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Linnaus Väg 20, 901 87, Ume̊a, Sweden
www.physics.umu.se

Copyright © 2021. All Rights Reserved.

www.physics.umu.se


Abstract

In this thesis, the theory and application of black-box optimization methods are ex-
plored. More specifically, we looked at two families of algorithms, descent methods and
response surface methods (closely related to trust region methods). We also looked
at possibilities in using a dimension reduction technique called active subspace which
utilizes sampled gradients. This dimension reduction technique can make the descent
methods more suitable to high-dimensional problems, which turned out to be most effec-
tive when the data have a ridge-like structure. Finally, the optimization methods were
used on a real-world problem in the context of pre-hospital care where the objective is
to minimize the ambulance response times in the municipality of Ume̊a by changing the
positions of the ambulances.

Before applying the methods on the real-world ambulance problem, a simulation study
was performed on synthetic data, aiming at finding the strengths and weaknesses of the
different models when applied to different test functions, at different levels of noise.

The results showed that we could improve the ambulance response times across several
different performance metrics compared to the response times of the current ambulance
positions. This indicates that there exist adjustments that can benefit the pre-hospital
care in the municipality of Ume̊a. However, since the models in this thesis work find
local and not global optimums, there might still exist even better ambulance positions
that can improve the response time further.



Sammanfattning

I denna rapport undersöks teorin och tillämpningarna av diverse blackbox optimerings-
metoder. Mer specifikt s̊a har vi tittat p̊a tv̊a familjer av algoritmer, descentmeto-
der och responsytmetoder (nära besläktade med tillitsregionmetoder). Vi tittar ocks̊a
p̊a möjligheterna att använda en dimensionreduktionsteknik som kallas active subspa-
ce som använder samplade gradienter för att göra descentmetoderna mer lämpade för
högdimensionella problem, vilket visade sig vara mest effektivt när datat har en struk-
tur där ändringar i endast en riktning har effekt p̊a responsvärdet. Slutligen användes
optimeringsmetoderna p̊a ett verkligt problem fr̊an sjukhusv̊arden, där målet var att
minimera svarstiderna för ambulansutryckningar i Ume̊a kommun genom att ändra am-
bulanspositionerna.

Innan metoderna tillämpades p̊a det verkliga ambulansproblemet genomfördes ocks̊a
en simuleringsstudie p̊a syntetiskt data. Detta för att hitta styrkorna och svagheterna
hos de olika modellerna genom att undersöka hur dem hanterar ett flertal testfunktioner
under olika niv̊aer av brus.

Resultaten visade att vi kunde förbättra ambulansernas responstider över flera olika pre-
standamått jämfört med responstiderna för de nuvarande ambulanspositionerna. Detta
indikerar att det finns förändringar av positioneringen av ambulanser som kan gynna den
pre-hospitala v̊arden inom Ume̊a kommun. Dock, eftersom modellerna i denna rapport
hittar lokala och inte globala optimala punkter kan det fortfarande finnas ännu bättre
ambulanspositioner som kan förbättra responstiden ytterligare.
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Chapter 1

Introduction

1.1 Motivation
Computer models for complex systems often behave like black boxes due to their com-
plexity. This has led to an interest in black-box optimization algorithms where the goal
is to optimize said computer models, for example to maximize yield or to minimize
production time.

One such black-box model exists in the context of pre-hospital care. It is a statistical
simulation model, which has been developed by the northern regions in Sweden, SOS
alarm and Ume̊a University [1]. This model uses historical call data to generate a
simulation, which then can be used to decide how a change in ambulance positioning,
ambulance scheduling or ambulance count would affect the response time to emergency
calls. Due to the complexity of this model, it can be considered as a black-box model.

However, even if the computer models to simulate the outcome of a certain ambulance
resource allocation exist, there are currently no way of finding the best resource allocation
in order to minimize the response times besides guesswork and trial and error. Hence,
there is a clear need of computerized data-driven optimization models which could help
health officials in finding the optimal resource allocation of the ambulances, which in
turn could save important seconds in a scenario where seconds is matter of life and
death.

1.2 Methodology
The methods used in this report can be divided into two groups, descent methods and
response surface methods (closely related to trust region methods). For the first group
stochastic subspace descent, stochastic coordinate descent and gradient descent were
used. We also looked at possibilities in using the dimension reduction technique called
active subspace in order to lower the dimension of the problem, while keeping as much of

1



Tim Anthony Unconstrained Black-Box Optimization

the original data as possible. For the second group of methods this report will cover an
extensive explanation of the response surface methodology and trust region methodology.

1.3 Research questions
This thesis aims to answer the following two questions:

1. How can the methods described above be used in the context of black-box opti-
mization?

2. How can we use these methods to position the ambulances to minimize the response
times?

1.4 Main Contributions
The main contributions of this thesis work are:

1. Methodological - the development of descent-based optimization methods using
active subspace methodology. These are the agreement method, the weighting
method, and also the active subspace & stochastic coordinate descent method.

2. Theoretical - convergence results which can be seen in theorems 10, 11 and 13.
These results were achieved by straightforward modifications of existing conver-
gence proofs in order to show convergence when considering stochastic subspace
descent.

3. Simulation study - where we performed a simulation study to better understand
the strengths and weaknesses of the descent-based and trust region methods. Here
we also look at the new proposed descent-based methods.

4. The application to a real problem - where we successfully show that optimization
methods can be applied to the ambulance simulation problem to find an improved
ambulance placement.

1.5 Outline of Report
For the outline of this report Chapter 2 contains the theory behind the different algo-
rithms and methods. Chapter 3 describes the methods used and how they were applied
to perform the simulation study and the ambulance optimization. In Chapter 4 the
result is presented along with a discussion how the result should be interpreted. Finally,
in Chapter 5 thoughts, insights and conclusions about the project are summarized and
also suggestions about what future developments that could be possible are provided.
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Chapter 2

Theory

2.1 General Optimization Theory

2.1.1 Problem Formulation
The general problem formulation for optimization [2] can be stated as

min
x∈X

f(x) (2.1)

where f(x) is the target function which we want to minimize, x = [x1, . . . , xm] is our
vector with variables and X ⊆ Rm is the set defining the allowed solutions. An optimal
solution to this problem, which minimizes the target function while staying inside X
is called an optimal solution and is denoted as x∗. The corresponding optimal value
of the target function is denoted as f ∗ = f(x∗). Note that there are two types of
optimal solutions which are local optima which means that f(x) is minimized in a small
neighbourhood around x and global optima which mean that f(x) is minimized over all
of X.

The set of allowed solutions is usually expressed as a set of constraints as X = {gi(x) ≤
bi}mi=1 where gi(x) are functions and bi are constants. Depending on the character of
these constraints and also the target function, the optimization problem can be classified
further into different problem classes. Some of them are:

• Linear programming problems - if both the target function f(x) and all the con-
straints gi(x) are linear functions

• Non-linear problems - if at the target function f(x) or at least one of the constraints
gi(x) are a non-linear function

• Integer programming problems - if the set X is limited to only consist of integers
as X ⊆ Z

3
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• Mixed integer programming (MIP) problems - if X is a mix of continuous and
integer numbers

• Unconstrained optimization - if X = Rm which is to say that we have no con-
straints.

2.2 Convexity
Here we define an important concept in optimization called convexity, and present some
relevant results. First let us define a convex function and a convex set as following.

Definition 1 (Convex function) A function f : X 7→ R is convex if for every x,y ∈
X and every 0 ≤ λ ≤ 1 we have that

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

From this definition we see that a function is convex if for every pair of two points x and
y in X, all intermediate points on the straight line λx + (1 − λ)y, 0 ≤ λ ≤ 1, between
x and y, have lower function value than the straight line between f(x) and f(y). If the
inequality in the definition is strict, we can also call the function strictly convex. In this
case we also require 0 < λ < 1.

Definition 2 (Strictly convex function) A function f : X 7→ R is strictly convex if
for every x,y ∈ X and every 0 < λ < 1 we have that

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y).

Now, let ∇f(x) = [ ∂f
∂x1

(x), . . . , ∂f
∂xm

(x)]T be the gradient of f(x), where ∂f
∂xi

(x) are the
partial derivatives and the operator (·)T is the transpose given by [CT ]ij = [C]ji when
applied to a matrix C. Note this definition of transpose also holds for us, since our
gradient vector can be seen as a 1×m matrix. Furthermore, let the norm of a vector
v ⊆ Rs be ||v|| =

√
v2

1 + · · ·+ v2
s . Now we can define an even stricter form of convexity

which is strong convexity [3] as:

Definition 3 (Strongly convex function) A differentiable function f : X 7→ R is
strongly convex with parameter µ > 0 (or µ-strongly convex) if for every x,y ∈ X and
every 0 ≤ λ ≤ 1 we have that any of the following equivalent conditions are true:

1.
f(y) ≥ f(x) +∇f(x)T (y− x) + µ

2 ||y− x||2

2.
(∇f(x)−∇f(y))T (x− y) ≥ µ||x− y||2

3.
f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)µ

2 ||x− y||

4
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From condition 3 of the definition of strongly convex functions, we can see that strong
convexity implies strict convexity. It is also evident that a strictly convex function also
is convex. Now, we continue by defining the convex set.

Definition 4 (Convex set) A set X is convex if for every x,y ∈ X and every 0 <
λ < 1 we have that

λx + (1− λ)y ∈ X.

From this definition we see that if for every two points in the set, all points on the
straight line between them also belong to the same set, the set is said to be convex. A
common way to think about convex set is to say that if you are in X and can ”see”
every other point in X, then this set is convex. We now bring convexity of functions
and convexity of sets together to define the convex problem.

Definition 5 (Convex problem) The optimization problem min
x∈X

f(x) is convex if f :
X 7→ R is a convex function and X is a convex set.

If a problem is convex, we have that a point that locally minimizes f also minimizes f
globally. Since it is easier to find local minimum points than global minimum points,
the following result is of great interest.

Theorem 1 (Local minimum equals global minimum for convex problems) If
min
x∈X

f(x) is a convex optimization problem, then every local minimum in X is also a
global minimum.
Proof: See Appendix A.

2.3 Continuity
Here we define the Lipschitz continuity property of a function [4].

Definition 6 (Lipschitz continuity) A function f : X 7→ R is Lipschitz continuous
with parameter L1 if for all x,y ∈ X we have that

|f(x)− f(y)| ≤ L1||x− y||.

Similarly, the definition of a Lipschitz continuous gradient of a function is as follows.

Definition 7 (Lipschitz continuous gradient) A function f : X 7→ R has a Lips-
chitz continuous gradient with parameter L2 if for all x,y ∈ X we have that

|∇f(x)−∇f(y)| ≤ L2||x− y||.

Now, we will present an interesting implication of the Lipschitz continuous gradient
property that will be useful later. Here we will use the inner product of two vectors of
the same dimension, say a,b ∈ Rs, as 〈a,b〉 = aTb = a1b1 + · · ·+ asbs.

5
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Theorem 2 If the function f : X 7→ R has a Lipschitz continuous gradient with param-
eter L2, then it follows for all x,y ∈ X that

f(y) ≤ f(x) + 〈y− x,∇f(x)〉+ L2

2 ||y− x||2

Proof: See Appendix B.

