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1. Introduction 

Hamiltonian systems are widely used models in science and engineering. In the deterministic case, 
one main feature of such models is that the solution conserves exactly the Hamiltonian energy for all 
times. The design and study of energy-preserving numerical methods for such problems has attracted 
much attention in the recent years, see for instance [7,8,12,17,22,23,29,30,34,37–39,49] and references 
therein. 

For an additive white noise perturbation of such Hamiltonian systems, the energy is no longer 
constant along time, but grows in average linearly for the exact solution, which reveals non trivial to 
reproduce by numerical methods, see [9,13,14,19,21,28,43,44],  and extensions to the  case  of stochastic  
partial diferential equations in [3,4,15,18,41]. 

In  this paper,  we  propose and analyse a drift-preserving scheme  for stochastic Poisson  systems  
subject to an additive noise perturbation. Such problems are a direct generalization of the stochastic 
diferential equations (SDEs) studied recently in [13], as well as in all the above references, but the 
proposed numerical integrator is not a trivial generalization of the one given in [13]. 

In Section 2, we propose a new numerical method that exactly satisfes a trace formula for the 
linear growth for all times of the expected value of the Hamiltonian energy and of the Casimir of the 
solution. Such long-time behaviour corresponds to the one of the exact solution of stochastic Poisson 
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systems and  can also be seen as a long-time  weak convergence estimate. For the  sake  of complete-
ness, in Section 3, we prove mean-square and weak orders of convergence of the proposed numerical 
method under classical assumptions on the coefcients of the problem. Finally, Section 4 is devoted to 
numerical experiments illustrating the main properties of the new numerical method for stochastic 
Hamiltonian systems and Poisson systems. 

2. Drift-preserving scheme for stochastic Poisson problem 

This section presents the problem, introduces the drift-preserving integrator and shows some of its 
main geometric properties. 

2.1. Setting 

For a fxed dimension d, let  W(t) ∈ R
d denote a standard d-dimensional Wiener process defned for 

t > 0 on a probability space equipped with a fltration and fulflling the usual assumptions. For a fxed 
dimension m and a smooth potential V : Rm → R, we consider the separable Hamiltonian function 
of the form �1 

m 
2H(p, q) = pj + V(q).  (1)  

2 
j=1 

We next set X(t) = (p(t), q(t)) ∈ R
m × R

m and consider the following stochastic Poisson system 
with additive noise � 

dX(t) = B(X(t))∇H(X(t)) dt + dW(t).  (2)  0 

Here, B(X) ∈ R
2m×2m is a smooth skew-symmetric matrix and ∈ R

m×d is a constant matrix. The 
initial value X0 = (p0, q0) of the problem  (2) is assumed to be either non-random or a random  vari-
able with bounded moments up to any order (and adapted to the fltration). For simplicity, we assume 
in the analysis of this paper that (x, y) �→ B(x)∇H(y) is globally Lipschitz continuous on R2m × R

2m 

and that H and B are C7, resp.  C6-functions with all partial derivatives with at most polynomial 
growth. This is to ensure existence and uniqueness of solutions  to  (2) for  all times  t > 0 as well  
as bounded moments at any orders of such solutions. These regularity assumptions on the coef-
cients B and H will also be used to show strong and weak convergence of the proposed numerical 
scheme  for (2). We observe  that one could  weaken these assumptions,  but this is not  the aim of the  
present work. The present setting covers, for instance, the following examples: simplifed versions of 
the stochastic rigid bodies studied in [45,47], the stochastic Hamiltonian systems considered in [13] 
by taking � 

0 −IdmB(X) = J = Idm 0 

the constant canonical symplectic matrix, for which the SDE (2) yields 

dp(t) = −∇V(q(t)) dt + dW(t), dq(t) = p(t) dt, 

the Hamiltonian considered in [9] (where the  matrix  is diagonal), the linear stochastic oscillator  
from [44], and various stochastic Hamiltonian systems studied in [36, Chap. 4], see also [35], or 
[26,27,42,50]. 

