
� �

�

�

�

STATE-OF-THE-ART  REVIEW  

LD-transpeptidases: the great unknown among the 
peptidoglycan cross-linkers 
Alena Aliashkevich and Felipe Cava 

Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umea Centre for Microbial Research, Umea 

University, Sweden 

Keywords 

cross-linking; D-amino acids; LD-

transpeptidase; peptidoglycan; stress; b-

lactams 

Correspondence 

F. Cava, Department of Molecular Biology 

and Laboratory for Molecular Infection 

Medicine Sweden, Umea Centre for 

Microbial Research, Umea University, 90187 

Umea, Sweden 

Tel: +46-090-7856755 

E-mail: felipe.cava@umu.se 

(Received 20 February 2021, revised 5 May 

2021, accepted 9 June 2021) 

doi:10.1111/febs.16066 

The peptidoglycan (PG) cell wall is an essential polymer for the shape and 
viability of bacteria. Its protective role is in great part provided by its 
mesh-like character. Therefore, PG-cross-linking enzymes like the 
penicillin-binding proteins (PBPs) are among the best targets for antibi-
otics. However, while PBPs have been in the spotlight for more than 
50 years, another class of PG-cross-linking enzymes called LD-

transpeptidases (LDTs) seemed to contribute less to PG synthesis and, 
thus, has kept an aura of mystery. In the last years, a number of studies 
have associated LDTs with cell wall adaptation to stress including b-
lactam antibiotics, outer membrane stability, and toxin delivery, which has 
shed light onto the biological meaning of these proteins. Furthermore, as 
some species display a great abundance of LD-cross-links in their cell wall, 
it has been hypothesized that LDTs could also be the main synthetic PG-

transpeptidases in some bacteria. In this review, we introduce these 
enzymes and their role in PG biosynthesis and we highlight the most recent 
advances in understanding their biological role in diverse species. 

Introduction 

Most bacteria are surrounded by a cell wall, which 
provides mechanical strength to counteract the intra-
cellular osmotic pressure, defines the cell shape, and 
also acts as a physical barrier against environmental 
insults [1,2]. A major component of the cell wall is the 
peptidoglycan (PG), also known as the murein saccu-
lus, a net-like heteropolymer made of glycan chains of 
alternating N-acetylglucosamine (NAG) and N-

acetylmuramic acid (NAM) linked by b-1,4-glycosidic 
bonds and cross-linked by short peptides [3]. These 
disaccharide-peptide units that compose the PG are 
termed muropeptides. In Gram-negative bacteria, the 
cell wall is mainly single-layered and lies in the 
periplasmic space between the inner membrane (IM) 

and outer membrane (OM). Conversely, there is no 
OM in Gram-positive bacteria and a thick multilay-

ered PG encompasses the cytoplasmic membrane 
(Fig. 1A). 
As the PG is essential for bacteria and it is absent 

from eukaryotic cells, its synthesis is an excellent target 
of many antibiotics, such as the extensively used b-
lactams and glycopeptides, which inhibit peptide cross-
linking [4,5]. In  E. coli, the majority of peptide cross-
links are of 4-3 type [6,7], or also known as DD-type 
because they are catalyzed by the DD-transpeptidase 
activity of certain penicillin-binding proteins (PBPs) 
such as the bifunctional high molecular weight class A 
PBPs (PBP1a, PBP1b, and PBP1c) or the 
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Fig. 1. Cell wall and PG structure. (A) Gram-negative bacteria possess mainly a single-layered PG confned in the periplasmic space 

between the IM and the OM. Gram-positive bacteria lack OM and produce a thick multilayered PG. (B) The canonical PG structure of Gram-

negative bacteria is made of glycan chains of alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) linked by b-1,4-

glycosidic bonds and cross-linked by short peptides. Peptide cross-links of the DD type (aka 4-3 type) are catalyzed by the DD-

transpeptidase activity of certain PBPs such as the bifunctional high molecular weight class A PBPs (PBP1a, PBP1b, and PBP1c) or the 

monofunctional class B PBPs (PBP2 and PBP3). The production of LD-cross-links (or 3-3 cross-links) depends on another type of enzyme, 