2.4 Linear Algebra
Here we present some useful definitions and results from linear algebra, which all are
based on the texbook [5, p. 123–172, 288–312].

2.4.1 Vector spaces
If we let A ∈ Rn×m we can define the column space of A as following.

Definition 8 (Column space) The column space C(A) ⊆ Rn of A consists of all
linear combinations of the columns in A.

Hence for any given A and b = [b1, . . . , bn]T ∈ Rn, we are only able to solve Ax = b if
b ∈ C(A). Similarly, the null space of A can be defined as

Definition 9 (Null space) The null space N (A) ⊆ Rm of A consists of all vectors x
which satisfy Ax = 0.

Now, we want to clarify what a basis is. To do this we first need to define the span of a
vector space and what we mean by independence.

Definition 10 (Span) A set of vectors {vi}ki=1, vi ∈ Rm, are said to span the vector
space S ⊆ Rm if every point s ∈ S can be represented by a linear combination of the vi:s,
i.e. s = ∑k

i=1 civi, ∀s.

Definition 11 (Linear independence) A set of vectors {vi}ki=1, vi ∈ Rm, are said
to be linearly independent if the linear combination ∑k

i=1 civi only equals 0 when c1 =
· · · = ck = 0.

Using these two definitions we can specify the basis as

Definition 12 (Basis) A basis for a vector space S ⊆ Rm are a set of vectors {vi}ki=1,
vi ∈ Rm, satisfying:

1. the vectors vi are linearly independent

2. the vectors {vi}ki=1 span the vector space S.

6
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Here we are noting that the condition regarding linear independence will prohibit the
basis for having any redundant vectors while the condition that the basis need to span
the vector space S will ensure that it is possible to represent every point in the vector
space with our basis. One result of these conditions is that the points in the vector space
are uniquely represented by a combination of the basis vectors. Another result is the
fact that the number of basis vectors needed to represent a vector space always is the
same, this lead us to the definition of the vector space dimension.

Definition 13 (Dimension) The basis of a vector space always contain the same num-
ber of vectors, this number is the dimension of that vector space.

2.4.2 Rank
Another important concept is the rank r of the matrix A ∈ Rn×m.

Definition 14 (Rank) The rank r is the number of independent and non-zero columns
of A.

This concept correlates to the dimension of a vector space, since the rank of A equals
the dimension of its column space. Note that the maximum rank for the matrix A is
r = min{m,n}, when A satisfy this condition it is said to have full column rank.

2.4.3 Symmetric Matrices
Now we consider the square matrix S ∈ Rn×n, then we can define symmetry of a matrix:

Definition 15 (Symmetric matrix) If S = ST the matrix is symmetric.

Matrices that are symmetric and real hold the property that their eigenvectors are
orthogonal and their eigenvalues are real, this is summarized by the spectral theorem
below.

Theorem 3 (Spectral Theorem) If S ∈ Rn×n is symmetric, its eigenvalue decompo-
sition S = QΛQ−1 always exists and has the following two properties:

1. the eigenvalues on the diagonal of Λ are real

2. the eigenvectors qi in the columns of Q = [q1, . . . ,qn] are orthogonal, the matrix
Q is thus orthogonal and it follows that Q−1 = QT . The eigendecomposition can
hence be written as S = QΛQT .

Proof: See [5, p. 339–343].

From the spectral theorem we are given another interesting and useful fact. This is due
to the orthogonality of Q, where we notice that the decomposition S = QΛQT can be
rewritten as

7



Tim Anthony Unconstrained Black-Box Optimization

S = QΛQT = λ1q1qT1 + · · ·+ λnqnqTn .

This decomposition, which we call the spectral decomposition, follows from

S = [q1, . . . ,qn]


λ1

. . .
λn



qT1
...

qTn



= [q1, . . . ,qn]


λ1qT1

...
λnqTn


= λ1q1qT1 + · · ·+ λnqnqTn .

Note here that each component λiqiqTi are themselves matrices of rank 1. Since the
qi:s are orthogonal and hence also independent, the number of non-zero eigenvalues will
determine the number of independent contributions, via λiqiqTi , to the column space of
S. Hence, the rank of S is given by the number of non-zero eigenvalues. Or, by looking
at it in the opposite way which will be of importance later, we can state that the number
of non-zero eigenvalues of the symmetric matrix S is the same as its rank r.

2.4.4 Positive Semi-Definite Matrices
If we consider the a symmetric square matrix S as described above, we have the following
definition of a positive semi-definite matrix.

Definition 16 (Positive semi-definite matrix) The symmetric matrix S ∈ Rn×n is
positive semi-definite if xTSx ≥ 0 for all vectors x ∈ Rn.

Note that if S would fulfill a strict inequality as xTSx > 0 then it is called a positive
definite matrix. The reason why positive semi-definite matrices are interesting is because
all their eigenvalues are non-negative:

Theorem 4 (Non-negative eigenvalues of positive semi-definite matrices) If the
symmetric matrix S is positive semi-definite, then λi ≥ 0, for all eigenvalues of S.
Proof: See Appendix C.

Similarly, for positive definite matrices, we get strictly positive eigenvalues.

8
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2.4.5 Projection Onto a Subspace
Consider a vector b ∈ Rn, now consider a subspace V ⊂ Rn of m < n dimensions which
have a basis given by the matrix A ∈ Rn×m. If we want to project the vector b onto V
this is done as

p = Pb

where p ∈ V is our projection point and P = A(ATA)−1AT ∈ Rn×n is our projection
matrix. Note that with this kind of projection the subspace V is equivalent to the
column space of A, and hence the dimension of V is the same as the rank of A.

2.5 Active Subspace Method
Active subspace method is a dimensionality reduction technique that utilizes gradients
to find the subspace on which the function is varying the most, this subspace is called
the active subspace. The whole domain which is assumed to be high-dimensional is then
projected onto this smaller active subspace, on which we can build a response surface (for
example with linear regression) which now is feasible due to the relatively low dimension.
If we now consider an new arbitrary point in the original domain, we can then project
this point onto the active subspace where we can use our response surface to determine
our response value.

2.5.1 Probability Theory
The probability space is the triplet (Ω,F , P ) [6, p. 10] where:

• Ω is the sample space which denotes the set of all possible outcomes.

• F is a σ-algebra of sets, which we call events.

• P is a probability measure, which assigns a probability between 0 and 1 to all
events in F .

Let X be a m-dimensional random vector such that X is a measurable function from
Ω to Rm, i.e. X : Ω 7→ Rm. We can now define the joint distribution function of the
random vector X as

FX(x) = P (X ≤ x), x ∈ Rm

where the inequality is assumed to be element-wise, that is {X ≤ x} = {X1 ≤
x1, . . . , Xm ≤ xm}. Assuming that the joint distribution function is absolutely con-
tinuous, we can define the (joint) density ρ : Rm 7→ R+ as

ρ(x) = ∂mFx(x)
∂x1 · · · ∂xm

, x ∈ Rm

9
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where we note that ρ(x) is non-zero only when being inside X since we are considering
x to be constrained to the domain X. Furthermore, the density has the property that∫
Rm ρ(x)dx =

∫
X ρ(x)dx = 1.

2.5.2 Decomposition
Formally, consider a continuous function f : X 7→ R where the domain X of f lives
in m-dimensional space, i.e. X ⊆ Rm. We assume that the domain X is centered
at the origin with the same range in each of the m dimensions and also that the
function f = f(x), x = [x1, . . . , xm]T ∈ X, is differentiable such that its gradient
∇xf(x) = [∂f/∂x1(x), . . . , ∂f/∂xm(x)]T exists. Note that ∇xf(x) = ∇f(x), however
this alternative notation will be beneficial later. Now, define C as the expectation of
the outer product of the f -gradients

C ≡ E[∇xf(x)∇xf(x)T ] =
∫
X
∇xf(x)∇xf(x)Tρ(x)dx. (2.2)

Properties of the matrix C are stated in Lemma 1.

Lemma 1 (Properties of matrix C)
1) (Symmetry) The matrix C is symmetric.
2) (Positive semi-definiteness) The matrix C is positive semi-definite.
Proof: See [7, p. 119–120].

We can now eigen-decompose C as

C = WΛWT

where W is an orthogonal matrix whose columns contain the eigenvectors of C, and
Λ is the corresponding diagonal eigenvalue matrix which contain the eigenvalues λi,
i ∈ 1, . . . ,m, in decreasing order. We know these eigenvalues will be real due to the
symmetry of C and non-negative due to the positive semi-definiteness of C.

Lemma 2 Let wi be the i:th column of W, then the expected squared value of gradient
∇xf in the direction of wi is given by

E[((∇xf)Twi)2] = λi

Proof: See [8]

From Lemma 2 we see that the average squared change of f in the direction of eigenvector
wi is proportional to the corresponding eigenvalue λi. This motivates us to decompose
W into the n < m most important eigenvectors as

W = [W1W2]

10
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since we in this way will capture the directions where ∇xf changes mostly in the n active
directions specified by the m×n matrix W1. An example of this in two dimensions is
the decomposition is depicted in Figure 2.1.
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Figure 2.1: Visualization of the decomposed eigenvectors W1 and W2 together with the
contours of the corresponding two-dimensional function f(x, y) = x2 + y2 + (x + 2y)2.
Note that the function most rapidly along the eigenvector W1.

Along with the decomposition of the eigenvectors, we have the corresponding decompo-
sition of the eigenvalue matrix as

Λ =
Λ1 0

0 Λ2

 .
Defining the subspaces Y = {y : y = WT

1 x,x ∈ X} ⊆ Rn and Z = {z : z = WT
2 x,x ∈

X} ⊆ R(m−n), we can now project x onto these subspaces as

y = WT
1 x

and

z = WT
2 x.

where we have that y ∈ Y and z ∈ Z. Also, the orthogonality of W implies that
X = Y ⊕ Z and we can thus rewrite x as x = WWTx = W1WT

1 x + W2WT
2 x =

W1y + W2z. Furthermore, Y and Z are known as our active subspace and inactive
subspace, respectively.

11
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Lemma 3 Let y and z be defined as above, note that f(x) = f(W1y + W2z) and let
the gradients with respect to y and z be ∇yf(x) = [∂f/∂y1(x), . . . , ∂f/∂yn(x)]T and
∇zf(x) = [∂f/∂z1(x), . . . , ∂f/∂zm−n(x)]T . Then these gradients satisfy

E[∇yf(x)T∇yf(x)] =
n∑
i=1

λi

and
E[∇zf(x)T∇zf(x)] =

m∑
i=n+1

λi

Proof: See [8]

From Lemma 3 we see that the variation along each subspace Y and Z is dependent
on the corresponding eigenvalues. Furthermore, if ∑m

i=n+1 λi = 0 then ∇zf(x), ∀x ∈ X,
and in this case we call the function z-invariant.