Remark 2.1: We emphasize that our analysis is not restricted to the above form of the Hamiltonian. 
Indeed, the results below as well as the proposed numerical scheme can be applied to the more general 
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6 D. COHEN AND G. VILMART 

problem (no needed of partitioning the vector X neither to have the separable Hamiltonian (1)) � 

dX(t) = B(X(t))∇H(X(t)) dt + dW(t),0 

as long as the Hessian of the Hamiltonian has a nice structure. One could for instance consider a 
(linear in p) term of the  form  Ṽ(q)p or most importantly the case when the Hamiltonian is quadratic 
as in the example of a stochastic rigid body problem. See below for further details. 

Applying Itô’s lemma to the function H(X) on the solution process X(t) of (2), one obtains 

� � 

dH(X(t)) = ∇H(X(t)) B(X(t))∇H(X(t)) + 
1
Tr ∇2H dt 

2 0 0 � 

+ ∇H(X(t)) dW(t).  (3)  0 

Using the skew-symmetry of thematrix  B(X), we have  ∇H(X)TB(X)∇H(X) = 0. Furthermore, using 
that the partial Hessian ∇pp 

2 H(X) = Idm is a constant matrix, thanks to the separable form of the 
Hamiltonian (1), and rewriting the above equation in integral form and taking the expectation, one 
fnally obtains the so-called trace formula for the energy of the stochastic Poisson SDE (2): 

1 
E [H(X(t))] = E [H(X0)] + Tr t.  (4)  

2 

This shows that the expected energy of the exact solution of (2) grows linearly with time for all t > 0. 

Remark 2.2: Observe that the form of the noise term in equation (2) makes the term 

� � 

Tr ∇2H = Tr0 0 

in (3) independent of the stochastic process X(t). Hence  one obtains the linear growth along  time of  
the expected energy in (4). In general, this is not the case if one would consider a non-zero additive 
noise in all the component or a multiplicative noise in (2). Note however that the linear growth prop-
erty of the expected energy is still valid if one considers a more general Hamiltonian function (1) with 
kinetic energy given by 12 p M−1p, with a given invertible mass matrix  M. 

Our objective  is to derive  and analyse a new numerical scheme for (2) that possesses the same trace  
formula for the energy for all times. 

2.2. Defnition of the numerical scheme 

The numerical integrator studied in [13] cannot directly be applied to the stochastic Poisson sys-
tem (2). Our idea is to combine a splitting scheme with one of the (deterministic) energy-preserving 
schemes from [17]. Observe that a similar strategy was independently presented in [20] in the  par-
ticular context of the Langevin equation with other aims than here. We thus propose the following 
time integrator for problem (2), which is shown in Theorem 2.2 to be a drift-preserving integrator for 
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all times: � �� 
h

Y1 := Xn + W(tn + )−W(tn) ,0 2 � 
Y1 + Y2

1 

Y2 := Y1 + hB ∇H(Y1 + θ(Y2 − Y1)) dθ , (5)
2 0 � �� � 

h
Xn+1 = Y2 + W(tn+1)−W tn + .0 2 

In  the above  formulas, we denote the step  size of the drift-preserving scheme with  h > 0 and  discrete  
times with tn = nh. 

Remark 2.3: (Numerical implementation) The middle step in Equation (5) requires, in general, the 
solution to a nonlinear system of equations. Even in higher dimension, if the problem is not stif, this 
can be solved by fxed point iterations rather than Newton iterations, which makes the computational 
complexity similar to that of an implicit Runge–Kutta scheme with two stages, see [17, Section 2.2] 
or [24, Chapter VIII.6] for instance. 