LDTs. (C) During DD-transpeptidation, PBP’s catalytic nucleophilic Ser residue attacks the amide linkage between D-Ala4 and D-Ala5 in the 

donor pentapeptide, which releases D-Ala5 and forms a covalent ester-based intermediate between the active Ser of the PBP and the 

tetrapeptide chain. Next, mDAP3 in the peptide stem of the acceptor muropeptide nucleophilically attacks the ester linkage, forming a new 

amide bond and releasing the Ser residue of the PBP. During LD-transpeptidation, Ldt’s catalytic Cys carries out a nucleophilic attack on 

mDAP3 of the donor tetrapeptide, which releases D-Ala4 and forms an acyl-enzyme intermediate. This acyl-enzyme intermediate is 

deacylated via nucleophilic attack of an amino group in the mDAP3 side chain in the acceptor muropeptide, resulting in a mDAP3-mDAP3 

bond and releasing the Cys residue of the LDT. In some organisms (e.g., E. faecium), LDTs catalyze the formation of cross-links through an 

interpeptide bridge. (D) In addition to the formation of LD-cross-links between muropeptides, LDTs are also involved in linking PG to Braun’s 

Lpp and b-barrel proteins, as well as in the incorporation of NCDAAs into the PG. 

monofunctional class B PBPs (PBP2 and PBP3) [8]. 
During DD-transpeptidation, the terminal D-Ala from 
a pentapeptide is cleaved and a new peptide bond 
(cross-link) is formed between the fourth D-Ala of this 
(donor) muropeptide and the meso-diaminopimelic 
acid (mDAP) in the third position of the neighboring, 
acceptor muropeptide. In E. coli, the function of 
bifunctional PBP1A and PBP1B requires interaction 
with their cognate OM-anchored lipoprotein LpoA 
and LpoB, respectively [9,10], which induces confor-
mational changes that stimulate the activity of these 
PBPs [10–13]. 

While in E. coli like in most bacteria, the 4-3 type is 
the dominant PG cross-link, a smaller but significant 
proportion depends on another type of enzymes called 
LD-transpeptidases (LDTs; about 3%–15% in E. coli 
depending on the strain, growth condition, and phase) 
[6,7]. As the name of the enzyme suggests, LDTs cat-
alyze the formation of a peptide bond between an L 
and a D-chiral center of 2 adjacent mDAP, so-called 
3-3 or LD-type. Contrary to PBPs that use pentapep-
tides, LDTs use tetrapeptides (produced from pen-
tapeptides by the DD-carboxypeptidase activity) as 
donor muropeptides and cleave the terminal (fourth) 
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D-Ala to cross-link the adjacent mDAP residues [6,7] 
(Fig. 1B,C). 
LDTs do not share sequence homology with PBPs 

[14,15]; instead, they present a YkuD-like domain 
(PFAM 03744) that includes a cysteine as a catalytic 
nucleophilic residue instead of the catalytic serine in 
PBPs. The YkuD domain is an LDT catalytic domain 
that is named after the Bacillus subtilis YkuD protein, 
which is the first protein of its kind with a known 
crystal structure [16]. Moreover, contrary to PBPs, 
LDT enzymes are not efficiently inhibited by most b-
lactams, although they are inactivated by carbapen-
ems, penems, and to a lesser extent by cephalosporins 
through acylation of their catalytic site [17–20]. 
Although the first LD-transpeptidase was reported 
from an ampicillin-resistant strain of Enterococcus fae-
cium [14], LDT orthologues have been found both in 
Gram-negative and Gram-positive bacteria [16,21–23]. 
The number of putative LDT proteins varies between 
species. For instance, Neisseria meningitidis, Campy-

lobacter jejuni, and Helicobacter pylori encode only 
one putative LDT while homologs in Agrobac-

terium tumefaciens have 14 putative LDTs, 18 in 
Mesorhizobium loti, and 21 in Bradyrhizobium japon-
icum [24]. E. coli has six LDTs: LdtA-F. LtdD and 
LtdE form 3-3 cross-links, while LdtA, LdtB, and 
LdtC have a role in stabilizing the cell envelope by 
cross-linking the OM-anchored Braun’s lipoprotein 
(Lpp) to the PG (Fig. 1D) [22,25]. LdtF is an amidase, 
which cleaves Braun’s Lpp from PG [26,27], and is 
known to be involved in biofilm formation in patho-
genic E. coli and seems to have a higher affinity for 
meropenem [28,29]. In addition to these activities, 
LDTs are also known to be able to catalyze exchange 
reactions where the usual terminal D-Ala in tetrapep-
tides can be replaced by another non-canonical D-

