NBD (NBD-2) (Lee et al., 2003). Translocation
of unfolded protein substrates through the axial protein channel requires that NBD-1 and −2
must couple their ATPase activity (Deville et al., 2017). The M-domain is involved in the direct
interaction of ClpB with DnaK (Haslberger et al., 2007), in the interaction of the monomer with
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neighboring ClpB monomers via their NBD-1 domains
(Oguchi et al., 2012), and in the stabilization of the hexamer
(del Castillo et al., 2011).

ClpB is highly conserved amongst bacteria, fungi, protozoa,
and plants and its role under different stressful conditions has
been much studied. It provides protection against, e.g., heat,
low pH, osmotic- and oxidative stress, ethanol, and nutrient
starvation (Meibom et al., 2008; Krajewska et al., 2017; Glaza
et al., 2020; Tripathi et al., 2020). Thus, clpB-deficient mutants
demonstrate tremendously decreased survival upon exposure to
these stresses. Furthermore, ClpB has also been implicated to
regulate the expression of virulence factors in several pathogenic
bacteria (Frees et al., 2004; Yuan et al., 2007; Capestany et al.,
2008; de Oliveira et al., 2011; Lourdault et al., 2011; Alam
et al., 2018; Sangpuii et al., 2018). Therefore, ClpB is critical
for survival and infectivity of a broad range of clinically
relevant microorganisms.

In addition to its role in solubilizing stress-induced protein
aggregates, a role of ClpB in type VI secretion (T6S) has recently
been reported in the highly pathogenic bacterium Francisella
tularensis (Brodmann et al., 2017; Alam et al., 2018, 2020).
Here, ClpB apparently serves as a functional homolog of ClpV,
harnessing energy through the hydrolysis of ATPs required for
depolymerization of the IglA-IglB (homologs of Vibrio cholerae
VipA-VipB) sheath for recycling and reassembly. Consequently,
deletion of clpB leads to significantly reduced level of T6S and
complete attenuation of F. tularensis in mice (Alam et al., 2018,
2020).

Molecular chaperones have the potential to serve as critical
targets for the development of novel antimicrobials. For example,
the Hsp70 and Hsp90 ATPases have been identified as drug
targets for protozoan-derived infectious diseases in humans
(Zininga and Shonhai, 2014, 2019). However, due to the high
degree of sequence conservation among the Hsps across different
domains of life, it is a challenging task (Glaza et al., 2020). ClpB is
of special relevance as a drug target, since the homolog of ClpB,
Skd3, also known as human ClpB, is conserved in many metazoan
lineages, but differs significantly from bacterial and yeast proteins
in domain structures. Skd3 lacks the characteristic microbial
ClpB coiled-coil domain and contains a unique ankyrin-repeat
domain (Erives and Fassler, 2015; Cupo and Shorter, 2020).
In contrast, eubacteria and non-metazoan eukaryotes harbor
Hsp104, which is more closely related to microbial ClpB
(Oguchi et al., 2012).

This review aims to elucidate our current understanding of
the ClpB chaperones of pathogenic bacteria and their potential
contribution to virulence. Since ClpB affects infectivity and
survival of a broad range of clinically relevant pathogenic
microorganisms, the possibility of exploiting ClpB as a
therapeutic target is also discussed.

THE ROLE OF ClpB IN
STRESS-TOLERANCE AND VIRULENCE

One of the fundamental roles of ClpB is to mediate tolerance
to stressful conditions, in particular heat, for a wide range of

bacterial species (Figure 1 and Table 1), but if and how ClpB
contributes to bacterial survival during infection has been less
studied. The Escherichia coli ClpB has served as the prototype
for studies of the essential mechanisms of Hsp100 disaggregases
during heat shock and for the structural identification of the
various domains (Squires et al., 1991; Mogk et al., 1999, 2015;
Barnett et al., 2000; Rosenzweig et al., 2013). Due to the high
degree of conservation among bacterial ClpB, the E. coli ClpB
data is often being used to infer the structures and roles of ClpB
proteins of other bacterial species.