Remark 2.4: (Further extensions) Let us observe that the (deterministic) energy-preserving scheme 
from [17] present in the term in the middle of (5) could be replaced by another (deterministic) 
energy-preserving scheme for (deterministic) Poisson systems, see for example: [6,8,10,48] or a  
straightforward adaptation of the energy-preserving Runge–Kutta schemes for polynomial Hamil-
tonians in [11]. Let us further remark that it is also possible to interchange the ordering in the 
splitting scheme by considering frst half a step of the (deterministic) energy-preserving scheme, then 
a full step of the stochastic part, and fnally again half a step of the (deterministic) energy-preserving 
scheme. Finally, let us add that one could add a damping term in the SDE (2) to compensate for 
the drift in the energy thus getting conservation of energy for such problems (either in average or 
a.s.). In this case, one would add the damping term in the frst and last equations of the numerical 
scheme (5) in order to get a (stochastic) energy-preserving splitting scheme. An example of applica-
tion is Langevin’s equation, a widely studied model in the context of molecular dynamics. We do not 
pursue further this question. 

We now show the boundedness along time of all moments of the numerical solution given by (5). 

Lemma 2.1: Let T > 0. Apply the drift-preserving numerical scheme (5) to the Poisson system with addi-
tive noise (2) on the compact time interval [0, T]. One then has the following bounds for the numerical 
moments: for all step sizes h assumed small enough and all m ∈ N, 

E[|Xn|2m]  Cm, 

for all tn = nh  T, where Cm is independent of n and h. 

Proof: To show boundedness of the moments of the numerical solution given by (5), we use [36, 
Lemma 2.2, p. 102], which states that it is sufcient to show the following estimates: 

√ 
|E [Xn+1 − Xn|Xn]|  C (1 + |Xn|) h and |Xn+1 − Xn|  Mn(1 + |Xn|) h, 

where C is independent of h and Mn is a random variable with moments  of all orders bounded  uni-
formly with respect to all h small enough. Since the numerical scheme (5) is a splitting method, it is 
more convenient to apply [36, Lemma 2.2, p. 102] to the Markov chain {X0, Y1, Y2, X1, . . .} instead of 
the Markov chain {X0, X1, . . .}. This makes the verifcation of the above estimates immediate using 
the linear growth property of the coefcients of the SDE (2), a consequence of their Lipschitzness. � 
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2.3. Exact drift preservation of energy 

Weare now inposition to prove themain feature of the proposednumericalmethod (5)which benefts  
from the very same trace formula for the energy as the one for the exact solution to the stochastic 
Poisson problem (2), hence the name drift-preserving integrator for this numerical scheme. 

Theorem 2.2: Consider the numerical scheme (5) applied to the Poisson system with additive noise (2). 
Then, for all time steps h assumed small enough, the expected energy of the numerical solution satisfes 
the following trace formula: 

1 
E [H(Xn)] = E [H(X0)] + Tr tn (6)

2 

for all discrete times tn = nh, where n ∈ N. 

Proof: The frst step of the drift-preserving scheme can be rewritten as 

h �tn+ 2 
Y1 = Xn + dW(s)0tn 

and an application of Itô’s formula gives 

h 
E [H(Y1)] = E [H(Xn)] + Tr . 

4 

Since the second step of the drift-preserving scheme (5) is the deterministic energy-preserving 
scheme from [17], one then obtains 

E [H(Y2)] = E [H(Y1)] . 

Finally, as in the beginning of the proof, the last step of the numerical integrator provides 

h h 
E [H(Xn+1)] = E [H(Y2)] + Tr = E [H(Y1)] + Tr 

4 4 
h = E [H(Xn)] + Tr . 
2 

The identity (6) then follows by induction on n. A recursion now completes the proof.  � 

2.4. Splitting methods with deterministic symplectic integrators and backward error 
analysis: linear case 

As symplectic integrators for deterministic Hamiltonian systems or Poisson integrators for determin-
istic Poisson systems have proven to be very successful [25, Chapters VI and VII], it may be tempting 
to use them in a splitting scheme for the SDE (2).  One could for instance replace  the (deterministic)  
energy-preserving scheme in the middle step of Equation (5) by a symplectic or Poisson integrator, 
such as for instance the second-order Störmer–Verlet method [24, Sect.  5] which turns  out to be  
explicit in the context of a separable Hamiltonian (1). Using a backward error analysis, see [40, Chap-
ter 10], [25, Chapter  IX], [32, Chapter 5], or [5, Chapter 5],  one arrives at the following result in the  
case of a linear Hamiltonian system with additive noise (2) (i.e. for a quadratic potential V), where 
the proposed splitting scheme is drift-preserving for a modifed Hamiltonian. 