amino acid (NCDAA) [25,30,31] (Fig. 1D). Although 
LDTs are nonessential in E. coli, they are involved in 
resistance to broad-spectrum b-lactams and in 
strengthening the bacterial cell envelope in response to 
defects in the OM [30,32,33]. However, in some other 
bacteria LD is the predominant cross-linking type and 
has more evident phenotypical consequences. This is 
the case of polarly growing bacteria such as mycobac-

teria (ca. 60% of LD cross-linkage) and Agrobac-
terium tumefaciens (> 50% of LD cross-linkage) [34– 
37], where LDTs seem to play an important role in the 
growth and shape maintenance [24,38]. Therefore, 
LDTs from diverse bacteria became the subject of 
structural studies and computational modeling, quan-
tum mechanics, and molecular mechanics studies to 
dissect their substrate recognition and inhibition by 
drugs [16,39,48,40–47]. 

This review describes general and species-specific func-
tions enabled by LD cross-links such as those related to 
adaptation to b-lactams stress. Additionally, we discuss 
how the capacity of the LDTs to incorporate D-amino 
acids has inspired a transformative tool to study PG 
growth and segregation in very diverse bacterial species. 

b-lactam resistance mediated by LDTs 

Mechanisms of LDT-mediated resistance vary in 
bacteria 

LDT enzymes are not efficiently inhibited by most b-
lactams and, thus, might support resistance to b-lactam 
antibiotics. This is the case of an E. faecium strain in 
which the essentiality of the PBPs can be bypassed by 
the ampicillin-insensitive Ldtfm [49]. This resistance also 
requires a metallo-D,D-carboxypeptidase (DdcY), 
which by cleaving the terminal D-Ala in a UDP-

MurNAc pentapeptide produces the precursor tetrapep-
tide substrate for the LDT activity [50]. Interestingly, 
this DD-carboxypeptidase is silent in the parental strain 
and is encoded by a cryptic locus, ddc, together with  
the two-component system DdcSR. The two-

component system response regulator DdcR consists of 
an N-terminal effector domain and a C-terminal DNA-

binding domain that belongs to the OmpR-PhoB sub-
class [51]. The sensor DdcS contains two clusters of 
hydrophobic amino acids that might correspond to 
trans-membrane segments delineating a periplasmic 
region of 26 residues at its N-terminal and a kinase 
domain at the C-terminal. Activation of the ddc locus 
in E. faecium strain results from a mutation in the sen-
sor kinase gene ddcS, which impairs the DdcS phos-
phatase activity and leads to constitutive expression of 
the DD-carboxypeptidase [50]. Additionally, full bypass 
of PBPs by Ldtfm also requires increased Ser/Thr pro-
tein phosphorylation (resulting from the impaired activ-
ity of phosphoprotein phosphatase StpA) [52]. Both 
DdcY production and the mutational alteration in the 
gene encoding StpA necessary and sufficient for high-
level ampicillin resistance, since separately they provide 
only a moderate resistance level. However, StpA and its 
cognate serine/threonine protein kinase Stk do not con-
trol the expression of the ddc locus or ldtfm and the tar-
gets of the kinase relevant in b-lactam tolerance have 
not been identified yet [52]. It is suggested that the 
number of Ser/Thr phosphoproteins is on the order of 
100–200 in E. faecium [52]; thus, the role of protein 
phosphorylation in PG synthesis and ampicillin resis-
tance still needs to be determined. 

In E. coli, elevated levels of LdtD (formerly YcbB) 
and the alarmones guanosine tetraphosphate and 
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guanosine pentaphosphate (collectively referred to as 
(p)ppGpp) allow growth in otherwise lethal concen-
trations of ampicillin [32]. In this condition, LdtD 
also requires the DD-carboxypeptidase DacA (PBP5) 
to provide the tetrapeptide donor substrate and the 
glycosyltransferase activity of PBP1b (Fig. 2). These 
three proteins likely form a transient complex to res-
cue PG synthesis in the presence of b-lactam antibi-
otics [41]. Interestingly, copper inhibits LDTs by 
binding to the catalytic cysteine and prevents LDT-

mediated b-lactam resistance in E. coli and E. fae-
cium [33]. 

