
Umeå University

Efficient graph em-
beddings with com-
munity detection

APRIL 16, 2021

Felix Djuphammar

published by felix djuphammar

April 2021

Copyright © 2021 Felix Djuphammar

Submitted as a master’s thesis in Engineering Physics to the Department of Physics, Umeå University

Supervised by Martin Rosvall, Integrated Science Lab, Department of Physics, Umeå University
Supervised by Andrea Lancichinetti, Integrated Science Lab, Department of Physics, Umeå University
Examiner was Ludvig Lizana, Integrated Science Lab, Department of Physics, Umeå University

3

Abstract

Networks are useful when modeling interactions in real-world
systems based on relational data. Since networks often contain thou-
sands or millions of nodes and links, analyzing and exploring them
requires powerful visualizations. Presenting the network nodes in a
map-like fashion provides a large-scale overview of the data while
also providing specific details. A suite of algorithms can compute an
appropriate layout of all nodes for the visualization.

However, these algorithms are computationally expensive when
applied to large networks because they must repeatedly derive rela-
tions between every node and every other node, leading to quadratic
scaling. Also, the available implementations compute the layout from
the raw data instead of the network, making customization difficult.

In this thesis, I introduce a modular algorithm that removes the
need to consider all node pairs by approximating groups of pairwise
relations. The groups are determined by clustering the network into
densely connected groups of nodes with a community-detection al-
gorithm. The implementation accepts a network as input and returns
the layout coordinates, enabling modular and straightforward inte-
gration in a data analysis pipeline. The approximations improve the
new algorithm’s scaling to an order of 2N1.5 compared to the original
N2. For a network with one million nodes, this scaling improvement
gives a 500-fold performance boost such that a computation that
previously took one week now completes in about 20 minutes.

Keywords

Network, visualization, modularization, t-SNE, gradient descent

Contents

1 Introduction 7

2 Theory 9

2.1 Modularizing networks 10

2.2 The t-SNE layout algorithm 10

2.3 Mathematical Definitions 11

2.4 Gradient derivation 12

2.5 Gradient approximation 12

2.6 Expected Scaling 14

3 Implementation 17

3.1 Code Description 18

3.1.1 Graph 18

3.1.2 NetworkLayout 19

4 Results 21

4.1 Accuracy 21

4.2 Scaling 22

5 Discussion 25

5.1 Weaknesses 25

5.1.1 Local Minima 25

5.1.2 Outliers 26

6

5.2 Improvements 27

5.2.1 Accuracy 27

5.2.2 Efficiency and scaling 28

6 Conclusion 29

A Appendix 31

A.1 Gradient Derivation 31

A.1.1 Variable Definitions 31

A.1.2 Function and Operation Definitions 31

A.1.3 Derivation 32

B Bibliography 35

1
Introduction

Companies gather data on an increasingly detailed level as access
to new types of information is continuously becoming available.
Technological advancements allow collection of detailed consumer
purchase data, providing extensive information about product and
consumer relations. These relations form networks describing the
company’s products from a consumer market stand point. Each
product is represented by a node with connections to other nodes
generated from the data.

Generating and analyzing these networks is a service that the
Umeå based company InfoBaleen provides to its clients. They help
their clients interpret their data to draw conclusions about their con-
sumers and dynamic markets that go way beyond what traditional
assumptions can offer. A common method of doing this is through
visualizing networks where InfoBaleen offer services that generate
networks from raw data and visualizes them. By visualizing a map-
like interface of the nodes, the data owner can explore their data and
learn things about their products that would otherwise be difficult to
observe.

As an example, imagine an electronics company that manufactures
PC peripheral products. From the suppliers perspective, the most
logical categorization is per product group, such as keyboards in one
category and mice in another. From the customers point of view, if
they just recently bought a keyboard then it is more likely that they
are interested in a mouse than another keyboard. This means that
recommending products from the same category is unlikely to be
successful. However, which category is most likely to be of interest
is not always trivial. So, how do we determine what other categories
may be of interest, and how do we decide which products within
these categories to recommend?

Using network visualization, this is one of the many questions In-
foBaleen can help to answer. Products that are often bought together

8 efficient graph embeddings with community detection

or in succession get represented by nodes in closer proximity in the
map. Nodes in close proximity tend to form communities of prod-
ucts especially related to each other, seen as cluster formations in the
map. By exploring the map, a user gains understanding of how prod-
ucts relate to one another within these clusters, as well as a larger
overview of the relations between the clusters.

The current problem is that the majority of existing algorithms
for computing the visual layout only manage small systems. As the
data sets become larger, so do the networks, which results in the cur-
rent algorithms taking very long time to complete due to their poor
scaling nature. There is currently a shortage of generally reliable
methods to compute positions in the map without making compu-
tations from each node to every other node in the network, which
results in quadratic scaling in terms of network size. The field is in
need of algorithms that scale better to enable using these methods on
much larger networks than what is currently viable.

Existing implementations usually suffer from these poorly scal-
ing execution times. Moreover, they are often implemented with a
black box design, accepting the raw data as input and returning the
complete layout. Customization is thereby difficult. By implement-
ing only the layout algorithm with a network as input, developers
can control other components in the complete visualization tool’s
pipeline more conveniently.