Proposition 2.3: For a quadratic potential V in (1), consider the numerical discretisation of the Hamil-
tonian system with additive noise (2) (where B(x) = J for ease of presentation) by the drift-preserving 
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numerical scheme (5), where the energy-preserving scheme in the middle Y1 → Y2 is replaced by a 
deterministic symplectic partitioned Runge–Kutta method of order p. Then, there exists a modifed 
Hamiltonian Hh which is a quadratic perturbation of size O(hp) of the original Hamiltonian H, such 
that the expected energy satisfes the following trace formula for all time steps h assumed small enough, 

1 
E Hh(Xn) = E Hh(X0) + Tr σh tn,  (7)  

2 

for all discrete times tn = nh, where n ∈ N, and  σh = ∇pp 
2 Hh(x) is a constant matrix (independent of x). 

Proof: By backward error analysis and the theory of modifed equations, see for instance [25, Chapter  
IX], the symplectic Runge–Kutta method Y1 → Y2 solves exactly a modifed Hamiltonian system 
with initial condition Y1 and modifed Hamiltonian Hh(x) = H(x) +O(hp) given by a formal series 
which turns out to be convergent in the linear case for all h small enough (and with a quadratic  
modifed Hamiltonian). Following the lines of the proof of Theorem 2.2 applied with the modifed 
Hamiltonian Hh, and  observing that the  partial Hessian  ∇pp 

2 Hh(x) is a constant matrix independent 
of x (as Hh is quadratic), we deduce the estimate (7) for the averaged modifed energy. � 

1Observe in (7) that the constant scalar 1Tr(� σh �) = Tr(� �) +O(hp) is independent of x2 2 
and a perturbation of size O(hp) of the drift rate for the exact solution of the SDE in (6). 

Finally, note that an analogous result in the nonlinear setting (with nonquadratic potential V 
in (1)) does not seem straightforward due in particular to the non-boundedness of the moments 
of the numerical solution over long times and the fact that the modifed Hamiltonian Hh(p, q) is 
nonquadratic with respect to p in general for a nonquadratic potential V. 

2.5. Exact drift preservation of quadratic Casimir’s 

We now consider the case where the ordinary diferential equation (ODE) coming from (2), i.e. 
Equation (2) with = 0,  has a quadratic  Casimir of the form  

1
C(X) = X AX,

2 

with a symmetric constant matrix 

a b 
A = 

b c 

with a, b, c ∈ R
m×m. Recall that a function  C(X) is called a Casimir if ∇C(X) B(X) = 0 for all  X. 

Along solutions to the ODE, we thus have C(X(t)) = Const. This property is independent of the 
Hamiltonian H(X). 

In this situation, one can show a trace formula for the Casimir as well as a drift-preservation of this 
Casimir for the numerical integrator (5). 

Proposition 2.4: Consider the numerical discretisation of the Poisson system with additive noise (2) 
with the Casimir C(X) by the drift-preserving numerical scheme (5). Then,  

(1) the exact solution to the SDE (2) has the following trace  formula for the Casimir  

a 
E [C(X(t))] = E [C(X0)] + Tr t,  (8)  

2 

for all times t > 0. 
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(2) the numerical solution (5) has the same trace formula for the Casimir, for all time steps h assumed 
small enough, 

a 
E [C(Xn)] = E [C(X0)] + Tr tn,  (9)  

2 
for all discrete times tn = nh, where n ∈ N. 

Proof: The above results can be obtain directly by applying Itô’s formula and using the property of 
the Casimir function C(X). � 

Stochastic models with such a quadratic Casimir naturally appear for a simplifed version of a 
stochastic rigid body motion of a spacecraft from [45] which has the quadratic Casimir C(X) = X 2 

2 
or  a reduced model  for the  rigid body in a solvent from [47]. See also the numerical experiments in 
Section 4.3. 

