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Abstract

Motivation: Large-scale population omics data can provide insight into associations between gene–environment
interactions and disease. However, existing dimension reduction modelling techniques are often inefficient for
extracting detailed information from these complex datasets.

Results: Here, we present an interactive software pipeline for exploratory analyses of population-based nuclear
magnetic resonance spectral data using a COmbined Multi-block Principal components Analysis with Statistical
Spectroscopy (COMPASS) within the R-library hastaLaVista framework. Principal component analysis models are
generated for a sequential series of spectral regions (blocks) to provide more granular detail defining sub-
populations within the dataset. Molecular identification of key differentiating signals is subsequently achieved by
implementing Statistical TOtal Correlation SpectroscopY on the full spectral data to define feature patterns. Finally,
the distributions of cross-correlation of the reference patterns across the spectral dataset are used to provide popu-
lation statistics for identifying underlying features arising from drug intake, latent diseases and diet. The COMPASS
method thus provides an efficient semi-automated approach for screening population datasets.

Availability and implementation: Source code is available at https://github.com/cheminfo/COMPASS.

Contact: julien.wist@correounivalle.edu.co

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Systems biology approaches using multi-omic platforms can inform
on biological pathways and mechanisms underlying disease risk and
identify potential targets for new treatments or preventive measures
(Elliott et al., 2015; Holmes et al., 2008). Metabolic profiling
(‘metabolomics/metabonomics’), using mass spectrometric (MS) and
nuclear magnetic resonance (NMR) spectroscopic platforms, is in-
creasingly being used to generate multi-parametric metabolic data
for understanding biological systems. A multitude of informatic

tools have been used to model and interpret complex metabolic
profiling datasets generated by these analytical platforms. Principal
component analysis (PCA) (Jackson, 1991; Wold et al., 1987) and
partial least squares projections to latent structures (PLS)
(Tennenhaus, 1998; Wold et al., 2001a,b) are two of the most wide-
ly implemented statistical tools on the basis of their data compres-
sion ability, visualization properties, high interpretability,
robustness and inherent transparency with respect to feature (metab-
olite) weighting, compared to other methods. These linear
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projection methods and other multivariate statistic methods aim to
reduce data dimensionality by summarising the main variance in the
data in two or three components. However, such methods become
inefficient as the number of variables increases to the order of thou-
sands, as is the case with most ’omics studies (Wold et al., 2002).

Application of metabolic profiling and multivariate statistics to
human population studies has the added challenge of dealing with
large numbers of samples as well as variables and many important
biological phenomena in these studies are masked by the main sour-
ces of variance in the dataset, which may not be relevant to the bio-
logical focus of the study. Therefore, the challenge lies in finding a
robust strategy to extract and interpret relevant information from
the dataset with high fidelity and reproducibility. A common ap-
proach is to use variable selection prior to modelling. However, this
increases the risk of misinterpretation and can result in loss of infor-
mation and poor model robustness. To avoid this, the data variables
and/or samples can be divided into regions (blocks) and subsequent-
ly analysed in a hierarchical fashion, e.g. Quilt-PCA or -PLS
(Westerhuis et al., 1998; Wold et al., 2002). Here, we extend this
concept by combining a multi-block approach with statistical spec-
troscopy to provide a toolbox that focuses on stratified analysis of
the data variables to facilitate recovery of metabolic features that
would otherwise be dominated by the one or two major sources of
variance (usually high concentration compounds) in the dataset.
Sub-dividing the spectra into blocks allows key signals from each
block that relate to sources of variance in the data such as presence
of latent disease, drug use or dietary behaviours to be more easily
identified. However, since molecules generally have signals in differ-
ent regions of the NMR spectrum using the block data approach
would reduce the information available for structural identification
and hence, having identified key ‘biomarker’ signals in the blocked
data we revert to the whole spectrum to compute correlations from
the key signals in each block across the full spectral range to extract
the total signal pattern for metabolites of interest. Using these signal
patterns as a reference to define a cross-correlation (CC) cut-off
point, a semi-automated system for identification of particular drug
metabolites, dietary behaviours or pathologies can be built. The
whole pipeline, referred to as COmbined Multi-block Principal com-
ponents Analysis with Statistical Spectroscopy (COMPASS), was
developed within the open source R environment and the
hastaLaVista framework (Wist, 2019). We demonstrate the func-
tionality of COMPASS using an exemplary dataset, the
International Study of Macro/Micronutrients and Blood Pressure
(INTERMAP) Study, a multi-country, cross-sectional population
study on diet and blood pressure. The approach presented offers a
rapid and efficient framework for preliminary screening various fea-
tures within the INTERMAP dataset.

