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A B S T R A C T   

Caloric need has long been thought a major driver of appetite. However, it is unclear whether caloric need 
regulates appetite in environments offered by many societies today where there is no shortage of food. Here we 
observed that wildtype mice with free access to food did not match calorie intake to calorie expenditure. While 
the size of a meal affected subsequent intake, there was no compensation for earlier under- or over-consumption. 
To test how spontaneous eating is subject to caloric control, we manipulated O-linked β-N-acetylglucosamine (O- 
GlcNAc), an energy signal inside cells dependent on nutrient access and metabolic hormones. Genetic and 
pharmacological manipulation in mice increasing or decreasing O-GlcNAcylation regulated daily intake by 
controlling meal size. Meal size was affected at least in part due to faster eating speed. Without affecting meal 
frequency, O-GlcNAc disrupted the effect of caloric consumption on future intake. Across days, energy balance 
was improved upon increased O-GlcNAc levels and impaired upon removal of O-GlcNAcylation. Rather than 
affecting a perceived need for calories, O-GlcNAc regulates how a meal affects future intake, suggesting that O- 
GlcNAc mediates a caloric memory and subsequently energy balance.   

1. Introduction 

Energy need has long been considered a dominating driver of 
appetite (Adolph, 1947; Richter, 1927; Saper, Chou, & Elmquist, 2002; 
Waterson & Horvath, 2015). Physical activity and resting metabolism 
are believed to create a caloric deficit that spurs motivation to seek and 
then consume food until the need has been satisfied (Berridge, 2004; 
Burnett et al., 2016; Dietrich, Zimmer, Bober, & Horvath, 2015; Flier, 
2004; Mrosovsky; K. Williams & Elmquist, 2012). Sociocultural factors 
are known to influence when humans decide to eat. Most caloric regu
lation instead results from how much food is ingested per meal (Moran, 
2009; Woods, Seeley, Porte, & Schwartz, 1998). The timing of satiation 
depends on a cascade of neuroendocrine signals from the gut, adipose 
tissue and other organs that carry information about dietary calories and 
body energy stores (Fig. 1A) (Chaudhri, Salem, Murphy, & Bloom, 2008; 
Grill, 2010). Specialized neurocircuitry in the brain processes the 

information and then stops the eating (Abizaid & Horvath, 2008; Sohn, 
Elmquist, & Williams, 2013). Need-based accounts of food intake often 
have these circuits calculating need by encoding a target level – or set 
point – of body fatness against which deviations are measured and 
corrected (Berridge, 2004; J. M.; Friedman, 1998; Keesey & Hirvonen, 
1997; Kennedy, 1953). If body fatness may be an indirect measure of 
caloric availability other accounts define need as a function of direct 
caloric availability such as glucose utilization (Hopkins & Blundell, 
2017; Mayer, 1953). For example, eating increases blood glucose and 
the following surge in cellular adenosine triphosphate (ATP) has been 
proposed as a meal stopper (M. I. Friedman, 1995). Body fatness levels 
are comparatively stable but adipokine storage signals such as leptin 
fluctuate repeatedly over a day, have effects on food intake within 1 h 
and gauge the sensitivity to cholecystokinin and other meal-dependent 
signals (Barrachina, Martinez, Wang, Wei, & Tache, 1997; Boden, 
Chen, Mozzoli, & Ryan, 1996; Licinio et al., 1997; McMinn, Sindelar, 
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Havel, & Schwartz, 2000; Morton et al., 2005; Morton, Meek, & 
Schwartz, 2014; Sinha et al., 1996; D. L.; Williams, Baskin, & Schwartz, 
2006). These different theories can be assumed under a general 
need-based account that we call here the energy deficit model of food 
intake. The energy deficit model of food intake predicts that energy 
balance is protected on a meal-to-meal basis if not perturbed by 
non-metabolic factors (Chambers, Sandoval, & Seeley, 2013; Heisler & 
Lam, 2017; Le Magnen & Devos, 1970; Schwartz, 1997; Schwartz, 
Woods, Porte, Seeley, & Baskin, 2000; Speakman et al., 2011; West, Fey, 
& Woods, 1984). Although hedonic aspects may influence feeding, 
need-driven regulation of feeding is often argued to work near perfectly 
as body weight in humans fluctuates on average less than 1 kg per year 
(Lewis et al., 1997; Ochner, Barrios, Lee, & Pi-Sunyer, 2013; Rose
nbaum, Kissileff, Mayer, Hirsch, & Leibel, 2010). 

Criticism has been raised against a deficit-driven account of meta
bolic control of feeding behavior, especially in situations where there is 
no shortage of food as in environments offered by many societies today 
(Speakman, 2018). Under such living conditions a nutrient supply so 
low that it would threaten the life of the individual is rare (Woods, 
2004). Several papers have shown that free-living humans do not match 
their daily intake to energy expenditure (EE) (Edholm et al., 1970; 
Edholm, Fletcher, Widdowson, & McCance, 1955). Bouts of exercise 
usually decrease hunger-feelings and are not compensated by increased 
eating. Day-to-day calorie intake across cultures and ages varies by 
around 25% (Balogh, Kahn, & Medalie, 1971; Bingham et al., 1994; 
Champagne et al., 2013; Fukumoto et al., 2013; Nelson, Black, Morris, & 
Cole, 1989; Oh & Hong, 1999; Thackray, Deighton, King, & Stensel, 

2016). The prevalence of obesity, a state of excessive fat accumulation 
resulting from eating beyond one’s metabolic need, since the 1970’s has 
reached epidemic proportions. Obesity is now a major health problem 
worldwide (Collaboration, 2017; Ng et al., 2014). From associated 
conditions such as cardiovascular disease and cancer, obese patients run 
a higher risk of premature death (Global et al., 2016; Prospective Studies 
et al., 2009). Today a majority of patients lack effective treatment 
(Booth, Prevost, & Gulliford, 2015; Rodgers, Tschop, & Wilding, 2012). 
While many metabolic signals that regulate food intake have been 
characterized they have been difficult to translate into therapy, in part 
due to confusion over how they combine to regulate information pro
cessing in the brain (Rodgers et al., 2012; K. W.; Williams & Elmquist, 
2012; Woods & Langhans, 2012). 

