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Abstract

Graphical models are powerful tools when estimating complex dependence struc-
tures among large sets of data. This thesis restricts the scope to undirected Gaus-
sian graphical models. An initial predefined sparse precision matrix was specified
to generate multivariate normally distributed data. Utilizing the generated data,
a simulation study was conducted reviewing accuracy, sensitivity and specificity of
the estimated precision matrix. The graphical LASSO was applied using four differ-
ent packages available in R with seven selection criteria’s for estimating the tuning
parameter λ.

The findings are mostly in line with previous research. The graphical LASSO
is generally faster and feasible in high dimensions, in contrast to stepwise model
selection. A portion of the selection methods for estimating the optimal tuning pa-
rameter obtained the true network structure. The results provide an estimate of how
well each model obtains the true, predefined dependence structure as featured in our
simulation. As the simulated data used in this thesis is merely an approximation of
real-world data, one should not take the results as the only aspect of consideration
when choosing a model.

keywords: Simulation study, Graphical models, undirected Gaussian graphical
model, Partial correlation, Precision matrix.



Sammanfattning

Beroendestruktur Skattning
med Gaussianska Grafiska

Modeller

En Simuleringsstudie i R

Grafiska modeller är effektiva verktyg vid skattning av komplexa beroendestrukturer
för stora datamaterial. Uppsatsen avgränsar undersökningen till oriktade Gaussian-
ska grafiska modellen. En förutbestämd s̊a kallad gles matris skapas, som används
för generering av multivariat normalfördelat data. P̊a datamaterialet tillämpas en
grafisk LASSO fr̊an olika paket i R , med olika selektionskriterier för skattning av hy-
perparametern λ. Fr̊an predikterade graferna beräknas specificitet, sensitivitet och
träffsäkerheten för de olika selektionskriterierna.

Resultaten är mestadels i linje med tidigare forskning. Den grafiska LASSO är
generellt sett snabbare och kan tillämpas i högre dimensioner, till skillnad fr̊an stegvis
selektion. Valet av hyperparameter har stor betydelse för den grafiska LASSO, d̊a
olika modellutföranden generar olika grafiska modeller. Resultatet är en estimation
av hur väl varje modell återhämtar en bestämd beroendestruktur. Läsaren bör ha
i åtanke att datat är simulerat och enbart en approximation av ett verkligt data,
s̊aledes bör fler aspekter tas i beaktning vid val av modell.

nyckelord: Simuleringsstudie, Grafiska modeller, Oriktad Gaussianska grafiska mod-
ellen, Partiell korrelation, Precision matris.
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Populärvetenskapliga sammanfattningen

I dagens samhälle samlas datamaterial in oavbrutet, dygnet runt, p̊a alla olika sorters
omr̊aden. Som akademiker vill man gärna undersöka samt klargöra hur variabler
p̊averkar varandra. Ett klassiskt nationalekonomiskt exempel är att generellt sett ju
högre utbildning en individ har, desto högre inkomst. Sv̊arigheterna som uppkom-
mer i och med att tillg̊angen av datamaterial exploderat det senaste decenniet är
att korrelationen och samhörigheten av det stora antalet variabler inte är s̊a enkelt
som i exemplet ovan. Hur ska man d̊a bedöma och dra enkla slutsatser när insamlat
datamaterial har en oerhört komplex beroendestruktur?

I denna uppsats undersöks det hur man kan skatta en undirected Gaussian graphi-
cal model och s̊aledes hur man kan uppskatta och visualisera en ungefärlig bild av
verkligheten, givet vissa tekniska kriterier för variablerna inom datamaterialet. Up-
psatsen använder sig av simuleringsmetoder för att skapa datauppsättningar med
specifika kriterier för att sedan kontrolleras utifr̊an hur väl de berörda modellerna
kan återskapa det sanna uppsättningar av samhörighet.

Resultatet kan tillämpas inom omr̊aden s̊asom finans, biologi och psykologi för att
bättre kunna först̊a hur variabler hänger ihop, samt vilka variabler som egentligen är
mer relevanta och vilka som egentligen skulle kunna ignoreras. Resultatet p̊averkar
s̊aledes möjligheten att s̊alla bort irrelevanta samband direkt, som därmed skapar en
snäv och precis problemformulering att utg̊a ifr̊an.

Arbetet i uppsatsen är viktigt för att bekräfta de nyskapande metoder som nyligen
uppkommit p̊a grund av tillg̊angen till datamaterial. Bör akademiker använda sig
just av denna modell? Uppsatsen p̊avisar att, givet att vissa tekniska kriterier är
uppfyllda, är denna metod ett utmärkt val för en deskriptiv och ordentlig analys av
variablernas beroendestruktur.



Contents

1 Introduction 1
1.1 Purpose and Research Questions . . . . . . . . . . . . . . . . . . . . . 3

2 Fields of Application 5
2.1 Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Nutritional Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Chapter Summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methods 9
3.1 Preliminaries of Graph Theory . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Stepwise Model Selection . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Graphical LASSO . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Packages in R 15
4.1 CVglasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 bootnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 huge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 qgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Overview of Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Data Generation and Simulation 22
5.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Matrix Generation Algorithm . . . . . . . . . . . . . . . . . . 24
5.2 Simulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Visualisation of Simulation and Evaluation Method . . . . . . 26
5.3 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



5.3.1 Visualisation of Evaluation Calculation . . . . . . . . . . . . . 28
5.4 Computing Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Results 30
6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Discussion 33
7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Concluding Remarks and Future Research . . . . . . . . . . . . . . . 35

A Graphs, Matrices, Mathematical Motivation and Algorithms 42
A.1 Predefined Matrices with Graphs . . . . . . . . . . . . . . . . . . . . 42
A.2 Mathematical Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.3 Confusion Matrix Algorithms . . . . . . . . . . . . . . . . . . . . . . 54

ii



Chapter 1

Introduction

Exploratory data analysis is an important aspect of statistics and data science. By
visualizing the data and applying robust statistical procedures, the analyst can ob-
tain a further understanding of the data by reviewing patterns. These patterns
are essential for generating hypotheses for subsequent testing, while also providing
the analyst with a broad intuition of a given set of data, [3]. Typical methods for
exploratory data analysis include estimation of means and standard deviations, visu-
alizing the distribution of the data and estimating the correlation between features.
Correlation is the standardized measurement of covariance, and is an estimate of
the degree to which features are linearly dependent on each other, [21]. The key
aspect of this estimate is that it only measures the so-called pairwise correlation,
meaning that the estimate does not take other features into account, [28]. Often,
especially when working with a large set of data, a considerable subset of features
may be correlated, providing the analyst with no further information apart from the
marginal dependence between a pair of features. Depending on the task at hand,
this might be satisfactory, but a natural extension would be to examine the condi-
tional dependence; the dependence between a pair of features given all other features.

In recent years, the use of graphical models in statistical analysis has gained pop-
ularity in a variety of fields by visualizing the joint distribution of a set of features.
As a way of providing the reader with a non-technical, visual introduction into this
subject, the starting point of this thesis is an example using the Auto dataset, fea-
tured in the ISLR package, [27]. Using the base packages included in R , the Pearson
correlation coefficients are calculated using the five continuous variables Miles per
Gallon, Displacement, Horsepower, Acceleration and Weight.
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Figure 1.1: Correlation plot using the corrplot package in R

Figure 1.2: Gaussian graphical model using the qgraph package in R

By inspection of Figure 1.1, it is evident that a large share of the features are
highly correlated. Interpretation is limited to stating that most features seem to
have a positive or negative linear association between them. The plot does not pro-
vide any information regarding the underlying dependence structure, since pairwise
correlation does not distinguish between direct and indirect associations. For fur-
ther knowledge, the analyst must resort to other methods with varying amounts of
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complexity, such as a linear regression model.

The graphical model in Figure 1.2, is an example of a so-called Gaussian graph-
ical model. This model encodes a special property. Given that a few assumptions
of the data are fulfilled, the graph represents the conditional dependence of the set
of features. This representation is highly useful in many situations, as it provides
a more intricate understanding of the data, while still being exploratory in nature
and easy to interpret. Within graphical modelling, the set of vertices(also called
nodes) correspond to a set of features, and the set of edges represent the conditional
dependence of the aforementioned features, [23]. Returning to the Auto data, a way
of interpreting Figure 1.2 is; given the number of horsepower and weight of a car,
Miles per Gallon is conditionally independent of acceleration and displacement, since
there exists no edge linking these features directly to one another.

It is necessary to mention that the thesis is limited to the undirected Gaussian
graphical model. An undirected model implies there exists no arrows between fea-
tures when graphically displayed. As such, it relies on fewer stringent assumptions
compared to Directed Graphical Models, (DGM), [15]. For such models, as well as
log-linear models used for discrete data, the reader is referred to [25].

1.1 Purpose and Research Questions

Producing statistically robust, reliable results is always preferred to inferior methods.
Understanding how to estimate and manage highly correlated as well as partially cor-
related dependence structures in both low and high dimensions are vital for a better
understanding of the data. Our proposed method for comparing different estimation
techniques starts with randomly generating a multivariate data from the normal dis-
tribution with a predefined dependency structure. Using different packages in R to
subsequentially estimate Gaussian graphical models, each estimate is compared to
the true dependence structure.