2 Materials and methods

2.1 Implementation
Supplementary Material S1 describes the COMPASS pipeline which
utilizes two R-scripts: multi-blocking. R (Supplementary Material
S2) and MBCC-metaboliteX.Rmd (Supplementary Materials S3)
and two json files: (modelExplorer.view.json: Supplementary
Material S4) and crossCorrelationExplorer.view.json
(Supplementary Material S5). These scripts utilize the R-packages
MetaboMate (code by Kimhofer: https://github.com/kimsche/
MetaboMate) for multivariate statistics and hastaLaVista (https://
github.com/jwist/hastaLaVista; Wist, 2019) for enhanced graphical
and interactive visualization. The output is formatted as a pdf or
docx format.

2.2 Usage of the COMPASS approach
A schematic of the analysis workflow (Fig. 1) outlines the four-step
goal:

1. to calculate individual PCA models for each spectral region

(illustrated for blocks of 0.5 ppm width) to extract the finer

structure in the spectral data relating to metabolic features asso-

ciated with sources of variance in the dataset;

2. to obtain a reference pattern for identified features of interest by

applying Statistical TOtal Correlation SpectroscopY (STOCSY)

(Cloarec et al., 2005), involving the computation of correlation

matrices between the intensity of all composite points in the

spectral data for a subset of samples containing the specific fea-

ture(s) of interest to provide additional molecular structural in-

formation and thereby allowing the visualization of a wider

range of features;

3. to compute the distribution of the CC of any given pattern of

interest (e.g. signal from a specific drug) and estimate the opti-

mal CC value, which can be interactively adjusted by the user,

thereby providing a means for screening the NMR spectral data-

set for specific metabolites of interest. This can be simply visual-

ized using a traffic light display system, i.e. green for spectra

with high confidence in the presence of the signal pattern, amber

for intermediate and red for those deemed not to contain the

feature;

4. to generate a report in pdf or docx format based on the user-

defined threshold CC value, which provides an estimation of the

number of samples in the dataset containing a specific signal pat-

tern (metabolite). The COMPASS pipeline, therefore, provides

users with an interactive tool for rapid screening of different

metabolic features of interest associated with, e.g. drug, alcohol,

inborn errors of metabolism and dietary intake.

2.3 Description of the INTERMAP study
The INTERMAP study surveyed 4680 men and women 40–59 years
of age from Japan, People’s Republic of China (PRC), United
Kingdom (UK) and United States (US) in 1996–1999 (Stamler et al.,
2003). Participants were selected randomly from community or
workplace population lists, arrayed into four age/sex strata. Each
participant attended four clinic visits, two on consecutive days and
two further visits on consecutive days on average 3 weeks later. Of
the 4895 recruited into the study, participants were excluded if they
failed to attend all four clinic visits (n¼110) or had incomplete/
missing data or 24-h urine sample (n¼61), presented unreliable
dietary data (n¼7) or had extreme total energy intake (>5000 kcal/
day for women and >8000 kcal/day for men) from any 24-h recall
(n¼37); giving a final 4680 participants in the study. Institutional
ethics committee approval was obtained for each site; all partici-
pants provided written informed consent. The INTERMAP study
was registered as NCT00005271 at https://clinicaltrials.gov.

2.4 1H NMR spectroscopic analysis
Each participant provided two borate-preserved timed 24-h urine
collections; aliquots of urine were frozen on site (-20�C) and air-
freighted frozen to the Central Laboratory (Leuven, Belgium) for
biochemical analyses. Urine specimens were thawed completely be-
fore mixing 500mL of urine with 250mL of phosphate buffer
(0.2 M) for the stabilization of urinary pH 7.4 (60.5), and 75mL of
sodium 3-trimethylsilyl-(2,2,3,3-D)-1-propionate (TSP) in deuterium
oxide (D2O, final concentration 0.1 mg/mL) solution for chemical
shift referencing of TSP (d 0.0). 1H NMR spectra of the urine speci-
mens were obtained at 300 K using a Bruker (Bruker Biospin,
Rheinstetten, Germany) Avance 600 spectrometer at the operating
1H frequency of 600.13 MHz. A standard one-dimensional pulse se-
quence (recycle delay—90�—t1—90�—tm—90� acquisition) with a
water pre-saturation was used (McKay, 2011; Nicholson et al.,
1995), with a relaxation delay of 2 s and mixing time of 100 ms.
About 64 free induction decays were collected into 32 K data points
using a spectral width of 20 ppm (Loo et al., 2009).