2.5.3 Approximation
We have now decomposed our subspace X into Y where f(x) changes relatively much
and Z where f(x) hopefully changes very little or ideally nothing at all. The next step
is to approximate f(x) by a function G(y) that only considers points in Y, the reason
for this is that the lower dimension of Y compared to X allows us to avoid the curse of
dimensionality. It is then feasible to build a response surface G̃(y) on Y which can be
used to approximate our original function as f(x) ≈ G̃(WT

1 x).

Starting off we redefine our density function ρ(x) as the density π of the coordinates y
and z as

π(y, z) ≡ ρ(x(y, z)) = ρ(W1y + W2z)

from which we obtain the marginal densities as π(y) =
∫
Z π(y, z)dz and π(z) =

∫
Y π(y, z)dy,

while the conditional densities are given by π(y|z) = π(y, z)/π(z) and π(z|y) = π(y, z)/π(y).
We can now define G : Y 7→ R as

G(y) ≡ E[f |y] =
∫
Z
f(W1y + W2z)π(z|y)dz (2.3)

where we can use G to approximate f as

f(x) ≈ G(WT
1 x).

The approximation error is given by the following theorem.

12
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Theorem 5 The mean square error of the approximation of f(x) by G(WT
1 x) is given

by

E[
(
f(x)−G(WT

1 x)
)2

] ≤ C1

 m∑
i=n+1

λi


where C1 is a constant that is dependent on the domain X and the density function ρ.
Proof: See [8].

From Theorem 5 combined with Lemma 3 we see that a smaller value of ∇zf(x) implies
a better approximation, and if the function f is z-invariant we will perfectly approximate
f(x) by G(W1x) on all of X.

2.5.4 Response Surface
We now have an approximation of the function f onX by the lower dimensional function
G on Y ⊂ X. Our aim now is to build a polynomial response surface G̃ : Y 7→ R by
sampling P design points from G(y) according to some preset design. These design
points yk ∈ Y ⊆ Rn, k = 1, . . . , P , along with their corresponding evaluations Gk ≡
G(yk) are then used by an appropriate response surface model M : {(yk, Gk)}Pk=1 7→ G̃
to build our response surface G̃. This response surface can then be used to approximate
f as f(x) ≈ G̃(WT

1 x).

There are many different types of available response surface models that can be used
[8]. Here we choose to look at the polynomial regression model of degree d due to its
simplicity. It is described by

G = Zβ + ε

where G = [G1, . . . , GP ]T are our sample evaluations, β = [β0, . . . , βnd]T are our co-
efficients, ε = [ε1, . . . , εP ]T are the error terms which we assume to be distributed as
εi

iid
∈ N(0, σ2), and the Vandermonde matrix Z ∈ RP×(1+nd), is given by

Z =


1 y1,1 y2

1,1 · · · y
(d−1)
1,n yd1,n

1 y2,1 y2
2,1 · · · y

(d−1)
2,n yd2,n

... ... ... . . . ... ...
1 yP,1 y2

P,1 · · · y
(d−1)
P,n ydP,n


as our design matrix where the indices are given by yk = [yk,1, . . . , yk,n]. We then
estimate β as β̂ by ordinary least squares as

β̂ = argmin
β
||Zβ −G||22 = (ZTZ)−1ZTG.

13
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We can now describe our response surface as G̃(y) = yT(aug)β̂ where y(aug) = [1, y1, y
2
2, . . . , y

d
n]T

is the augmented vector of a new point y = [y1, . . . , yn]T . Now, by using the response
surface we can approximate the original function as f(x) ≈ G̃(WT

1 x) = (xTW1)(aug)β̂.

2.5.5 Monte Carlo Method
Since the function f might be very complex, or even unknown, we can not rely on
calculating integrals containing f analytically. Thus we need another way to compute
C in equation (2.2) and G(y) in equation (2.3). Here we will use a Plain Monte Carlo[9,
p. 13–14] approach to approximate these two integrals. Starting off, we can find the
Monte Carlo approximation of C as

Ĉ = 1
M

M∑
i=1
∇xf(xi)∇xf(xi)T (2.4)

where xi, i = 1, . . . ,M , are samples drawn from X according to the probability density
ρ(x). Similarly as before, we can then continue by eigen-decomposing this Ĉ as

Ĉ = Ŵ Λ̂Ŵ
T

where we further decompose the eigenvector matrix as

Ŵ = [Ŵ 1Ŵ 2]

and the eigenvalue matrix as

Λ̂ =
Λ̂1 0

0 Λ̂2

 .
We can now tackle the second integral regarding G(y) in equation (2.3) with the Monte
Carlo approach. This is done as

G(y) ≈ Ĝ(y) = 1
N

N∑
i=1

f(Ŵ 1y + Ŵ 2zi)

where zi are drawn from the conditional density π(z|y). We can then use Ĝ(y) instead
of G(y) to build a response surface as explained in section 2.5.4 above.

2.5.6 Ridge Functions and Implications
A special class of functions, called ridge functions, constitutes the case when the active
subspace method works really well. The ridge functions are defined as functions f :
Rm 7→ R of the form [10]

14
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f(x) = g(aTx)

where g : R 7→ R and a = [a1, . . . , am]T ∈ Rm\{0} is a fixed direction where we assume
that a has unit length as ||a|| = 1. Here we can realize that if we are starting from x
and move a distance c ∈ R in the direction of any unit vector b that is orthogonal of a,
(a · b = 0), the function value will stay the same. That is f(x + cb) = g(a · (x + cb)) =
g(a · x + c(a · b)) = g(a · x) = f(x).

When f is a ridge function, its gradient can be expressed as

∇f(x) =
(
∂g(aTx)
∂(aTx)

)
a

where we note that
(
∂g(aT x)
∂(aT x)

)
is a constant. The derivation of this result can be seen in

appendix D. If we now use this gradient in the computation of C in equation (2.2) we
get

C =
∫
X
∇xf(x)∇xf(x)Tρ(x)dx

= aaT
∫
X

(
∂g(aTx)
∂(aTx)

)2

ρ(x)dx

= kaaT

where k is a constant that is dependent on the function g, the fixed direction a, the
density ρ and the domain X. Since we know that C is a symmetric matrix, it will exhibit
the spectral decomposition C = λ1q1qT1 + · · ·+λmqmqTm. Since this matrix is of rank 1,
it will only have one non-zero eigenvalue λ1 = k with corresponding eigenvector q1 = a,
while λ2 = · · · = λm = 0. From theorem 5 we can then see that our approximation
G(WT

1 x) of f(x) is exact, even if we choose the number of active directions to be n = 1.

Similar connections between the active subspace method and ridge functions have been
done before [11], [12].

2.6 Stochastic Subspace Descent
Stochastic subspace descent (SSD) is a type of gradient descent method where we in each
iteration consider our descent in a randomized l-dimensional subspace of the original d-
dimensional space where l < m. The gradient is then projected upon this subspace,
thereafter an fixed-sized step is taken in l-dimensional space in the direction where the
target function decreasing the most. The reason why this method is advantageous in the
context of blackbox optimization is that by projecting onto a lower-dimensional space
we have to do fewer function evaluations for each iteration step to obtain our estimated
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gradient via finite differentiation. A special case of this method arises when we choose
l = 1 and restrict our search directions to only be along the coordinate axes, we then
get the so called stochastic coordinate descent (SCD) algorithm.

2.6.1 Iteration Process
The unconstrained optimization problem we are considering here is of the form described
in equation (2.1), but with X = Rm. To perform the iteration process, we are starting
out with an initial guess x0 and then updating our guess according to the following
iteration scheme

xk+1 = xk − αMkMT
k∇f(xk) (2.5)

where α is our current step size, Pk = MkMT
k is the projection matrix at step k that

project onto the randomized l-dimensional subspace and Mk ∈ Rm×l is a random matrix.
Note here that when calculating the gradient it can (and should) be computed along the
directions of the random subspace as (MT

k∇f(xk)) since we then can avoid computing
the full gradient.

2.6.2 Finding the Projection Matrix
For Pk to be a suitable projection matrix we need the random matrices Mk to have the
properties EMkMT

k = Im (such that E
[
MkMT

k∇f(xk)
]

= ∇f(xk)) and MT
kMk = m

l
Il

(columns of Mk orthogonal), and one such matrix Mk is the scaled Haar distributed
matrix [13]. For instructions on how to generate the Haar matrix, the reader is referred
to [14].

2.6.3 Stochastic Coordinate Descent
Stochastic coordinate descent is the special case of stochastic subspace descent where
we in each iteration step limit the subspace to a one-dimensional space along the di-
rection of one of the coordinate axes ik. The random coordinate direction ik for the
k:th iteration step could be drawn from a random distribution, however this distribu-
tion doesn’t necessarily have to be uniform. The gradient is then calculated along this
random coordinate direction as [∇f(xk)]ik whereby we arrive at the iteration scheme

xk+1 = xk − α[∇f(xk)]ik .

Relating this to equation (2.5) we notice that this is equivalent to the Stochastic Subspace
Descent scheme if we are considering the projection matrix Pk = MkMT

k with Mk ∈
Rm×1 where

[Mk]i =

√
m, if i = ik

0, if i 6= ik
, i = {1, . . . ,m}.
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Notice here that the random coordinates are drawn from the uniform distribution P (ik =
i) = 1/m,∀i. The convergence of the stochastic coordinate descent is thus expressed by
theorems (6-8), with the random subspace now being of dimension l = 1.

2.6.4 Convergence and Rate of Convergence for Stochastic Sub-
space Descent Without Noise

In [13] the following assumptions are made regarding convergence and rate of conver-
gence:

(A0): the matrices Mk are independent random matrices such that EMkMT
k = Im

and MT
kMk = m

l
Il where m > l

(A1): the function f(x) has a Lipschitz-continuous gradient with parameter L

(A2): the minimum value of f is f ∗, which is considered known and bounded as
f ∗ > −∞

(A3): for some 0 < γ ≤ L and for every x the function satisfy the Polyak-Lojasiewicz
(PL) inequality

f(x)− f ∗ ≤ ||∇f(x)||2
2γ

(A4): f is strongly convex with parameter γ > 0 for all x ∈ Rd, where L ≥ γ

(A5): f is convex and the optimal value is achieved on the domain D such that x∗ ∈ D.
Also, there exists a constant R > 0 which bound the distance to the optimal
solution for solutions better than the initial guess x0 as

max
x,x∗
{||x− x∗|| : f(x) ≤ f(x0)} ≤ R

Remembering that a sequence of random vectors {s}i is said to converge almost surely
to the random vector s∗ if and only if P (si → s∗) = 1, which we denote as si

a.s.→ s∗.
Similarly, the sequence is said to converge in L1 if and only if E||si−s∗||1 → 0, which we
denote as si

L1→ s∗. The first convergence theorem which ensures convergence and states
the rate of convergence is now presented, under the assumptions of the PL-inequality
and continuous differentability of f(x). For proofs of theorems 6-8, see [13].
Theorem 6 (Convergence and rate of convergence under the PL inequality)
Assume A0, A1, A2, A3 hold and that x0 is our arbitrary and known initialization. Then
the iteration scheme presented in equation (2.5) with step size 0 < α < 2l/Lm leads to
almost surely convergence as f(xk) a.s.→ f ∗ and convergence in L1 as f(xk) L1→ f ∗. By
choosing α = l/Ld the expected rate of convergence is given by 0 ≤ E(f(xk)) − f ∗ ≤
βk(f(x0)− f ∗) where β = (1− lγ/mL).