Visualizing features of the data as nodes in a graph in not a new phenomenon,
especially within psychometrics and econometrics, [12]. However, the techniques de-
veloped and integrated in the statistical programming language R are relatively new
[38, 19], enabling the model to be used in many different areas of research. In essence,
the overarching goal of this thesis is to empirically evaluate existing packages using
simulation, with the addition of a general description of each package. The purpose
is not to fully utilize and evaluate all encompassed functions in a given package, but
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rather to give an overview and compare the results of different packages for read-
ers not fully aware of the available methods regarding graphical models and their use.

This simulation study is intended to provide a fair empirical comparison on how
well each estimation method can extract a known dependency structure. The pri-
mary reason of performing a simulation study rather than using real world data,
is due to the easily verifiable normality assumption and also for verification of the
given aforementioned structure. Using real world data is without doubt beneficial,
as simulated data might represent an unrealistic scenario not encountered in the real
world. However, in order to ensure the fairest possible comparison, guaranteeing a
predefined dependency structure is of vital importance as a point of reference for all
methods.

Subsequently, the research questions are:

• Describe and explore existing R packages for estimation of undirected Gaussian
graphical models.

• How well does the various methods in R estimate the dependence structure of
the simulated data?

• What are the main differences among the estimated dependence structures of
the included packages?

This text aims at providing the reader with an understanding of the undirected
Gaussian graphical model, and the different ways of how it can be implemented in
R . It is organized as follows: Chapter 2, Fields of Application provides the reader
with an understanding of the model through the different ways it has been used
in applied research. Chapter 3 consists of the theoretical model and methodology
investigated and is intended to be later applied within the packages. Chapter 4 pro-
vides a general description of the packages, providing an overview of the different
functions featured in each package. Chapter 5 describes the aggregated simulation
process, bringing together the covered theoretical method and application within the
package. Furthermore, Chapter 6 presents the results of our simulation study. The
discussion and concluding remarks are collected in Chapter 7.
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Chapter 2

Fields of Application

The goal of this section is to provide the reader with a further understanding of the
Gaussian graphical model through the context in which they are used. Featured are
examples within psychology, biology, finance and nutritional science.

2.1 Psychology

Within psychology, a prominent theory of describing human behaviour is the so called
Five-Factor Model, or the Big Five, [12, 4]. This model has been used as a tool for
describing differences in the way humans interact with the world, where the actions
taken by a certain individual relies primarily on the degree to which each underlying
factor make up an individuals personality.

In a 2012 study, the authors, [8], opposes this as a theory for describing human
behaviour, identifying that behaviour patterns are much more dynamic and changing
depending on environment. Instead, they argue for a network-based approach when
studying human behaviour. The network is constructed using data obtained from of
a questionnaire, and the connections constructed between them are made through
correlations. Thus, instead of looking at certain components of an individual and
relating them to an underlying personality trait, they construct a network of the
components. Using an R package developed by themselves, [16], the network can
be represented in a graph displaying the structure of how certain components are
linked to each other. Using this network approach creates a useful tool for visualizing
dependence structures; how certain personality components are related to each other.

While standard correlation measures can be used as a basis for the network, they
argue that partial correlations might be more meaningful. This is because standard
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correlation measures do not take potential indirect effects into consideration. For
instance, in a simple case with features A, B and C, where A is correlated with B,
and B is correlated with C. A and C will most likely be correlated through the com-
mon dependence with B, even if there exists no direct association between these two
features. While acknowledging the fact that the network based approach in psycho-
metrics is still under development, the potential benefit of a network based approach
is that of providing researchers with a more dynamic tool when examining human
behaviour, [8].

2.2 Biology

In the field of biology, Gaussian graphical models are used to study the complex
independence structure of gene expressions obtained from microarrays, [37]. A mi-
croarray is a glass slide in which segments of DNA have been placed, [24]. This
type of data has become an important source of information in modern genomics,
providing researchers with a much deeper understanding of the processes occurring
on a cellular level.

Similar to within psychometrics, the task at hand lies in determining which fea-
tures are dependent on each other. Like partial correlations, standard pairwise corre-
lations can also be visualized as a graph, known as a relevance network. These do not
however represent conditional dependence, and are less sparse, [7]. For these reasons,
a Gaussian graphical model is favourable in a high-dimensional setting. But consid-
ering the fact that data generated from microarrays are in general quite noisy [22],
and it is not uncommon that the number of features greatly exceed the number of
observations, estimating this type of model is challenging. Current literature there-
fore focuses on overcoming these challenges by using different methods to estimate
a Gaussian graphical model when using microarray data, see for instance, [49]. For
further details regarding the problem of features outnumbering observations, n < p,
see Chapter 3.

2.3 Finance

In the field of finance, Gaussian graphical models have been implemented to model
the conditional independence structure between both domestic and international
stock market indexes. In a 2005 study, the authors constructed a network using data
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from the US stock market in order to organize stocks into clusters based on changes
in their respective prices, [5]. Consider the case of diversifying a stock-portfolio; in
order to mitigate the risk of investing, placing money in different stocks is a way of
lowering the risk of losing money. However, this is only true given that the movement
in prices of the included stocks are independent of each other. By analyzing the data
in this manner, independent sets of stocks can be identified and used to mitigate the
aforementioned risk when investing.

A study from 2008 considers the global stock market index, and uses a graphical
model based on partial correlations to study the independence structure of financial
markets, [1]. The standard correlation estimates between the financial markets is
consistent with the literature; the domestic markets that constitute the global mar-
ket are highly dependent on each other, meaning that price changes in a certain
market effects other markets worldwide. Partial correlations however highlight dif-
ferent patterns in the way markets interact with each other. While all markets are
correlated, not all are partially correlated, providing insight of which markets that
are conditionally dependent on each other. As an example from the analysis, the
Canadian market is independent of all other markets given the US market, and the
US market is independent of the European market given the German market. The
partial correlation estimates can so forth be used as a map in order to distinguish
which markets directly interact with each other.

2.4 Nutritional Science

In the field of nutritional science, Principal Component Analysis (PCA), and cluster
analysis is a way of exploring variation in dietary intake, [26]. In a study from 2006,
the authors describe how undirected Gaussian graphical models can work as a viable
alternative to these methods for pattern recognition and to create a more insightful
explanatory analysis of nutritional intake. Although both PCA and other cluster
methods do identify dietary patterns adequately, these methods are based on stan-
dard pairwise correlations. The primary advantage of using an undirected Gaussian
graphical model is that it enables researchers to draw conclusions on how various
foods are directly related to each other through conditional dependence. Further-
more, interpretation of the results of competing methods can be challenging due to
underlying dependence structure. According to the article, red meat is highly corre-
lated with poultry, processed meat, sauce, and potatoes. Based on this information,
it would be misleading to infer any other relationship. For instance, an increase
in consumption of red meat will increase the consumption of poultry or vice versa,
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since standard correlation does not differentiate between indirect or direct depen-
dence, [26]. In addition, the authors reiterate that the undirected Gaussian graphical
model presents an intuitive dependence structure and is easily interpreted due to the
conditional independence assumption when evaluating edges between nodes. In the
authors case, the results showed that the intake of processed meat and poultry was
conditionally dependent on red meat intake.

One of the main deficiencies highlighted by the authors of undirected Gaussian
graphical models is the normality assumption, which was certainly not the case for
some foods. In fact, many features had a skewed distribution, [26]. Therefore, a log-
arithmic transformation was applied to improve normality. To further evaluate the
robustness of the results, the authors reconfirmed their finding with the semipara-
metric Gaussian copula graphical model, (SGCGM). SGCGM does not inherently
require normality of the data and the estimated SGCGM had a strong resemblance
of the undirected Gaussian graphical model.

2.5 Chapter Summery

To summarize this chapter, the undirected Gaussian graphical model can be used
in many fields of research as a powerful tool for exploratory data analysis. Addi-
tional mentions of applications not covered here include signal processing, structural
time-series, image analysis and spatial statistics, [43]. In comparison to standard
correlation measures and even data-reduction methods such as PCA, the undirected
Gaussian graphical model suggests a clear advantage. The identification of direct
associations between features may be the most obvious one, since it enables a more
meaningful analysis in situations in which the standard correlation matrix might
be impractical due to high-dimensionality. The visual aspect should however not
be neglected, as one could argue that the visual representation of the undirected
Gaussian graphical model is more straightforward and intuitive to understand for a
non-statistician in comparison to equivalent graphical output of PCA.
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Chapter 3

Methods

3.1 Preliminaries of Graph Theory

A common way of mathematically describing a graph is G = (V,E) where, V is a
set of vertices (also called nodes) and E is a set of edges (also called links). An edge
is associated with two distinct nodes, [23]. Combining probability theory and graph
theory, one can utilize the described framework for statistical analysis. Consider the
multivariate normal data X with features (X1, X2, ..., Xp). Think of each node as a
feature, and each edge as the dependence between any two features i and j given all
other features.