The 1H NMR spectra were processed by a standard protocol in
which they were phased, referenced to TSP and underwent baseline
correction. The region d4.5–6.55 containing the residual water and
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urea resonances, and the regions at d<0.5 and >9.6 containing

predominantly noise were excluded from analyses. Of the 4680
individuals, one urine specimen was lost, 50 1H NMR urinary

spectra were unusable due to poor water suppression or excessive
glucose metabolites that led to baseline distortion and 15 spectra
that did not meet the half-height line width for TSP, leaving a total

of 4614 1H NMR urinary spectra (N¼826 for China, N¼1138
for Japan, N¼496 for UK and N¼2154 for USA), available for

testing the COMPASS workflow. Each spectral segment corre-
sponded to a data point with a spectral width of d 0.0005 and was
normalized using a probabilistic quotient method (Dieterle et al.,
2006).

2.5 Application of COMPASS using INTERMAP study
Here, we exemplify the functionality of COMPASS using the
INTERMAP dataset where NMR urine spectra were obtained for
4614 individuals from four countries (U.S.A., U.K., Japan &

China) with differing cardiovascular disease risks. We also provide
the reader with a less complex dataset from an animal surgical

dataset (Li et al., 2011a, 2011b) for familiarization with the soft-
ware. A brief description of the data is supplied in Supplementary
Material S6 (note: no data interpretation was performed on this

animal dataset. The dataset is merely provided to allow the explor-
ation of the software capability as described in Supplementary

Material S1).

3 Results

The PCA model generated from the whole dataset showed that the
first two PCs are dominated by variance in glucose concentration
(Fig. 2A, B) and commonly used drug metabolites, ibuprofen and
acetaminophen (PC3, Fig. 2C). Outliers with high concentrations of
glucose and drug metabolites were also apparent. In contrast, multi-
block-PCA analysis of spectral regions of 0.5 ppm width from 0.5 to
9.6 ppm (excluding the water signal) resulted in the creation of 14
blocks or PCA sub-models with a broader range of metabolites asso-
ciated with specific coherent patterns in the data. For each multi-
block-PCA, spectral data were scaled to unit-variance, although de-
pending on the dataset it may be appropriated to use other scaling
methods to maximize information recovery from each block.
Additionally, users can examine the scores plots to understand the
deeper structure of the data. The blocks can then be collectively co-
analysed using the scores (typically using up to three principal com-
ponents, depending on the R2X values of the model) as the new in-
put variables to build a hierarchical ‘supermodel’ presenting the
main features of the individual blocks, with each block given equal
weighting thereby ensuring that the model is less influenced by
‘noisy’ high concentration signals that may only be present in one or
two blocks.

To illustrate our approach, we focus on known signals related to
exogenous features (e.g. drug or alcohol metabolites) as well as la-
tent diseases (e.g. diabetes reflected as glycosuria). The multi-block-
PCA identifies many more signals of interest than the whole PCA

Fig. 1. Schematic of the COMPASS analysis pipeline. This involves (i) sub-dividing the spectra into regions (blocks) to allow extraction of finer structure using the PCA scores

and loading plots without strong signals in other regions of the spectrum dominating the variance; (ii) the user can then select spectra relating to sub-clusters of interest for

computing the STOCSY from the individual multi-block-PCA scores plots, as illustrated using the green ellipses (arbitrary user defined subset based on inherent structure in

the data). Selecting spectral data that are clustered together in the PCA scores plot increases the likelihood that the corresponding spectra contain the same feature of interest

thereby reducing statistical noise in identifying reference patterns via STOCSY analysis; (iii) a reference exhibiting the reference patterns identified via the STOCSY is used to

calculate a CC for each spectrum in the dataset. The CC distribution is then used as a guideline for choosing a suitable CC threshold for a particular metabolite feature; (iv)

based on the CC distribution. The population statistics can be calculated for the compound/feature of interest and spectra displaying this feature can be presented in any format