If we instead of the PL-inequality assume strong convexity, the following theorem ensure
that the stochastic subspace descent method converges.
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Theorem 7 (Convergence under strong convexity) Assume A0, A1, A2, A4 hold
and that x0 is our arbitrary initialization. Then the iteration scheme presented in equa-
tion (2.5) with step size 0 < α < 2l/Lm leads to almost surely convergence as xk

a.s.→ x∗
where x∗ is the unique minimizer of f ∗.

Finally, the theorem of rate of convergence is stated, where we now assume convexity
and that all solutions distance between the minimizer and all better than the initial
guess is bounded by the value R.

Theorem 8 (Rate of convergence under convexity) Assume A0, A1, A2, A5 hold
and that x0 is our arbitrary initialization. Then the iteration scheme presented in equa-
tion (2.5) with step size 0 < α < 2l/Ld converges as E(f(xk)) − f ∗ ≤ 2mLR2/kl.

2.6.5 Convergence for Stochastic Subspace Descent Under Non-
Convex Assumption

We here aim to present a general convergence result with minimal assumptions regard-
ing convexity. In other words, the results presented here avoid assuming any kind of
convexity nor the PL inequality. Furthermore, two of the results also assume noise in
the gradient. To start off, the convergence of the gradient descent with a noisy gradient
is presented.

Theorem 9 (Convergence of gradient descent with noisy gradient) Let f : Rm 7→
R be the function to be minimized, and let this function have a Lipschitz continuous gra-
dient with parameter L. Then let εk ∼ ρ be the random noise vector added to the
gradients of f , where ρ is an arbitrary distribution, such that our available gradient be-
comes g(xk) = ∇f(xk) + εk. Assume that this noise is unbiased E[εk] = 0 and that its
variance is bounded as E[||εk||2] ≤ σ2, for all k. Now, let our gradient descent scheme
be

xk+1 = xk − αkg(xk).
If our step size αk for all k satisfy αk ≤ 1

2L , lim
K→∞

∑K
k=0 α

2
k <∞ and lim

K→∞

∑K
k=0 αk =∞

then one iterate xk will be a stationary point such that ∇f(xk) = 0, for some k, 0 ≤
k ≤ K, when K →∞.

Proof: See proof of theorem 6.1 in [15, p. 307–313].

Now we present a result where instead of a noisy gradient, we assume that the gradient
is approximated by a stochastic subspace. This result is achieved by a straightforward
modification of the proof in Theorem 9.

Theorem 10 (Convergence of stochastic subspace descent) Let f : Rm 7→ R be
the function to be minimized, and let this function have a Lipschitz continuous gra-
dient with parameter L. Then let our available gradient be g(xk) = Pk∇f(xk) =
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MkMT
k∇f(xk), where Mk ∈ Rm×l are the random matrices and the Pk:s are the pro-

jection matrices onto our rank l subspaces. Assume that these random matrices for all
iterations satisfy E[MkMT

k ] = Im and MT
kMk. Now, let our gradient descent scheme be

xk+1 = xk − αkg(xk).

If our step size αk for all k satisfy αk ≤ l
2mL and lim

K→∞

∑K
k=0 αk =∞ then one iterate xk

will be a stationary point such that ∇f(xk) = 0, for some k, 0 ≤ k ≤ K, when K →∞.

Proof: See Appendix E.

We will now combine the assumptions from the previous two theorems by assuming that
the gradients are both noisy and approximated by a stochastic subspace. This result is
achieved by a straightforward modification of the proof in Theorem 9.

Theorem 11 (Convergence of stochastic subspace descent with noisy gradient)
Let f : Rm 7→ R be the function to be minimized, and let this function have a Lip-
schitz continuous gradient with parameter L. Then let εk ∼ ρ be the random noise
vector added to the stochastic subspace approximated gradients of f , where ρ is an arbi-
trary distribution, such that our available gradient becomes g(xk) = Pk(∇f(xk) + εk) =
MkMT

k (∇f(xk) + εk). Here Mk ∈ Rm×l are the random matrices and the Pk:s are the
projection matrices onto our rank l subspaces. Assume that these random matrices for
all iterations satisfy E[MkMT

k ] = Im and MT
kMk. Furthermore, assume that the noise

is unbiased E[εk] = 0 and that its variance is bounded as E[||εk||2] ≤ σ2, for all k. Also,
assume Mk and εk to be independent for all k. Now, let our gradient descent scheme be

xk+1 = xk − αkg(xk).

If our step size αk for all k satisfy αk ≤ l
2mL , lim

K→∞

∑K
k=0 α

2
k <∞ and lim

K→∞

∑K
k=0 αk =∞

then one iterate xk will be a stationary point such that ∇f(xk) = 0, for some k, 0 ≤
k ≤ K, when K →∞.

Proof: See Appendix F.

2.6.6 Armijo Line Search
Instead of using a fixed step length α or a vanishing step size like αk = α0

k
which satisfies

the conditions in the convergence results above, it is usually more efficient using a line
search method in the direction of the gradients to avoid taking either to small or to long
steps. Here the ideal step size αk, given the computed gradient g(xk), would be obtained
as a solution to the exact line search problem

αk = argmin
α≥0

f(xk − αg(xk)).

However, solving the exact line search problem is expensive if one doesn’t have knowledge
about the underlying function f . Hence, inexact line search methods are employed to
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identify a suitable step length at a more moderate cost. One such inexact line search
method is the backtracking Armijo line search [16] which gives αk = γkβ

mk , γk > 0,
β ∈ (0, 1) where mk is the smallest non-negative integer such that

f(xk + αkdk) ≤ f(xk) + σαkg(xk)Tdk (2.6)

is fulfilled, where σ ∈ (1, 1
2) and dk is the descent direction satisfying g(xk)Tdk ≤ 0.

The descent direction can for example be chosen to be dk = −g(xk) + βk−1dk−1 for the
conjugate gradient method, dk = −∇2f(xk)g(xk) for Newton’s method or dk = −g(xk)
for gradient descent.

We will now state convergence results for schemes fulfilling the backtracking Armijo line
search condition in equation (2.6), first for an arbitrary descent direction and then for
a descent direction projected onto a stochastic subspace Pk. This second theorem is
achieved by a straightforward modification of the proof of the first theorem in order to
take the stochastic subspace descent direction into account.

Theorem 12 (Convergence of backtracking Armijo Line search) Assume assump-
tions A1 and A2 hold. Also, let dk be a descent direction satisfying g(xk)Tdk ≤ 0,∀k.
If the iteration scheme xk+1 = xk + αkdk satisfies the backtracking Armijo line search
condition in equation (2.6), and by choosing the initial step size γk = − gT

k dk

||dk||2
, then for

all k

lim
k→∞

(
g(xk)Tdk
||dk||

)2

= 0 (2.7)

Proof: See proof of theorem 3.1 in [17].

Note that the convergence property in equation (2.7) is equivalent to the fact that either
lim
k→∞
||g(xk)||2 = 0 or that lim

k→∞
g(xk)Tdk = 0 which in turn implies that lim

k→∞
γk = 0.

Theorem 13 (Convergence of SSD scheme with backtracking Armijo line search)
Assume assumptions A0, A1 and A2 hold. Also, let dk = −MkMk

Tg(xk) be our search
direction. If the iteration scheme xk+1 = xk + αkdk satisfies the backtracking Armijo
line search condition in equation (2.6), and by choosing the initial step size γ = − gT

k dk

||dk||2
,

then for all k
lim
k→∞
||g(xk)||2 = 0.

Proof: See Appendix G.

2.7 Design of Experiments
Design of Experiments (DOE) is a set of statistical and mathematical tools designed to
help improve process yield, finding optimal conditions, reducing costs and minimizing
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development time [18]. This is achieved by sequential experiments with carefully chosen
operating conditions. Here we will focus on the part of DOE used for optimization.

2.7.1 Response Surface Methodology
Response surface methodology (RSM) is the part of DOE whose objective is to optimize
a target function, given a set of adjustable input parameters. This is done by perform-
ing experiments in a region of interests called Significant Design Space, which is a space
that we will denote by VSDS. Usually this space is a hyper-cube, and can therefore be
described by the center point of the space C ∈ Rm×1 and the length in each dimension
L ∈ Rm×1. The idea is then to sample points in VSDS according to a chosen exper-
imental design (also known as response surface design). These sampled design points
and corresponding response values, which we denote SSDS, will then be used to fit a
statistical model that will be used to represent the behaviour inside VSDS. We will then
optimize the response by changing the operating conditions, based on the output of this
surrogate model, to move our VSDS towards the location where we think the optimum
reside. This methodology is then iterated until we found our optimal conditions. This
type of optimization which is based on a surrogate model is known as Metamodel-Based
Design Optimization (MBDO)[19].

2.7.2 Coded Variables
When working with DOE methodology it is common to code, or normalize, the variables.
The reason for doing this is because when coding the variables in different dimensions
the variables will then be on the same scale in the VSDS, i.e. between −1 and 1.
Also, coding of the variables will in many cases lead to easier interpretation of the
estimated metamodel coefficients. If we consider a point with uncoded, or natural,
coordinates x ∈ Rm×1 in the current VSDS then the transformation to coded coordinates
xcode ∈ Rm×1 is given by

xcode = 2(x−C)� L

where � is the Hadamarad matrix division [20] which indicates element-wise division
between two matrices.

2.7.3 Experimental Designs
In choosing experimental designs, we firstly need to consider which model we want to
fit to the sampled points SSDS. Secondly, we have to decide which design features that
are the most beneficial for our specific problem. Some of these features are:

1. Space filling property, which allows more information to be sampled throughout
VSDS
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2. Allowing model checking, such as lack of fit tests

3. Allowing extra points to be sampled, retroactively

4. Requiring few points to be sampled

5. Robustness against outliers

6. Allowing the internal error to be measured

2m Full Factorial Design:
The simplest design is the 2m Full Factorial Design, which consists of an equal number
of samples from each corner of the VSDS. This design is suitable for fitting first order
models where we don’t think the underlying function have any curvature and we also
want to be economical with our sample points. Examples of this design in two and three
dimensions can be seen in Figure 2.2.
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(a) 22 Full Factorial Design (b) 23 Full Factorial Design

Figure 2.2: Visualization of the 2m Full Factorial Designs for two and three dimensions.

Central Composite Design:
The Central Composite Design (CCD) is one of the most used designs in RSM[18]. This
design consists of a full factorial design, but also nC center points and 2m axial points.
This model is useful for fitting second order models and also for estimating an internal
error due to the repeated measurements of the center points. Another advantage is that
if we detect lack of fit of a first order model from the full factorial design, we can simply
add the center and axial points to get a central composite design, which can then be
used to fit the second order model. Examples of this design in two and three dimensions
can be seen in Figure 2.3.
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Figure 2.3: Visualization of the Central Composite Designs for two and three dimensions.