The presumed set point was suggested as explanation for why food 
intake tends to increase and body weight stabilize quickly after periods 
of starvation (Keesey & Hirvonen, 1997; Kennedy, 1953). Modeling 
shows, though, that a caloric memory function that records past caloric 
ingestion to affect future intake without calculating caloric need is 
sufficient to account for body weight stability and fasting-induced hy
perphagia (Allcroft, Tolkamp, Glasbey, & Kyriazakis, 2004; Speakman, 
Stubbs, & Mercer, 2002). Caloric memories as a register of the number of 
calories consumed are distinct from episodic memories of situational 
cues surrounding a meal. However, there is very little biological data on 
whether caloric memories exist and mediate energy homeostasis but 
they may involve glucose metabolism (Davidson, Jones, Roy, & Ste
venson, 2019; Ritter, Roelke, & Neville, 1978; Zhang et al., 2015). 

Some memories are thought to be encoded by the brain through 

Fig. 1. Daily intake does not match energy 
expenditure or body constitution. (A) Schematic 
representation of the neuroendocrine cascade 
regulating satiation (yellow: adipose and other 
peripheral tissues; red: blood-borne factors; or
ange: neuronal signaling; brown: brain process
ing of peripheral signals). (B-E) Relationships in 
Wt mice between daily food intake and (B) en
ergy expenditure (n = 29, r = − 0.37 P > 0.05), 
(C) body weight (n = 25, r = 0.006, P > 0.05), 
(D) fat mass (n = 10, average daily intake, r =
0.42, P > 0.05), (E) lean mass (n = 10, average 
daily intake, r = − 0.39, P > 0.05). All quantifi
cations were based on Pearson’s correlation co
efficient (r). . (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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synaptic plasticity, a process in which the number or strength of contacts 
change between neurons (Bhatt, Zhang, & Gan, 2009; Kessels & Mali
now, 2009; Shepherd & Huganir, 2007). Many proteins that regulate 
synaptic plasticity, e.g. calcium-/calmodulin-dependent kinase II α 
(CaMKIIα) and SynGAP, are modified by β-N-acetylglucosamine 
(GlcNAc) (Alfaro et al., 2012; Lagerlof & Hart, 2014; Trinidad et al., 
2012; Vosseller et al., 2006). GlcNAc becomes covalently attached to the 
hydroxyl group of specific serines and threonines (O-GlcNAc) by 
O-GlcNAc transferase (OGT) (Banerjee, Lagerlof, & Hart, 2016). Once 
attached, O-GlcNAc can be removed by O-GlcNAcase (OGA). Depending 
on the protein, O-GlcNAc cycles on and off on a time scale of minutes (e. 
g. on CaMKIV) to hours (e.g. αB-crystallin) (Chou, Smith, & Omary, 
1992; Hart, Slawson, Ramirez-Correa, & Lagerlof, 2011; Roquemore, 
Chevrier, Cotter, & Hart, 1996; Song et al., 2008; Yuzwa et al., 2008). Its 
absolute levels depend on flux through the hexosamine biosynthesis 
pathway (HBP) which converts glucose to uridine diphosphate 
(UDP)-GlcNAc, the substrate of OGT (Hart et al., 2011). Food intake 
affects O-GlcNAcylation in the brain (X. Li, Lu, Wang, & Gong, 2006; 
Liu, Iqbal, Grundke-Iqbal, Hart, & Gong, 2004). Brain O-GlcNAcylation 
is modulated by direct cellular uptake of glucose but also from regula
tion of OGT by metabolic hormones such as ghrelin (Lagerlof et al., 
2016; Pekkurnaz, Trinidad, Wang, Kong, & Schwarz, 2014; Ruan et al., 
2014; Zimmerman & Harris, 2015). We and others have shown previ
ously that deleting OGT in αCaMKII-positive neurons in the brain leads 
to increased food intake and subsequent obesity (Dai, Gu, Liu, Iqbal, & 
Gong, 2018; Lagerlof et al., 2016). The hyperphagia results from 
impaired feeding-induced activation of αCaMKII neurons in the para
ventricular nucleus of the hypothalamus (PVN) which normally termi
nate feeding (Lagerlof et al., 2016). The lost response to food probably 
stems at least in part from attenuated excitatory synaptic input by 
downregulation of the glutamate-gated α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (Hwang 
& Rhim, 2019; Lagerlof, Hart, & Huganir, 2017; Lagerlof et al., 2016; 
Tallent et al., 2009; Taylor et al., 2014; Yang et al., 2017). Genetic 
deletion experiments and pharmacological manipulation targeting OGA 
also affect synaptic plasticity (Lagerlof, 2018). Both associative and 
non-associative memory in tasks not related to food intake have been 
shown to be regulated by O-GlcNAcylation (Ardiel et al., 2018; Xie et al., 
2016; Yang et al., 2017). 