3. Convergence analysis 

In this section, we study the mean-square and weak convergence of the drift-preserving scheme (5) 
on compact time intervals under the classical setting of globally Lipschitz continuous coefcients. 

3.1. Mean-square convergence analysis 

In this section, we show the mean-square convergence of the drift-preserving scheme (5) on compact 
time intervals under the classical setting of Milstein’s fundamental theorem [36, Theorem 1.1]. 

Theorem 3.1: Let T > 0. Consider the Poisson problem with additive noise (2) and the drift-preserving 
integrator (5). Then, for all time steps h assumed small enough, the numerical scheme (5) converges with 
order 1 in the mean-square sense: 

2] 1/2 
E[ X(tn) − Xn   Ch, 

for all tn = nh   T, where the constant C is independent of h and n. 

Proof: Denoting f (x) = B(x)∇H(x), a Taylor  expansion of  f in the exact solution of (2) gives � � h 

X(h) = X0 + hf (X0) + W(h) + hf (X0) W(t) dt + REST1,0 0 0 

where the term (denoting f the bilinear form for the second order derivative of f ) 

h t h 1 

REST1 = f (X0) f (X(s))ds + (1 − θ)f (X0 + θ(X(t) − X0)) 
0 0 0 0 

× (X(t) − X0, X(t) − X0) dθ dt 

is bounded in the mean and mean-square sense as follows: 

E[REST1]   Ch2 and E[ REST1 
2]1/2   Ch2, (10) 

where C is a constant independent of h, but that depends on  X0 = x with at most a polynomial growth. 
Performing a Taylor expansion of f in the numerical solution (5) gives, after some straightforward 
computations, � � � 

h
X1 = X0 + hf (X0) + W(h) + hf (X0) W + REST2,0 0 2 



� �

�

�

� �

11 INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 

where the term REST2 analogously satisfes the bounds (10). 
The above computations result in the following local error estimates, 

2]1/2 = O(h3/2E[X(h) − X1] = O(h2), E[ X(h) − X1 ), (11) 

where the constants in O depend on X0 = x with at most a polynomial growth. An application 
of Milstein’s fundamental theorem, see [36, Theorem 1.1], fnally shows that the scheme (5) con-
verges with global order of convergence 1 in the mean-square sense, as consequence of the local error 
estimates (11) and Lemma 2.1. This concludes the proof. � 

3.2. Weak convergence analysis 

The proof of weak convergence of the drift-preserving scheme (5) on compact time intervals easily 
follows from [46, Proposition 6.1], where convergence of the Strang splitting scheme for SDEs is 
shown. See also [2,31] for related results.  

Theorem 3.2: Let T > 0. Consider the Poisson problem with additive noise (2) and the drift-preserving 
integrator (5). Then, there exists h∗ > 0 such that for all 0 < h   h∗, the numerical scheme converges 
with order 2 in the weak sense: for all ∈ CP 

6 (R2m , R), the space of C6 functions with all derivatives up 
to order 6 with at most polynomial growth, one has 

|E[ �(X(tn))] − E[ �(Xn)]|   Ch2, 

for all tn = nh   T, where the constant C is independent of h and n. 

4. Numerical experiments 

In this section, we illustrate numerically the above analysis of the proposed drift-preserving 
scheme (5), denoted by DP below. Furthermore, we compare it with the well-known integrators, 
in particular the Euler–Maruyama scheme (denoted by EM) and the backward Euler–Maruyama 
scheme (denoted by BEM). The frst and second Hamiltonian test problems considered (linear 
stochastic oscillator and stochastic mathematical pendulum) use parameter values similar to those 
in [13]. The third  test  problem is a stochastic rigid  body model which  is a Poisson  system perturbed  
by white noise, but not a Hamiltonian system. For nonlinear problems, we use fxed-point iterations 
for the implementation of the schemes, but one could use Newton iterations as well, see Remark 2.3. 