Latin Hypercube Design:

The Latin Hypercube Design (LHD) is a design with good space filling properties. In
explaining the generation of this design, consider p points to be generated in m di-
mensions in coded coordinates. Firstly, each dimension is partitioned into p equally
spaced intervals, each of which can be described as Ivk = [(k− 1)/p, k/p], k = {1, . . . , p},

23



Tim Anthony Unconstrained Black-Box Optimization

v = {1, . . . ,m}. The p points are then placed such that there is one point in each Ivk ,
which then form the matrix

X =


x1,1 . . . x1,m

... . . . ...
xp,1 . . . xp,m.


The columns are then randomly permuted to form the permuted matrix

X′ =


x′1,1 . . . x′1,m

... . . . ...
x′p,1 . . . x′p,m.


To obtain a permuted matrix X′ with points well-spread in space, we can try to minimize
the performance measure [21] of pairwise correlations

ρ2 =
∑m
i=2

∑i−1
j=1 ρ

2
ij

m(m− 1)/2

where ρij is the pairwise correlation between each coordinate which we estimate with
the sample correlation rij as

rij =
∑p
k=1(x′k,i − x̄′·,i)(x′k,j − x̄′·,j)√∑p

k=1(x′k,i − x̄′·,i)2
√∑p

k=1(x′k,j − x̄′·,j)2
.

However, trying to minimize the performance measure based on pairwise correlations
can sometimes produce LHD:s where points lie close to each other. Therefore, another
performance measure based on maxmin distance [22] is commonly used. Here the idea
is to maximize minimum distance as

max
i,j

min
i,j

(
dist(x′i,·,x′j,·)

)
, i, j ∈ {1, . . . , p}, i 6= j

where dist is a distance measure between the two rows.

2.7.4 Models
The most commonly used models for fitting RSM surfaces of m dimensions are the first
order model
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y = β0 +
m∑
i=1

βixi + ε

and the second order model

y = β0 +
m∑
i=1

βixi +
m∑
i=1

βiix
2
i +

m∑
i=j+1

m∑
j=1

βijxixj + ε.

Here y is the response, the xi:s are the predictors, the β:s are the coefficients and ε is the
internal error of each observation which is assumed to be identically normally distributed
as N(0, σ2). The β:s can then be estimated as β̂, for example by using least squares, to
give the fitted models

ŷ = β̂0 +
m∑
i=1

β̂ixi

and

ŷ = β̂0 +
m∑
i=1

β̂ixi +
m∑
i=1

β̂iix
2
i +

m∑
i=j+1

m∑
j=1

β̂ijxixj (2.8)

for the first and second order models, respectively. These fitted models describe a surface
in m-dimensional space and are considered as the response surface, since it explains the
response we expect to get on the surface defined by VSDS. Furthermore, to fit these
regression models the number of observations needs to be at least as many as the number
of unknown coefficients β. Given m dimensions we thus have 1 constant term, m linear
terms and m(m− 1)/2 interaction terms and m purely squared terms. So in order to fit
the first order model we need at least

n1 = 1 +m

observations while for the second order model we need at least

n2 = 1 + 3
2m+ 1

2m
2 (2.9)

observations.
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2.7.5 Canonical Analysis of Second Order Model
Here we are going to describe how to find and classify a stationary point of the response
surface of the second order model described in (2.8). That is to find a point where
the gradient of ŷ is zeros and classify it as a minimum point, a maximum point or a
saddle point. This is done so that we find the x that minimize the response ŷ, given the
parameters β. Starting off we can by letting

x =


x1

x2
...
xm

 , b =


β̂1

β̂2
...
β̂m

 , [B]ij =
β̂ii if i = j

β̂ij/2 if i 6= j

where βij = βji rewrite the fitted second order model as

ŷ = β̂0 + xTb + xTBx.

To find the stationary points xs we differentiate with respect to x and set the result
equal to zero as

∂ŷ

∂x
= b + 2Bx = 0.

Solving for x then gives the stationary point as

xs = −1
2B−1b.

which plugged into the fitted model gives the estimate of the response at the stationary
point as

ŷs = β̂0 + (−1
2B−1b)Tb + (−1

2B−1b)TB(−1
2B−1b)

= β̂0 −
1
2bTB−1b + 1

2bTB−1BB−1b

= β̂0 −
1
4bTB−1b

where we have used that B−1 is symmetric due to the symmetry of B. To easier being
able to analyze the response surface we will define a new coordinate system where we
have moved the stationary point to the origin. The translated coordinates is then given
by
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z = x− xs.

Representing the response surface in these new coordinates we get

ŷ = β̂0 + (z + xs)Tb + (z + xs)TB(z + xs)

= β̂0 + (z− 1
2B−1b)Tb + (z− 1

2B−1b)TB(z− 1
2B−1b)

= β̂0 + zTb− 1
2bTB−1b + zTBz− 1

2zTBB−1b− 1
2bTB−1Bz + 1

4bTB−1BB−1b

= β̂0 + zTb− 1
2bTB−1b + zTBz− 1

2zTb− 1
2bTz + 1

4bTB−1b

= β̂0 −
1
4bTB−1b + zTBz

= ŷs + zTBz

where we again used the fact that the inverse of a symmetric matrix is symmetric and also
that zTb = bTz. We can now see that the response surface expressed in z-coordinates
don’t have any linear terms, but only the constant term and the second order terms.
We now want to rotate our coordinate system such that the principal axes align with
the coordinate axes. To do this we first eigen-decompose B as B = QΛQT , where Q is
the orthogonal matrix with the eigenvectors of B in its columns and Λ is the diagonal
matrix with the corresponding eigenvalues on its diagonal. We then rotate our translated
coordinate system such that the coordinate axes align with the principal axes of B to
get the rotated coordinates

w = QTz.

Since Q is an orthogonal matrix, QT = Q−1, which means that the rotated coordinates
can be re-written as w = Q−1z which implies that the translated coordinates can be
written as z = Qw. Plugging in this expression of z in the response surface equation
and using the eigen-decomposition of B we get

ŷ = ŷs + (Qw)TB(Qw)
= ŷs + wTQTQΛQTQw
= ŷs + wTΛw

= ŷs +
m∑
i=1

λiw
2
i
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which is the canonical form of the response model. Since the terms w2
i are all positive

and the λi are real due to the symmetry of B we can now easily charaterize our stationary
point. If all eigenvalues are positive we can see that ŷ will increase no matter which
direction from xs we move in, hence xs is a minimum point. If on the other hand
all eigenvalues are negative ŷ will instead decrease if we move away from xs and our
stationary point is in this case a maximum point. Finally, if the eigenvalues are both
positive and negative some directions will decrease our response value while others will
increase it, hence xs is a saddle point.

Furthermore, from this analysis we can also see how much the estimated response change
depending on which principal direction we move in based on the eigenvalues since a
larger absolute value of the eigenvalue imply that the response change more in the
corresponding direction. Also, if only one of the m eigenvalues are non-zero, say λj, we
can see that the fitted response surface is a ridge function in the direction of the j:th
column of Q.

For further reading, the interested reader is referred to [23].

2.7.6 Trust Region Subproblem
However, when trying to to optimize the second order surrogate model in our VSDS

by using the canonical analysis the found stationary point could be a maximum value,
a saddle point or be located outside of our VSDS where the result of the model lacks
validity. Hence we need another way of optimizing the surrogate model. We are here
borrowing concepts from trust region methodology for solving the so called trust region
subproblem which is to find

min g(x) = xTb + xTBx,
s.t. ||x||2 ≤ ∆

where ∆ is a scalar denoting the maximum radius and x is the trust region step. Note
here that we are using a circular region of interest centered around origo which is the
so called ’trust region’ where we are searching for our optimal conditions instead of a
square one, the reason for which will be apparent shortly. Also, note that the model
g(x) is equivalent to the second order model except for the constant term which mean
that the locations of the corresponding minimizers will coincide.

Cauchy point

A straight-forward way of tackling the trust region subproblem is to calculate Cauchy
point. If we let the gradient of the centre be g = ∇g(0) = b+2B0 = b and the direction
of the steepest descent be pS = −g/||g|| then the definition of the Cauchy point is

Definition 17 (Cauchy point) The Cauchy point pC is defined as the point along
the steepest descent from the origin which minimizes g(d) inside the trust region, i.e.
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pC ≡ τpS where
τ = argmin{g(τpS) : ||τpS|| ≤ ∆}.

The following theorem states how to calculate the Cauchy point.

Theorem 14 (Cauchy point) The Cauchy point is given by

pC = τpS

where

τ =
min{∆, ||g||32gT Bg} if gTBg > 0

∆ if gTBg ≤ 0

Proof: See Appendix H.

Conjugate gradient method

The Cauchy point is a cheap and straightforward way of minimizing g(x) the trust region
subproblem, but we can do better. The Cauchy point algorithm can be improved by using
conjugate gradient methodology which will be explained here. But since the conjugate
gradient algorithm doesn’t take into account the maximum allowed step length and it
assumes positive-definiteness on the second order terms which might not hold, it has to
be adjusted to be appropriate to the trust region subproblem. This adjustments will
then be showcased, which the will result in the Steinhaug’s conjugate gradient method
which then will be described.

The conjugate gradient method is an iterative algorithm for solving

Ax = b (2.10)

where x is unknown and A is symmetric and positive definite. Relating this formulation
to the trust region subproblem, where we can set B = −1

2A to obtain g(x) = xTb −
1
2xTAx, we see that in finding the stationary point by setting the gradient to zero
∇g(x) = b−Ax = 0 we arrive at the same problem as in equation (2.10).

The main idea is to generate a sequence of steps D = {d1, . . . ,dm} and sequentially
update the guess of x as

xi+1 = xi + αidi

where αi is the corresponding step sizes. Furthermore, we also require that the search
directions di:s are mutually conjugate with respect to A.
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Definition 18 (Conjugate vectors) Vectors di and dj, i 6= j, are said to be conjugate
with respect to A, or A-orthogonal, if

〈di,dj〉A = dTi Adj = 0.

To impose A-orthogonality on the search directions we use the conjugate Gram-Schmidt
process

di = ui −
∑
j<i

〈dj,ui〉A
〈dj,dj〉A

dj = ui +
∑
j<i

βijdj (2.11)

where {ui}m−1
i=0 is a set of linearly independent vectors. However, since the conjugate

Gram-Schmidt process requires knowledge about all the earlier values of dj, those have
to be saved in memory. Luckily this can be avoided by choosing ui = ri where ri are
the residuals given by

ri = b−Axi.

With this choice it is then possible to show that βij simplifies to

βij =


1
αi−1
· rT

i ri

〈di−1,di−1〉A
, i = j + 1

0, otherwise

Hence we have that

di+1 = ri + βi+1,idi

= ri + 1
αi
·

rTi+1ri+1

〈di,di〉A
di

(2.12)

To find the step sizes, we use that the errors ei = xi−x are A-orthogonal to the previous
search direction

〈di, ei+1〉A = 0,

the decomposition of the error as ei+1 = ei+αidi and ri = b−Axi = −A(xi−x) = −Aei
to find

αi = dTi ri
〈di,di〉A

.
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We now want to simplify αi further by showing that dTi ri = rTi ri. Since the conjugate
gradient method converges, which is true when the assumption of a symmetric and
positive definite A holds, we have that em = 0 and thus by the decomposition of the
error terms

0 = em
= em−1 − αm−1dm−1

= . . .