Here we investigated how caloric signaling affects appetite. First, we 
tested in wildtype mice the prediction of the energy deficit model that 
caloric ingestion is matched to caloric expenditure if variation in all 
major environmental influences over food intake is removed. We find 
that intake in stable environments neither varies according to energy 
expenditure nor compensates for earlier over- or under-consumption. 
Then three different mouse models of O-GlcNAcylation (OGT deletion, 
OGA deletion and pharmacological inhibition of OGA) were used to 
manipulate caloric regulation of food intake. Rather than affecting a 
perceived need for calories, our results favor a model where O-GlcNA
cylation mediates a caloric memory by which the size of a meal affects 
future intake and subsequently energy balance. 

2. Methods 

2.1. Animals 

The animals were used in previously published articles; here we 
analyzed their meal-to-meal food intake (Keembiyehetty et al., 2015; 
Lagerlof et al., 2016; Tan et al., 2017). Full details of the methods are 
found in them. 

All animal work was done according to the guidelines of and 
approved by the Johns Hopkins University Animal Care and Use 
Commmittee (OGT KO animals), National Institutes of Health (OGA Het 
animals) and the University of Kansas Medical Center Animal Care and 
Use Committee (TMG treated animals). All animal work adhered to the 
ARRIVE Guidelines including the principles of the 3Rs. OGT KO animals: 

Fully backcrossed (C57Bl/6N, N > 11) floxed OGT (OGTFL) and 
αCaMKII-CreERT2 mice were mated and injected with tamoxifen at 
about 6 weeks of age (Erdmann, Schutz, & Berger, 2007; O’Donnell, 
Zachara, Hart, & Marth, 2004). 2 mg tamoxifen was injected twice per 
day for 5 days. Control mice were injected with vehicle (sunflower seed 
oil injected into OGTFL x αCaMKII-CreERT2 mice). The animals had free 
access to standard chow (24% protein, 18% fat, 58% carbohydrate) in 
powder form and kept on a 12 h/12 h light/dark cycle. Metabolic data 
were acquired by subjecting the mice about two weeks after OGT 
deletion to comprehensive laboratory animal monitoring system 
(CLAMS, Columbus Instruments, Columbus, OH, USA) that detects food 
intake, physical activity and energy expenditure through indirect calo
rimetry in real-time. The formulas used to calculate energy expenditure 
can be found at www.colinst.com. Only males were used (controls, n = 6 
and knockouts, n = 7) and they were acclimatized to the metabolic cages 
before data acquisition started. Daily intake values for the OGT mice in 
Fig. 3B have been published previously (Lagerlof et al., 2016). OGA Het 
animals: OGA was knocked out by crossing OGAFL mice (C57Bl/6) with a 
mouse line that expresses Cre recombinase in the oocyte (the murine 
mammary tumor LTR-virus line; C57Bl/6–129 hybrid). These mice have 
been described previously (Keembiyehetty et al., 2015; Wagner et al., 
2001). Adult heterozygotic female OGA KO animals (controls n = 4 and 
OGA HET KO n = 5) were then subjected to CLAMS for metabolic data 
acquiring as discussed for the OGT KO animals. Daily intake values for 
the OGA mice in Fig. 3B of this paper have been published previously 
(Keembiyehetty et al., 2015) with copyrights belonging to the American 
Society for Biochemistry and Molecular Biology. TMG treatment: Adult 
male wildtype C57Bl/6J mice were acclimatized to individual housing 
for 5 days and then transferred to metabolic cages (Promethion High 
Definition Continuous Respiratory system for mice, Sable Systems Inc.) 
for real-time food intake and energy expenditure measurements. They 
were then transferred back to their home cage (still individually housed) 
to receive intraperitoneal injections with TMG (50 mg/kg, SD Specialty 
Chemicals) or saline every other day for 15 days (8 doses in total; saline 
n = 8 and TMG n = 8 animals). During the last 5 days they were 
transferred back to the metabolic cages to measure intake and expen
diture as before. The mice were offered normal chow diet in pellet form. 
No animals had been exposed to any other experimental manipulation 
prior to this experiment. 

2.2. Body composition 

Fat and lean mass were measured using EchoMRI (EchoMRI, Hous
ton, TX, USA). 

2.3. Meals analysis 

A “meal” was defined as a period of 15 min where the cumulative 
amount of intake was 50 mg or more and the previous 15 min had no 
registered intake. The end of a meal was defined as when no intake had 
been registered for another 15 min. Meal frequency was defined as the 
number of meals consumed per day. ’Snacks’ were considered as any 
other intake continuous in time. The raw intake data were recorded in 1 
min bins. A subset of all the data were used to evaluate the performance 
of these conditions (Fig. S1). The rules were coded in ’Python’ and the 
software automatically identified meals and snacks from the raw intake 
data. The code is available on Github. All data in this paper is available 
upon request. Eating speed was defined as amount consumed during the 
length of each meal. 

2.4. Statistics 

Statistical analyses were done primarily in Prism 5. Some analyses 
were done using Excel. Sometimes negative food intake values were 
recorded. Negative values occur when animals, e.g., defecate in the food 
bowl. No difference was seen between wildtypes and O-GlcNAc 
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modulated mice (data not shown) and the negative values were removed 
from analyses. For analyses of wildtype feeding behavior, the wildtypes 
in the OGT and OGA experiments were pooled. In Fig. 3D wildtypes from 
the TMG treated group were used. When testing the effect of O-GlcNAc 
cycling manipulations, the data were compared against the respective 
wildtype group for each manipulation. All Student’s t-tests were two 
tailed and unpaired. For Fig. 3C–E one-way ANOVA was used with 
follow-up comparisons of significant differences between intra-meal 
bins according to the Bonferroni multiple comparisons method. When 
analyzing correlation, Pearson’s- and Spearman’s correlation were 
performed as well as linear regression analysis. Asterisk signifies P <
0.05. All error bars represent mean ± standard error of the mean (SEM). 
A table of complementary statistics used for each figure is included in 
the Supplemental information (Table S1). 