In this thesis, I propose a solution to this. I have derived a new
formulation of an existing algorithm that optimizes performance by
making approximations using properties of these clusters. The new
algorithm scales better than the original with very little expense in
accuracy. The implementation of it accepts a network as input and
can return the map coordinates for all the nodes. Thanks to this,
InfoBaleen can provide customizable and faster solutions to their
clients with equally rewarding results.

2
Theory

A network represents a real world system using relations between
objects. It consists of a set of network nodes that connect to each
other by links with a certain weight. A common example is airports,
where the nodes are the airports themselves, the links are the flight
paths and the weights can be some measurable quantity like number
of flights per week.

A property commonly observed in networks is a modular struc-
ture. This is when a limited subgroup of network nodes connect to
each other more densely than to the rest of the network, forming a
cluster, also referred to as a community or module. There can exist
layers of clusters, where subgroups of clusters are related in the same
way, constituting a multi-layered modular structure.

Using the airports example, one country would typically form one
cluster. This assumes that the airports within the country have con-
nections to each other, but only a select few have connections to the
rest of the world. Expanding on this idea, assuming flights to closer
countries are generally more common, the country modules can
themselves form another layer of clusters on each continent based on
the weights of the flight paths between them. The network Airports in
the world would in this case be layered by Airport, Country, Continent,
and World.

The weights in the network can be binary, meaning two nodes
are either connected or disconnected. This is referred to as an un-
weighted graph. Similarly, the links can either be directed or undi-
rected. A directed link means that there can exist a link from node
A to B, but not from B to A, while an undirected link means that
the network can always be traversed in both directions. Through-
out this thesis I am considering networks that are unweighted and
undirected.

The nodes also have a degree that is defined as the number of
links connecting to it, or in other words, how many neighboring

10 efficient graph embeddings with community detection

nodes it has. The average degree in a network is thereby a measure-
ment of the sparsity in the network.

To better understand where in the typical work flow this thesis
has its relevance, one can think of the general procedure as follow-
ing four main steps. The first is network creation from a data source.
The second analyzes the generated network to identify modules. The
third is computing the visual layout of the entire network. The fourth
and final step is visualizing the network to the end user. The algo-
rithm discussed in this thesis aims to optimize the third step, so the
other steps are done using third party libraries or simple solutions
that will not be discussed in detail.

2.1 Modularizing networks

The algorithm in this thesis decreases execution times using modular-
ization of networks. Modularization means that more closely related
nodes in the network are labeled to belong to the same module. Be-
low is an example showing a real use case graph before and after
being divide into modules.

Figure 2.1 – A visualization
of a network being divided
into modules by color code.
Each module is given a unique
color which is applied to all
nodes within that module.

I use a third party library for the process of dividing the network
into clusters. Therefore, the theory behind how this division is pre-
formed is not covered, but the understanding of its result and signifi-
cance is crucial in understanding the implemented algorithm.

2.2 The t-SNE layout algorithm

The algorithm I expand upon in this thesis is the t-SNE 1 algorithm. 1 Bibliography: Visualizing Data using
t-SNE, 2008Modifications of this algorithm exist, but they all share the same

trade-off between execution time and accuracy. The algorithm that
I propose in this thesis modifies the t-SNE algorithm in a way that
improves execution times, with very minimal effects on accuracy. The
first step in grasping how the algorithm works is to understand the
concept of the t-SNE algorithm in its native form.

theory 11

The native form of t-SNE requires computation of a relation be-
tween every node and every other node, meaning that with all pos-
sible precomputations done properly, the algorithm is left at a com-
plexity of N2. Described using words, the relation between two nodes
is defined by a loss function that the algorithm aims to minimize. In
turn, this loss function uses a similarity function, which is related
to the inverse of the distance between two nodes, along with the
weight of the link between the two. By starting from a random layout
and then moving nodes in the network using gradient descent, the
algorithm converges toward a local minimum where the loss func-
tion is minimized. A consequence of this procedure is that the local
minimum is generally not global. This means that different random
initial conditions typically have different outcomes. The quality of the
outcomes is comparable by the resulting loss function value.

Introduction of an approximation in the process can be done in
two ways. Either the loss function is approximated and the gradient
descent is performed with the exact gradient of the approximated
loss function, or the gradient itself is approximated. In short, there
is a choice between reaching an approximate solution exactly, or
approximately reaching an exact solution. The benefits of approxi-
mating the gradient in favor of the loss function is that it opens up
some possibilities for customization and versatility. To exemplify this,
the algorithm can instead be used to compute several layouts, then
easily using the exact gradient to fine tune the best result.