= ej −
m−1∑
k=j

αkdk

or equivalently, ej = ∑
k=j αkdk. If we now premultiply this expressing by dTi A, i < j,

we have by conjugacy that

dTi Aej =
m−1∑
k=j

αkdTi Adk = 0.

By again using that ri = −Aei we get the intermediate result that

dTi rj = 0, i < j

which states that the residuals are orthogonal to all previous search directions. Now, by
using the conjugate Gram-Schmidt process expression in equation (2.11) with the choice
ui = rj, pre-multipling by ri and applying the intermediate result gives us

dTi ri = rTi ri +
∑
j<i

βijdjri

= rTi ri

and we can now write the step length as

αi = rTi ri
〈di,di〉A

.

We can now use this step length in the expression of the search direction in equation
(2.12) to get

di+1 = ri+1 + rTi+1ri+1

rTi ri
di.
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The only unknown variable now is the consecutive residual ri+1, which we can calculate
as

ri+1 = −Aei+1

= −A(ei + αdi)
= ri − αiAdi.

Summarizing, the conjugate gradient algorithm can be described as

Algorithm 1 Conjugate Gradient Algorithm
1: function conjugateGradient(b,A,x0)
2: d0, r0 ← b−Ax0
3: i = 0
4: while ri 6= 0 do
5: αi ← rT

i ri

〈di,di〉A
6: xi+1 ← xi + αidi
7: ri+1 ← ri − αiAdi
8: di+1 ← ri+1 + rT

i+1ri+1

rT
i ri

di
9: i← i+ 1

10: return (xi)

Steinhaug’s conjugate gradient method

As earlier mentioned, the conjugate gradient algorithm doesn’t take into account that
we are limited to our circle given by ||x||2 ≤ ∆ in our search. It also assumes that
the matrix corresponding to the second order terms is positive-definite which also might
not always hold for the second order models considered. Therefore a slightly modified
algorithm called Steinhaug’s conjugate gradient method [24] is presented, which solves
these two problems. The algorithm is described by
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Algorithm 2 Steinhaug’s Conjugate gradient Algorithm
1: function conjugateGradient(b,A,x0,∆,ε)
2: d0, r0 ← b−Ax0
3: for i = 0 : d do
4: if ||ri|| ≤ ε then
5: return (xi)
6: if dTi Adi ≤ 0 then
7: Find αi s.t. ||xi + αidi|| = ∆
8: return (xi + αidi)
9: αi ← rT

i ri

〈di,di〉A
10: if ||xi + αidi|| ≥ ∆ then
11: Find αi s.t. ||xi + αidi|| = ∆
12: return (xi + αidi)
13: else
14: xi+1 ← xi + αidi
15: ri+1 ← ri − αiAdi
16: di+1 ← ri+1 + rT

i+1ri+1

rT
i ri

di
17: return (xi)
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Chapter 3

Method and Implementation

3.1 Active Subspace & Stochastic Subspace Descent
Using the active subspace along with the stochastic subspace descent can be done in two
ways. The first one is inspired by Metropolis–Hastings algorithm in statistical physics,
where we use a rejection-acceptance sampling method to find the stochastic subspace
Pk. This is done by calculating a quantity which we call agreement which will serve
as the probability of accepting a proposed random subspace Q. This agreement-factor
will be higher when the suggested subspace aligns more with the eigenvectors in Ŵ
corresponding to larger eigenvalues. This method will be referred to as the agreement
method. The second way is by using Ĉ to directly weigh the calculation of the projection
matrix P. This method will be referred to as the weighting method.

Agreement method:

Let the agreement be defined by

agreement = ||Λ̂
1
2
normŴTQ||2Fr (3.1)

where Q is a randomly generated unscaled Haar distributed matrix and Λ̂norm is the
Monte-Carlo estimated eigenvalue matrix which has been normalized such that the eigen-
values sum to 1, i.e. Λ̂norm = Λ̂/||Λ̂||1. Also, the norm || · ||Fr is the so-called Frobe-
nius norm. Due to the power, the agreement is bounded below by 0, however we also
want to show that it is bounded above by 1 in order to use it as a probability. To
show this, we start by noting that the expression of the agreement can be re-written
as agreement = ∑

i,j

[
Λ(ŴTQ)#2

]
i,j

, where the ”#2” denotes the Hadamarad power
[25] which indicates the element-wise power of a matrix. Furthermore, we have that
Ŵ is an orthogonal matrix in Rm×m and Q is a matrix in Rm×l where the columns
are orthonormal. We can thus define the matrix A = ŴTQ ∈ Rm×l, which then have
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orthonormal columns. Substitution of A in the rewritten expression of the agreement
then gives

agreement =
∑
i,j

[
Λ̂(A)#2

]
i,j

=
∑
i

λi
∑
j

[A]2i,j. (3.2)

To bound the agreement, we extend the matrix A by adding m− l orthonormal columns
such that the matrix Aext ∈ Rm×m becomes an orthognal matrix. We then have that

agreement =
∑
i

λi
∑
j

[A]2i,j ≤
∑
i

λi
∑
j

[Aext]2i,j. (3.3)

Now, since the matrix Aext is orthonogal the euclidian norm of each row (and also each
column) is one. Hence, we have that ∑j[Aext]2i,j = 1, ∀i. Since the the eigenvalues sum
to one due to the normalization, we can hence express the upper bound of the agreement
as

agreement ≤
∑
i

λi
∑
j

[Aext]2i,j =
∑
i

λi = 1. (3.4)

Weighting method:

To generate a weighted unscaled Haar distributed matrix Q(W ), we simply premultiply
Q by Ĉ as

Q(W ) = ĈQ (3.5)

where the estimation of C once again is calculated and updated every q steps. The
motivation behind this idea is to consider the decomposition Ĉ = ŴΛ̂ŴT applied to
the unscaled Haar distributed matrix Q. We then see that D = ŴTQ rotates Q, where
the resulting matrix is scaled by Λ̂ such that the directions with larger eigenvalues are
magnified. Finally, we rotate back to the original coordinate system via the matrix Ŵ
which is the opposite rotation of ŴT due to orthogonality.

Algorithm

The pseudocode for the algorithms based on stochastic subspace descent, where the
input variable SSDmethod decides whether we are using the agreement or weighting
method, can now be described by
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Algorithm 3 SSD Active Subspace Algorithm
1: function SCD ActiveSubspace(γ,β,σ,maxEvals,maxIncreases,ε,q,m, l, . . .
2: x0, f , SSDmethod)
3: evals = 0, increaseIterations = 0, k = 1, x = x0
4: Ĉ = 0, Λ̂ = 1/m, Ŵ = diag(1)
5: while evals < maxEvals AND increaseIterations < maxIncreases do
6: if modulus(k,q)== 0 then
7: evals,∇f ← calculateGradient(x, f)
8: Ĉ, Λ̂,Ŵ← updateActiveSubspaceDecomposition(Ĉ,∇f)
9: g(x)← ∇f

10: else
11: if SSDmethod ==′ agreement′ then
12: Λ̂norm ← normalize(Λ̂)
13: agreement← 0
14: while agreement < X, where X ∼ U(0, 1) do
15: Q← generateUnscaledHaarDistributedMatrix(m,l)
16: agreement← calculateAgreement(Q,Λ̂norm,Ŵ)
17: M← scaleMatrix(Q)
18: if SSDmethod ==′ weighted′ then
19: Q← generateUnscaledHaarDistributedMatrix(d,l)
20: Q(W ) ← ĈQ
21: M← scaleMatrix(Q(W ))
22: evals, g(x)←MMT∇f(x)
23: α, evals← armijoLineSearch(γ,β,σ,g(x),x,f)
24: xnew ← x− αg(x)
25: if f(xnew) < f(x)− ε then
26: x← xnew
27: increaseIterations← 0
28: else
29: increaseIterations← increaseIterations+ 1
30: k ← k + 1
31: return (x)

3.2 Active Subspace & Stochastic Coordinate De-
scent

Here we are combining the active subspace methodology with stochastic coordinate
descent. This is done by every m:th iteration calculate the full gradient in the SCD
scheme, and then use this information to approximate the matrix C with the Monte
Carlo approach described in equation (2.4) to obtain Ĉ. The matrix Ĉ is then eigen-
decomposed to produce the eigen-directions Ŵ and the corresponding eigenvalues in the
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diagonal of Λ̂. The eigenvalues are then normalized such that they sum to one. These
normalized eigenvalues are then used in consecutive iterations as weights to decide which
of the eigendirections in Ŵ we will use as descent directions. This is appropriate since we
want to focus more on the directions of which the underlying function seems to fluctuate
when choosing descent direction. This algorithm can thus be described by

Algorithm 4 SCD Active Subspace Algorithm
1: function SCD ActiveSubspace(γ,β,σ,maxEvals,maxIncreases,ε,q,m, x0, f)
2: evals = 0, increaseIterations = 0, k = 1, x = x0
3: Ĉ = 0, Λ̂ = 1/m, Ŵ = diag(1)
4: while evals < maxEvals AND increaseIterations < maxIncreases do
5: if modulus(k,q)== 0 then
6: evals,∇f ← calculateGradient(x, f)
7: Ĉ, Λ̂,Ŵ← updateActiveSubspaceDecomposition(Ĉ,∇f)
8: g(x)← ∇f
9: else

10: Λ̂norm ← normalize(Λ̂)
11: ik ← selectRandomActiveSubspaceCoordinate(Λ̂,Ŵ)
12: [∇f ]ik , evals← calculateGradientComponent(x, ik, f)
13: g(x)← [∇f ]ik
14: α, evals← armijoLineSearch(γ,β,σ,g(x),x,f)
15: xnew ← x− αg(x)
16: if f(xnew) < f(x)− ε then
17: x← xnew
18: increaseIterations← 0
19: else
20: increaseIterations← increaseIterations+ 1
21: k ← k + 1
22: return (x)

3.3 Response Surface Method
Here the approach for implementation of the Response Surface Method will be described.
Due to its similarities with the trust region method from optimization, this method will
be refereed to as the trusty RSM.

Experimental design

Both the central composite design (CCD) and the latin hypercube design (LHD) will be
used, where the LHD is used with the maxmin performance measure.

Model

The model used is the second order regression model.
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Trust region subproblem

To solve the trust region subproblem, we will first try with the canonical analysis to find
an exact solution. However, this only works when the matrix B containing the second
order terms is positive-definite (implying that the stationary point is a minimum point)
and the calculated stationary point is inside our region of trust. If this direct approach
fails, we will instead solve the subproblem approximately by using Steinhaug’s method.