Structural studies on LDTs 

Although LDTs are resistant to most b-lactams, (carba) 
penem antibiotics can inhibit their activity [32,53,54]. 
The molecular mechanisms responsible for this inhibi-
tion has become the subject of many structural studies, 
and as of today, there are 14 structures for unique pro-
teins and multiple structures for proteins in complex 
with (carba)penems [16,40,41,43,53,55–59]. Depending  
on the species compared, the overall architecture of 
LDTs can be similar or vary in the domains present 
(Fig. 3) [40,41,43]. 
Recently, Caveney et al. reported the structure of 

E. coli LdtD with meropenem acylating the catalytic 
cysteine nucleophile (Cys528) [41]. The structure shows 
a monomeric form of the enzyme with the canonical 
catalytic LDT domain with the conserved active site 
motif (HX15–18[S/T]XGCh[R/N], where ‘X’ represents 
any residue, and ‘h’ is any hydrophobic residue) [60], 
with the notable additions of a substrate capping sub-
domain, a PG-binding domain, and a large scaffold 
domain in the N-terminal region, which potentially 
plays a role in protein–protein interactions [41]. 
Despite certain architectural differences in the enzyme 
compared with other structurally characterized LDTs, 

Wild-type β-lactam sensitive E. coli 

(p)ppGpp ↑ 
LdtD ↑β-lactam 

the proposed catalytic mechanism for LdtD does not 
differ from what has been described for other LDTs 
before [58]. The conserved Cys528 carries out a nucle-
ophilic attack on the third residue, mDAP, of the 
donor tetrapeptide, which results in the release of the 
terminal D-Ala. This acyl-enzyme intermediate is then 
deacylated via a nucleophilic attack of an amino group 
in the mDAP side chain in the acceptor. Comparison 
between the complexes of LdtD-meropenem and 
PBP5-meropenem [41] reveals that there is a distinct 
way of binding and stabilization of meropenem 
between the two enzymes. 
Crystallographic studies of Salmonella enterica sero-

var Typhi and Citrobacter rodentium acylated LdtD 
homologs with ertapenem, the carbapenem antibiotic 
chemically related to meropenem, show that the over-
all enzyme structure and dimensions are similar to the 
one from E. coli [40]. 

It is noteworthy that LDTs of the same bacterium 
might vary in their size and domains. For instance, 
Mycobacterium tuberculosis five LDTs (LdtMt1-5) have 
30%–50% sequence identity, and four of them are 
structurally well characterized [53,55–58]. LdtMt2 and 
LdtMt5 are significantly longer than LdtMt1 and LdtMt3 

and possess an extra domain: the bacterial 
immunoglobulin-like domain BIgA [55]. The presence 
of this additional domain might play a role of a pedes-
tal to approximate the catalytic site of membrane-

attached LDTs to their substrates located in different 
PG layers [61]; on the contrary, different LDTs in 
M. tuberculosis could also co-localize in different parts 
of the cell wall and play specific functions to the PG 
maintenance there. 
Such structural and computational studies on the 

enzymes and their complexes with antibiotics might 
provide insights into the inhibition mechanisms and 
lead to the development of novel inhibitors to combat 
the b-lactam resistance crisis. 

β-lactam resistant E. coli mutant 

Glucosyltransferase PBP1b + LpoA 
DD-carxoxypeptidase PBP5 

NAG 

NAM 

LD-crosslink 

DD-crosslink 

copper 

Mainly DD-crosslinks LD-crosslinks 

Fig. 2. LDT provides resistance to b-lactam antibiotics in E. coli. Elevated levels of LdtD and the alarmones guanosine tetraphosphate and 

guanosine pentaphosphate ((p)ppGpp) together with the glycosyltransferase activity of PBP1b (and LpoB) and DD-carboxypeptidase DacA 