Given a positive definite p × p covariance matrix Σ, all information needed to
graphically visualize the dependence structure is stored in the precision matrix, [15],
which is defined by the following formula, [25];

Σ−1 = Ω. (3.1)

For each element u in Ω, obtain the corresponding partial correlation coefficients by;

ρij =
-uij√
uiiujj

. (3.2)

Given that the set of features is multivariate normally distributed, these partial
correlation coefficients encode the conditional dependence of the joint distribution of
the data, [23, 47]. For all coefficients of the precision matrix u:

uij = 0 if and only if Xi qXj

∣∣X−i,−j, (3.3)

meaning that Xi and Xj are independent given all other features, [10].
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This can formally be stated as;

Xi qXj

∣∣X−i,−j means p(xi, xj|x−i,−j) = p(xi|x−i)p(xj|x−j). (3.4)

Consider the two Figures 3.1 and 3.2. By observing the coefficients of a given
precision matrix, one can visualize the dependence structure by simply observing
the non-zero elements. In the 4× 4 precision matrix, the elements corresponding to
the conditional dependence between X1 and X3 are 0, thus yielding no edge in the
corresponding graph. Thus, in an undirected Gaussian graphical model, the set of
edges E in a graph G corresponds directly to each element of the precision matrix.

1

2

3

4

Figure 3.1:
Graph with 4 nodes and 4 edges


Node1 Node2 Node3 Node4

Node1 u11 u12 0 u14

Node2 u12 u22 u23 0
Node3 0 u23 u33 u34

Node4 u14 0 u34 u44


Figure 3.2: Precision Matrix of Figure 3.1

3.2 Model Selection

A key aspect of graphical modelling is model selection. It corresponds to the meth-
ods used for adding or deleting edges in the graphical model, in order to obtain a
estimate of the true network structure. Given the nature of graphical models, spar-
sity is an essential aspect. In a high-dimensional setting, a highly dense network
structure would not be very informative from a visual standpoint. At the same time,
the estimated model should not exclude edges that correspond to features which are
conditionally dependent for the sake of sparsity alone. Before discussing the details
regarding model selection, it is intuitive to think about the process of estimating an
undirected Gaussian graphical model.

Given a set of data which is multivariate normal and with an estimated covari-
ance matrix Σ̂, by inverting and standardizing according to equation 3.2, the partial
correlation coefficients can be displayed graphically as a set of edges in accordance
with the dependence structure. This dependence structure is unknown, and is esti-
mated using a sample from the population of interest. Given that the observations
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are a random sample, the researcher can be confident that the estimate is consis-
tent with the true population parameter, Σ. In the case of graphical modelling,
the unknown quantity is the aforementioned dependence structure Ω. Considering
the inherent sampling variation of real world data, how is the parameter Σ estimated?

The classical way of estimating the covariance matrix Σ̂ is by using the sample
covariance matrix;

S =
1

(n− 1)

N∑
k=1

(xik − x̄i)(xjk − x̄j)T . (3.5)

As known, such statistic is unbiased, [45], and yields an acceptable estimate
when n >> p due to characteristics of the maximum likelihood estimator, [41]. The
covariance matrix is a central part when performing statistical analysis, but when
using graphical models, it is the main determining factor of the results. Therefore,
estimating the covariance matrix and estimating an undirected Gaussian graphical
model should not be viewed as separate entities. When using real world data, it
will always inherit some sampling variation, [13]. As a consequence, features that
have no dependency between each other may wrongly exhibit presence of covariance,
correlation and also partial correlation. The purpose of model selection is in limiting
these to obtain a more robust estimate of the dependence structure. Several methods
are available for graphical models, two of them being stepwise selection and LASSO.

3.2.1 Stepwise Model Selection

Forward and backwards selection are methods used in statistics in which there are
needs of some sort of model selection. Each step of the selection procedure corre-
sponds to the addition or deletion of a feature in either the null(no features present
in the model as a starting point) or saturated model(all features used as a starting
point). This process of selection is typically made by using an α significance level
at each step in the process for evaluation, [9]. Applied to graphical models, these
operations correspond to the addition or deletion of an edge starting from either the
null or saturated model. Therefore, the selection process considers each element of
the precision matrix, and chooses the best fitting model by subsequently adding or
removing coefficients in the aforementioned matrix based on a selection criteria.

Applied to the simple example in Figure 3.1, the stepwise procedure conducts
a series of hypothesis tests performed for each element uij of the precision matrix.
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Using backward selection as an example, for a model M1 which is contained in the
full model M0, a likelihood-ratio test is performed.

H0 : uij = 0 versus H1 : uij 6= 0. (3.6)

The likelihood-ratio test can be conducted in the following manner;

likelihood-ratio test = nlog

[
det(Ω̂0)

det(Ω̂1)

]
, (3.7)

where Ω̂0 is the estimated precision matrix underM0, and Ω̂1 is the estimated preci-
sion matrix underM1. UnderM0, the likelihood-ratio test statistic is asymptotically
χ2 distributed. The degrees of freedom corresponds to the difference in the number
of edges inM1 andM0. F-tests, AIC and BIC can also be used as a selection criteria
when performing stepwise selection. F-tests will not be further explored, as these
are more suited for small-size samples, [25]. AIC and BIC will be discussed in the
upcoming section, both in the context of stepwise selection and also in the context
of selecting a optimal tuning parameter in the graphical LASSO.

Before discussing feature selection methods such as LASSO, a few limitations
regarding stepwise selection is worth mentioning.

Stepwise selection involves performing multiple χ2 or F-tests for each model under
consideration. This might not be an appropriate use of significance tests. However,
the most prominent reason why stepwise selection is currently not considered to be
the most suitable method of model selection available is for computational reasons.
A model with ten features yields a total number of 45 edges in the saturated model,
thus yielding the total number of potential models equal to 245, [11]. Given a high-
dimensional data with thousands of features, this method is infeasible due to the vast
number of potential models. There are methods of reducing the number of models
under consideration, such as only considering a subset of edges for removal at each
step. In general, this method is not preferable in high-dimensions. Nevertheless,
stepwise methods can be a viable method for estimating a graph in some settings,
and are included in this paper for comparison to the modern method developed for
high dimensional graphs; the graphical LASSO.

3.2.2 Graphical LASSO

LASSO is a feature selection method. When used in linear regression, it limits the
size of the estimated coefficients in accordance with a penalty parameter, λ. A larger
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penalty term yields smaller estimated coefficients, where some are set equal to zero,
[28]. An extension of this method has been implemented for graphical models, known
as the graphical LASSO.

Assuming that the multivariate data Xi = (x1, . . . , xp)i is normally distributed,
the graphical LASSO estimates the precision matrix by maximizing the penalized
log-likelihood

Ω̂ = argmax
Ω>0

[
l(Ω)− λ

∑
j 6=k

∣∣ujk∣∣], Ω =

 u11 · · · u1d
...

. . .
...

ud1 · · · udd

 (3.8)

through numerical optimization.
Here the scalar function l(Ω) is defined as

l(Ω) =
n

2
ln
(

det Ω
)
− n

2
trace

(
ΩΣ̂n

)
− np

2
ln(2π), (3.9)

with Σ̂ being the sample covariance and p is the number of features, [47]. If the
optimization task is successfully solved, then the outcome can serve as a sparse esti-
mate of the precision matrix. In practice, these equations imply that the graphical
LASSO maximizes equation 3.8 such that the size of the estimated coefficients are
limited in accordance with a given tuning parameter λ, forcing some to be estimates
to be zero. An interested reader can check appendix where mathematical derivation
and motivation of the l(·) function in equation 3.9 are given.

As shown by Meinshausen and Buhlman, this method greatly improves the com-
putational load in comparison with forward and backward selection methods, as their
version of the graphical LASSO can easily estimate the precision matrix where the
number of features are more than 1000, in comparison to forward selection which
struggles already to solve problems with 30 features, [38, 16]. Aside from the com-
putational upside, the graphical LASSO can also be used in the setting in which
n < p. Given the situation in which the number of variables far exceeds the number
of observations, not uncommon within genomics, the sample covariance matrix does
not perform well, [33].

When n < p, an increasing number of eigenvalues of the covariance matrix S
become zero. Therefore, it is no longer full rank and cannot necessarily be inverted,
[45]. The technical details are beyond the scope of this thesis. In short, by limiting
the size of the estimated coefficients and by promoting sparsity in the covariance
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matrix, the graphical LASSO is able to estimate the precision matrix even in the
setting when n < p.

Although the problem of n < p is central within many fields of application, it is
not a part of the simulation. For all simulated data, n > p, thus enabling a direct
comparison between stepwise selection and the graphical LASSO. Many methods
have been developed that utilizes the LASSO algorithm when estimating the precision
matrix. In spite of there being differences in the technical aspects between specific
algorithms, the way in which they choose the optimal λ is of primary interest. A key
aspect of this method is that a single value of λ is seldom used. Instead, a number
of models are estimated for a range of different values of λ, [13]. Choosing the best
model is therefore equivalent of choosing the optimal λ. Several methods, such as
cross-validation and BIC, are implemented in different functions and packages. These
are covered in the next chapter.
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Chapter 4

Packages in R

Estimating undirected Gaussian graphical models in R can be done using available
packages at CRAN. The packages used herein are quite extensively developed and
include an abundance of functions outside of the ones used within this thesis. For
denoting a certain package, it is written using bold Sen serif. For specific functions
within packages, it is highlighted by using Sen serif. These are used to clarify the
text, as packages and functions occasionally share identical names. All functions
will not be evaluated in the simulation due to time-limitations, but are included
to provide an overview of available estimation techniques to the novel reader. The
packages and functions used in the simulation are presented in Table 4.1.