Updating region of trust

The choice of the size of the region where we sample our points and fit the model is
an essential component of the response surface method. For example, if the region is
too small convergence will be slow since the next iteration point is bound to be inside
the current region. However, if the region is too large the fitted model might be a
poor approximation of the true behaviour and will therefore be unable to find a good
minimum point to the trust region subproblem. To answer this dilemma, an adaptive
approach is used where the region of trust is enlarged or shrunken based on the fitting
performance of the second order model. Let xk be the current point and let x(s) an trial
point given as the solution of the trust regions subproblem. Then define the performance
measure ρ as

ρ = f(xk)− f(x(s))
ŷ(xk)− ŷ(x(s)) (3.6)

where f is the true function calls and ŷ is the response from the fitted second order
model. Now choose parameters 0 < c1 < c2 < 1, 0 < t1 < 1 < t2 and η ∈ (0, 1/4], then
updation of the trust region size will be

∆k+1 =


t1∆k, if ρ < c1

t2∆k, if ρ > c2

∆k, if c1 ≤ ρ ≤ c2.

(3.7)

Further, the centre of the region of trust will be updated as

xk+1 =
x(s), if ρ > η

xk, otherwise.
(3.8)

Algorithm

The complete algorithm can now be described as
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Algorithm 5 Trusty RSM
1: function Trusty RSM(f ,d,x0,∆0,t1,t2,c1,c2,η,maxEvals,btol, ∆min)
2: x← x0
3: ∆← ∆0
4: evals← 0, k ← 1
5: while evals < maxEvals AND ||b|| > btol AND ∆ > ∆min do
6: coded← generateDesignPoints(d)
7: uncoded← transformToUncoded(coded,∆,x)
8: evals,y← evaluateCoordinates(f ,uncoded)
9: β̂0,b,B← fitRegressionModel(coded, y)

10: x(s) ← trustRegionSubproblemOptimization(β̂0,b,B,∆)
11: evals, ρ← calculatePerformanceMeasure(f,x,x(s), β̂0,b,B)
12: x← updatePosition(x,x(s), ρ, η,∆)
13: ∆← updateTrustRegionSize(t1, t2, c1, c2, ρ,∆)
14: return (x)

3.4 Simulation Study
To test the different algorithms and investigate the strengths and weaknesses of respec-
tive algorithm a simulation study is performed. To do this we are considering four test
functions f , where we to each function add a Gaussian white noise ε ∼ N(0, σ2), where
σ2 is the variance. Here we are considering four levels of noise:

1. No noise: σ = 0,

2. Low noise: σ = 0.1,

3. Medium noise: σ = 1, and

4. High noise: σ = 10.

To measure the efficiency, the mean and medium number of function evaluation will be
recorded. To measure the performance we will consider the mean, the median and the
mean square error (MSE). Due to the noise we can obtain function calls that have a
lower value than the lowest possible value of the function f alone, which might distort
the performance measures. To avoid these unrealistic low values, we are first optimizing
on the noisy function to get the optimal location x∗ as

x̂ = argmin
x

f(x) + ε (3.9)

which then is evaluated without adding any noise to get our estimated optimum as

ŷ = f(x∗) (3.10)

39



Tim Anthony Unconstrained Black-Box Optimization

which is then used in the performance measure calculations.

To obtain the simulation data we are running the optimization on each method, function
and noise combination 1000 times. To initialize we are considering the initial points to
be uniformly distributed inside the domain specified by the lower domain vector xlb and
the upper domain vector xub.

The methods considered for this simulation study are:

• Trusty RSM with latin hypercube design,

• Trusty RSM with central composite design,

• SSD agreement method,

• SSD weighted method,

• SCD active subspace method,

• SSD (as a reference method),

• SCD (as a reference method), and

• Gradient descent (as a reference method).

3.4.1 Test Functions
The four test functions are the Wood test function, the uncoupled Rosenbrock test
function (in 10 dim), the Powell test function, and a ridge function (in 6 dim). All these
test functions are unconstrained optimization functions with a unique global optimum,
and therefore suitable test functions for our methods. The first three test functions
are non-convex, and therefore harder problems, which will help us evaluate how well
our algorithms can tackle these kind of functions. The fourth test function is convex,
but chosen to be a ridge function since we know that the active subspace methodology
should be beneficial in this case (see section 2.5.6), which we want to show empirically.

Wood test function
The first test function is the Wood test function given by

f(x1, x2, x3, x4) =100(x2
1 − x2)2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)2+
10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1).

(3.11)

Its global minimum is given by f(1) = 0, and here we have chosen the initial domain
vectors to be xlb = −1 and xub = 3. By fixing either the first or last two coordinates,
this function can be visualized, which can be seen in Figure 3.1 and 3.2.
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Figure 3.1: Response surface and contour plot of Wood test function by fixing x3 = x4 =
1.

Figure 3.2: Response surface and contour plot of Wood test function by fixing x1 = x2 =
1.
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Uncoupled Rosenbrock test function (10 dim)
The second test function is the uncoupled Rosenbrock test function in m dimensions (m
even)

f(x) =
m/2∑
i=1

[
100(x2

2i−1 − x2i)2 + (x2i−1 − 1)2
]

(3.12)

where we have chosen m = 10. Its global minimum is given by f(1) = 0, and here we
have chosen the initial domain vectors to be xlb = 0 and xub = 2. Letting m = 2, the
uncoupled Rosenbrock test function is plotted, which can be seen in Figure 3.3.

Figure 3.3: Response surface and contour plot of the uncoupled Rosenbrock test function
in two dimensions.

Powell test function
The third test function is the Powell test function given by

f(x1, x2, x3, x4) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4. (3.13)

Its global minimum is given by f(0) = 0, and here we have chosen the initial domain
vectors to be xlb = −5 and xub = 5. By fixing either the first or last two coordinates,
this function can be visualized, which can be seen in Figure 3.4 and 3.5.
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Figure 3.4: Response surface and contour plot of Powell test function by fixing x3 =
x4 = 0.

Figure 3.5: Response surface and contour plot of Powell test function by fixing x1 =
x2 = 0.
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Ridge function (6 dim)
The fourth test function is the m-dimensional ridge function given by

f(x) =
(

m∑
i=1

ixi

)2

(3.14)

where we have chosen m = 6. This function has an infinite number of optimas x∗
fulfilling (∑m

i=1 ixi) = 0, where all the optimas fulfill f(x∗) = 0. Here the initial domain
vectors are chosen to be xlb = −10 and xub = 10. Letting m = 2, the ridge test function
is plotted, which can be seen in Figure 3.6.

Figure 3.6: Response surface and contour plot of the ridge test function in two dimen-
sions.

3.5 Application to Pre-Hospital Care
For applying the optimization models to a real problem we are looking at the problem
of minimizing the ambulance driving time by moving the 4 ambulances located in the
municipality of Ume̊a. To obtain the ambulance alarm data a computer simulation is
used. This simulation uses historical call data and statistical models which are described
in [26], and is developed by Jonas Westin. Due to randomness in the models of this
simulation, the result is stochastic in the sense that identical input parameters might
yield different results. The ambulance alarm model works by simulating approximately
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100 days of call data for ambulances within the municipality of Ume̊a. The calls during
this period then contain the following information:

• position of the alarm,

• DeSO zone of the alarm,

• starting time (how long until the ambulance leaves the station after receiving the
call),

• driving time,

• priority class.

The DeSO zones are demografic statistics areas (sv: demografiska statistikomr̊aden)
which are areas that by construction have between 700 and 2700 inhabitants while also
trying to align its borders with for example roads, rivers and railways [27]. The different
DeSO zones of the municipality of Ume̊a can be seen in Figure 3.7. Note that smaller
DeSO zones indicates a more dense population.
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Figure 3.7: Visualization of the different DeSO zones in the municipality of Ume̊a.

The different priorities are priority 1, priority 2 and priority 3. Here priority 1 alarm
means that the patient is having life-threatening symptoms, for example a stroke, and the
arrival time of the ambulance might affect the chance of survival of the patient. Priority
2 alarms is when the patient is not having life-threatening symptoms, but might be
seriously ill or severely hurt, such that the situation require urgent measures. A typical
priority 2 alarm could for example be a fracture. Priority 3 alarm is when the response
time of the ambulance doesn’t matter since the patient is in a stable condition. This
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third priority class also includes scheduled assignments, where the ambulance acts in a
taxi-like fashion.

Furthermore, we also have that both the ambulance positions and location of the alarms
are limited by a zone system called SCB’s statistic zones. Here each zone is 250x250
meters in densely populated areas, or 1000x1000 meters otherwise. Due to this zone
partitioning, moving the position of an ambulance within one of these statistic zones will
not affect its response time. Similarly, different alarm calls at different positions within
the zones will experience the same expected waiting time. Because of this ’resolution’
of the data, the gradient based methods are not appropriate and will hence not be used.
Also, since we don’t know how the response surface will behave we want a design with
good space filling properties, which is why the trusty RSM method with LHD design
will be used for the optimization of this problem.

The current positioning of all the 4 ambulances is at the ambulance station in Ålidhem.
This positioning is shown in Figure 3.8. Even though all ambulances are located at the
same place, this positioning is fairly good due to its proximity of the central areas and
closeness to larger roads such as the E4 road. This current ambulance placement will be
used both as initial positioning for our optimization and also as a reference positioning
which we will compare our results against.
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Current ambulance positions

Figure 3.8: Current position of all 4 ambulances in the municipality of Ume̊a.

3.5.1 Performance Measures
To measure the performance of the driving time of the ambulances to the alarm position,
we will use the median time as performance measure since it is a commonly used metric
in pre-hospital care. However, since more than half of the calls usually came from
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the central parts of the municipality, the median time performance measure will be
independent of calls originating far away from the centre which might cause the driving
times to the rural areas to be very long. To combat this neglect of the rural areas we
will also look at two more performance measures which are the 90:th percentile response
time and the time of the longest DeSO zone median time. To summarize, the following
performance measures will be used:

1. Median times

2. 90:th percentile time

3. Maximum of the DeSO median response time of each DeSO zone
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Chapter 4

Result and Discussion

4.1 Simulation Study

Wood test function
The results for the Wood test function can be seen in Tables 4.1 to 4.4. From the first
table with no noise we can see that the trusty RSM methods perform better, both in
terms of the performance metrics and the number of function evaluations needed until
convergence. Looking at all the descent based methods, we see that they all have the
same median value. This is due to the fact that they share the same termination test
and that more than half of the runs converge to the same point with response value
0.00693.

Looking at the noisy tables we can now see that the descent methods require a lower
number of function evaluations compared to the trusty RSM methods. This difference
increase with the noise. From these tables we can also see that the trusty RSM methods
handle noise better since their performance measures increase relatively less compared
to the descent methods when we are increasing the levels of the noise.

Moreover, from the tables (especially when σ = 0) we can see that there is a big difference
between the mean and the median values. This discrepancy is because we have that most
values are quite close to the optimum, which makes the median low, but there are a few
outliers with high values which are driving up the mean. Due to these high-valued
outliers we also get the high MSE.