(PBP5) rescue PG synthesis when DD-transpeptidation is inhibited by b-lactams. The addition of copper inhibits the LDTs and so prevents b-

lactam resistance. 
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Fig. 3. A comparison of structurally characterized LDTs. The overall architecture of LDT proteins in different bacteria might show a high 

degree of similarity or be quite distinct as seen from this example of S. Typhi YcbB (7KGN [40]), E. coli LdtD (6NTW [41]), and E. faecium 

LDTfm (1ZAT [43]). E. coli LdtD and LdtD homolog in S. Typhi, YcbB, both feature a three-domain format with the catalytic domain with 

substrate capping subdomain, PG, and scaffolding domains. E. faecium Ldtfm consists of two domains: an N-terminal domain with a mixed 

alpha-beta fold, and the C-terminal catalytic domain. Protein structures are colored in a rainbow palette from N (blue) to C terminus (red). 

Protein molecular graphics were performed with UCSF Chimera [102]. 

LD-cross-links strengthen the PG layer 
under stress conditions 

LDTs reinforce PG during OM assembly defect 

Defects in the OM may lead to local mechanical stress 
on the PG. In E. coli, LDT activity is required to 
avoid lysis when lipopolysaccharide (LPS) transport to 
the OM is compromised [30]. LdtD, the major PG syn-
thase PBP1B, its activator LpoB, and the DD-

carboxypeptidase PBP6a seem to cooperate to 
strengthen the PG layer and to rebalance the mechani-

cal load between PG and OM [30]. 
The major role of LdtD in PG remodeling during 

cell envelope stress is in concordance with its upregula-
tion by the Cpx-mediated stress response [62,63]. In  
E. coli, Cpx is one of the primary envelope stress 
response systems (ESRS), which span the envelope, 
sense perturbations, and induce repair or preventive 
action by changing the expression of appropriate genes 
[64–66]. The core machinery of the Cpx pathway is 
formed by a classical two-component system: envelope 
stress triggers a phosphotransfer between the sensor 
histidine kinase CpxA at the IM and the cytoplasmic 
response regulator CpxR, which regulates the tran-
scription of diverse genes [67,68]. In contrast to LdtD, 
which is activated under envelope stress conditions, 
another LDT forming 3-3 cross-links, LdtE, is regu-
lated by RpoS, the alternative sigma factor for 
stationary-phase gene expression [69], and is maximally 
expressed in stationary-phase cells [30]. Interestingly, 
LdtF (renamed from YafK), an amidase that cleaves 
Braun’s Lpp from PG [26,27], is also RpoS regulated 
and seems to stimulate the activity of both LdtD and 
LdtE [30]. In unstressed cells in which LdtD is poorly 

expressed, LdtE-LdtF couple forms most of the 3-3 
cross-links and therefore LdtE and LdtF are house-
keeping LDTs [30]. Deletion of ldtE and ldtF leads to 
activation of stress LDT, LdtD, and increased levels of 
3-3 cross-links [30]. 

This functional connection between OM biogenesis 
and PG remodeling emphasizes the versatile mechanisms 
that bacteria employ to maintain cell envelope integrity 
under a variety of growth and stress conditions. 

LDTs protect plant-associated bacteria from 
osmotic shock 

Plant pathogens that reside in the phloem must contin-
ually adapt to osmotic pressure changes, since sucrose 
concentration in the phloem can fluctuate between 15 
and 880 mM, depending on plant species, tissue, time 
of the day, and season [70,71]. Pagliai et al. [72] show 
that in the unculturable citrus pathogen Candidatus 
Liberibacter asiaticus the transcriptional activator 
LdtR mediates tolerance to osmotic stress through the 
predicted LD-transpeptidase ldtP. Due to Ca. L. asi-
aticus unculturability, several bacterial model strains 
were used to confirm these results. Disruption of ldtR 
and ldtP in the close phylogenetic relative Sinorhizo-
bium meliloti revealed that the cells are shorter than wt 
and more sensitive to osmotic shock. Furthermore, the 
binding of LdtR to the ldtP promoter can be inhibited 
by certain small molecules such as phloretin, benzbro-
marone, and hexestrol [72]. Treatment of Rhizobiaceae 
family bacteria, such as S. meliloti and Liberibac-

ter crescens (another Ca. L. asiaticus close relative) 
with these molecules induced cell shortening and 
increased sensitivity to osmotic challenge suggesting 
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that these small molecules can be used as a potential 
treatment of the citrus disease caused by Ca. L. asiati-
cus [72]. Interestingly, in addition to LdtP’s PG 
remodeling activity under osmotic stress, this enzyme 
also displays esterase activity toward the short-chain 
carboxyl esters in solution as was demonstrated with 
model substrates p-nitrophenyl acetate and butyrate, 
and putatively is able to modify the lipid A moiety of 
the LPS likely by eliminating acyl chains with its ester-
ase activity [73]. This moonlighting activity might be a 
consequence of the evolutionary genomic reduction to 
adapt to the intracellular lifestyle in the phloem and to 
avoid recognition by the plant immune system. 