allowable in R (here, we use PDF or docx)
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model. For example, the first PC for the 1–1.5 ppm block is domi-
nated by ibuprofen and its metabolites (Fig. 3A), whilst ethanol and
its related metabolites (ethyl glucuronide; ethyl glycoside) drive the
variance in PC2 (Fig. 3B). However, even in the scores plot of the
1–1.5 ppm block, the overlap of �5000 data points makes it difficult
to distinguish the number of participants excreting ibuprofen. With
the use of STOCSY, reference patterns relating to specific metabo-
lites can be identified (Fig. 3C). Here, we increase the confidence in
our assignment of ibuprofen based on the signals in the 1.0–1.5 ppm
block by computing correlations across the entire spectrum to

extract the total signal pattern for ibuprofen metabolites. We identi-
fied a representative spectrum exhibiting the ‘typical’ pattern pro-
viding a clear definition of the combination of major ibuprofen
metabolites (signals) at 0.85–0.91, 1.03–1.09, 1.20–1.24, 1.37–1.42
and 1.50–1.56 ppm. Using this reference spectrum, we then calcu-
lated the distribution of the CC and colour coded the coordinates
according to country (Fig. 3D). Computing the distribution of the
CC of these signal patterns within the whole dataset allows the user
to rank spectra according to the likelihood of correctly detecting the
corresponding reference patterns and the result is displayed using a
traffic-light display system, i.e. green for high CC values, where
users are confident that the spectra contain the metabolic feature;
amber for intermediate CC values, where users have intermediate
confidence that the spectra contain the metabolic feature; and red
for CC values deemed to indicate absence of the metabolic feature.
As the tool is interactive, the user can focus on the amber category
and adjust the CC threshold accordingly thereby minimizing the
time spent on visually analysing the spectra in the either category
where the predictions are robust.

Using ibuprofen as an exemplar, the computed CC plot (Fig. 3D)
shows that the majority of the spectra are clustered at a CC of
<0.20 with a further group clustered at CC > 0.7, with the remain-
der of the spectra being scattered in the range of 0.2–0.7. We first
applied a relatively conservative CC cut-off value for detecting ibu-
profen reference patterns (Fig. 3C): here >0.85 was considered to
represent the high confidence threshold for spectra containing ibu-
profen metabolites (green), 0.7–0.85 was considered as an inter-
mediate confidence band for containing ibuprofen metabolites
(amber) and <0.7 as the threshold below which there are no ibupro-
fen metabolites present in the spectrum (red). Using this threshold,
the COMPASS approach identified 175 of 4614 spectra as contain-
ing ibuprofen metabolites with high or intermediate confidence
(China N¼4; Japan N¼0; UK¼12 and USA ¼159). Visual exam-
ination of these spectra at CC > 0.7 confirmed that all of the
selected urinary 1H NMR spectra indeed contained ibuprofen
metabolites. This shows the false-positive rate (spectra classified as
containing ibuprofen metabolites that did not contain ibuprofen
metabolites as determined by visual inspection) for COMPASS ap-
proach is 0% when the threshold is set at a CC of �0.7. This result
was comparable to our previously published supervised method
using orthogonal PLS-discriminant analysis (OPLS-DA) modelling
of pre-selected drug metabolite signals, which found 176 samples
containing major ibuprofen metabolites, China N¼4 (0.5%); Japan
N¼1; UK¼10 (2.0%) and USA¼161 (7.5%) (Loo et al., 2012).
We calculated the sensitivity and specificity of the COMPASS ap-
proach and found it to be highly accurate, ROC AUC¼0.99
(Fig. 3F). We compared the discrepancies between the two methods
and found 17 out of 4614 samples identified by COMPASS as con-
taining ibuprofen metabolites that were missed in the OPLS-DA
analysis (Supplementary Fig. S7A). Conversely, 16 samples with CC
value <0.7 were uniquely identified by the OPLS-DA method
(Supplementary Fig. S7B). Visual examination of these 16 spectra
showed that one spectrum with CC¼0.063 was unlikely to contain
ibuprofen metabolites (decision based on two independent experi-
enced NMR spectroscopists). Thus, based on a CC threshold of 0.7,
the performance of COMPASS was similar to the OPLS-DA method
whereby each method ‘under’ detected similar numbers of spectra as
containing ibuprofen metabolites amounting to a false negative rate
of <10% (of the 190 spectra visually confirmed to contain ibupro-
fen metabolites) for both methods. Specifically for the COMPASS
method, under-detection of these spectra was mainly due to low sig-
nal intensity of major ibuprofen metabolites combined with overlap-
ping of strong signals from the -CH3 resonance of ethanol at
1.2 ppm (Fig. 3E).