2.3 Mathematical Definitions

Now that you understand the t-SNE algorithm as a concept, I will
introduce mathematical expressions to define the algorithm explicitly.
This provides deeper understanding, which is required to follow the
steps I take when formulating the approximation in section 2.5. First,
I use a definition of the similarity function between two points u and
v. This function returns 1 if the points are the same and decreases as
the points move further apart. It is defined as

S(u, v) =
1

1 + |u− v|2 (2.1)

The similarity norm of node i at position ri is defined as the sum of
its similarity to all other nodes

||S||i = ∑
j

S(ri, rj) (2.2)

Similarly, the weight probability norm of node i is defined as the sum
over the weights wij to all other nodes j. Note that in a binary graph

12 efficient graph embeddings with community detection

this equates to the number of neighbors of node i

||w||i = ∑
j

wij (2.3)

Using these definitions, the loss function for a node i that I aim to
minimize is defined as

Li = −
1
||w||i ∑

j
wijln

(S(ri, rj)

||S||i

)
(2.4)

The full loss function of the layout is then the sum over the loss func-
tions for all nodes

L = ∑
i

Li (2.5)

2.4 Gradient derivation

The full derivation of the gradient can be seen in section A.1 of the
appendix. The resulting expression for the gradient can be written
using definitions for Attractive force:

A(i, k) = −2wik

(
1
||w||i

+
1
||w||k

)
S(r̄i, r̄k)(r̄i − r̄k) (2.6)

and Repulsive force:

R(i, k) = 2
(

1
||S||i

+
1
||S||k

)
S(r̄i, r̄k)

2(r̄i − r̄k) (2.7)

Then the full gradient of the loss function2 for a node k is ex- 2 Note that both A and R evaluate to 0
when i = k.pressed simply by

∇Lk = ∑
i

A(i, k) + R(i, k) (2.8)

2.5 Gradient approximation

To formulate an approximation of the gradient in equation 2.8, I
introduce the concept of nodes belonging to modules. I define the
subset of all nodes in module number i as mi. To help in the proce-
dure, I also need to make an unconventional definition that reads
m of k written as m(k), which defines the subset of nodes within the
same module as node k. This is so that I can refer to a module from
a node index. I also define the subset nk as the nodes with a direct
link to node k. With these subsets the sum in equation 2.8 can be
split into three sums. The first sum only adds contributions from
neighbors, since wik = 1 in the function A if i ∈ nk and is otherwise

theory 13

zero. The second sum adds repulsion per node that is either in the
same module or a direct neighbor. The final sum adds repulsion from
the remaining nodes. The upper limit N of the summations signifies
summation over nodes within a given set.

∇Lk =
N

∑
i∈nk

A(i, k) +
N

∑
i∈m(k)∪nk

R(i, k) +
N

∑
i/∈m(k)∪nk

R(i, k) (2.9)

The final sum can now be approximated over the modules by
introducing necessary notations. Defining the size of a module subset
|mk| as the number of nodes in module k we can define the position
of a module as its centroid:

r̄mi =
1
|mi|

N

∑
j∈mi

r̄j (2.10)

Redefining the similarity norm to account for the modules we
sum over all nodes within the same module, then add contribution
from each module by the similarity to its centroid, scaled by its size.
The upper limit M signifies summation over modules rather than
individual nodes.

||S||i =
N

∑
j∈m(i)

S(r̄i, r̄j) +
M

∑
mj 6=m(i)

|mj|S(r̄i, r̄mj) (2.11)

Using this definition of the similarity norm of a node, the similar-
ity norm of a module is defined such that

1
||S||mi

=
1
|mi|

N

∑
j∈mi

1
||S||j

(2.12)

The gradient can now be approximated by

∇Lk ≈
N

∑
i∈nk

A(i, k) +
N

∑
i∈m(k)∪nk

R(i, k) +
M

∑
mi 6=m(k)

|mi|R(mi, k) (2.13)

The final step is to account for overlapping effects with neighbors
inside other modules being counted twice. As neighboring nodes will
be closer, the module averages that include neighbors will be posi-
tioned closer than they should and will be weighted higher, resulting
in an overestimation of repulsion between clusters. To compensate
this effect, the module sets are reduced by subtracting the nodes
neighboring to k from the module subset. The notation for a reduced
module mi with respect to node k is introduced as mk

i and is defined
by

mk
i = mi −mi ∩ nk (2.14)

14 efficient graph embeddings with community detection

Using the reduced subset of the module, the complete form of the
approximated gradient becomes

∇Lk ≈
N

∑
i∈nk

A(i, k) +
N

∑
i∈m(k)∪nk

R(i, k) +
M

∑
mi 6=m(k)

|mk
i |R(mk

i , k) (2.15)

Descriptively, the gradient computation adds the exact attraction
and repulsion for its neighbors and for nodes within the same mod-
ule. The repulsion from the rest of the system is then approximated
from the centroid of each neighbor reduced module, weighted by the
number of nodes in the reduced module.

2.6 Expected Scaling

To estimate the complexity of the algorithm, I want an expression in
terms of network size, in this case the number of nodes N and the
number of modules M. In order to derive this expression I need to
make some assumptions of the network itself. Assuming all modules
have the same number of nodes I can define a variable for the cluster
size as CS. This means that the total number of nodes in the network
equates to the product between the number of modules and their
size. Division by the number of modules gives an expression for CS

as shown in equation 2.16.