LD-cross-links might provide lysozyme resistance 

Caulobacter crescentus has an unusual morphology and 
dimorphic life cycle [74]. During the sessile stage, this 
bacterium displays a polar stalk with an adhesive hold-
fast, which mediates surface attachment. Interestingly, 
the polar stalk is lysozyme resistant, and its PG compo-

sition differs from that of the main body [75,76]. While 
the PG of the main body is primarily DD-cross-linked, 
the PG of the stalk PG is enriched in LD-cross-links, 
mainly mediated by LdtD. Deletion of ldtD does not 
affect stalk elongation; however, it increases stalk sensi-
tivity to lysozyme [75]. In fact, there is a certain correla-
tion between the amount of LD-cross-linkage and 
sensitivity to lysozyme in other Gram-negative bacteria 
as well. For instance, A. tumefaciens has a PG rich in 
LD-cross-links and is also highly resistant to lysozyme 
degradation [75]. In  E. coli, the lower susceptibility to 
lysozyme of stationary-phase cells correlates with an 
increase in LD-cross-linkage increases during the transi-
tion from log to stationary phase (3.5%–8.6%).[6,75] In 
Corynebacterium glutamicum, deletion  of the  r D-
dependent LDT, lppS, leads to increased sensitivity to 
lysozyme [77]. A triple LDT mutant shows also 
increased susceptibility to lysozyme in Mycobac-

terium smegmatis [78]. 
The correlation between LD-transpeptidation and 

lysozyme resistance might not be very intuitive since 
lysozyme hydrolyzes the b- (1-4) glycosidic bond 
between NAM-NAG, whereas LD-cross-links occur 
between peptide stems. Computational modeling sup-
ports a more rigid and extended conformation of LD-

cross-linked muropeptides, in part due to the presence 
of the fourth D-Ala and additional hydrogen bonds, 
which favors a more compact stem peptide folding in 
DD-cross-linked muropeptides [79]. These hallmarks 
imply that each kind of cross-link might have a differ-
ent relative orientation and distance to the glycans 
[79], which in turn might affect the accessibility of the 

lysozyme to glycan strands. Altogether this means that 
the relative abundances of different PG cross-linking 
types might be regulated to adapt to different situa-
tions and, thus, standard laboratory conditions might 
often overlook the importance of a particular set of 
enzymes for the growth and fitness of bacteria. 

Local LD-cross-links are involved in 
species-specific functions 

LD-cross-linked PG establishes a stable 
intracellular niche 

Bdellovibrio bacteriovorus is a micro-predator (approxi-
mately 1.0 9 0.3 lm) that feeds upon and proliferates 
inside other (larger) Gram-negative bacterial species 
[80]. B. bacteriovorus colonizes the periplasm of the prey 
by breaching the OM. At this stage, the prey cell 
becomes rounded forming a bdelloplast [81], and  two  
out of 19 LDT genes in B. bacteriovorus are upregulated 
(genes bd0886 and bd1176) [82]. The activity of these 
two LDTs induces modifications in the PG of the prey 
that improve its physical robustness, as it was demon-

strated by challenging the resistance to osmotic stress of 
bdelloplasts produced by wild-type B. bacteriovorus 
compared with those of the Δbd0886Δbd1176 mutant. In 
the fortified bdelloplast, B. bacteriovorus digests host 
resources, grows, and eventually divides [80] to finally 
burst out free to invade new prey and repeat the cycle. 