Within the COMPASS approach, the user can interactively ad-
just the CC threshold. For ibuprofen, we have shown an example of
a CC threshold of 0.7 (Fig. 3D). For illustration, we relaxed the CC
threshold to CC > 0.7 as high confidence and CC between 0.7 and
0.5 as intermediate confidence for spectra containing ibuprofen
metabolites whilst CC <0.5 was classified as not containing ibupro-
fen metabolites. Based on this more lenient threshold, the

Fig. 2. PCA model of the global (total spectrum) showing (A) scores plots for PC 1

and 2 and loading for PC 1 dominated by glucose metabolites; (B) scores plots for

PC 2 and 3 and loading for PC 2 also dominated by glucose metabolites and (C)

scores plots for PC 1 and 3 and loading for PC 3 dominated by ibuprofen and its

related metabolites (in the region between 0.5 and 1.5 ppm), acetaminophen and its

related metabolites (region around 2.13 ppm and between 7.1 and 7.4 ppm) and hip-

purate (region around 7.5–7.8 ppm). All PCA scores plots are colour coded to coun-

try: China (red), Japan (turquoise), UK (blue) and USA (grey)
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COMPASS approach identified 201 of 4614 spectra as containing
ibuprofen metabolites (China N¼5; Japan N¼0; UK¼15 and USA
¼181). Visual examination of these spectra with CC > 0.5 showed
all urinary 1H NMR spectra did contain ibuprofen metabolites with
the exception of one spectrum with CC¼0.638 that was difficult to
confirm without further spectroscopic analysis. Thus the false-
positive rate for COMPASS approach is 0.5% at a CC of 0.5. Using
a lenient threshold of a CC of 0.5, the COMPASS approach under-
detected eight spectra with no false positive, whereas OPLS-DA
method under-detected 35 spectra, thus the performance of
COMPASS was deemed to be superior to the OPLS-DA method.

We further illustrate this pipeline using a combination of the
major acetaminophen metabolites as the reference pattern
(Supplementary Fig. S8A). A clear separation of samples with and
without major acetaminophen metabolites can be identified using a
CC cut-off point of 0.75 (Supplementary Fig. 8B, C). For acetamino-
phen, we found the COMPASS approach slightly outperformed the
OPLS-DA method: N¼359 (COMPASS) versus N¼324 (OPLS-
DA), ROC curve AUC¼0.99 (Supplementary Fig. S8D). There were
56 samples that showed a discrepancy between the two methods
wherein COMPASS identified these spectra to contain major acet-
aminophen metabolites (11 spectra were deemed high confidence

based on a CC > 0.85 and the remaining 45 were deemed intermedi-
ate confidence with CC between 0.75 and 0.85) but where the
OPLS-DA method failed to detect (Supplementary Fig. S8E). Visual
inspection of these spectra showed that these spectra all contained
resonances from acetaminophen metabolites (results verified by two
independent and experienced NMR spectroscopists). In contrast, 19
samples were not identified by the COMPASS approach but were
identified by the OPLS-DA method (Supplementary Fig. S8F).
Visual examination of these 19 samples showed four spectra with a
CC < 0.75 that did not contain visibly identifiable acetaminophen
metabolites. Thus, the COMPASS approach under-detected a total
of 15 (4.0%) of the spectra containing acetaminophen when com-
pared to the supervised method with no false-positive results for the
identification acetaminophen metabolites in the spectra, thus
COMPASS outperformed the OPLS-DA method.

In addition to the detection of major sources of variance in the
INTERMAP dataset (glucose, ibuprofen and acetaminophen), the
multi-block-PCA approach enabled extraction of finer detail across
the whole spectral region, independent of peak intensity. We illus-
trate this concept using population characteristics such as latent dis-
eases (as illustrated with the presence of glycosuria and high levels
of lysine in the urine, potentially reflecting diabetes and disorders of

Fig. 3. Multi-block-PCA for region 1–1.5 ppm showing: (A) scores plots for PC 1 and 2 and loading for PC 1 dominated by ibuprofen and its related metabolites; (B) scores

plots for PC 2 and 3 and loading for PC 2 dominated by ethanol and its related metabolites, ethyl glucuronide and ethyl glycoside; (C) the robust pattern consists of a combin-

ation of major ibuprofen metabolites were obtained using STOCSY; (D) the distribution of CC for the robust ibuprofen pattern, as shown in C; area are highlighted by green

panel corresponding to high confidence CC value whilst amber showing intermediate confidence CC value; (E) an exemplar NMR spectrum that show discrepancy between