3. Results 

3.1. Body energy status does not predict variations in spontaneous feeding 

If it is the case that energy deficiency drives appetite, then food 
intake has been expected to closely match energy expenditure, or a 
derivate thereof such as adipose tissue, when not perturbed by envi
ronmental stimuli (Blundell et al., 2012; Blundell, Gibbons, Caudwell, 
Finlayson, & Hopkins, 2015). Here we subjected adult mice to metabolic 
cages in stable environments. The mice ate ad libitum and their energy 
expenditure was measured by indirect calorimetry. In contrast to the 
predictions of the energy deficit model, we could not detect a clear 
match in wildtypes (Wt) between daily food intake and energy expen
diture (Fig. 1B). Neither females nor males matched their daily intake to 
calories spent (Fig. S1A-B). Likewise, correlates to body energy status, 
body weight, or fat or lean mass did not predict daily intake (Fig. 1C–E). 
Animals tend to consume food in bouts (Fig. S2A) (Brobeck, 1955; 
Richter, 1927). The amount of food consumed per bout is thought to be 
the primary target for caloric regulators of food intake (Moran, 2009; 
Woods et al., 1998). During feeding bouts rodents eat but also drink and 
explore their immediate surroundings (Barnett, 1956; Blundell, Rogers, 
& Hill, 1985; Rodgers, Holch, & Tallett, 2010). Depending on the length 
of time spent not eating during versus between bouts, eating events can 
be organized into meals (Allcroft et al., 2004; Le Magnen & Devos, 1980; 
Tolkamp et al., 2011). Mathematical analysis has been instrumental to 
show that meal definitions that accept shorter breaks to occur during 
meals satisfy predictions of how satiety (the inhibition of appetite in the 
intermeal interval) affects meal behavior (Tabarin et al., 2007; Tolkamp 
et al., 2011; Zorrilla et al., 2005). The concept of satiety suggests that 
physical activity decreases after a meal has finished and that the prob
ability to initiate a second meal just after finishing the first meal is low. 
The probability to start another meal then increases with time as satiety 
decreases (Richter, 1922; Rodgers et al., 2010; Tolkamp, Allcroft, Aus
tin, Nielsen, & Kyriazakis, 1998). While there are no universally 
accepted criteria in the feeding literature, many authors argue that these 
satiety-dependent behavioral predictions should be used to verify meal 
criteria (Tabarin et al., 2007; Tolkamp et al., 2011; Zorrilla et al., 2005). 
Very small intakes, or "snacks", may not induce behavioral satiety or be 
energetically regulated in the same way as meals (Chapelot, 2011; 
Martire, Holmes, Westbrook, & Morris, 2013). In accordance with pre
vious mathematical analyses of meal behavior, here we generated an 
algorithm in ’Python’ that automatically classified intake events as 
’meals’ or ’snacks’ by accepting short breaks during meals once a min
imum amount of food (50 mg) had been consumed. Physical activity 
decreased in the post-meal period (Fig. S2B). Immediately after finishing 
a meal, the likelihood to start another meal was close to zero and rose 
with time (Fig. S2C). Several papers have shown a smaller meal size 
during the daytime compared to nighttime (Le Magnen & Devos, 1980; 
Richard, Tolle, & Low, 2011). We also observed that meal, but not snack, 
size was smaller during light hours (Fig. S2D). These data indicate that 
the meals identified here map satiety-dependent eating events. Apart 

from meal frequency and fat mass, meal size and frequency varied 
without a clear correlation to body weight or body constitution 
(Fig. S3A-F). These observations suggest that body energy status cannot 
explain variations in ad libitum feeding behavior in stable environments. 

3.2. Feeding behavior is unstable over time 

While body energy status did not predict variations in spontaneous 
feeding behavior, day-to-day intake changed 22% (±3.6%). Daily intake 
varied over time for the same mouse as much as it did between mice of 
different body constitutions (Fig. 2A). There was neither any difference 
in the intra- and inter-individual variance for meal and snack frequency 
(Fig. 2A). The size of meals and snacks fluctuated over time more than 
the size did between individuals (Fig. 2A). Satiety has long been thought 
to give a calorie-dependent structure to meal-to-meal behavior by 
making the postprandial interval a function of the preceding meal (Le 
Magnen & Devos, 1980). Over the course of a whole day, meal frequency 
and meal size were negatively correlated (Fig. 2B). In contrast, the size 
of a large meal predicted that the next meal would also be large and a 
small meal was followed typically by another small meal (Fig. 2C–D). 
The larger meal size, the shorter break until the next meal started 
(Fig. 2C and E). Overall, our data indicate that feeding behavior is 
structured across meals. This structure, however, does not work to 
compensate preceding deviations from a mean level of intake. 