LDT modifies PG at the poles for typhoid toxin 
translocation 

Typhoid toxin is an essential virulence factor for the 
human pathogen S. Typhi and the cause of typhoid 
fever in humans [83]. Produced only within mam-

malian cells, translocation of this toxin across the PG 
requires a specialized polarly localized muramidase 
(TtsA) and PG editing at the bacterial poles by LDT 
YcbB (homolog of E. coli LdtD, which was formerly 
named YcbB) [84] (Fig. 4). TtsA carboxy-terminus 
domain is essential for polar localization and substrate 
recognition [85]. LDT-modified PG per se is not 
required for polar localization of TtsA. Translocation 
of the toxin positions it in close proximity to the OM 
from where it can be released through minor disrup-
tions in the membrane caused by membrane-active 
compounds (such as antimicrobial peptides or bile 
salts) encountered by S. Typhi during infection [84]. 

In all, this could mean that in some bacteria LDTs 
might not be the part of main PG synthesis; neverthe-
less, they are important players during certain develop-
mental stages or crucial for specific functions. 
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Fig. 4. Model of typhoid toxin translocation across the PG. Translocation of assembled typhoid toxin from the cis to the trans side of the 

PG occurs at the poles and relies on the muramidase TtsA. TtsA activity requires PG editing at the poles by LDT YcbB. Scheme adapted 

from [84]. 

LDTs cross-link the OM and PG 

Three out of the six LDTs in E. coli, ErfK, YbiS, and 
YcfS, renamed LdtA, LdtB, and LdtC, respectively, 
covalently attach the abundant OM-anchored Braun’s 
Lpp to mDAP residues in PG [25,86]. In  E. coli and 
closely related bacteria, Lpp is required to maintain 
the periplasmic width between OM and IM [87]. Dis-

ruption of this spacing interferes with the proper 
assembly of periplasm-spanning structures and with 
signal transduction from the environment to the cell 
[88,89]. Recently, it was shown that in some environ-
mental pathogens (Coxiella burnetii, A. tumefaciens, 
Legionella pneumophila, Brucella abortus) that lack 
Lpp orthologues, multiple OM b-barrel proteins are 
covalently attached to the PG [90,91]. In the intracellu-
lar pathogen, C. burnetii one (Cbu0318) out of the ten 
predicted LDTs is involved in the attachment of b-
barrel proteins BbpA and BbpB to the PG, which sta-
bilizes the OM of this bacterium during the stationary 
phase [90]. Also, in the intracellular pathogen B. abor-
tus, the Ldt4 (BAB1_0589) is the main LDT required 
to interlink the OM and the PG [91]. It is hypothesized 
that bacteria that alternate between host(s) and envi-
ronment might require multiple OM tethers since they 
need to survive extreme changes in pH, temperature, 
and osmolarity [92]. 

LDTs incorporate NCDAAs into PG 

Incorporation of NCDAAs by LDTs changes cell 
wall properties and regulation 

In addition to catalyzing LD-cross-linkage formation, 
LDTs are also able to incorporate a variety of 

NCDAAs in the place of D-Ala in the fourth position 
in the muropeptides [31]. Bacteria from diverse envi-
ronments produce NCDAAs through the activity of 
broad-spectrum racemases [93]. In  Vibrio cholerae, the 
etiological agent of the diarrheal disease cholera, 
LDT-mediated incorporation of these D-amino acids 
into the PG controls PG strength and amount during 
the stationary phase [31]. Furthermore, V. cholerae 
releases NCDAA-modified tetrapeptides during PG 
turn-over, which are later reincorporated by the PG 
recycling pathway. However, NCDAA-tetrapeptides 
are poor substrates for the PG recycling enzyme LD-

carboxypeptidase and their cytosolic accumulation also 
downregulates negatively the PG synthesis [94], in a  
coordinated manner with the periplasmic PG editing 
by LDTs. Interestingly, the incorporation of NCDAAs 
by LDTs is more widespread than NCDAA produc-
tion [31]. Therefore, potentially NCDAAs and 
NCDAA-edited muropeptides might be used to medi-

ate bacterial communications (competition or coopera-
tion) through their incorporation by LDTs [94,95]. 