COMPASS and OPLSD-DA methods. This spectrum shows low CC value (0.532) due to low signal intensity of major ibuprofen metabolites with overlapping strong signals

from ethanol at 1.2 ppm and (F) receiver-operating characteristic (ROC) curve comparing sensitivity and specificity of COMPASS against the results from the OPLSD-DA

method. All PCA scores plots are colour coded according to country: China (red), Japan (turquoise), UK (blue) and USA (grey)
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amino acid metabolism respectively; Figure 4A–D, Supplementary
Materials S9 and S10); dietary habits [e.g. consumption of citrus
fruits, alcohol and artificial sweeteners represented by proline beta-
ine (Heinzmann et al., 2010), ethanol (Teague et al., 2004) and
erythritol (Regnat et al., 2018), respectively; Supplementary
Materials S11–S13] and genetic factors [e.g. high urinary excretion
of beta-aminoisobutyric acid (Yanai et al., 1969), Supplementary
Material S14]. Supplementary Material Files S9–S14 provide exem-
plars of the typical reports that can be obtained from COMPASS.
Each report combines illustrations of the reference spectra for the
metabolites of interest identified using STOCSY to determine the
distribution of CC, together with randomly selected spectra from
the high, intermediate and low confidence categories and a table of
the calculated population statistics for each metabolite. The propor-
tion of the population specimens manifesting spectral patterns relat-
ing to the aforementioned conditions, stratified by country, is
provided in Table 1. For example, we detected 447 individuals of
which 49.7% (N¼222) from Japan; 37.3% (N¼167) from the
USA; 7.2% (N¼32) from China and 5.8% (N¼26) from the UK
were identified to contain urinary levels of lysine above the set CC
threshold (>0.6). We also observed that a higher proportion of
Asian participants (50.2% in China and 40.9% in Japan) excreted
detected levels of beta aminoisobutyric acid in their urine than those
observed for the Caucasian population (21.8% in the UK and
25.6% in USA).

4 Discussion

The COMPASS workflow provides a means of obtaining a rapid
overview of the proportion of individuals within a population that
excrete specific metabolites. The major advantage of the COMPASS
approach is that it uses PCA to initially model data, which is an un-
supervised method and allows agnostic exploration of the data, un-
like discriminant analyses methods which use classification
knowledge to obtain maximum differentiation between two or more
classes and are thereby susceptible to overfitting. The COMPASS
approach therefore allows identification of multiple features of
interest that can be extracted interactively within the COMPASS ap-
proach without requiring pre-selection of a training set. This delivers
additional biological knowledge on the dataset. Since the ‘PCA
blocking’ approach investigates the dataset on a much finer level of

detail compared to the ‘default’ whole dataset approach, phenom-
ena such as latent disease, genetic disorders and consumption of
drugs or specific foods are more easily detected by interpretation of
the calculated sub-models, whilst the risk of misinterpretations is
reduced since the model is no longer skewed by one or two high in-
tensity variables in many cases. In contrast, the ‘default’ approach,
in which the whole spectrum is normalized to the median spectrum,
will always result in a model that is biased towards high intensity
signals. Here, the COMPASS strategy allows a more efficient map-
ping of class-related patterns (in this case country), as well as detec-
tion of biomarkers that, differentiate the urinary metabolomes of
the four countries measured, each with differing risks and preva-
lence of cardiovascular risk factors.