3.3. O-GlcNAc cycling regulates daily intake by affecting meal size 

To test how caloric signaling affects spontaneous feeding behavior, 
we manipulated O-GlcNAc cycling in mice (Fig. 3A). OGT, the enzyme 
that catalyzes the final step in O-GlcNAc synthesis, was knocked out 
(KO) in αCaMKII brain neurons to abolish O-GlcNAcylation by injecting 
adult OGTFL x αCaMKII-CreER mice with tamoxifen (Lagerlof et al., 
2016). Deleting OGT in αCaMKII neurons increased daily food intake 
(Fig. 3B) (Dai et al., 2018; Lagerlof et al., 2016). The OGT KO mice ate 
bigger meals and snacks without changing meal or snack frequency 
(Fig. 3B) (Lagerlof et al., 2016). We elevated protein O-GlcNAcylation 
by knocking out OGA, the enzyme that removes O-GlcNAc, through a 
cross between OGAFL mice and mice that express Cre recombinase in the 
oocyte (the murine mammary tumor LTR-virus line) (Keembiyehetty 
et al., 2015). Heterozygotic (HET) OGA KO mice develop normally 
without any gross structural or other developmental defects and pre
serve fertility (Keembiyehetty et al., 2015). These animals are hap
loinsufficient for OGA (Keembiyehetty et al., 2015). Total intake or meal 
and snack size and frequency were not altered in haploinsufficient OGA 
animals (Fig. 3B). In contrast, raising O-GlcNAc levels acutely by 
intraperitoneal injections with Thiamet-G (TMG), a highly specific in
hibitor of OGA, elevated daily intake (Fig. 3A–B) (Tan et al., 2017). 
Similar to adult deletion of OGT, meal size and not meal frequency was 
affected (Fig. 3B). These effects occurred independently of current en
ergy status as, apart from OGT deletion introducing a significant cor
relation between body weight and meal frequency, no variations in daily 
intake, meal size or frequency could be predicted by body weight, fat or 
lean mass in the OGT KO, haploinsufficient OGA or TMG animals 
(Fig. S4A-G). There was also no correlation between daily intake and 
energy expenditure in the O-GlcNAc mice (Fig. S5A-C). Instead 
comparing when during a meal food is consumed, intake was binned 
according to time from the start to finish of each meal. When offered a 
powdered diet, wildtypes ate more in early and late phases of the meal 
(Fig. 3C). This intra-meal structure was abolished by deleting OGT or 
OGA (Fig. 3E). A uniform eating pattern was observed also in animals, 
both wildtypes and after TMG-treatment, that ate food in pellet form 
(Fig. 3D–E). The eating rate in wildtypes was almost identical between 
meals of different sizes, as indicated by the strong correlation between 
meal size and length (Fig. 3F) (Le Magnen & Devos, 1980). Whereas 
O-GlcNAc manipulations did not affect the size-length correlation 
(Fig. 3G–I), removing OGT or OGA increased meal speed (Fig. 3K). These 
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data suggest that O-GlcNAcylation alters daily food intake by regulating 
meal size at least in part through affecting eating speed. 

3.4. O-GlcNAc cycling mediates energy balance across meals 

The selective effect of O-GlcNAc cycling on meal size suggests that O- 
GlcNAcylation regulates satiation (meal termination) rather than satiety 
or hunger (Lagerlof et al., 2016). We hypothesized that if impaired 
satiation upon manipulating O-GlcNAc cycling reflects an increased 
caloric need to satisfy, then not only would the average meal size in
crease but also the frequency of relatively large meals. However, there 
was no change in meal size distribution upon modulation of O-GlcNA
cylation (Fig. 4A). Genetically altering OGT or OGA or TMG treatment 
affected neither the intra-individual variance for daily intake, meal size, 
meal frequency, snack size nor snack frequency (Fig. 4B). Surprisingly, 
after OGT removal the amount consumed in a meal no longer affected 
the amount the animal ate in the subsequent meal (Fig. 5A). OGT 
deletion also uncoupled the time between two meals from the size of the 
first meal (Fig. 5B). Heterozygotic KO of Oga improved the meal-to-meal 
size correlation (Fig. 5C) but eliminated the meal-to-meal interval cor
relation (Fig. 5D). Upon TMG treatment, the amount consumed in the 
first meal did not predict subsequent meal size (Fig. 5E) but did predict 
the following inter-meal interval (Fig. 5F). Next we investigated the 
effect on energy balance across days. No animals showed correlation 
between day-to-day variations in body weight and food intake 
(Fig. S6A-C). Instead, we observed a negative correlation between daily 
fluctuations of intake and expenditure in male wildtype animals that ate 
powdered food (Fig. 5G). Deleting OGT abolished the connection be
tween changes in day-to-day intake and expenditure (Fig. 5G). During 
the same period the OGT KO mice rapidly developed obesity (Lagerlof 
et al., 2016). Females, whether wildtypes or haploinsufficient OGA an
imals, did not correlate food intake with calories spent across days 
(Fig. S6D). Neither was there any correlation between daily intake and 
expenditure changes when male wildtypes were offered pelleted food 
(Fig. 5H). In contrast, TMG treatment conferred a significant positive 
correlation between day-to-day variations in intake and expenditure 
(Fig. 5H). The TMG mice also gained less weight than wildtypes (Tan 

et al., 2017). Our observations together favor a model where 
O-GlcNAcylation mediates a process by which the caloric content of a 
meal affects future intake - caloric memory - and thus long-term energy 
balance (Fig. 6). 

4. Discussion 

Our results indicate that cycling of the posttranslational modification 
O-GlcNAc regulates appetite by mediating a caloric memory that is 
critical to maintain energy balance and protect against obesity. 