E. coli, F. tularensis, Helicobacter pylori, Pseudomonas putida,
Campylobacter coli, and Campylobacter lari are some of the
pathogenic bacteria for which the role of ClpB in thermotolerance
has been studied (Squires et al., 1991; Allan et al., 1998; Meibom
et al., 2008; Ito et al., 2014; Alam et al., 2018, 2020; Riedel
et al., 2020). F. tularensis, a highly infectious pathogen and a
category A bioterrorism agent, is the etiological agent of the
zoonotic disease tularemia. Deletion of the clpB gene causes a
severe defect in survival at elevated temperature (Meibom et al.,
2008; Alam et al., 2018, 2020). A similar effect was observed for
a clpB mutant of H. pylori, the causative agent of gastric ulcers
(Allan et al., 1998). In addition to thermosensitivity, an inability
to disaggregate aggregated proteins was demonstrated for a clpB
mutant of the opportunistic human pathogen P. putida (Ito et al.,
2014; Table 1). Moreover, enhanced levels of clpB gene expression
were observed at elevated temperature in Campylobacter, a genus
containing one of the most important food-borne pathogen
globally. Transcriptomic profiles of C. coli and C. lari at elevated
temperatures showed enhanced gene expression of clpB and
other genes encoding chaperones such as dnaK, groES, and
groEL, indicating that multiple chaperones, including ClpB,
play a vital role in the thermotolerance of Campylobacter spp.
(Riedel et al., 2020).

In addition to its importance for thermotolerance, ClpB also
plays a role in the general stress-tolerance of bacteria (Figure 1
and Table 1). A clpB null mutant of Brucella suis, the etiological
agent of swine brucellosis, showed increased sensitivity not only
to high temperature, but also to ethanol and acid pH (Ekaza et al.,
2001). A specific role of ClpB during antibiotic-induced stress has
also been reported in Acinetobacter baumannii, a multi-resistant,
opportunistic human pathogen. Levels of clpB were dramatically
increased in the presence of the carbapenem meropenem, or
trimethoprim/sulfamethoxazole, indicating that the chaperone
may play a key role for antibiotic resistance (Lazaretti et al., 2020).
Similarly, inactivation of ibpA/clpB increased the susceptibility
to the aminoglycoside tobramycin in the opportunistic human
pathogen P. aeruginosa (Wu et al., 2015; Table 1).

Besides promoting stress tolerance, ClpB plays an important
role in invasiveness and/or host survival of multiple important
bacterial pathogens (Table 1), such as Leptospira interrogans,
Yersinia enterocolitica, Francisella noatunensis, F. tularensis,
Piscirickettsia salmonis, Mycoplasma pneumoniae, Salmonella
typhimurium, Mycobacterium tuberculosis, Porphyromonas
gingivalis, Enterococcus faecalis, Listeria monocytogenes, and
Staphylococcus aureus (Badger et al., 2000; Chastanet et al.,
2004; Frees et al., 2004; Yuan et al., 2007; Capestany et al.,
2008; Kannan et al., 2008; Conlan, 2011; de Oliveira et al., 2011;

Frontiers in Molecular Biosciences | www.frontiersin.org 2 April 2021 | Volume 8 | Article 668910

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-668910 April 19, 2021 Time: 7:29 # 3

Alam et al. ClpB and Bacterial Virulence

FIGURE 1 | A summary of ClpB’s so-far established roles in pathogenic bacteria, including T6S (Francisella only). Schematic figure illustrating the importance of ClpB
in various stress responses, T6S and virulence. Model of the T6S in extended (left), contracted (central), and disassembled (right) forms of canonical and Francisella
T6S is shown, where ClpB acts as an energizer. Canonical T6S subunits from Escherichia coli are labeled in black and Francisella T6S subunits, which are encoded
within the Francisella Pathogenicity Island (FPI), are labeled in blue.

Lourdault et al., 2011; Alam et al., 2018, 2020; Sangpuii et al.,
2018; Harnagel et al., 2020; Kêdzierska-Mieszkowska and Arent,
2020; Tripathi et al., 2020). In the case of L. interrogans, the
causative agent of the emerging zoonotic disease leptospirosis,
a clpB mutant not only showed enhanced susceptibility to high
temperature, nutrient-depletion, and oxidative stress, but was
also attenuated in a gerbil animal model of acute leptospirosis
(Lourdault et al., 2011; Kêdzierska-Mieszkowska and Arent,
2020). Similarly, a Y. enterocolitica clpB mutant demonstrated
defective invasion of human laryngeal epithelial cells, Hep-2,
and reduced expression of important virulence factors, including
invasin and flagellin (Badger et al., 2000). F. noatunensis ssp.
noatunensis is the etiological agent of francisellosis in Atlantic
cod. In the absence of ClpB, the resulting mutant showed
attenuation in a zebrafish model and also provided efficient
protection in zebrafish challenged with wild-type bacteria
(Lampe et al., 2017). Moreover, clpB mutants of F. tularensis
subspecies holarctica and tularensis were found to be defective
for T6S, susceptible to elevated temperature, and completely
attenuated in mice (Alam et al., 2018, 2020). Such mutants also
serve as highly efficacious vaccines in animal models of tularemia
(Conlan, 2011; Alam et al., 2018). P. salmonis, the etiological
agent of salmonid rickettsial septicemia (SRS), a disease that
affects a wide variety of cultivated fish species, demonstrated
significantly higher levels of ClpB during intramacrophage