4.1 CVglasso

CVglasso acts as an wrapper package for the original for glasso package developed to
solve the optimization equation 3.8, [29, 20]. CVglasso extends the original package
by providing the user the ability to use cross-validation for selecting the tuning
parameter λ. The default specifications within the package is 5-fold cross-validation
for 10 values of λ. The default number of iterations for convergence are set to 10
000. Each iteration divides the data set into 80% training data and 20% test data
and creates for each 5-fold, 10 different graphical models each using the 10 lambda
values.

Amongst these ten models, the model with the lowest cross-validation errors is
saved. If the default cross-validation error tolerance of 0.0001 is reached prior to
completing all 10 000 iterations, the iterations are stopped and the found precision
is outputted. If, however, the tolerance is not reached prior to completing all 10 000
iterations, then the algorithm outputs the precision matrix with the lowest errors
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TRAINING SET TEST SET

divide into 5 folds of equal size

80% 20%

compute estimated
graphical models using
5 different partitionings

Figure 4.1: Illustration of one iteration using 5-fold cross-validation

from the saved list of matrices. Conceptual illustration of one iteration estimating
the models can be seen in Figure 4.1.

The package applied the following criteria for evaluating the cross-validation errors:
bayesian information criteria (BIC), akaike information criterion (AIC) and maxi-
mized log likelihood function. The criterias AIC and BIC are defined as follows:

AIC = 2|E| − 2ln(L̂), (4.1)

where, E is the number of nonzero edges, ln(L̂) = the maximized log-likelihood function

BIC = |E|ln(n)− 2ln(L̂), (4.2)

where, E is the number of nonzero edges, ln(L̂) = the maximized log-likelihood function,

n = the number of observations

One major advantage using CVglasso is the incorporation of the package parallel.
It allows for parallelization which provides the computer central processing unit
(CPU), the ability to use multiple CPU cores simultaneously when computing the
optimal tuning parameter, drastically reducing computation time, [39].

4.2 bootnet

Similar to CVglasso, the bootnet package acts as an wrapper package for 24 dif-
ferent packages including glasso, huge, qgraph and many more. The package is
aimed at condensing most available graphical estimation packages into one, as well
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as extending their capabilities with new proprietary functions, [14].

The primary function within the package, is the estimateNetwork function. With
estimateNetwork one can estimate the precision matrix by specifying the method
that shall be used, originating from the wrapped packages. The featured estimation
methods used include EBICglasso, pcor, huge, adalasso and mgm, [13].

• EBICglasso: Estimates a partial correlation network using a graphical LASSO
to mitigate spurious dependencies between variables. The function estimates
several networks for a range of different values of the tuning parameter λ used
to optimize equation 3.8, and selects the best fitting network by minimizing
the extended bayesian information criterion; EBIC, featured in the package
qgraph. EBIC extends the BIC by adding the final term with a tuning pa-
rameter γ. If γ = 0, the optimization problem is solved using regular BIC.

EBIC = −2ln(L̂) + |E|ln(n) + 4|E|γln(p), (4.3)

where, p = number of features, ln(L̂) = the maximized log-likelihood function,

E is the number of nonzero edges, n = the number of observations,

γ ∈ [0, 1] is the EBIC tuning parameter

The EBIC generates better properties in the setting of graphical models com-
pared to the regular BIC, [18], conditional on that the tuning parameter γ
has been selected appropriately. The extension penalizes models with high di-
mensionality harder, and is especially useful in dealing with a situation where
n << p, [6].

• pcor: Estimates an unregularized partial correlation network. Originates from
the package corpcor, [44].

• huge: Estimates the partial correlation network using the graphical LASSO.
The default tuning parameter is the EBIC. Thorough description is done within
section 4.3. Key differences between selecting EBICglasso lies within default val-
ues of tuning parameter λ and default application of a semiparametric transfor-
mation function huge.npn, when preparing the data. These functions originates
from the huge package.

• adalasso: Originating from the parcor package, this function estimates the pre-
cision matrix using a weighted graphical LASSO, in which the tuning parameter
is selected using cross-validation, [32, 51].
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Summarizing, the package features several functions useful for determining the strength
of the edges, the stability of the results, several methods for constructing confidence
intervals using bootstrap, and possibilities involving simulation in order to test differ-
ent estimation techniques. As well as gaining insight regarding the required sample
size needed for a meaningful analysis, see the bootnet function within the bootnet
package for more details, [14].

4.3 huge

The ”High-dimensional Undirected Graph Estimation” package, or in short huge
provides the user with the ability of estimating an undirected Gaussian graphical
model, [30]. It features several options useful for graphical modelling, such as a
built in function for generating data and methods of screening rules, [48, 31], which
are useful from a computational standpoint when operating big data. Its primary
function is huge. The function includes four methods for estimating the precision
matrix. These are;

• glasso: The function estimates 10 precision matrices for 10 different randomly
chosen values of the tuning parameter λ used to optimize equation 3.8. There
are three selection criteria for choosing λ. These are EBIC, Stability Ap-
proach to Regularization Selection, (StARS) and Rotation information crite-
rion, (RIC).

StARS is based on the variability of subsamples of the data, [34]. The proce-
dure generates subsamples and estimates a graph for each subsample. For λ
equal to zero, the total variability across subsamples will be very small since
all subsamples will generate a dense graph. Likewise, if the tuning parame-
ter tends to infinity, the total variability will be zero since all edges would be
excluded. λ is therefore set at a prespecified, high value in order to generate
a sparse graph, while still maintaining the edges which vary the least across
subsamples.
RIC an additional method for selecting the optimal tuning parameter. For the
technical details, the reader is referred to, [36]. It is not extensively discussed,
since it lacks theoretical support for recovering the true graph structure in
higher dimensions, [30, 50].

• mb: Utilizes the Meinshausen-Buhlmann graph estimation method, [38]. The
conditional independence assumption allows one to consider the estimation
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method to be equivalent to variable selection for linear regression with LASSO.
Each feature is consequently regressed using the other as predictors. The es-
timated coefficients of each regression is used as elements within the precision
matrix. This breaks down the graph structure to be estimated, with a total of
(2(p2−p)/2) edges, into a neighbourhood selection problem with 2(p−1) number
of neighbourhoods.

• ct: Correlation thresholding graph estimation. Given that the number of
nonzero elements u in the true dependence graph Ω is known, correlation
thresholding identifies the u largest off-diagonal elements of the covariance
matrix and sets all other elements to zero. Therefore, it does not involve any
formal optimization task. It has been shown that under certain conditions, this
method generates similar results to the graphical LASSO, [46].

• tiger: Tuning insensitive graph estimation. Asymptotically tuning-free LASSO
estimation. By fixing the tuning parameter at the predefined value

λ = ζπ

√
log(p)

2n
, (4.4)

where n is the number of observations, p number of features and ζ is the one
and only input to be chosen. This makes the method tuning-insensitive, since
ζ is unrelated to the data. Setting

ζ =

√
2

π
, (4.5)

has been shown through simulation to yield precise estimates of the true net-
work structure, [35].

A caveat implemented within the package when estimating graphs is the ability to
specify an application of a screening rule. Two screening rules are available, when
using estimation methods mb or glasso application of the so-called lossy screening
is possible through the function scr(). When estimating graphs utilizing glasso, by
default the so-called lossless screening is applied.

In essence, the lossy screening rule reduces feature dimensionality, hence preserv-
ing computational power. Yet, the rules’ performance suffers from statistical bias
due to only working optimally under certain conditions, [17]. In contrast, the loss-
less screening rule utilizes the Karush-Kuhn-Tucker conditions to reduce the required
estimation size of the precision matrix. By nature, achieving equivalent statistical
efficiency, [31, 48].
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After graph estimation is performed using one of the above mentioned methods,
one utilizes the function huge.select, in order to select the optimal precision matrix
given a certain tuning parameter selection criteria.

4.4 qgraph

The origin and primary use of this package is to construct and visualize network
models for psychometric data. Its main function, qgraph, is a wrapper function used
to visualise a variety of weighted network structures. The weights do not necessarily
have to be partial correlations, as standard correlations and p-values can also be
displayed graphically, and the connections between nodes can either be directed or
undirected, [12].

Functions within the package are mainly designed for estimation of a Gaussian
graphical model. ggmModSelect is the main function which features estimation of
such a model using both stepwise selection and the graphical LASSO, using the EBIC
as method for selecting the optimal λ. The function takes as input a covariance
matrix, and the following options are available for estimation;

• glasso: Shrinkage approach to estimate a sparse network, as implemented in
previous packages with the difference being that the function is originated from
the package Lavaan.