These observations suggest a new model of how metabolic signaling 
controls appetite. It was thought previously that caloric need defending 
a homeostatic set point mediates feeding. The old model predicted that 
food intake will be correlated to energy expenditure on an hourly basis if 
environmental influence over feeding such as cultural factors and 
energy-dense food choices are removed (Berridge, 2004; Chambers 
et al., 2013; J. M.; Friedman, 1998; Heisler & Lam, 2017; Keesey & 
Hirvonen, 1997; Kennedy, 1953; Le Magnen & Devos, 1970; Schwartz 
et al., 2000; Speakman et al., 2011; West et al., 1984). In contrast, our 
data showed that spontaneous daily intake during stable living condi
tions was not accommodated to energy expenditure, body weight, or fat 
or lean mass. The size and timing of meals depended on previous intake 
but not such that eating corrected earlier over- or under-consumption. 
Sometimes negative food intake values were recorded. Negative values 
occur when animals, e.g., defecate in the food bowl. No difference was 
seen between wildtypes and O-GlcNAc modulated mice (data not 
shown) and the negative values (20% of all values) were removed from 
analyses. Our analysis builds on correlative studies and thus cannot rule 
out that, e.g., fat mass drove intake but in addition to the lack of sig
nificant correlations the modest r-values shown here suggest at least that 
another major factor than caloric need is at play. Hence, even though all 
major environmental influence had been removed and the animals were 
offered a single diet of regular chow, there is no evidence in our data that 
caloric need explains daily wildtype feeding behavior. 

Caloric need can explain neither daily wildtype feeding behavior nor 
the effect on food intake by O-GlcNAc. Deleting OGT specifically in 
αCaMKII brain neurons or inhibiting OGA with TMG increased daily 

Fig. 2. Meal-to-meal behavior is unstable over time. (A) Wt intra-individual (intra) and inter-individual (inter) coefficient of variance (CV) for daily intake (DI), meal 
size (MS), meal frequency (MF), snack size (SS) and snack frequency (SF) (intra: n = 18, inter: n = 6; two-tailed t-test *P < 0.05). (B) Pearson’s correlation (r) 
between meal size and meal frequency (meals/day) with linear regression (gray line) (n = 33 pairs of daily meal size and meal frequency). (C) Cartoon of meal-to- 
meal correlations shown in (D-E). (D–E) Spearman’s correlations (rs) between two subsequent meals (D) or a meal and the subsequent meal interval (E) (n = 569 
pairs of meal size and subsequent meal size/interval). Error bars represent mean ± SEM. 
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food intake. The increased food intake was explained by larger meal 
size. Had the larger meal size been the result of a greater need for cal
ories, then it is likely that meal frequency would have been higher as 
well. A preference for only large meals and consistently high daily intake 
also would have argued for a change in need. However, meal frequency 
was not affected and daily intake and meal size variation and 

distribution were not affected by OGT KO, OGA HET KO or TMG 
treatment. While TMG treatment increased food intake, TMG improved 
the balance between intake and expenditure. Indeed, TMG limited body 
weight increase (Tan et al., 2017). This suggests that the 
TMG-dependent increased intake was not the result of an up-shifted set 
point. Neither is an up-shifted set point a likely explanation for the 

Fig. 3. O-GlcNAc regulates daily intake by affecting meal size. (A) Cartoon of the regulation and function of the posttranslational modification O-GlcNAc. (B) The 
effect on different food intake components upon OGT deletion (OGT) (Daily intake: Wt n = 17, KO n = 20. Meal size: Wt n = 325, KO n = 418. Meal frequency: Wt n 
= 17, KO n = 20. Snack size Wt n = 280, KO n = 178. Snack frequency: Wt n = 17, KO n = 20.), heterozygotic OGA deletion (OGA) (Daily intake: Wt n = 16, HET KO 
n = 20. Meal size: Wt n = 239, HET KO n = 342. Meal frequency: Wt n = 16, HET KO n = 20. Snack size Wt n = 374, HET KO n = 387. Snack frequency: Wt n = 16, 
HET KO n = 20.) or TMG treatment (TMG) (Daily intake: Wt n = 36, TMG n = 36. Meal size: Wt n = 336, TMG n = 346. Meal frequency: Wt n = 36, TMG n = 36. 
Snack size Wt n = 146, TMG n = 179. Snack frequency: Wt n = 36, TMG n = 36.) (two-tailed t-test *P < 0.05). (C–D) Food intake during meals for wildtypes eating 
powdered (n = 936 for each bin) or pelleted (n = 357 for each bin) chow where intake during each meal was allocated to 20 bins. Each bin was compared to the 
others using one-way ANOVA with Bonferroni’s multiple comparison test (*P < 0.05). (E) Food intake during meals for OGT KO and OGA HET KO animals eating 
powdered or TMG treated animals eating pelleted chow where intake during each meal was allocated to 20 bins. Each bin was compared to the others within the 
same condition, e.g. between all OGT KO bins (OGT: n = 424, OGA n = 343, TMG n = 358 for each bin, one-way ANOVA with Bonferroni’s multiple comparison test, 
P > 0.05). (F–I) Pearson’s correlation (r) between meal length and meal size with linear regression (gray line) for (F) Wt (n = 579), (G) OGT KO (n = 422, (H) OGA 
HET KO (n = 342), (I)TMG treatment (n = 358). (J) Eating speed for OGT KO (WT n = 340, OGT KO n = 391), OGA HET KO (Wt n = 239, OGA HET KO n = 342) or 
TMG treatment (Wt n = 360, TMG n = 358) normalized to Wt eating speed (two-tailed t-test, *P < 0.05). Error bars represent mean ± SEM. 