CS =
N
M

(2.16)

Referring back to equation 2.15 I can estimate the complexity of
the sum over a module by the number of nodes within that module,
which is then CS, and the sum over all modules as complexity M. I
discard the sum over Attractive forces as it is unchanged compared
to the exact gradient. I also assume the majority of neighbors to a
particular node are within the same cluster, as the contrary would
oppose the concept of a cluster in itself3. Using these approxima- 3 This would be like saying a node

is most related to something, while
simultaneously having evidence that it
is even more related to something else.
This can only happen if the network
is very scattered, which in turn means
that the network is ill posed to begin
with.

tions along with equation 2.16 I can formulate an expression for the
expected order of complexity O of the gradient.

O(∇Lk) =
N
M
O(R) + MO(R) (2.17)

When computing the gradient for the full system the gradient will
be computed for every node k so the complexity of the full gradient
is simply

O(∇L) = NO(∇Lk) = NO(R)(
N
M

+ M) (2.18)

theory 15

Before finding the explicit complexity of R from equation 2.7,
I note that the complexity of the function stems from the similar-
ity norm expression in equation 2.11. This can be precomputed for
all nodes and modules and does not need to be updated for each
individual nodes. Given precomputed values of the norms, the com-
plexity of R within the sum itself reduces to order 1. Using this I can
rewrite equation 2.18 by adding the complexity of the norm precom-
putation for all nodes as a separate term.

O(∇L) = NO(||S||) + N(
N
M

+ M) (2.19)

The similarity function S has a complexity of order 1 which means
that the order equation 2.11 is given by equation 2.20, using the same
previously applied procedure for the two sums.

O(||S||) = N
M
· 1 + M · 1 (2.20)

Inserting the order of the norm computation into the expression
for the order of the gradient approximation in equation 2.19 I arrive
at the final form shown in equation 2.21.

O(∇L) = N(
N
M

+ M) + N(
N
M

+ M) (2.21)

The final form has one term for precomputing the norms and
one for gradient computation. The same procedure applied to the
exact gradient results in N2 + N2 as the sums are over all nodes
individually. Both expressions have a common factor of 2N that
can be discarded when comparing the two. The improvement in
complexity from the exact gradient to the approximation is then the
transition shown in equation 2.22.

N → N
M

+ M (2.22)

To formulate a hypothesis for how the algorithm should scale, I
use the equilibrium ratio where the number of modules is equal to
the number of nodes within each module, meaning that M = CS =√

N. Given these circumstances the expected change in scale is

N → N√
N

+
√

N = 2
√

N (2.23)

Dividing by N, I obtain the relation I expect to observe between
the execution time using the exact gradient Te and the approximated
gradient Ta shown in equation 2.24.

Ta ≈
2√
N

Te (2.24)

16 efficient graph embeddings with community detection

Taking into consideration the practical implications of the as-
sumptions made in this section, I expect this expression to provide a
decent approximation to the execution times. As the two algorithms
will not contain the exact same number of operations, I expect to see
some deviation due to slightly different proportionality factors.

3
Implementation

Using the approximation in equation 2.15 I can now implement
the algorithm for verification. As the purpose of this algorithm is to
improve execution times, it is most sensible to use a programming
language that is designed for fast operations. However, since the lan-
guage used does not affect the scalability of the algorithm, I choose to
implement it in a comfortable environment and familiar language to
test the algorithm’s scaling rather than its actual execution time.

Figure 3.1 – A snapshot of a
component based construc-
tion in MiroSimulint. This
will be referenced to as a robot
further on in the thesis.

When starting this, I am in parallel working with an environment
called MiroSimulint designed for simulating rigid body mechanics of
objects built using a component based modular system. This system
is the perfect starting point for testing the algorithm by reducing
the 3D rigid body objects to a 2D space using their components as
nodes and their joints as links in the network. It is perfect since it is
the most simple and intuitive form of dimensional reduction, so it
is very simple to observe if the resulting layout makes sense when
comparing to the original object.

The starting point of the program itself is inevitably to read a
defined network from a file and create a graph object. Since the first
networks I plan on applying the algorithm on are from the robot, I
create a function to export a graph of its components as a .json1 file. 1 https://www.json.org/json-en.html

I then create a stand alone script for reading a graph from a .json file
which then generates the layout. This way, any other network stored
as .json can use the same scripts, and the same script can easily be
extended to support other file types. I will then be able to generate
larger artificial networks for further testing, once the results from
mapping the robot are satisfactory. I use an existing script to generate
these networks with suitable sizes and properties.

This writing and reading of files is implemented in a Graph class
along with other operations related to the graph itself. I then create
another class for visual representation of the graph and all operations
related to the visualization process. Since the intended use of the

18 efficient graph embeddings with community detection

algorithm is not related to the visualization process itself, I simply
use the Python library matplotlib2 in my implementation which 2 https://matplotlib.org

has sufficient functionality to determine if the algorithm works as
intended, but it is not a preferred visualization tool for this kind of
data. The algorithm itself is implemented in a script called NodeMap
which performs the gradient computation and sequential stepping
procedure.

3.1 Code Description

In this section I describe the mechanisms of the code in more detail.
A class diagram can be seen in figure 3.2 and further descriptions of
the main functionalities in each class are described in the following
subsections.