growth in a salmon cell line; indicating that this permits the
pathogen to adapt to the hostile intracellular conditions and
facilitates replication (Isla et al., 2014). A growth-promoting
status of ClpB was also observed in M. pneumoniae, an important
cause of community-acquired pneumonia, since loss of ClpB
resulted in impaired replication under permissive growth
conditions (Kannan et al., 2008). ClpB also plays a vital role
in the survival in chicken of S. typhimurium, a major cause of
gastroenteritis globally, since a clpB mutant was found to display
reduced survival at 42◦C in poultry macrophages and during
exposure to hypochloric acid and paraquat (Sangpuii et al.,
2018). Moreover, the mutant showed decreased dissemination
in vivo (Sangpuii et al., 2018). M. tuberculosis, the causative agent
of tuberculosis, is one of the most important pathogens globally.
It was demonstrated that a clpB mutant of M. tuberculosis has
aberrant cellular morphology, impaired biofilm formation and
reduced cellular infectivity (Tripathi et al., 2020). In addition,
the mutant was sensitive to oxidative stress and defective for
the maintenance of dormant bacteria (Harnagel et al., 2020;
Tripathi et al., 2020). Furthermore, the purified ClpB protein
from M. tuberculosis showed potent biological activity and
induced release of pro-inflammatory cytokines from a human
macrophage cell line (Tripathi et al., 2020). A vital role of
ClpB was also observed in P. gingivalis, an important cause
of chronic periodontal disease, where a clpB mutant showed
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defective thermotolerance and also decreased cellular invasion
and marked attenuation in a mouse model (Yuan et al., 2007;
Capestany et al., 2008). ClpB of the Gram-positive bacterium
L. monocytogenes, an etiological agent of human meningitis,
was not involved in tolerance to heat, high salt, or cold; but
played a role for virulence in mice (Chastanet et al., 2004).
S. aureus, a major cause of skin infections and several systemic
infections, was susceptible to elevated heat stress and a clpB
mutant demonstrated diminished intracellular multiplication
within bovine mammary epithelial cells (Frees et al., 2004).
Similarly, E. faecalis lacking ClpB demonstrated defective
thermotolerance, as well as attenuation in a Galleria mellonella
model (de Oliveira et al., 2011). Altogether, the published data
unequivocally demonstrate that ClpB of many bacterial species
play a key role for their survival during numerous forms of stress
conditions and for their virulence in experimental models.

THE ROLE OF ClpB FOR T6S

The type VI secretion systems comprise the most common
secretion machinery among Gram-negative bacteria, present in
more than 25% of all proteobacteria. T6S is used to translocate
effector molecules directly into neighboring cells, commonly
a bacterial competitor (Coulthurst, 2019). The machinery is
composed of 13 to 14 core components, with a set of regulatory
and accessory proteins for specialized functions (Boyer et al.,
2009). It is composed of a cell membrane complex anchored
to a contractile bacteriophage tail-like apparatus consisting of a
sharpened tube made of stacked hexameric rings ejected by the
contraction of a sheath (Coulthurst, 2019). The AAA+ ATPase
ClpV has been shown to act as an energizer for T6S. Its action
includes physical interactions with the complexes of VipA-VipB,
or their homologs, of the contracted tubular sheath, thereby
promoting sheath disassembly and the dynamic recycling for
repeated rounds of firing, disassembly and reassembly (Figure 1;
Bönemann et al., 2009; Pietrosiuk et al., 2011; Kube et al.,
2014). For some bacteria, the energy may be provided through
the activity of ATPases distinct to ClpV, which are encoded
outside of the T6S cluster. In support, only a partial loss of the
function of T6S was observed in a V. cholerae clpV mutant,
demonstrating that ClpV is an important, yet non-essential
component of the V. cholerae T6S (Basler and Mekalanos, 2012;
Basler et al., 2012). Moreover, Francisella spp., Campylobacter
concisus, Campylobacter jejuni, Helicobacter hepaticus, and
Salmonella choleraesuis, all lack ClpV, but still possess functional
T6S (Shrivastava and Mande, 2008; Lertpiriyapong et al., 2012;
Clemens et al., 2015; Brodmann et al., 2017; Liaw et al., 2019;
Alam et al., 2020; Liu et al., 2020).