4.1. The linear stochastic oscillator 

The linear stochastic oscillator has extensively been used as a test model since the seminal work [44]. 
We thus frst consider the SDE (2) with B(X) = J the constant 2 × 2 Poisson matrix and the following 
Hamiltonian 

1 1 
H(p, q) = p2 + q2. 

2 2 
Furthermore, the initial values are (p0, q0) = (0, 1) and we consider a one dimensional noise with 
parameter = 1. 

For this problem, the integral present in the drift-preserving scheme (5) can be computed exactly, 
resulting in an explicit time integrator:  ⎞��⎛ 

h
W tn + − W(tn)2⎜⎝ 

⎟⎠Y1 := Xn + , 
0 
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⎛ ⎞
h2 

1 − −h 
41 ⎜⎜⎝ 

⎟⎟⎠Y2 := Y1,h2 h21 + 4 h 1 − 
4 ⎞��⎛ 

h 
W(tn+1) − W tn + 

2⎜⎝ 
⎟⎠Xn+1 = Y2 + . 

0 

This numerical scheme is diferent from the one proposed in [13]. 
In Figure 1, we compute the expected values of the energy H(p, q) for various numerical integra-

tors. This is done using the step sizes  h = 5/24, resp.  h = 100/28, and the time intervals [0, 5], resp. 
[0, 100]. For the numerical discretisation of the linear stochastic oscillator, we choose the (backward) 
Euler–Maruyama schemes (EM and BEM), the drift-preserving scheme (DP), and also the stochastic 
trigonometric method from [14] (STM). For the considered problem, the stochastic trigonometric 
method (STM) also has an exact trace formula for the energy, see [14] for details. We approximate 
the values of the expected energies using averages over M = 106 samples. Similarly to the stochastic 
trigonometric method (STM) from [14], one can observe the perfect long-time behaviour of the drift-
preserving scheme with exact averaged energy drift along time, as stated in Theorem 2.2. In contrast, 
the left picture of Figure 1 illustrates that the expected energy of the classical Euler–Maruyama scheme 
drifts exponentially with time, while the backward Euler–Maruyama scheme exhibits an inaccurately 
slow growth rate, as emphasized in [44]. 

In Figure 2, we illustrate numerically the strong rate of convergence of the drift-preserving 
scheme (5) and compare with the other schemes. To this aim, we discretize the linear stochastic 
oscillator on the time interval [0, 1] using step sizes ranging from h = 2−6 to h = 2−10 and we use 
as a reference solution the stochastic trigonometric method with small time step href = 2−12. The  
expected values are approximated by computing averages over M = 106 samples. One can observe 
the mean-square order 1 of convergence of the drift-preserving scheme (5) with lines of slope 1 in 
Figure 2, which corroborates Theorem 3.1. 

Next, Figure 3 illustrates the weak convergence rate of the drift-preserving scheme (5). For simplic-
ity, we only display the errors in the frst and second moments since explicit formulas are available for 
these quantities. We take the noise scaling parameter = 0.1 and step sizes ranging from h = 2−4 to 
h = 2−16 . The remaining parameters are the same as in the previous numerical experiment. The lines 

Figure 1. Linear stochastic oscillator: numerical trace formulas for E[H(p(t), q(t))] on the interval [0, 5] (left) and [0, 100] (right). 
Comparison of the Euler–Maruyama scheme (EM), the stochastic trigonometric method (STM), the drift-preserving scheme (DP), 
the backward Euler–Maruyama scheme (BEM), and the exact solution. 
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Figure 2. Linear stochastic oscillator: mean-square convergence rates for the backward Euler–Maruyama scheme (BEM), the 
Euler–Maruyama scheme (EM), the drift-preserving scheme (DP), and the stochastic trigonometric method (STM). Reference lines 
of slopes 1, resp. 1/2. 