The incorporation of a traffic light display system based on the
CC threshold enables the user to focus on the visual inspection of
spectra from ambiguous cases (i.e. amber) rather than reviewing the
entire dataset. The approach offers an efficient means for explaining
deviation in anomalous samples and for identification of sub-
populations or inherent structure within the data. The distribution
of the CC across the dataset relating to selected metabolites, offers
the user some guidance on the appropriate CC threshold for defining
the presence and absence of a specific reference pattern. The user
can further optimize the threshold, as this can be done interactively
and iteratively with the COMPASS tools. Typically, we found the
CC to be remarkably accurate in picking relevant reference patterns
unless there was interference with other metabolites, which per-
turbed the pattern. However, the use of multiple features from a me-
tabolite enabled a more robust CC value for the pattern, which is
consequently less affected by peak overlap for any given signal, to
be defined (as shown in the case of e.g. glucose and ibuprofen where
the CC threshold can be set to as low as 0.5). Nonetheless, even for
metabolites such as ethanol (which is illustrated based on a single
triplet corresponding to the –CH3 resonance at 1.20 ppm) and pro-
line betaine (which relies on two singlets at 3.11 and 3.30 ppm), the
COMPASS approach remained effective in identifying spectra con-
taining these features, although in these scenarios the CC threshold
is set to a relatively conservative CC at >0.85 to limit the number of
false negatives. The user may, if they choose, also define the ethanol
pattern using both the –CH3 resonance at 1.20 ppm and the –CH2

quartet at 3.65 ppm. We assessed both and found that the use of the
–CH3 resonance alone was superior in this case at the CC the

Fig. 4. (A) Scores plot for PC 1 and 2, (B) loadings plot of the multi-block-PCA for region 3.5–4.0 ppm with PC 1 dominated by glucose metabolites, (C) scores plot for PC 1

and 2 and (D) loadings plot of the multi-block-PCA for region 1.5–2.0 ppm with PC 1 dominated by lysine metabolites. All PCA scores plots are colour coded according to

country: China (red), Japan (turquoise), UK (blue) and USA (grey)

5234 R.L.Loo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/21/5229/5874439 by U
m

ea U
niversity Library user on 27 M

ay 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa649#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa649#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa649#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa649#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa649#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa649#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa649#supplementary-data


threshold of 0.85 and this is mostly due to extensive peak over-
lapped for the –CH2 resonance.

The COMPASS approach is versatile and enables the user to de-
fine the size of each PCA block using either a uniform or non-
uniform PCA block sizes. For the INTERMAP dataset, we used a
uniform block size of 0.5 ppm for simplicity. Generally, we found
that adjustment of either block size or start/end point for the PCA
block to ensure metabolic features is not split between two PCA
blocks (e.g. varying the block size to include the full multiplets of ly-
sine at 1.47 ppm ( c-CH2) and at 1.91 ppm ( b-CH2) within a single
block) did not affect the overall results (data not shown). The low
impact of a peak being ‘split’ between blocks in this case is most
likely due to the fact that the data calculation of the reference pat-
tern reverts back to using all the spectral data points for STOCSY
rather than using the single block region. We also assessed the abil-
ity of the method to extract more metabolic features by reducing the
PCA block size to half. We found PCA with smaller block sizes gen-
erally identified similar features as the larger block size at 0.5 ppm.
However, for certain PCA blocks, additional key features may be
identified e.g. for the multi-block PCA for 1–1.25 ppm, a singlet at
1.15 ppm (2-methyl-erythritol) which was predominately observed
in the participants from China (results not shown) and likely reflects
consumption of leafy vegetables (Smith et al., 2007). Although in
the current example, the size of the block had minimal impact when
reducing from 0.5 to 0.25, we recommend that the selection of block
size should be data driven since it is somewhat arbitrary. In selecting
the block size, the user should consider the balance between subdi-
viding spectral regions into enough blocks to minimize the effect of
high variance, spectral resonances in particular regions dominating
the model and creating blocks that are so small that multiple signals
can be split or move between blocks. There is no reason all blocks
should be of equal size and for regions that contain mainly noise
with only a few signals then it would be logical to increase the block
size. Another consideration at this point would be whether there is
merit in applying different scaling to particular blocks or normalis-
ing within block. The optimal parameters will be dependent on the
dataset and what the metabolic properties of that dataset contain,
which is why the user interface is necessary rather than trying to
achieve a fully automated pipeline.

The application of the COMPASS approach should have real-
world benefit for clinicians including public health specialists and
epidemiologists in augmenting rapid population metabolic profiling
that could support public health campaigns both nationally and
internationally. Here, we have demonstrated the feasibility of rapid-
ly identifying disease patterns. For example, trends for glycosuria
ranging from 2.5% in China to 5.4% in the USA which likely
related to undiagnosed type 2 diabetes or renal disease. We also
found the frequencies of ’high’ beta-aminoisobutyric acid excretors
are higher in China (50.2%) and Japan (40.9%) than the UK
(21.8%) and USA (25.6%). This observation is consistent with lit-
erature, which suggests high excretion of beta-aminoisobutyric acid
(>79.4 mg/mg creatinine) is an autosomal recessive trait more com-
mon in Chinese and Japanese population with a prevalence of 35–
40% of the population considered to be ‘high’ excretors of beta-
aminoisobutyric acid compared to around 10% in Caucasian