Indeed, Brodmann et al. (2017) have demonstrated that ClpB,
although encoded separately from the T6S system gene cluster
in Francisella, is a functional homolog of ClpV in F. tularensis,
being indispensable for disassembly of the contracted T6S system
sheath (Figure 1) and important for effective T6S (Alam et al.,
2018, 2020). Moreover, ClpB was shown to colocalize with the
VipA homolog, IglA, during sheath assembly, contraction, and
disassembly (Brodmann et al., 2017). Interestingly, a conserved

α-helical region at the N-terminus of VipB, including the part
interacting with ClpV, is missing in the F. tularensis homolog
IglB (Pietrosiuk et al., 2011), but, despite a very low overall
sequence identity, IglB and VipB share a very similar structural
topology (Alam et al., 2020). Though the sheath sequence(s)
recognized by ClpB ATPase has not been determined, the overall
similar topology may be sufficient for establishing the interaction.
Interestingly, a clpB mutation that abolishes the ClpB-DnaK
interaction renders F. tularensis highly susceptible to heat shock,
but T6S and virulence in mice are unaffected (Alam et al., 2020).
This suggests that the heat shock response and the regulation
of T6S of F. tularensis are dependent on distinct regions of the
ClpB protein and that the DnaK interaction is dispensable for T6S
(Alam et al., 2020). ClpB-dependent secretion mechanisms could
perhaps be at play also in the aforementioned species possessing
functional T6S, but lacking ClpV; however, the contribution
of ATPases distinct from ClpB cannot be excluded. Notably,
in the malaria parasite, a ClpB-like protein of the Hsp101
family is essential for export across the parasitophorous vacuolar
membrane into the erythrocyte and it was demonstrated that the
protein functions in a complex that serves as a convergent step in
a multi-pathway export process (Beck et al., 2014).

ClpB AS A THERAPEUTIC TARGET

The global threat of antibiotic-resistant bacteria shows no sign
of being resolved and the arsenal of clinically useful antibiotics
becomes more and more limited. Bacterial chaperones remain
one set of underexploited targets for antibiotic development. In
particular, ClpB belongs to the group of potential drug targets,
since mammals do not have Hsp100 homologs, other than human
ClpB/Skd3 which is significantly different from the microbial
ClpB in domain structures (Erives and Fassler, 2015; Cupo and
Shorter, 2020). The development of specific inhibitors of ClpB
might not only be useful as a novel antibiotic for otherwise
antibiotic-resistant bacterial strains, but also as a means to
understand the molecular mechanism of this chaperone.

Currently, only a few ClpB inhibitors have been identified
(Grimminger et al., 2004; Martin et al., 2013; Kuczynska-
Wisnik et al., 2017; Glaza et al., 2020; Singh et al., 2020).
Guanidinium chloride specifically inhibits the ATP hydrolysis by
Hsp104 of Saccharomyces cerevisiae and also the ClpB function
of Ehrlichia chaffeensis (Grimminger et al., 2004). Thus, it
may serve as a general inhibitor of members of the AAA+
protein family, but this remains to be proven. Two other ClpB
inhibitors, called compounds 3 and 6, inhibit the functional
properties and the growth of E. coli, thus displaying antimicrobial
activity under thermal or oxidative stress conditions (Martin
et al., 2013). Compound 3 competes with substrate binding
and modifies the ATPase activity of ClpB, while compound
6 hampers the substrate-induced improvement of its ATPase
activity (Martin et al., 2013). Further, the specific interaction
of the compounds with the chaperone is essential for their
antimicrobial action. This, in combination with only moderate
cytotoxicity, suggests that they could be used as leads for
development of new antimicrobials (Martin et al., 2013).
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TABLE 1 | The impact of the chaperone ClpB on bacterial growth, survival, and virulence in various bacterial species.