Graph

-links: list [link]
-lables: list [string]
-modules: list [module]
-nodeModules: list [int]
-precomputedSubgraphs: boolean
+append()
+generateRandom()
+wrieToFile()
+readFromFile()
+addNodeToModule()
+modularize()
+getLink()
+getLinks()
+getLabels()
+getModule()
+getModules()
+getNodeModule()

NetworkLayout

-graph: Graph
-node_layout: list [float, float]
-module_layout: list [float, float]
+getNodeLayout()
+getModuleLayout()
+updateNodeLayout()
+updateModuleLayout()
+generateRandomLayout()
+recenter()
+normalize()
+plotLayout()

Link

Source: int
Target: int
Weight: float

Module

NrOfNodes: int
Nodes: list [int]

NodeMap

-graph: Graph
-layout: NetworkLayout
+GenerateMap()
+computeSimilarity()
+updateLayout()
+computeGradients()
+approximateGradient()
+computeLossFunction()
+computeLossForSingleSource()

Class diagram

Figure 3.2 – Class dia-
gram of the implementa-
tion. NodeMap is initiated
through the GenerateMap
function. It accepts a file-
name and creates a Graph
object that is read from the
input file. It then creates a
NetworkLayout object based
on the Graph object. By
computing the gradients it
updates the NetworkLayout
object to minimize the loss
function.

3.1.1 Graph

I designed the Graph class so that it stores a list labels of unique node
names when a graph file is read. I store the links as the pairwise in-
dices that the connected nodes have in the labels list. Adding a new
link in this way is done through the append function which accepts a

implementation 19

link as input. If the input is a list of links, the function calls itself re-
cursively with each element in the list. I designed the function in this
way because it allows the user to append links in any form of nested
lists and the function will be able to traverse the data structure, how-
ever deep it is. The user can also choose if the link is symmetric,
which appends a link between the same nodes but in the opposite
direction. This is a precaution for potentially directed graphs in the
future.

The Graph class also contains function handles to read from or
write to a file. Writing to a file will always export as a .json file, but
the reading function has routines for both .json and .dat file types.

I also implemented the modularization routine as a function call
within the Graph class. This function creates an InfoMap object and
appends its links to the InfoMap object. Then it runs the InfoMap
search algorithm and stores the resulting modules as a set of lists
with nodes belonging to the same module. When requesting a mod-
ule from a Graph object, a structure with the total number of nodes in
the module and a list over all nodes within the module is returned.

3.1.2 NetworkLayout

My intention with storing the layout as its own object is to keep the
graph implementation itself as intact as possible. This enables the
program to in theory be compatible with other graph implementa-
tions as well. It is written in a dedicated class so that the layout of the
nodes and the layout of any potential modules and layers of modules
can all be stored within the same object.

I create a NetworkLayout object with a graph as input, from which
it allocates lists for node and module coordinates. I can then gen-
erate a random layout, which will place any clusters randomly and
then place the nodes belonging to each cluster around their cluster
coordinates. I also have functions to recenter the layout so that the
center of mass is positioned at the origin, as well as a function to nor-
malize the layout, meaning it is rescaled to fit the unit box where all
coordinates have an absolute size at most 1.

4
Results

The focus of this thesis is improving the scaling of the native algo-
rithm, though it is equally important that the approximations made
preserve a desirable level of accuracy. If the resulting layouts do
not reflect the expected outcome, then the algorithm is not viable in
practice no matter how well it scales. In the following subsections
I will first show examples of the resulting layouts to confirm that
the results are of a satisfactory standard. I will then show how the
algorithm performs in terms of scaling.

4.1 Accuracy

As the entire purpose of network visualization is to give a user visual
understanding of something with higher dimensionality, the example
using the robot is perfect to determine whether the results provide an
intuitive map over the components used to build the robot. In figure
4.1 the original robot is displayed next to its corresponding map, with
indicators of which component clusters are visualized as a module in
the map.

Figure 4.1 – A printscreen of
the component based robot
being mapped onto its 2D
layout. Nodes are annotated
using the components internal
names within the program.

To test larger networks I generate benchmark networks with pa-

22 efficient graph embeddings with community detection

rameters of degree and cluster size by my choosing, using the script
mentioned earlier. To verify that the resulting layout is intuitive for
larger networks I test using networks with a significant mixture rate
between clusters and confirm that the clusters do not overlap. The
resulting layout can be seen in figure 4.2. Here it also becomes clear
why better suited visualization tools are preferred, as the links be-
come increasingly difficult to distinguish in larger networks.

Figure 4.2 – The result-
ing layout of a benchmark
network. The network used
consists of 5 clusters. Each
node will on average have
roughly 2 links to other clus-
ters and at least 4 to nodes
within the same cluster.

4.2 Scaling

The scaling of the modularized algorithm is the core result in this
thesis. To generate consistent results I create a script to generate
benchmark networks of varying sizes. I use cluster sizes in the range
[10, 40] and set the total number of nodes to the square of the cluster
size. This sets equally optimal circumstances for each network size so
that any bias due to other effects is kept close to constant.