populations (Yanai et al., 1969). We detected 447 individuals that
showed urinary excretion of relatively high levels of lysine. The self-
reported lysine intake per day, estimated based on consumption of
both animal and vegetable protein intake including those from cer-
eal protein, pulse-soy protein and amino acid supplementation, was
found to be the highest for USA (6.23 g/day) and the lowest for
China (3.85 g/day) whilst Japan (5.55 g/day) and the UK (5.71 g/
day) were similar. This finding was comparable to those observed
by Pellett and Ghosh (Pellett and Ghosh, 2004). Visual examination
of these spectra showed that some of the urinary NMR spectra from
Japan excreted high urinary levels of lysine and this may be indica-
tive of latent diseases such as cystinuria, or generalized amino acidu-
ria. As we did not include the quantification of metabolites within
the COMPASS pipeline, and therefore are unable to provide the con-
centration of the metabolite. However, future work will include
developing a strategy for robust quantification of the metabolites of
interest to enable improved differentiation of different disease pat-
terns of interest.

Although we illustrated our approach using NMR data, the
method is generic and may be applicable to other large complex
dataset such as MS and DNA microarray datasets or multi-modal
datasets. Due to the cost effectiveness and high throughput nature of
spectroscopic techniques in phenotyping large number of biological
samples with high reproducibility, there have been increasing num-
ber of studies involving large-scale population cohort studies. A key
benefit of the COMPASS approach is thus its capacity for generating
rapid semi-automated population statistics, which can be used for
multiple purposes. For example: to identify latent diseases, which
may show higher prevalence than expected (e.g. cystinuria urinary
excretion of lysine in Japan); to confirm disease prevalence as per lit-
erature reports (e.g. beta-aminoisobutyric acid in China); and to de-
tect undiagnosed disease patterns (e.g. glycosuria relating to latent
type 2 diabetes). In addition, dietary (e.g. proline betaine and alco-
hol) and drug intake (e.g. ibuprofen and acetaminophen) habits as
well as patterns of use of specific foods (e.g. erythritol, which was a
commonly used low-calorie sugar substitute in Japan in the 1990s
(Regnat et al., 2018) but not available in the UK or US at the time)
can also be observed at the population and sub-population level.
The ultimate goal is to use this approach to ‘screen’ the population
or to define heterogeneity within a population according to disease
prevalence or risk based on factors including but not limited to
food/drug/supplement intake.

5 Conclusion

The COMPASS approach can be used to improve the analysis of
large and complex datasets generated within the biomedical scien-
ces. As the current trend in analytical instrumentation is leaning to-
wards collection of more and more variables for more samples,
informatics methods need to improve in order not to ‘drown’ in the
complexity and size of the data. The concept of division of large
datasets into blocks of fewer variables is not novel by any means but
the COMPASS approach presented here combines the use of
multiple-blocked data with statistical spectroscopy to enhance

Table 1. Population statistics for various features identified by COMPASS approach

Feature China Japan UK USA CC threshold

N¼ 826 (%) N¼ 1138 (%) N¼ 496 (%) N¼ 2154 (%)

Ibuprofen 4 (0.5) 0 12 (2.4) 159 (7.4) 0.70

Ibuprofen 5 (0.6) 0 15 (3.0) 181(8.4) 0.50

Acetaminophen 36 (4.4) 24 (2.1) 65 (13.1) 234 (10.9) 0.75

Glucose 21 (2.5) 38 (3.3) 7 (1.4) 117 (5.4) 0.50

Lysine 32 (3.9) 222 (19.5) 26 (5.2) 167 (7.8) 0.60

Proline betaine 138 (16.7) 328 (28.8) 176 (35.5) 793 (36.8) 0.85

Ethanol 144 (17.4) 405 (35.6) 85 (17.1) 268 (12.4) 0.85

Erythritol 5 (0.6) 24 (2.1) 0 0 0.78

Beta isobutyric acid 415 (50.2) 465 (40.9) 108 (21.8) 552 (25.6) 0.90
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recovery and quality of metabolic information. However, the main
benefit of the application we present here is the capacity for generat-
ing rapid semi-automated population statistics.
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