D-amino acid-based probes incorporated by LDTs 
allow PG visualization 

The activity of LDTs (as well as PBPs) to catalyze 
periplasmic exchange reactions to achieve the incorpo-
ration of NCDAAs into the PG inspired the use of 
synthetic D-amino acid-based probes to visualize PG 
assembly and metabolism in a precise spatial and tem-

poral manner in nearly all PG-containing bacteria [96– 
99]. The incorporation of these probes into the PG 
depends on each specific organism. For instance, in 
E. coli single D-amino acid-based fluorescent probes 
or FDAA (e.g., EDA, HADA) are incorporated 
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Fig. 5. Fluorescent D-amino acid (FDAA) labeling of bacteria through LDTs incorporation of the molecule into PG. FDAA labeling pattern 

reveals the mode of PG assembly and metabolism in the specifc bacterium: E. coli makes use of dispersed growth, which is seen as 

punctate patterns on the lateral walls of elongating cells, A. tumefaciens grows from the new cell pole (the pole formed at the last cell 

division), in M. smegmatis new PG is unequally inserted at both poles (more at the old pole). 

mainly by the activity of LDTs into the muropeptides 
fourth position, while in vegetative B. subtilis cells this 
process depends on the activity of PBPs [100]. 
The incorporation of FDAA into the PG provides 

valuable information about how the cell wall grows. As 
in E. coli, in  A. tumefaciens HADA is also mainly incor-
porated into the fourth position of the peptide moieties, 
but they show completely different labeling patterns 
[96]. In  E. coli short labeling with HADA shows fluores-
cence localization at the septal plane of predivisional 
cells and in punctate patterns on the lateral walls of 
elongating cells [96]. However, in  A. tumefaciens the sig-
nal predominantly localizes at the new pole and the site 
of cell division (Fig. 4) [96]. It has been shown that 
A. tumefaciens’ LDT Atu0845 shares this same localiza-
tion pattern [24], thereby suggesting that LDTs play a 
role in polar growth in this bacterium. 
In Mycobacterium smegmatis, FDAAs are incorpo-

rated asymmetrically by LDTs [38]. A short pulse of 
FDAAs produces fluorescence signal at both poles 
(more at the old pole), where new PG is inserted in 
mycobacteria [101], and a gradient along the sidewalls, 
which extends from the old pole and fades around the 
mid-cell as it reaches the new pole (the pole that was 
formed at the last cell division) [38] (Fig. 5). Deletion 
of all 6 LDTs in M. smegmatis results in nearly abol-
ished FDAAs labeling and loss of rod shape [38]. 
These cells produce spherical blebs, which likely corre-
spond to sites of old and nonuniformly distributed cell 
wall as a result of the asymmetric polar growth and 
division. It is hypothesized that these blebs emerge in 
the mutant because LDTs would normally reinforce 
aging PG to maintain rod shape [38]. A large number 
of publications have supported the use of FDAA as 

an excellent method to track spatiotemporal cell wall 
growth and segregation in many diverse bacteria. 
Given that PG is a common target of antibiotics, this 
visual, in vivo-compatible tool, might aid in the devel-
opment of new treatment strategies. 

Future perspectives 

The roles of LDTs in different bacteria under standard 
laboratory conditions vary from dispensable to essen-
tial, which places them in the position of accessory 
proteins or proteins that participate in the main PG 
synthesis. However, the role of LDTs seems to gain 
importance in bacterial physiology under stress condi-
tions. This is not surprising, since many bacteria face 
extreme fluctuations in their natural habitats (e.g., 
temperature, pH, salinity, availability of nutrients, and 
small signaling molecules), often associated with free-
living to host(s)-associated transitions. Therefore, anal-
ysis under non-physiological conditions such as opti-
mal temperature and nutrient-rich media must be 
complemented with more challenging, suboptimal con-
ditions to better understand the biological role of 
LDTs. Moreover, many bacteria possess multiple 
copies of LDTs (even more than 20) [24], which might 
even represent an additional level of functional special-
ization between enzymes that a priori share the same 
activity. Could it be that in these bacteria different 
LDTs belong to different PG synthetic protein com-

plexes and regulatory networks? Do different LDTs 
have different preferred substrates? How are LDTs 
regulated in the cells? What has been the natural selec-
tive pressure that has driven the emergence of LDTs? 
There are many yet unanswered questions in this field. 
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Thus, coming research efforts will be heading to figure 
out the unique and conserved properties of LDTs in 
bacteria, and the role that each LDT plays in a specific 
organism and its functional significance. 
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