Fig. 4. Food intake variability not affected by O-GlcNAc. (A) Meal size frequency distribution (Wt n = 579; OGT KO n = 423; OGA HET KO n = 342, TMG n = 358). 
(B) Intra-individual coefficient of variance (CV) for OGT KO animals (Wt n = 6, KO n = 7), OGA HET animals (Wt n = 4, HET n = 5) and TMG treated animals (Wt n 
= 8, KO n = 8). Two-tailed t-test, P > 0.05. Error bars represent mean ± SEM. 
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rapidly developing obesity upon deleting OGT in αCaMKII neurons in 
adult animals shown previously by us and others, as OGT deletion also 
leads to increased energy expenditure when fed ad libitum and stable 
body weight when pair-fed (Dai et al., 2018; Lagerlof et al., 2016). 
Hence, these and our previous data indicate that the effects on eating by 
modulation of O-GlcNAc cycling are the product of something other than 
a change in need for calories. 

Instead of need, both wildtype spontaneous feeding behavior and the 
role of O-GlcNAc can be resolved by a model based on caloric memory. 
Memories are thought to form through synaptic plasticity, or changes in 
the synaptic number and strength between neurons (Bhatt et al., 2009; 
Kessels & Malinow, 2009; Shepherd & Huganir, 2007). We and others 
have shown that synaptic plasticity is regulated by OGT and OGA 
(Lagerlof, 2018). Deleting OGT in PVNαCaMKII neurons decreased their 
excitatory glutamatergic synaptic input. These neurons normally 
become activated by eating to inhibit further consumption. The loss of 
excitation contributes to a larger meal size and explains the observed 
hyperphagia in the OGT KO mice (Lagerlof et al., 2016). Glutamatergic 
stimulation in the PVN decreases food intake (Fenselau et al., 2017; 
Hettes et al., 2003). Stimulating the PVNαCaMKII neurons optogenetically 
did not affect the latency to eating but attenuated the amount food 
consumed during the first meal after start of stimulation (Lagerlof et al., 
2016). Both OGT deletion and TMG treatment increased meal size 
indicating that it is the cycling of O-GlcNAc on and off proteins that 

regulate meal size and not other effects from OGT deletion. Whereas the 
manipulations have opposite effects on global O-GlcNAc levels it has 
been shown repeatedly that increased as well as decreased O-GlcNA
cylation can decrease excitatory synaptic transmission (Hwang & Rhim, 
2019; Lagerlof, 2018). We would expect thus bigger meals from both 
manipulations. Here we observed that the larger meal size is at least in 
part the result of a faster eating rate. Heterozygotic KO of OGA in the 
embryo did not affect meal size in adult mice although exhibiting 
elevated eating rate. This was probably due to developmental compen
sation which can occur in feeding circuits in the brain (Qian et al., 
2002). As OGA was deleted in females and males were used for the OGT 
and TMG experiments the sex of the animals may also have contributed 
to the difference. Altered eating structure during meals may have added 
to the increased size. As the heterozygotic deletion of OGA occurred in 
the whole body and TMG injected systemically, effects in peripheral 
tissues contributed to the metabolic phenotype of these mice (Bond & 
Hanover, 2013; Keembiyehetty et al., 2015; Tan et al., 2017). The effects 
on feeding behavior by OGA happloinsufficiency and systemic TMG 
treatment may thus have been affected in part by non-brain mechanisms 
(M. D. Li et al., 2018). Withal, these data together with the selective 
effect of O-GlcNAc cycling on meal size indicate that O-GlcNAc cycling 
mediates satiation (meal termination) during individual meals. While 
satiation operates on single meals, we observed in addition that 
O-GlcNAc cycling regulated feeding behavior across meals. Deleting 
OGT removed the effect of the size of the first meal on the postprandial 
interval and the size of the next meal. Heterozygotic deletion of OGA 
and TMG treatment perturbed the coordination between the timing and 
size of subsequent meals, respectively. Moreover, OGT removal uncou
pled changes across days in energy intake from changes in energy 
expenditure. Conversely, inhibition of OGA using TMG improved the 
day-to-day balance between intake and expenditure. OGT removal and 
TMG treatment both decrease excitatory synaptic transmission as dis
cussed above. However, deleting OGT leads to a reduction in excitatory 
synapse number mainly and thereby possibly inhibiting memories 
(Lagerlof et al., 2017; Wang, Jensen, Rexach, Vinters, & Hsieh-Wilson, 
2016). In contrast, TMG treatment may improve memory through 
long-term depression of excitatory synapse strength (which you would 
not expect from OGA haploinsufficiency) (Taylor et al., 2014; Yang 
et al., 2017). OGT overexpression in the hippocampus enhances fear 

Fig. 5. O-GlcNAc matches food intake to energy expenditure across meals. (A–F) Relationship between two subsequent meals (A, C, E) or a meal and the subsequent 
meal interval (B, D, F) (Spearman’s correlation (rs)). Fig. 2D–E shows the meal-to-meal relationships for pooled wildtype data. (A) Wt, n = 334 meal pairs rs = 0.35 P 
< 0.0001; OGT KO, n = 416 meal pairs rs = 0.070 P > 0.05. (B) Wt, n = 334 meal/meal interval pairs rs = − 0.14 P < 0.05; OGT KO, n = 416 meal/meal interval pairs 
rs = − 0.070 P > 0.05. (C) Wt, n = 235 meal pairs rs = 0.16 P < 0.05; OGA HET KO, n = 337 meal pairs rs = 0.28 P < 0.0001. (D) Wt, n = 235 meal pairs rs = − 0.19 
P < 0.01; OGA HET KO, n = 337 meal pairs rs = − 0.07 P > 0.05. (E) Wt, n = 349 meal pairs rs = 0.21 P < 0.0001; TMG, n = 350 meal pairs rs = 0.043 P > 0.05. (F) 
Wt, n = 349 meal pairs rs = − 0.31 P < 0.0001; TMG, n = 350 meal pairs rs = − 0.32 P < 0.0001. (G–H) Pearson’s correlation (r) between the daily change in intake 
and energy expenditure (G: Wt n = 11 r = − 0.72 P < 0.05, OGT KO n = 13 r = 0.34 P > 0.05. H: Wt n = 28 r = 0.0087 P > 0.05, TMG n = 28 r = 0.39 P < 0.05). 