Figure 3. Linear stochastic oscillator: weak convergence rates for the backward Euler–Maruyama scheme (BEM), the 
Euler–Maruyama scheme (EM), the drift-preserving scheme (DP), and the stochastic trigonometric method (STM). Refer-
ence lines of slopes 1, resp. 2. (a) Errors in the first moments E[q(t)] (left) and E[p(t)] (right), (b) Errors in the second moments 
E[q(t)2] (left) and E[p(t)2] (right).  
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Figure 4. Linear stochastic oscillator: numerical trace formulas for E[H(p(t), q(t))] on the interval [0, 100]. Comparison of the drift-
preserving scheme (DP), the splitting methods with, respectively, the symplectic Euler method (SYMP), the Störmer-Verlet method 
(ST), the explicit Euler method (splitEULER), the Heun method (splitHEUN), and the exact solution. 

of slope 2 in Figure 3 illustrates that the drift-preserving scheme has a weak order of convergence 2 
in the frst and second moments, as stated in Theorem 3.2. 

As symplectic integrators for deterministic Hamiltonian systems have proven to be very successful 
[25], it may be tempting to use them in a splitting scheme for the SDE (2). To study this, in Figure 4, 
we compare the behaviour, with respect to the trace formula, of the drift-preserving scheme and of 
the symplectic splitting strategies discussed in Section 2.4. We use  the classical  Euler symplectic and  
Störmer–Verlet schemes for the deterministic Hamiltonian and integrate the noisy part exactly. These 
numerical integrators are denoted by SYMP, resp. ST below. As a comparison with non-geometric 
numerical integrators, we also use the classical Euler and Heun’s schemes in place of a symplectic 
scheme. These numerical integrators are denoted by splitEULER and splitHEUN. We discretize the 
linear stochastic oscillator on the time interval [0, 100] with 27 step sizes. It can be observed that the 
splitting method using the non-symplectic schemes splitEULER or splitHEUN behaves as poorly as 
standard explicit schemes for SDEs: we hence display in Figure 4 only part of their numerical values 
due to their exponential growth. Although not having the exact growth rates, the two symplectic 
splitting schemes behave much better than the classical Euler–Maruyama scheme with a linear drift 
in the averaged energy with a perturbed rate, as predicted by Proposition 2.3. 

4.2. The stochastic mathematical pendulum 

Let us next consider the nonlinear SDE  (2) (with  B(X) = J the constant canonical Poisson matrix) 
with the Hamiltonian 

H(p, q) = 
1 
p2 − cos(q)

2 

√ 
and a noise in dimension one with parameter = 1. We take the initial values (p0, q0) = (1, 2). 

We again compare the behaviour, with respect to the trace formula, of the DP, SYMP, ST and spli-
tEULER schemes. To do this, we integrate numerically the stochastic mathematical pendulum on 
the time interval [0, 100] with 27 step sizes. The results are presented in Figure 5. Again, we recover 
the fact that the drift-preserving scheme exhibits the exact averaged energy drift, as predicted in 
Theorem 2.2. Furthermore, one can still observe a good behaviour of the symplectic strategies from 
Section 2.4 analogously to the linear case in Section 4.1, although the analysis in Proposition 2.3 is 
only valid for the linear case. 
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Figure 5. Stochastic mathematical pendulum: numerical trace formulas for E[H(p(t), q(t))] on the interval [0, 100]. Comparison of 
the drift-preserving scheme (DP), the splitting methods with, respectively, the symplectic Euler method (SYMP), the Störmer-Verlet 
method (ST), the explicit Euler method (splitEULER), and the exact solution. 

Figure 6. Stochastic rigid body problem: numerical trace formulas for the energy E[H(X(t))] (left) and for the Casimir E[C(X(t))] 
(right) for the drift-preserving scheme (DP), the Euler–Maruyama scheme (EM), the backward Euler–Maruyama scheme (BEM), and 
the exact solution. 

4.3. Stochastic rigid body problem 

We now consider an Itô version of the stochastic rigid body problem studied in [1,16,33] for instance. 
This system has the following Hamiltonian: 

H(X) = 
1 

X1
2/I1 + X2

2/I2 + X3
2/I3 ,

2 

the quadratic Casimir 

C(X) = 
1 

X1
2 + X2

2 + X2 ,32 
and the skew-symmetric matrix ⎛ ⎞ 

0 −X3 X2 
B(X) = ⎝ X3 0 −X1⎠ . 