• Full: Starts from the full, saturated model before applying backwards selection.

• Empty: Starts from an empty network structure, before adding edges by forward
selection, [16].

The graphical LASSO can be applied in combination to using forward or back-
ward selection. In this way, the graphical LASSO is applied first, generating a more
sparse network in which the best fit is chosen according by EBIC selection criteria.
Subsequently, backward selection is applied to the sparse network, where edges are
selected using the same procedure as previously described. qgraph is solely used
in order to compare the stepwise model selection method to the more sophisticated
variants of the LASSO, featured in previously described packages. As such, by spec-
ifying the Full model, and setting the EBIC tuning parameter to zero, the applied
stepwise procedure is backwards selection using the normal BIC as a selection crite-
ria. For computational reasons, at each step in the selection process, only a subset
of edges are considered for removal as specified by the logical input Subset. By only
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considering edges that previously indicated a lower value of the BIC, the total num-
ber of potential models decrease in comparison to if all possible models where to be
tested at each step. This lowers the computational load, and should generate faster
processes of estimation.

4.5 Overview of Packages

Table 4.1
Packages and Functions Evaluated

Package Function Method Selection Criteria Evaluated

CVglasso CVglasso glasso log-likelihood Yes
AIC Yes
BIC Yes

bootnet estimateNetwork EBICglasso EBIC Yes
pcor - No
huge - No
adalasso - No

huge huge glasso EBIC Yes
StARS Yes

RIC No
mb - No
ct - No
tiger - No

qgraph ggmModSelect stepwise glasso No
full Yes

empty No

Six methods were not evaluated, therefore additional information regarding their
respective selection criteria are omitted from Table 4.1.
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Chapter 5

Data Generation and Simulation

5.1 Data Generation

Data generation was performed using the inverse of the predefined sparse precision
matrices in the function mvrnorm within the MASS package, [42]. By predefining
these precision matrices, model identifiability is fulfilled.

The inverse of the precision matrix is the covariance matrix, denoted by Ω = Σ−1.
mvrnorm generates a multivariate normally distributed data set from 1000 and 5000
observations with mean 0 and covariance Σ.

X ∼ Np(µ, Σ), (5.1)

where p-dimensional random vector is:

X = (X1, . . . , Xp)
T, (5.2)

and the p-dimensional mean vector is:

µ = E[X] = (E[X1],E[X2], . . . ,E[Xp])
T, (5.3)

and the p× p covariance matrix is

Σi,j = E[(Xi − µi)(Xj − µj)] = Cov[Xi, Xj] (5.4)

The predefined precision matrices were obtained using data generating algorithm 1.
Input variables for the algorithm include size of the matrix and how many nonzero
entries there should be within the matrix. Additionally, two constraints were also
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present when generating the matrices. These were that the generated matrix must
be positive definite and therefore the determinant of the matrix is nonzero. Since all
matrices are predefined with a known dependence structure, all subsequent models
are identifiable.

Four matrices were generated in total, with the following specifications:

Table 5.1
Description of Generated Matrices

Nr. Matrix Size Nonzero entries

1 5×5 6
2 15×15 10
3 25×25 16
4 100×100 51

Below it is presented how Matrix 1 is predefined, for the other matrices the relevant
information is put in appendix. One should interpret the matrix in the following way;
if there is a 0 between the two nodes they are considered conditionally independent of
each other. Otherwise, the two nodes are considered conditionally dependent. Since
the matrix is symmetric, only the upper triangular is evaluated when counting the
number of nonzero entries, also ignoring the diagonal values.

Matrix 1
Illustration of Precision Matrix 1

Node1 Node2 Node3 Node4 Node5

Node1 1 0 0.07 0.01 0
Node2 0 1 0.16 0.73 0.02
Node3 0.07 0.16 1 0 0
Node4 0.01 0.73 0 1 0.11
Node5 0 0.02 0 0.11 1


Node 1

Node 2Node 3

Node 4

Node 57

1

16

73
2

11

Figure 5.1: Graphical illustration of Matrix 1, in percentages

Creating the sparse matrices were done utilizing the function rsparsematrix built
into the Matrix package, [2]. The function takes following input variables: the di-
mension of the matrix, proportion of nonzero entries, custom made function value
insertion and if the matrix should be symmetric. Taking the inputs into account,
rsparsematrix generates a random sparse matrix. However, not necessarily fulfill-
ing the two required conditions for the matrix to be positive definite and having a
determinant not equal to zero.
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5.1.1 Matrix Generation Algorithm

Algorithm 1: Sparse Precision Matrix Generation

input : Amount of Variables, Amount of Nonzero entries, Starting Seed
output: A Sparse Precision Matrix with V × V dimensions

1 begin
2 library(Matrix);
3 set.seed(seed);
4 V ←− V ariables;
5 N ←− Nonzero Entries;
6 Matrix←− rsparsematrix(V, V, N, symmetric=T)
7 foreach Element defined as ”nonzero” in the Matrix do
8 Select a number from X ∼ U(−1, 1)
9 return(element value)

10 if |Matrix| 6= 0 and the Matrix is positive-definite = TRUE then
11 return(Matrix)
12 else
13 while |Matrix| 6= 0 and the Matrix is positive-definite = FALSE do
14 if while condition = FALSE then
15 while while condition (13) = FALSE do
16 N ←− N + 1 ; // increased nonzero entries

17 Matrix←− rsparsematrix(V, V, N, symmetric=T);
18 foreach Element defined as ”nonzero” in the Matrix do
19 Select a number from X ∼ U(−1, 1)
20 return(element value)

21 Stop N > elements in upper triangular matrix

22 else
23 while while condition (13) = FALSE do
24 seed←− seed+ 1; // increased and updated seed

25 Matrix←− rsparsematrix(V, V, N, symmetric=T);
26 foreach Element defined as ”nonzero” in the Matrix do
27 Select a number from X ∼ U(−1, 1)
28 return(element value)

29 return(Matrix)

30 return(Matrix)
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5.2 Simulation Methods

R allows for estimation of the predefined precision matrices by using the packages
huge, bootnet, CVglasso and qgraph, discussed earlier in Chapter 4. The initial
three packages numerically optimize equation 3.8. The key difference lies within
the selection criterion of the tuning parameter λ. Within huge, the selection criteria
EBIC and StARS are tested. For bootnet, the featured selection criteria is the EBIC.
For CVglasso, cross-validation using BIC, AIC and log-likelihood are featured. The
stepwise model search as described in qgraph is implemented using BIC as stepwise
selection criteria.
The simulation method for these packages is structured in the following way:

Step 1: Take the inverse of the predefined precision matrix

Step 2: For each iteration generate a new multivariate normally distributed dataset
described in data generation section, with mean 0 and covariance as the
inverted precision matrix.

Step 3: For each dataset estimate an undirected Gaussian graphical model using
huge, bootnet, CVglasso and qgraph.

Step 4: For each estimated model by huge, apply selection methods EBIC and
StARS. For models estimated by bootnet, apply selection methods EBIC.
For CVglasso, apply BIC, AIC and log-likelihood criteria for the tuning
parameter λ. This is done in order to asses the optimal estimated preci-
sion matrix for each method and selection criteria. This step is excluded
for qgraph, as the stepwise model search does not utilize any form of the
graphical LASSO.

Step 5: For each element in the optimal precision matrix estimated by each model, if
the element is nonzero, a 1 is input instead, converting the precision matrix
into a binary matrix. The evaluation thus becomes, ”an edge is present”
= 1, ”an edge is not present” = 0. Add the binary matrix results into the
zero matrix.

Step 6: Repeat for all iterations and output the summed binary matrices as simula-
tion results matrix.

25



5.2.1 Visualisation of Simulation and Evaluation Method

Precision Matrix



Node1 Node2 Node3 Node4 Node5

Node1 1 0 0.07 0.01 0
Node2 0 1 0.16 0.73 0.02
Node3 0.07 0.16 1 0 0
Node4 0.01 0.73 0 1 0.11
Node5 0 0.02 0 0.11 1


Step 1.

Binary Precision Matrix



Node1 Node2 Node3 Node4 Node5

Node1 0 0 1 1 0
Node2 0 0 1 1 1
Node3 1 1 0 0 0
Node4 1 1 0 0 1
Node5 0 1 0 1 0


Step 2.

Benchmark Matrix



Node1 Node2 Node3 Node4 Node5

Node1 0 0 1000 1000 0
Node2 0 0 1000 1000 1000
Node3 1000 1000 0 0 0
Node4 1000 1000 0 0 1000
Node5 0 1000 0 1000 0


Step 3.

Estimated Precision Matrix



Node1 Node2 Node3 Node4 Node5

Node1 0 0 19 0 0
Node2 0 0 1000 1000 0
Node3 19 1000 0 841 0
Node4 0 1000 841 0 1000
Node5 0 0 0 1000 0


Step 4.

Figure 5.2: Illustration of Simulation Procedure

Consider Figure 5.2, which is made for illustrative purposes of the simulation and
evaluation methods. It showcases four matrices.