Fig. 6. O-GlcNAc cycling mediates energy balance by regulating caloric 
memory. Irrespective of what initiates feeding (Drive), O-GlcNAc mediates a 
caloric memory by which the caloric content of a meal affects future intake 
through adjusting satiation threshold (G) and subsequently long-term en
ergy balance. 
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memory (Wheatley et al., 2019). The regulation of satiation on the one 
hand and feeding behavior over time on the other hand can be recon
ciled by a model in which O-GlcNAc adjusts satiation in subsequent 
meals depending on the caloric content of previous intake. Thus, these 
data indicate that O-GlcNAc incorporates a memory function in the 
threshold at which satiation occurs by regulating excitatory synaptic 
function in PVNαCaMKII neurons. 

Its basis in the hypothalamus suggests that satiation memory is a 
non-declarative type of memory – a behavioral disposition that becomes 
encoded without conscious representational content or need for active 
recall (Squire & Dede, 2015). This implicit memory stands in contrast to 
previous observations that explicit memory including working and 
episodic memory affects feeding behavior (Davidson et al., 2019; Higgs 
& Spetter, 2018). These different memory systems may however 
interact. There are, for example, connections between the hypothala
mus, hippocampus and neocortex that may together shape the in
dividual’s adaptive responses to feeding stimuli (Cenquizca & Swanson, 
2006; Cui, Gerfen, & Young, 2013; Saper, 2000). A recent article 
reporting that fruit flies and some mice can learn to distinguish between 
normal and high caloric food showed that the memory formation 
depended on learning and memory genes in both hippocampal and hy
pothalamic neurons (Zhang et al., 2015). While it has been recognized 
previously that representations of past meals can be affected by meta
bolic signals and be associated with clues as to how many calories the 
meal contained, O-GlcNAc-mediated regulation of satiation memory 
introduces a mechanism by which a memory specifically of a past meal’s 
caloric content is encoded and affects subsequent meal behavior 
(Davidson et al., 2019). 

Identifying a caloric memory function in satiation unifies metabolic 
and environmental influences over appetite. Experiences of one’s sur
rounding environment can modulate the decision of when and how 
much to eat by learned associations between particular cues and moti
vational feeding drives (Berridge, 2004; Morales & Berridge, 2020). 
Much evidence shows that hedonic properties of food can lead to a 
strong motivation to eat (Morales & Berridge, 2020). It also has been 
hypothesized set point or other feedback signals can be associated with 
environmental stimuli to produce anticipatory feeding and avoid caloric 
deficits (Woods & Ramsay, 2007, 2011). If and in what way satiation 
memory relates to associative learning remains to be investigated but 
the model does not rely on any specific driver of food intake. Whereas 
presumed set points, using actual or anticipated metabolic error signals, 
can be understood as homeostatic motivational drives regulating when 
hunger and satiation occur, our data indicate that satiation is regulated 
by caloric memories (Berridge, 2004; Morales & Berridge, 2020; Woods, 
2009; Woods & Ramsay, 2011). Caloric memories record the caloric 
content of a consumed meal. The information about past caloric con
sumption can then be activated and affect future intake when eating has 
begun and stimulated the PVNαCaMKII-dependent satiating pathway 
(Lagerlof et al., 2016; Speakman et al., 2002). Satiation memory hence 
accommodates potential metabolic and non-metabolic drivers by 
attenuating or enhancing their power according to past nutrient intake 
and other metabolic signals that have influenced O-GlcNAcylation in 
PVNαCaMKII neurons. In our account there is no regulated property such 
as adiposity or body weight. Instead, body weight settles on a level 
influenced by metabolic as well as non-metabolic factors. We show here 
that O-GlcNAc controls energy balance across days. As this mode of 
metabolic control was identified without subjecting the animal to pe
riods of starvation it is likely relevant in obesogenic societies (Hill, 
Wyatt, Reed, & Peters, 2003). O-GlcNAc-dependent obesity has been 
associated with impaired glucose tolerance and increased insulin levels, 
effects exacerbated by high-fat diet (Dai et al., 2018; Keembiyehetty 
et al., 2015). The considerable genetic background to body weight, 
where many obesity genes affect neuronal and synaptic function, may 
contribute to the regulation of satiation memory (Locke et al., 2015). 

While our data identify caloric memory to mediate effects of caloric 
signaling on food intake, the data do not rule out set point-derived 

motivational regulation. Such regulation may work on time scales 
longer than two weeks and may thus not be apparent in our data (Muller 
& Bosy-Westphal, 2013). Although compatible, set point-derived moti
vational regulation does not explain the behavior or metabolic regula
tion of ad libitum food intake observed here. 

In conclusion, this paper finds evidence for a model in which the 
posttranslational modification O-GlcNAc affects appetite by regulating 
satiation memory. The O-GlcNAc pathway is genetically linked to 
common forms of obesity (Gutierrez-Aguilar, Kim, Woods, & Seeley, 
2012; Speliotes et al., 2010; Wolosker et al., 1998). If perturbed, massive 
obesity develops rapidly (Dai et al., 2018; Lagerlof et al., 2016). Iden
tifying the targets that mediate appetite control by O-GlcNAcylation 
presents a much needed and novel approach to treat obesity - one of the 
world’s most devastating health problems. 
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