Role of ClpB in bacterial stress responses1

Species Heat shock Other stresses Additional observations for
clpB mutants

Attenuation in indicated
host model or cell
infection

References

Acinetobacter baumannii NT S (beta-lactams) Lazaretti et al., 2020

Brucella suis S S (ethanol, pH) Ekaza et al., 2001

Campylobacter coli, lari S NT Riedel et al., 2020

Ehrlichia chaffeensis T NT DH82 canine macrophage
cell line

Grimminger et al., 2004;
Zhang et al., 2013

Enterococcus faecalis S T (oxidative stress) Galleria mellonella de Oliveira et al., 2011

Escherichia coli S S (oxidative stress) Chow and Baneyx, 2005;
Martin et al., 2013

Francisella noatunensis NT NT Zebrafish Lampe et al., 2017

Francisella novicida S NT ↓ T6S J774 cell line, Mice Alam et al., 2020

Francisella tularensis subsp. tularensis S S (pH) ↓ T6S Mice Alam et al., 2018

Francisella tularensis subsp. holarctica S S (oxidative stress, pH, ethanol ↓ T6S Mice Meibom et al., 2008; Alam
et al., 2018

Helicobacter pylori S NT Allan et al., 1998

Leptospira interrogans S S (oxidative stress) S (nutrient-limitation) Gerbil Lourdault et al., 2011;
Kêdzierska-Mieszkowska
and Arent, 2020

Listeria monocytogenes T T (osmosis/salt) T (cold) Mice Chastanet et al., 2004

Mycobacterium tuberculosis NT S (oxidative stress) Aberrant cellular morphology,
impaired biofilm formation and
defective maintenance of
dormant bacteria

THP-1 cell line Harnagel et al., 2020;
Singh et al., 2020; Tripathi
et al., 2020

Mycoplasma pneumoniae NT NT Impaired growth under
permissive conditions.

Kannan et al., 2008

Piscirickettsia salmonis NT NT SHK-1 salmon cell line Isla et al., 2014

Porphyromonas gingivalis S T (pH) T (oxidative stress) Mice; Gingival epithelial
cells and Human coronary
artery endothelial cells

Yuan et al., 2007;
Capestany et al., 2008

Pseudomonas putida S NT Ito et al., 2014

Pseudomonas aeruginosa NT S (tobramycin) Wu et al., 2015

Salmonella typhimurium S S (oxidative stress) Chicken Sangpuii et al., 2018

Staphylococcus aureus S T (oxidative stress) MAC-T bovine mammary
epithelial cell line

Frees et al., 2004

Vibrio cholerae S S (pH) S (oxidative stress) Nag et al., 2005

Yersinia enterocolitica NT NT ↓ Invasin expression ↓ Motility Badger et al., 2000

1Abbreviations used are as follows: S, sensitive; T, tolerant; NT, not tested. ↓Decreased.
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Three inhibitors of M. tuberculosis ClpB have been identified
and they also inhibit the ATPase activity of E. coli ClpB and
yeast Hsp104 (Singh et al., 2020). In addition, DBeQ, which is
derived from an inhibitor of the human AAA+ ATPase p97, an
anti-tumor target, inhibited E. coli proliferation and appeared to
selectively target ClpB (Glaza et al., 2020).

Collectively, the identification of these ClpB inhibitors
demonstrates the potential of the protein as a therapeutic target.

CONCLUSION

The ATP-dependent ClpB protein is a disaggregase and a key
member of a multi-chaperone system that efficiently inhibits and
reverses protein aggregation. As such, ClpB is critical for the
survival of various microorganisms exposed to stress, but it also
confers vital functions during normal physiological conditions.
In bacteria, loss of ClpB is commonly associated with fatal
thermosensitivity, but it may also lead to susceptibility to other
forms of stress, such as reactive oxidative species, antibiotics and
bactericidal molecules as well as changes in osmolarity and pH.
More recent work has identified a critical role of ClpB related
to T6S. Thus, in F. tularensis, the absence of ClpB leads to T6S

dysfunction and impaired bacterial virulence. This also suggests
that the ATPase activity of ClpB may provide the energy required
for functional T6S, thereby substituting for ClpV proteins in
bacteria where these are absent. In view of the many central roles
of ClpB, it is a logical therapeutic target and recent work serves as
proof of concept for this hypothesis.
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