Step 1 starts by considering the first matrix denoted as Precision Matrix, which
is the initial predefined Matrix 1, that the estimation methods aim to replicate. Step
2 denoted as Binary Precision Matrix, transforms the Precision Matrix in Step 1,
into a binary version; the value of an element equal to 1 indicates an edge between
two features being present and 0 otherwise. Step 3 utilizes the transformed Binary
Precision Matrix in Step 2. Referring to this matrix as the Benchmark Matrix,
as it represents a perfectly predicted precision matrix for all 1000 iterations. Step
4 considers the Estimated Precision Matrix, where utilization of a given selection
criteria was performed to produce an estimate to the Precision Matrix in Step 1.
This estimate is transformed into a binary version using the same logic as in Step 2,
and each element is summed for all 1000 iterations into the final Estimated Precision
Matrix.
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5.3 Evaluation Methods

A Confusion Matrix will be used for comparing the ability of each selection criteria
to estimate the predefined precision matrix. Emphasis will be put on specificity,
sensitivity, accuracy and total simulation time for the evaluation.

To calculate the specificity, sensitivity and accuracy, a comparison is made be-
tween the perfect ideal results of the Benchmark Matrix, and the actual predicted
results of the Estimated Precision Matrix, as illustrated in Figure 5.2. These compar-
isons allows for determination of numerical values for True Positives, True Negatives,
False Positives and False Negatives for each selection criteria featured in the simu-
lation.

• True Positive is defined as there being an edge present within the benchmark
matrix as well as within the estimated optimal precision matrix.

• True Negative is defined as there not being an edge present in both the bench-
mark matrix and the estimated precision matrix.

• False Positive is defined as there being an edge present within the estimated
precision matrix, however not within the benchmark matrix.

• False Negative is defined as there not being an edge estimated by the precision
matrix, however being present within the benchmark matrix.

Specificity, sensitivity and accuracy are calculated as

Specificity =
True Negative

True Negative+ False Positive

Sensitivity =
True Positive

True Positive+ False Negative

Accuracy =
True Positive+ True Negative

True Positive+ True Negative+ False Negative+ False Positive
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5.3.1 Visualisation of Evaluation Calculation

Benchmark Matrix



Node1 Node2 Node3 Node4 Node5

Node1 0 0 1000 1000 0
Node2 0 0 1000 1000 1000
Node3 1000 1000 0 0 0
Node4 1000 1000 0 0 1000
Node5 0 1000 0 1000 0



Estimated Precision Matrix



Node1 Node2 Node3 Node4 Node5

Node1 0 0 19 0 0
Node2 0 0 1000 1000 0
Node3 19 1000 0 841 0
Node4 0 1000 841 0 1000
Node5 0 0 0 1000 0


True Positive



Node1 Node2 Node3 Node4 Node5

Node1 0 0 19 0 0
Node2 0 0 1000 1000 0
Node3 19 1000 0 0 0
Node4 0 1000 0 0 1000
Node5 0 0 0 1000 0


TP = 3019

True Negative



Node1 Node2 Node3 Node4 Node5

Node1 0 1000 0 0 1000
Node2 1000 0 0 0 0
Node3 0 0 0 159 1000
Node4 0 0 159 0 0
Node5 1000 0 1000 0 0


TN = 3159

False Positive



Node1 Node2 Node3 Node4 Node5

Node1 0 0 0 0 0
Node2 0 0 0 0 0
Node3 0 0 0 841 0
Node4 0 0 841 0 0
Node5 0 0 0 0 0


FP = 841

False Negative



Node1 Node2 Node3 Node4 Node5

Node1 0 0 981 1000 0
Node2 0 0 0 0 1000
Node3 981 0 0 0 0
Node4 1000 0 0 0 0
Node5 0 1000 0 0 0


FN = 2981

Figure 5.3: Illustration of Evaluation Calculation

Analyzing Figure 5.3, which is an illustrative extension building upon the matrices
in Figure 5.2 calculated by algorithms 2 to 6, stored within the appendix. These al-
gorithms computes values for the definitions above in 5.3, comparing the Benchmark
Matrix to the Estimated Precision Matrix to find the correct matrices. Outputting
only a single value, for each definition by summing all elements within the found
matrix and dividing it by two. This is due to the matrices being symmetric and
information from a triangular matrix being sufficient to calculate the specificity, sen-
sitivity and accuracy.
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5.4 Computing Setup

These computational simulations will be conducted using R version 4.0.5, [40], on the
following setup, using default BIOS settings with no overclocking or performance en-
hancing software. The motivation behind this decision is to provide a fair benchmark
comparison for these specific components.

Table 5.4
Description of Computing setup

Operating System CPU RAM GPU

Windows 10, 64 bit Intel Core i7-7700k, 4.2GHz 16 GB, 2133MHz Nvidia GTX 1080ti
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Chapter 6

Results

6.1 Simulation Results

After generating the precision matrices, generating the random sets of data, applying
the numerical optimization methods and the steps described in Chapters 4 and 5,
the results of the simulation are presented in Table 6.1 and 6.2. Rounding off error
is present due to 3 digits. Float point of R is IEEE 754 standard.

Since the R code will not be provided below within the appendix due to the
extensive length, if the reader wishes to replicate the results of the study, contact
the authors by e-mail.1

1arsh0015@student.umu.se
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Table 6.1
Simulation Results 1 with 1000 observations

Selection Method Matrix Size Sensitivity Specificity Accuracy Time

huge ebic 5×5 0.603 0.849 0.701 11.4 m
huge stars 5×5 0.157 1 0.494 2.990 h

bootnet ebic 5×5 0.690 0.749 0.713 4.954 s
CVglasso log-likeli 5×5 0.708 0.607 0.668 15.264 s

CVglasso BIC 5×5 0.58 0.822 0.677 14.673 m
CVglasso AIC 5×5 0.662 0.702 0.678 15.619 m

qgraph stepwise 5×5 0.565 0.987 0.734 1.422 m

huge ebic 15×15 0.725 0.974 0.950 11.62 m
huge stars 15×15 0.7 0.981 0.954 2.995 h

bootnet ebic 15×15 0.812 0.935 0.923 9.636 s
CVglasso log-likeli 15×15 0.877 0.703 0.719 20.773 s

CVglasso BIC 15×15 0.737 0.952 0.931 15.323 m
CVglasso AIC 15×15 0.809 0.866 0.861 15.737 m

qgraph stepwise 15×15 0.802 0.989 0.971 12 h

huge ebic 25×25 0.903 0.945 0.943 11.36 m
huge stars 25×25 0.831 0.952 0.946 3.113 h

bootnet ebic 25×25 0.929 0.906 0.907 28.038 s
CVglasso log-likeli 25×25 0.905 0.904 0.904 32.935 s

CVglasso BIC 25×25 0.844 0.945 0.940 15.481 m
CVglasso AIC 25×25 0.888 0.917 0.915 17.731 m

qgraph stepwise 25×25 - - - -

huge ebic 100×100 0.894 0.995 0.994 11.89 m
huge stars 100×100 - - - -

bootnet ebic 100×100 0.903 0.989 0.988 20.433 m
CVglasso log-likeli 100×100 0.775 0.987 0.985 4.105 m

CVglasso BIC 100×100 0.774 0.987 0.985 17.084 m
CVglasso AIC 100×100 0.775 0.987 0.985 19.267 m

qgraph stepwise 100×100 - - - -
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Table 6.2
Simulation Results 2 with 5000 observations

Selection Method Matrix Size Sensitivity Specificity Accuracy Time

huge ebic 5×5 0.576 0.862 0.690 11.387 m
huge stars 5×5 0.206 1 0.523 3.03 h

bootnet ebic 5×5 0.752 0.712 0.736 6.786 s
CVglasso log-likeli 5×5 0.727 0.756 0.739 20.886 s

CVglasso BIC 5×5 0.690 0.806 0.736 15.513 m
CVglasso AIC 5×5 0.730 0.757 0.740 18.12 m

qgraph stepwise 5×5 0.691 0.994 0.812 1.371 m

huge ebic 15×15 0.700 0.979 0.952 11.848 m
huge stars 15×15 0.315 0.991 0.926 2.78 h

bootnet ebic 15×15 0.965 0.920 0.924 16.624 s
CVglasso log-likeli 15×15 0.943 0.853 0.862 37.212 s

CVglasso BIC 15×15 0.894 0.940 0.936 15.657 m
CVglasso AIC 15×15 0.933 0.873 0.880 17.929 m

qgraph stepwise 15×15 - - - -

huge ebic 25×25 0.917 0.949 0.947 11.881 m
huge stars 25×25 0 1 0.95 2.98 h

bootnet ebic 25×25 0.940 0.883 0.886 35.794 s
CVglasso log-likeli 25×25 0.923 0.957 0.955 1.026 m

CVglasso BIC 25×25 0.921 0.956 0.955 15.554 m
CVglasso AIC 25×25 0.923 0.956 0.955 18.799 m

qgraph stepwise 25×25 - - - -

huge ebic 100×100 0.893 0.997 0.996 12.904 m
huge stars 100×100 - - - -

bootnet ebic 100×100 0.951 0.979 0.979 12.24 m
CVglasso log-likeli 100×100 0.767 0.997 0.996 6.657 m

CVglasso BIC 100×100 0.767 0.997 0.995 18.556 m
CVglasso AIC 100×100 0.767 0.997 0.995 22.08 m

qgraph stepwise 100×100 - - - -

Simulation results for larger matrices using qgraph stepwise model, were omitted due
to the extensive computational time of 12 hours for the 15 × 15 matrix presented
within Table 6.1. Furthermore, results of huge stars for the 100 × 100 matrix for
both simulations, were infeasible to compute due to RAM memory limitations.
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Chapter 7

Discussion

7.1 Results

Reviewing and interpreting the results of the simulation, a few aspects should be
noted. Firstly, the simulation time is a measurement of the iterative process as a
whole. The measurement do not reflect estimation of a single network, but esti-
mation of 1000 networks as well as storing the results for each method. Secondly,
all true network structures were relatively sparse, a computational requirement for
obtaining a matrix with the specified structure as well as being positive-definite. A
model which only estimates zeros would be both specific and accurate. This is due to
the proportion of zero to non-zero elements within the predefined precision matrices.
Therefore, only considering accuracy would be misleading, as highly specific methods
tend to likewise be highly accurate.