To measure execution times I run the modularized algorithm using
10 differently randomized networks of each size and iterate over
each of them 256 times, so that each data point is the average of
2560 iterations. For the native algorithm I reduce the number of
iterations per network since execution will take significantly longer to
complete.

It is also necessary to compare the numerical data with the ex-
pected scaling of the algorithms. I create an analytic line for each of
the algorithms by finding a coefficient k to the highest order term
in the expected scaling function f such that it equals the first data
point in the measured data, as seen in equation 4.1. Here T is the

results 23

measured time, N0 is the smallest network size used, f is the scaling
function, and k is the parameter I find from the equation. It can then
be observed how this line compares to the numerical data for larger
networks. I compare execution times for the Native t-SNE algorithm
with expected scaling of N2 and the times for my approximated
Modularized t-SNE with expected scaling N1.5.

k f (N0) = T(N0) (4.1)

0 200 400 600 800 1000 1200 1400 1600
Network size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ex
ec
ut
io
n
tim

e
pe

r i
te
ra
tio

n

Modularized t-SNE
Native t-SNE
N2

N1.5

Figure 4.3 – Scaling of the
modularized and native al-
gorithms. Analytic functions
assume zero overhead by set-
ting execution time at N = 0
to zero.

Recalling the hypothesis in section 2.6 I can test its validity. I apply
the scaling factor from equation 2.24 to the execution times achieved
by the native algorithm. This produces a line that can be compared
to the execution times of the modularized algorithm which is seen in
figure 4.4.

200 400 600 800 1000 1200 1400 1600
Network size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ex
ec
ut
io
n
tim

e
pe

r i
te
ra
tio

n

Modularized t-SNE
Native t-SNE
Hypothesis

Figure 4.4 – Measured ex-
ecution times along with
times expected by hypoth-
esis. The Hypothesis line
shows the times of the native
algorithm rescaled by the factor
presented in the hypothesis.

24 efficient graph embeddings with community detection

The hypothesis assumes the networks meet the condition M =
√

N
which is the case for the first set of networks used so far. To see the
effects that other cluster sizes have on the scaling I create new sets of
networks. One set is created with a constant cluster size of 20 where
the number of clusters increases proportionally with the network
size. The second set I create using a fixed number of 20 clusters, so
that the size of each cluster increases proportionally with network
size. Both sets will align with the original set at N = 202 = 400 and
then scale differently.

0 200 400 600 800 1000 1200 1400 1600
Network size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ex
ec

ut
io
n
tim

e
pe

r i
te
ra
tio

n

Modularized t-SNE
Native t-SNE
CCS
CNC

Figure 4.5 – Scaling of the
modularized algorithm with
different network types.
CCS: Constant Cluster Size
CNC: Constant Number of
Clusters

The resulting graphs can be seen in figure 4.5. The graph showing
execution times for networks with constant cluster sizes evidently
loses the scaling benefits. This is expected as the limiting case of this
is essentially a network where the nodes are small clusters, which
requires further layering to improve scaling further. The graph show-
ing the networks with constant number of clusters is in fact faster
directly after the equilibrium point of N = 400. This is explained by
the computation to consider an individual node being less demand-
ing than when considering an entire module. When the network size
gets larger however, the graph starts trending back toward the times
using the original set. This is simply because the clusters start to get
large enough that the number of nodes that are handled individually
becomes significantly impactful on execution time.

5
Discussion

5.1 Weaknesses

Though the results are overall successful, the algorithm as a
whole still has certain drawbacks. Here I elaborate on a selection of
these and in the following section 5.2 I propose possible solutions.

5.1.1 Local Minima

As discussed earlier, the general approach of gradient descent suffers
from the risk that there exists several local minimum, such that the
minima it reaches is not global. When observing figure 5.1 this effect
is visual for the rightmost cluster, colored in brown. The cluster is
only connected to the two clusters on the very opposite side of the
network, but the cluster does not move closer to these clusters due to
the bulk of the network repelling it in the opposite direction.

Figure 5.1 – A sparse net-
work which stabilizes at
a poor local minima. The
steady state reached depends on
the initial randomized layout.

It can also be observed that the two links to the brown cluster
overlap each other. This means that a translation of the cluster by a

26 efficient graph embeddings with community detection

reflection would retain the internal structure of the cluster, but the
links no longer overlap such that they become slightly shorter, giving
a slight decrease in the loss function.

Performing the same computation with the same network but us-
ing a different random seed to generate another initial layout yields
the result shown in figure 5.2. This result is both more comprehensi-
ble upon inspection and the loss function evaluates to 712.75 in com-
parison to 715.43 in figure 5.1. Simply by observation it is clear that
clusters with a connection are positioned closer to each other in fig-
ure 5.2 than in figure 5.1. Especially noteworthy differences between
the two figures are the repositioning of the red and green clusters in
relation to the brown cluster, as well as the position of purple cluster
in relation to the green and blue clusters.

Figure 5.2 – The same net-
work as in figure 5.1 but
with different random seed.
The final state at a local min-
ima with a lower value of the
loss function.