−X2 X1 0 
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Figure 7. Stochastic rigid body problem: mean-square convergence rates for the backward Euler–Maruyama scheme (BEM), the 
drift-preserving scheme (DP), and the Euler–Maruyama scheme (EM). Reference lines of slopes 1, resp. 1/2. 

Figure 8. Stochastic rigid body problem: weak convergence rates in the first moment E[X1(tn)] (left) and second moment 
E[X1(tn)2] (right) for the drift-preserving scheme (DP), the Euler–Maruyama scheme (EM), and the backward Euler–Maruyama 
scheme (BEM). Reference lines of slopes 1, resp. 2. 

Here, we denote the angular momentum by  X = (X1, X2, X3) and take the moments of inertia to 
be I = (I1, I2, I3) = (0.345, 0.653, 1). The initial value for the SDE (2) is given by X(0) = (0.8, 0.6, 0) 
and we consider a scalar noise W(t) with = 0.25 (acting on the frst component X1 only). 

Observe that, even if the Hamiltonian has not the desired structure (1), one still has a linear drift in 
the energy since the Hamiltonian is quadratic and thus the Hessian matrix present in the derivation 
of the trace formula has the correct structure as noted in Remark 2.1. 

In Figure 6, we compute the expected values of the energy H(X) and the Casimir C(X) using 
N = 25 step sizes on the time interval [0, 4] (in order to see also the behaviour of the Euler–Maruyama 
scheme) along various numerical solutions. The expected values are approximated by computing 
averages over M = 106 samples. The exact long-time behaviour with respect to the energy and the 
Casimir averaged growths of the drift-preserving scheme can be observed in Figure 6, which corrob-
orates Theorem 2.2 and Proposition 2.4. As in the previous numerical experiment, one can also see 
that the growth rates of the Euler–Maruyama schemes are in contrast qualitatively wrong. 

Similarly to the previous example, we numerically illustrate in Figure 7 the strong convergence rate 
of the drift-preservation scheme (5)  for the  stochastic rigid body problem. To this aim, we discretize  
the problem on the time interval [0, 0.75] using step sizes ranging from h = 2−6 to h = 2−10 and 

= 2−12compare with a reference solution obtained with scheme (5) with href . We compute averages 
over M = 105 samples to approximate the expected values present in the mean-square errors. One 
observes again mean-square convergence of order 1 for the drift-preserving scheme. 
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Figure 9. Stochastic rigid body problem with two-dimensional noise: numerical trace formulas for the energy E[H(X(t))] (left) and 
for the Casimir E[C(X(t))] (right) for the Casimir E[C(X(t))] (right) for the drift-preserving scheme (DP), the Euler–Maruyama scheme 
(EM), the backward Euler–Maruyama scheme (BEM), and the exact solution. 

Next, Figure 8 illustrates the weak convergence rate of the drift-preserving scheme (5). We plot 
the weak errors in the frst and second moments of the frst component of the solutions using the 
parameters: = 0.1, T = 1, M = 2500 samples, and step sizes ranging from h = 2−10 to h = 2−20. 
The rest of the parameters are as in the previous numerical experiment. One can observe weak order 
2 in the frst and second moments for the drift-preserving scheme (up to Monte Carlo errors), which 
confrms again the statement of Theorem 3.2. 

Finally, in Figure 9, we take the same parameters as in the frst experiment of this subsection but 
we consider a noise in dimension two with the matrix � 

0.25 0 = 0 0.25 
. 

We then compute the expected values of the energy H(X) and the Casimir C(X) using N = 26 step 
sizes along various numerical solutions and display the trace formula for the energy � � 

1 1/I1 0 
E [H(X(t))] = E [H(X0)] + Tr t 

2 0 1/I2 

and the trace formula for the Casimir 
1 

E [C(X(t))] = E [C(X0)] + Tr t. 
2 

Again, one can observe in Figure 9 the excellent behaviour of the drift-preserving  scheme as stated  
in Theorem 2.2 and Proposition 2.4. 
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