Consider StARS as implemented in huge as a selection critera for the tuning
parameter within graphical LASSO. In general, the estimated network was highly
sparse. Therefore, it is very specific, as it correctly identified true negatives to a large
extent. A side effect of this estimate is low sensitivity, thus incorrectly estimating
independencies between dependent features. This is not unexpected, as the method
is developed for use in high-dimensions to generate sparse graphs, [34]. Given the
nature of the simulation with relatively few nonzero entries in the true precision ma-
trix, the measurement of accuracy is for that reason to be interpreted with caution.
In summary, while being highly specific, this method is generally not very sensitive,
while also being slower in comparison to other methods.
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The results regarding qgraphs stepwise model using BIC as the selection crite-
rion is in line with previous research. In terms of specificity, it performs well when
p = 5 and p = 15. Only considering these sets of data, it is the most accurate.
The problem arises in higher dimensions, as the simulation was extremely time con-
suming. 1000 iterations, using p = 15 and 1000 observations, the simulation was
completed in circa 12 hours. As such, stepwise selection was omitted for estimating
the larger sets of data. This is no surprise, since the package description states that
the stepwise procedure is very slow when p > 30. Given that high-dimensional data
is not uncommon in modern statistics, this method is infeasible in such instances.
Using a smaller data set, it yields similar or slightly better results in comparison to
the other estimation techniques. It is a viable alternative to the graphical LASSO
given a data with only a few features, but it is non-applicable for higher dimensions.

The graphical LASSO using EBIC as selection criteria implemented in the boot-
net package produced competitive results across all quantitative measurements. It
exhibited high accuracy as an effect of both high sensitivity and specificity. The al-
gorithm was also very fast, its slowest time was just over 20 minutes for completing
1000 iterations using the 100× 100 data with 1000 observations. Aside from the re-
sults, it was also well-documented and easy to work with. The EBIC as implemented
in huge displayed similar results, thus confirming the findings of [18], namely that
the EBIC is useful as a selection criterion for the graphical LASSO. Comparing tim-
ings between the packages both implementing the EBIC, there are some variation.
As the bootnet package generally becomes slower in higher dimensions, the EBIC
as implemented in huge is generally stable at around 11 minutes for all iterations
regardless of p.

Using cross-validation as a method for selecting the tuning parameter λ as im-
plemented in CVglasso, also outputs adequate results for both sample sizes. All
implementations of cross-validation yields comparable results to the EBIC using
p = 25 or less. When p = 100, cross-validation is generally less sensitive in compari-
son to the EBIC. All variants of the cross-validation have a sensitivity of 0.767 when
n = 5000, which is lower compared to the EBIC as implemented in bootnet(0.951)
and huge(0.893). Apart from the actual results, the expected main drawback of
using cross-validation to choose tuning parameter was in regards to simulation time.
Reviewing the current literature, [35], it is considered to be a relatively challenging
method from a computational standpoint. Based on our results, the cross-validation
using AIC or BIC as selection criteria were the slowest methods apart from StARS
and the stepwise procedure. Surprisingly, the cross-validation using log-likelihood as
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selection criteria was among the fastest. This may be a result of the relatively low-
dimensional matrices used in our simulation, as these may not be large enough for
cross-validation to be computationally infeasible. Still, being that cross-validation is
a well-known and proven technique within statistical analysis, its use within graph-
ical model estimation cannot be opposed based on our results, at least when the
number of features are low to moderate.

7.2 Concluding Remarks and Future Research

A vital assumption for the undirected Gaussian graphical model is normality. In the
case of multivariate normality, all conditional distributions are also normal. By sim-
ulating data, this assumption is fulfilled and a given set of edges can be interpreted
as conditional probabilities. Using real-world data, this assumption may or may
not be fulfilled. As such, the results of our simulation regarding the ability of each
method to extract the true network structure, can and should only be interpreted
within the context of this perfect scenario. The carry-over effect from our results
to real world data is an interesting yet hard question to answer. All models rely on
the same fundamental assumption, but the different methods could be more or less
robust to situations in which the normality assumption is questionable. For some in-
sight, [26] concluded that the undirected Gaussian graphical model was quite robust
when comparing the resulting network structure to that of a semi-parametric Gaus-
sian copula graphical model. Given that their log-transformed set of features were
not perfectly normally distributed, it provides some indication that an undirected
Gaussian graphical model might be robust to the normality assumption. It does
not give any feedback as to which particular method, being stepwise or the many
implementations of the graphical LASSO, that provides the most robust estimate.
As such, the suggestions of future research are;

• How robust is an undirected Gaussian graphical model to data which is not
multivariate normal?

• Are there differences in the results of different estimation techniques in regards
to non-normality?
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Appendix A

Graphs, Matrices, Mathematical
Motivation and Algorithms

A.1 Predefined Matrices with Graphs

Matrix 1
Illustration of Precision Matrix 1

Node1 Node2 Node3 Node4 Node5

Node1 1 0 0.07 0.01 0
Node2 0 1 0.16 0.73 0.02
Node3 0.07 0.16 1 0 0
Node4 0.01 0.73 0 1 0.11
Node5 0 0.02 0 0.11 1
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1

34

2

5

Figure A.1: Graphical Illustration of Precision Matrix 1
where green edges illustrate positive partial correlation, while red edges illustrate

negative partial correlation between the nodes.
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Figure A.2: Graphical Illustration of Precision Matrix 2
where green edges illustrate positive partial correlation, while red edges illustrate

negative partial correlation between the nodes.
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Figure A.3: Graphical Illustration of Precision Matrix 3
where green edges illustrate positive partial correlation, while red edges illustrate
negative partial correlation between the nodes.
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A.2 Mathematical Derivation

Let us assume the sampled multivariate data ~Xi be normally distributed and their
mean and covariance are denoted as ~µ and Σ, i.e.

~Xi =

x1
...
xp


i

E[ ~Xi] = ~µ =

µ1
...
µp

 V [Xi] = E( ~Xi − ~µ)( ~Xi − ~µ)T = Σ.

Under such assumption, their density function equals to

f
(
~X
)

=
1

(2π)
p
2 (det Σ)

1
2

· exp

[
− 1

2

(
~X − ~µ

)T
Σ−1

(
~X − ~µ

)]
(A.1)

If the sample data constitute independent observations, ~X1, . . . , ~Xn, then their
likelihood function can be defined as a product of the density functions evaluated on
the collected samples:

L
(
{ ~X1, . . . ~Xn}, ~µ,Σ

)
:= f( ~X1) · f( ~X2) · . . . · f( ~Xn) (A.2)

The straightforward calculations show then that the log-likelihood function is:

l(·) = ln

[
1

(2π)p/2

]
+ ln

[
1

(det Σ)1/2

]
+

[
− 1

2
( ~X1 − ~µ)TΣ−1( ~X1 − ~µ)

]
︸ ︷︷ ︸

=ln f(X1)

+ . . .

+ ln

[
1

(2π)p/2

]
+ ln

[
1

(det Σ)1/2

]
+

[
− 1

2
( ~Xn − ~µ)TΣ−1( ~Xn − ~µ)

]
︸ ︷︷ ︸

=ln f(Xn)

= n ln

(
1

(2π)p/2

)
︸ ︷︷ ︸

=− k
2

ln 2π

+n ln

(
1

(det Σ)1/2

)
− 1

2

n∑
i=1

(
( ~Xn − ~µ)TΣ−1( ~Xn − ~µ)

)
(A.3)

If one denotes the inverse of Σ in Eqn. (A.3) as Ω and take into account the relations

Ω Σ = Ip ⇒ det Ω · det Σ = 1 ⇒ det Ω =
1

det Σ
,

then the log-likelihood function will be of the form

l(·) = −np
2

ln 2π +
n

2
ln
(

det Ω
)
− 1

2

n∑
i=1

(
( ~Xn − ~µ)TΩ( ~Xn − ~µ)

)
(A.4)
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Applied example:
For illustration purposes of the optimization arguments, let us consider the case
p = 2 and thus

~X =

(
x1

x2

)
; ~µ =

(
µ1

µ2

)
; Ω =

(
u1 u12

u12 u2

)
.