5.1.2 Outliers

A drawback of the current algorithm is the way it manages discon-
nected networks. In the current implementation using single layer
modularity, every node in the brown cluster in figure 5.3 will evalu-
ate their repulsion from each cluster in the rest of the network. Since
the placement of the brown cluster relative to the rest of the net-
work is insignificant for the end result, then it does not matter if it
is moved slightly due to more approximations. The significance of
this is that large networks that may consist of several disconnected
regions do not take advantage of the fact that they are disconnected.

discussion 27

Figure 5.3 – A sparse net-
work with a disconnected
cluster. Computations to and
from the disconnected cluster
are superfluous.

5.2 Improvements

Regardless of how much I manage to improve the scaling and re-
tain the precision of the original algorithm, there will always exist
possibilities of improvement. In the following subsections I mention
possible methods to overcome the issues mentioned in the previous
section.

5.2.1 Accuracy

The issues with poor local minima is something that is inherited from
the original algorithm, rather than something being introduced by
the approximation. However, in a fully developed product, this issue
should be managed in some way. I consider a couple of options for
possibly solving this by generating a better starting point than simply
randomizing, since it then is more likely that the minima that the
algorithm converges to has a lower loss function value.

One solution that I propose is to compute the layout in 3D initially,
allowing "twisting and turning" of the layout that cannot be done in
a 2D space. Once the 3D layout starts to stabilize I would project the
layout onto a 2D space using a PCA or similar algorithm. I would
then use this projection as a starting point for iterating over the 2D
layout until completion. This way, the more related clusters will start
closer to each other and in a more suitable orientation when iterating
in the 2D space.

Another solution to the issue that I consider is to calibrate only
the centroids of the clusters independently before moving individ-
ual nodes. The poor local minima issue arises in this example due
to weak attraction between clusters in sparse networks. By introduc-
ing a new graph between modules, I could potentially overcome this
problem. If the weights are proportional to the number of links be-
tween each cluster, it would be possible to convert the links to binary

28 efficient graph embeddings with community detection

form based on some threshold, preferably related to the degree of the
modules to avoid very dense or very sparse graphs. Iterating over
this smaller graph would then give a better starting point in terms of
module-to-module positioning. The algorithm itself follows the same
procedure and implementation requires mainly a creation of a step
wise solver.

5.2.2 Efficiency and scaling

The current implementation uses only single layered clustering. Clus-
ters can themselves possess relations such that there exists several
layers of clusters within the network, as was shown in figure 5.3. The
mathematical approximation created for this algorithm has no limita-
tion to prevent it from being used recursively on layers of clusters. I
would describe an implementation of this from the perspective of an
individual node as it taking each close by node into consideration in-
dividually, then adds repulsion from nearby clusters on a per cluster
basis, then groups distant clusters into larger clusters to approximate
their combined repulsion. This recursive solution solves the issue
presented in figure 4.5 where the networks with constant cluster size
starts to scale poorly.

6
Conclusion

In this thesis, I have derived and implemented a new network
layout algorithm. The algorithm is confirmed through both theory
and practical testing to improve scaling from N2 to 2N1.5. This result
opens up future possibilities to create better performing visualiza-
tion applications. They will be able to support modifications of much
larger source networks and still generate updated layouts in real
time. The modular design also enables customization possibilities,
such as computing the layout only for the current level of zoom in
the visualization tool, or using different network generation tech-
niques depending on the data.

The scaling of this algorithm takes the current state of graph em-
bedding one step forward in terms of performance of large data
applications. The testing results show that the execution times drop
significantly even for small networks, and the benefits only become
larger as the networks increase in size. The modular nature of the im-
plementation itself also enables the user to choose the most suitable
option of network generation algorithms for the data of the specific
task. It ensures that any use of the implementation can be replaced
with other layout algorithms possessing another set of strengths
and weaknesses, better suited for a particular task. This avoids the
scenario where users and developer become committed to certain
software.

A
Appendix

A.1 Gradient Derivation

In this section I derive the exact gradient of the loss function, that I
approximate in the thesis.

A.1.1 Variable Definitions

r̄ : Layout coordinates
w : Weight of link
S : Similarity function
L : Loss function

A.1.2 Function and Operation Definitions

The similarity function between nodes u and v is defined as:

S(u, v) =
1

1 + |u− v|2

Note: S(u, v) = S(v, u)
The similarity norm of node i is defined by:

||S||i = ∑
j

S(ri, rj)

The weight probability norm is defined as:

||w||i = ∑
j

wi,j

The loss function for a node i :

Li = −
1
||w||i ∑

j
wijln

(S(ri, rj)

||S||i

)
The full loss function of the layout is then:

32 efficient graph embeddings with community detection

L = ∑
i

Li

The gradient of the full loss function is thereby defined from:

∇L(r) =
(

∂L
∂x

,
∂L
∂y

)

A.1.3 Derivation

Working with only the x-derivative, the change in loss for moving a
node k in the layout in the x-direction is expressed by:

∂L
∂xk

= ∑
i

∂

∂xk
Li = −∑

i
∑

j

wij

||w||i
∂

∂xk
ln
(S(ri, rj)

||S||i

)

Expanding each term in the sum separately:

∂Lij

∂xk
= −

wij

||w||i
∂

∂xk
ln
(S(ri, rj)

||S||i

)
=

= −
wij

||w||i

(
∂

∂xk
ln(S(ri, rj))−

∂

∂xk
ln(||S||i)