For the case (as for the general one) the optimization problem is to find the unknown
values for the vector ~µ and the positive definite matrix Ω that maximize the value
of the function (A.4). Such optimization can be done in two steps:

Step 1: Assume that the matrix parameter Ω is known and and is set to a fixed
value. Find ~µ∗ that maximizes l(·).

Step 2: Substitute ~µ = ~µ∗ in the function l(·) and search separately for a positive
definite matrix Ω that maximizes l(·).

To complete Step 1, let us find the maximizer (A.4) for given , i.e.

~µ∗ = argmax
µ

l(·) = argmax
µ

{
− 1

2

n∑
i=1

(
( ~Xn − ~µ)TΩ( ~Xn − ~µ)

)}
= argmax

µ

{
− 1

2

n∑
i=1

((
x1i − µ1

x2i − µ2

)T (
u1 u12

u12 u2

)(
x1i − µ1

x2i − µ2

))}
= argmax

µ

{
− 1

2

n∑
i=1

(
u1(x1i − µ1)2 + 2u12(x1i − µ1)(x2i − µ2) + u2(x2i − µ2)2

)}
(A.5)

Take partial derivatives of the function (A.5) with respect to each parameter µ1, µ2

and equating each of then with zero, we obtain the necessary conditions of optimality
for the function l(·).

∂l(·)
∂µ1

= 0,
∂l(·)
∂µ2

= 0 (A.6)
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They can be reformulated as follows

0 =
∂l(·)
∂µ1

=
∂

∂µ1

(
− 1

2

n∑
i=1

(
u1(x1i − µ1)2 + 2u12(x1i − µ1)(x2i − µ2) + u2(x2i − µ2)2

)
= −1

2

n∑
i=1

(
2u1(x1i − µ1) · (−1) + 2u12 · (−1)(x2i − µ2)

)
=

n∑
i=1

(
u1(x1i − µ1) + u12(x2i − µ2)

)
= u1

( n∑
i=1

x1i

)
− u1 · n · µ1 + u12

( n∑
i=1

x2i

)
− u12 · n · µ2

Dividing the last expression by n, we have

0 = u1

(
1

n

n∑
i=1

x1i

)
−u1 ·µ1 +u12

(
1

n

n∑
i=1

x2i

)
−u12 ·µ2 = u1

(
x̄1−µ1

)
+u12

(
x̄2−µ2

)
(A.7)

Taking advantage of similar arguments in analyzing the second necessary optimality
condition (A.6) for the function l(·), we can find that:

u12(x̄1 − µ1) + u2(x̄2 − µ2) = 0 (A.8)

Combining both equations (A.7)-(A.8) and rewriting them in a matrix form results
in the matrix equation [

u1 u12

u12 u2

]
︸ ︷︷ ︸

Ω

[
x̄1 − µ1

x̄2 − µ2

]
=

[
0
0

]
(A.9)

Since by assumption the matrix Ω is positive definite, then this matrix has well
defined inverse. This immediately implies that the only candidate solution for the
partial optimization task mentioned in Step 1 is:

µ1
∗ = x̄1 µ2

∗ = x̄2.

To certify that this is indeed the optimizer, we need to check the Hessian matrix of
l(·) at this point is negative definite. The direct calculations show that this is the
case

∂2l(·)
∂µ2)

=

[
∂2l(·)
∂µ12

∂2l(·)
∂µ1∂µ2

∂2l(·)
∂µ1∂µ2

∂2l(·)
∂µ22

]
= −Ω < 0 (A.10)
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Utilizing the found maximum solutions, we proceed with Step 2 in order to find Ω
that maximizes l(·). We once again begin our search with equation A.4.

l({ ~X1, . . . ~Xn}, ~µ = ~µ∗,Ω) =
−np

2
ln 2π+

n

2
ln(det Ω)− 1

2

n∑
i=1

(
( ~Xi−X̄)TΩ( ~Xi−X̄)

)
(A.11)

The last part of equation A.11, could be rewritten as:

−1

2

n∑
i=1

(
( ~Xi− X̄)TΩ( ~Xi− X̄)

)
= trace

[
− 1

2

n∑
i=1

(
( ~Xi− X̄)TΩ( ~Xi− X̄)

)]
(A.12)

= −1

2

n∑
i=1

trace

[
( ~Xi − X̄)T︸ ︷︷ ︸

A

Ω( ~Xi − X̄)︸ ︷︷ ︸
B

]
(A.13)

Quick Note: trace(AB) = trace(BA).

= −1

2

n∑
i=1

trace

[
Ω( ~Xi − X̄)︸ ︷︷ ︸

B

( ~Xi − X̄)T︸ ︷︷ ︸
A

]
(A.14)

= −1

2
trace

[
Ω

n∑
i=1

( ~Xi − X̄)( ~Xi − X̄)T
]

(A.15)

Extend equation (A.15) by multiplying and dividing the expression on n,

= −n
2

trace

[
Ω

∑n
i=1( ~Xi − X̄)( ~Xi − X̄)T

n︸ ︷︷ ︸
Sample Covariance Σ̂

]
(A.16)

Thus yielding literally the same result as in equation (3.9):

l
({

~X1, . . . ~Xn

}
, ~µ = ~µ∗,Ω

)
=
n

2
ln(det Ω)− n

2
trace(ΩΣ̂)− np

2
ln 2π (A.17)
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A.3 Confusion Matrix Algorithms

Algorithm 2: Benchmark Matrix Algorithm

input : Estimated Precision Matrix, Iterations
output: Benchmark Matrix

1 begin
2 Original Matrix ←− abs(Original Matrix);
3 diag(Original Matrix) ←− ∅;
4 foreach Iteration do
5 Generate a zero matrix M;
6 forall Nonzero Elements in Original Matrix do
7 Input value 1 in M

8 Benchmark Matrix ←− M; // Each iteration adds the

original matrix edges into a new matrix, creating the

true optimal precision matrix that the undirected

Gaussian graphical model estimate strive towards

9 return(Benchmark Matrix)

10 return(Benchmark Matrix)
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Algorithm 3: True Positive Algorithm

input : Benchmark Matrix, Simulation Results
output: Number of True Positive values in Estimated Model

1 begin
2 True Positive Matrix ←− ∅; M ←− Benchmark Matrix;
3 R ←− Simulation Results;
4 for i in 1:length(M) do
5 if Mi = 0 then
6 True Positive Matrix element i = 0
7 else
8 if Ri ≥Mi then
9 True Positive Matrix element i = Mi

10 else
11 True Positive Matrix element i = Ri

12 return(True Positive Matrix);

13 for i in 1:(True Positive Matrix) do
14 sum all elements into numeric variable → TP;

15 return(TP
2

); // Since only upper triangle is considered
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Algorithm 4: True Negative Algorithm

input : Benchmark Matrix, Simulation Results, Number of Iterations
output: Number of True Negative values in Estimated Model

1 begin
2 True Negative Matrix ←− ∅; M ←− Benchmark Matrix;
3 R ←− Simulation Results;
4 for i in 1:length(M) do
5 if Mi = 0 and Ri = 0 then
6 True Negative Matrix element i = Number of Iterations
7 else
8 if Mi = 0 then
9 True Negative Matrix element i =

[
Number of Iterations−Ri

]
10 else
11 True Negative Matrix element i = 0

12 return(True Negative Matrix);

13 for i in 1:(True Negative Matrix) do
14 sum all elements into numeric variable → TN;

15 diag(TN) = 0;

16 return(TN
2

); // Since only upper triangle is considered
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Algorithm 5: False Positive Algorithm

input : Benchmark Matrix, Simulation Results
output: Number of False Positive values in Estimated Model

1 begin
2 False Positive Matrix ←− ∅; M ←− Benchmark Matrix;
3 R ←− Simulation Results;
4 for i in 1:length(M) do
5 if Ri = 0 then
6 False Positive Matrix element i = 0
7 else
8 if Mi = 0 then
9 False Positive Matrix element i = Ri

10 else
11 False Positive Matrix element i = 0

12 return(False Positive Matrix);

13 for i in 1:(False Positive Matrix) do
14 sum all elements into numeric variable → FP;

15 return(FP
2

); // Since only upper triangle is considered
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Algorithm 6: False Negative Algorithm

input : Benchmark Matrix, Simulation Results
output: False Negative values in Estimated Model

1 begin
2 False Negative Matrix ←− ∅; M ←− Benchmark Matrix;
3 R ←− Simulation Results;
4 for i in 1:length(M) do
5 if Mi = 0 and Ri = 0 then
6 False Negative Matrix element i = 0
7 else
8 if Mi 6= 0 then
9 False Negative Matrix element i =

[
Mi - Ri

]
10 else
11 False Negative Matrix element i = 0

12 return(False Negative Matrix);

13 for i in 1:(False Negative Matrix) do
14 sum all elements into numeric variable → FN;

15 return(FN
2

); // Since only upper triangle is considered
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