)
=

= −
wij

||w||i

(
1

S(ri, rj)

∂

∂xk
S(ri, rj)−

1
||S||i

∂

∂xk
||S||i

)

The derivative of the similarity function reads:

∂

∂xk
S(ri, rj) =

∂

∂xk

1
1 + |ri − rj|2

=

= − 1
(1 + |ri − rj|2)2

∂

∂xk
1 + |ri − rj|2 =

= −S(ri, rj)
2 ∂

∂xk
|ri − rj|2

Inserting that ri = [xi, yi] we get the x-derivative as:

∂

∂xk
|ri − rj|2 =

∂

∂xk

(
(xi − xj)

2 + (yi − yj)
2) =

= 2(xi − xj)

(
∂xi
∂xk
−

∂xj

∂xk

)

Since ∂xi/∂xk = 1 if i = k and 0 otherwise, denote the derivatives
with Kronecker delta notation. Insertion gives that

appendix 33

∂

∂xk
S(ri, rj) = −2S(ri, rj)

2(xi − xj)(δik − δjk)

Inserting this into the first term of gradient expression yields:

∂Lij

∂xk
= −

wij

||w||i

(
−

2S(ri, rj)
2

S(ri, rj)
(xi − xj)(δik − δjk)−

1
||S||i

∂

∂xk
||S||i

)

To expand the second term, we recall the definition of the similarity
norm and the derivative of the similarity function and obtain:

∂

∂xk
||S||i = ∑

l

∂

∂xk
S(ri, rl) = −2 ∑

l
S(ri, rl)

2(xi − xl)(δik − δlk) =

= 2S(ri, rk)
2(xi − xk)− δik2 ∑

l
S(ri, rl)

2(xi − xl)

Inserting this in the expression we get the full function:

∂Lij

∂xk
= −

wij

||w||i

(
−

2S(ri, rj)
2

S(ri, rj)
(xi− xj)(δik− δjk)−

1
||S||i

(
2S(ri, rk)

2(xi− xk)− δik2 ∑
l

S(ri, rl)
2(xi− xl)

))
=

=
wij

||w||i

(
2
||S||i

S(ri, rk)
2(xi− xk)− δjk2S(ri, rj)(xi− xj)+ δik2S(ri, rj)(xi− xj)− δik

2
||S||i ∑

l
S(ri, rl)

2(xi− xl)

)

We put the leading factor inside the parentheses and denote the
terms by:

∂L
∂xk

= ∑
i

∑
j

∂Lij

∂xk
= ∑

i
∑

j
A + B + C + D

We now expand each term separately and remove the terms where
any deltas equal zero

Term A:

∑
i

∑
j

wij

||w||i
2
||S||i

S(ri, rk)
2(xi− xk) = ∑

i

1
||w||i

2
||S||i

S(ri, rk)
2(xi− xk)∑

j
wij =

= ∑
i

2
||S||i

S(ri, rk)
2(xi − xk)∑

j

wij

||w||i
= ∑

i
2

1
||S||i

S(ri, rk)
2(xi − xk)

34 efficient graph embeddings with community detection

Term B:

∑
i

∑
j
−δjk2

wij

||w||i
S(ri, rj)(xi − xj) = ∑

i
−2

wik
||w||i

S(ri, rk)(xi − xk)

Term C:

∑
i

∑
j

δik
wij

||w||i
2S(ri, rj)(xi − xj) = ∑

j

wkj

||w||k
2S(rk, rj)(xk − xj) =

= ∑
i

wki
||w||k

2S(rk, ri)(xk − xi) = ∑
i
−2

wik
||w||k

S(ri, rk)(xi − xk)

Term D:

∑
i

∑
j
−δik

wij

||w||i
2
||S||i ∑

l
S(ri, rl)

2(xi− xl) = ∑
j
−

wkj

||w||k
2
||S||k ∑

l
S(rk, rl)

2(xk− xl) =

= − 2
||S||k ∑

l
S(rk, rl)

2(xk− xl)∑
j

wkj

||w||k
= − 2
||S||k ∑

l
S(rk, rl)

2(xk− xl) =

= − 2
||S||k ∑

i
S(rk, ri)

2(xk − xi) = ∑
i

2
1
||S||k

S(ri, rk)
2(xi − xk)

Combining all the terms into the final expression for the loss function
gradient results in:

∂L
∂xk

= 2 ∑
i
−wik

(
1
||w||i

+
1
||w||k

)
S(ri, rk)(xi− xk)+

(
1
||S||i

+
1
||S||k

)
S(ri, rk)

2(xi− xk)

B
Bibliography

Laurens van der Maaten, Geoffrey Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008).

https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

	Introduction
	Theory
	Modularizing networks
	The t-SNE layout algorithm
	Mathematical Definitions
	Gradient derivation
	Gradient approximation
	Expected Scaling

	Implementation
	Code Description

	Results
	Accuracy
	Scaling

	Discussion
	Weaknesses
	Improvements

	Conclusion
	Appendix
	Gradient Derivation

	Bibliography