48



Tim Anthony Unconstrained Black-Box Optimization

Table 4.1: No noise (σ = 0) result for the Wood test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 0.127 0.000362 0.991 1336.08 1219
TrustyRSM (CCD) 0.0559 0.00043 0.434 1793.15 1561
SSD agreement (l = 2) 0.313 0.00693 2.41 10861.7 11318.5
SSD weighted (l = 2) 0.416 0.00693 3.22 22499.4 22351
SSD (l = 2) 0.369 0.00693 2.85 10603.3 10907
SCD active subspace 0.848 0.00693 6.63 53439.9 55824.5
SCD 0.132 0.00693 0.991 17557.2 19448.5
GD 0.235 0.00693 1.8 18748.7 17722

Table 4.2: Low noise (σ = 0.1) result for the Wood test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 1.83 0.775 8.17 668.275 652
TrustyRSM (CCD) 1 0.273 3.51 1044.02 1041
SSD agreement (l = 2) 30.5 4.43 8.06e+04 766.208 694
SSD weighted (l = 2) 27.2 5.94 1.76e+04 814.557 735.5
SSD (l = 2) 17.7 4.73 1.12e+04 758.237 678
SCD active subspace 360 67.8 9.68e+05 398.981 320
SCD 63.7 7.8 6.9e+04 703.683 507
GD 276 25.3 7.79e+05 403.464 350

Table 4.3: Medium noise (σ = 1) result for the Wood test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 3.22 2.48 18.3 594.859 589
TrustyRSM (CCD) 2.81 1.78 16.7 904.994 885
SSD agreement (l = 2) 60.5 11.7 1.22e+05 389.388 360
SSD weighted (l = 2) 63.8 16.9 2.71e+04 415.315 368
SSD (l = 2) 56.8 12.2 9.24e+04 389.254 364.5
SCD active subspace 423 110 8.62e+05 281.069 235
SCD 106 20 1.53e+05 396.239 333
GD 412 40.9 1.37e+06 304.141 270.5
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Table 4.4: High noise (σ = 10) result for the Wood test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 12.6 9.59 279 541.96 547
TrustyRSM (CCD) 18.2 15.4 498 723.618 729
SSD agreement (l = 2) 287 123 3.27e+05 200.76 187
SSD weighted (l = 2) 343 133 5.49e+05 208.402 200
SSD (l = 2) 291 126 3.76e+05 202.462 187
SCD active subspace 597 224 1.53e+06 175.25 150
SCD 199 57.7 3.11e+05 229.143 210
GD 570 176 1.75e+06 192.856 166

Uncoupled Rosenbrock test function (10 dim)
The results for the Uncoupled Rosenbrock test function in 10 dimensions can be seen in
Tables 4.5 to 4.8. From the first table with no noise we can see that the trusty RSM
with the LHD design performs best. However, the trusty RSM with the CCD design
performs the worst since it have both the highest MSE and require the most function
evaluations.

Looking at the noisy tables we can now see that the descent methods again require a
lower number of function evaluations compared to the trusty RSM methods, especially
compared to the trusty RSM with the CCD design. Again, this difference increase with
the noise.

From all these tables we also see that the trusty RSM methods require many function
evaluations for this test function. The reason for this is partly because of the minimum
number of observations required to fit the second order model, as described in equation
(2.9), which scaled with the dimension as O(m2).
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Table 4.5: No noise (σ = 0) result for the 10-dimensional uncoupled Rosenbrock test
function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 0.002 0.0016 6.12e-06 13454.3 13401
TrustyRSM (CCD) 0.0669 0.0122 0.0402 162183 159516
SSD agreement (l = 2) 0.0127 0.0127 0.000163 62136.9 58024
SSD weighted (l = 2) 0.0127 0.0127 0.000162 99544.8 89688
SSD (l = 2) 0.0127 0.0128 0.000163 59921.8 56449
SCD active subspace 0.012 0.0123 0.000147 63353.9 65249
SCD 0.0129 0.0128 0.000169 62716 58476
GD 0.0121 0.0118 0.000147 17987.7 17739.5

Table 4.6: Low noise (σ = 0.1) result for the 10-dimensional uncoupled Rosenbrock test
function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 1.02 0.672 2.05 1890.6 1877
TrustyRSM (CCD) 1.08 0.816 1.92 42474.9 38703
SSD agreement (l = 2) 7.44 1.48 650 870.319 865
SSD weighted (l = 2) 15.6 4.82 1.35e+03 1071.65 1041.5
SSD (l = 2) 7.01 1.38 605 856.328 833
SCD active subspace 48.8 30.7 6.22e+03 419.645 342.5
SCD 9.49 3.73 615 722.508 721.5
GD 49.8 9.59 1.01e+04 820.058 767
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Table 4.7: Medium noise (σ = 1) result for the 10-dimensional uncoupled Rosenbrock
test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 3.04 2.17 19 1784.27 1743
TrustyRSM (CCD) 1.33 1.09 2.65 37169.6 36611
SSD agreement (l = 2) 40.6 24.2 3.98e+03 367.811 344
SSD weighted (l = 2) 53.4 35.7 5.76e+03 410.435 366
SSD (l = 2) 44.1 26.8 4.56e+03 363.67 344
SCD active subspace 55.4 37.4 7.28e+03 246.434 219
SCD 23.8 9.04 2.35e+03 476.162 475
GD 77.9 42.9 1.41e+04 422.298 378

Table 4.8: High noise (σ = 10) result for the 10-dimensional uncoupled Rosenbrock test
function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 36 21.5 3.34e+03 1608.46 1609
TrustyRSM (CCD) 6.2 3.37 94.6 33880.9 33473
SSD agreement (l = 2) 197 181 5.03e+04 128.205 113
SSD weighted (l = 2) 178 159 4.24e+04 154.666 113
SSD (l = 2) 195 177 4.94e+04 129.074 113
SCD active subspace 88.3 61.5 1.44e+04 171.12 151
SCD 115 94.3 2e+04 224.625 206
GD 207 189 5.46e+04 176.581 169

Powell test function
The results for the Powell test function can be seen in Tables 4.9 to 4.12. From the first
table with no noise we can see that the trusty RSM methods performs best since they
have better performance measures and lower number of function evaluations.

Looking at the noisy tables we can now see that the descent methods require a lower
number of function evaluations compared to the trusty RSM method for the two highest
levels of noise. By looking mainly at the MSE we can also see that the descent methods
have similar performance for all levels of noise, while the trusty RSM methods gets
increasingly worse. The reason for this could possibly be because the Powell test function
is bowl-shaped, as can be seen in Figure 3.4 and Figure 3.5, where the function gets
steeper further away from the minimum. Hence, when you are sufficiently far from the
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minimum, the signal to noise ratio will be roughly the same for all levels of noise since
the signal is so dominant.

Table 4.9: No noise (σ = 0) result for the Powell test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 0.000112 3.15e-05 7.13e-08 379.924 358
TrustyRSM (CCD) 9.29e-05 1.13e-05 6.05e-08 419.21 339
SSD agreement (l = 2) 0.0071 0.00811 5.43e-05 1279.4 1313.5
SSD weighted (l = 2) 0.00728 0.00821 5.77e-05 2600.77 2622
SSD (l = 2) 0.00685 0.00802 5.12e-05 1129.63 1157
SCD active subspace 0.00695 0.00749 5.07e-05 5495.15 6073
SCD 0.00738 0.00812 5.74e-05 2156.97 2280.5
GD 0.00743 0.00822 5.87e-05 1219.5 1362.5

Table 4.10: Low noise (σ = 0.1) result for the Powell test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 0.083 0.0482 0.0216 707.209 694
TrustyRSM (CCD) 0.0548 0.0102 0.0201 855.958 807
SSD agreement (l = 2) 98.9 1.52 8.59e+05 1086.01 945.5
SSD weighted (l = 2) 99.3 5.89 8.35e+05 1188.41 1034
SSD (l = 2) 231 1.68 3.63e+06 1031.05 896.5
SCD active subspace 2.83e+03 270 6.75e+07 516.181 425.5
SCD 303 9.82 2.21e+06 635.678 556
GD 747 81 4.99e+06 488.596 397
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Table 4.11: Medium noise (σ = 1) result for the Wood test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 1.45 0.751 5.96 652.105 652
TrustyRSM (CCD) 0.835 0.195 4.19 806.662 781
SSD agreement (l = 2) 234 10.6 8.08e+06 647.655 591.5
SSD weighted (l = 2) 302 23.9 4.19e+06 678.861 622.5
SSD (l = 2) 303 11.3 5.42e+06 630.339 572
SCD active subspace 3.44e+03 506 6.94e+07 401.654 330.5
SCD 358 22.3 2.22e+06 504.607 458
GD 1e+03 107 1.29e+07 421.617 359

Table 4.12: High noise (σ = 10) result for the Wood test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 12 7.84 330 593.263 589
TrustyRSM (CCD) 6.53 2.63 134 755.468 755
SSD agreement (l = 2) 623 139 5.14e+06 302.347 281
SSD weighted (l = 2) 1e+03 184 1.28e+07 303.783 269
SSD (l = 2) 635 123 6.31e+06 290.758 279.5
SCD active subspace 4.13e+03 919 8.73e+07 251.8 212
SCD 682 118 8.28e+06 314.056 275
GD 1.52e+03 314 1.62e+07 266.898 241

Ridge test function
The results for the Ridge test function can be seen in tables 4.13 to 4.16. From the
first table with no noise we can see that the trusty RSM methods performs best. Here
the trusty RSM method with LHD design method have the lower number of function
evaluations while the trusty RSM method with CCD design have more evaluations but
lower performance measures. Another thing to note here is that the methods using active
subspace methodology outperforms their counterparts since they have slightly better
performance measures and lower number of function evaluations, this is especially true
for the SSD agreement method and the SCD active subspace method. This difference
is expected since the active subspace method is known to work well when the function
have a ridge-structure as explained in Section 2.5.6.

Looking at the noisy tables we can now see that the difference between the active sub-
space methods and their counterparts becomes less noticeable. By looking at the mean
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we can here also notice that the SSD based descent algorithms seems more robust against
runs yielding high f ∗ compared to the other descent methods, since they have much lower
mean values at all levels of noise.

Table 4.13: No noise (σ = 0) result for the Ridge test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 4.45e-17 3.89e-24 4.12e-31 120.335 117
TrustyRSM (CCD) 9.14e-22 1.14e-28 7.77e-40 320.488 313
SSD agreement (l = 2) 2.11e-05 2.33e-05 5.03e-10 208.661 195
SSD weighted (l = 2) 2.33e-05 2.39e-05 5.63e-10 217.699 223
SSD (l = 2) 2.1e-05 2.35e-05 5.05e-10 223.313 223
SCD active subspace 2.48e-05 2.6e-05 6.25e-10 210.446 217
SCD 2.56e-05 2.64e-05 6.64e-10 273.405 269
GD 2.45e-05 2.49e-05 6.12e-10 263.851 269

Table 4.14: Low noise (σ = 0.1) result for the Ridge test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 0.00545 0.000344 0.000267 669.74 726
TrustyRSM (CCD) 4.02e-05 1.36e-07 3.41e-07 339.364 313
SSD agreement (l = 2) 3.3 0.0142 6.91e+03 299.66 290
SSD weighted (l = 2) 16.2 0.0133 1.08e+05 296.15 285.5
SSD (l = 2) 8.35 0.0129 4.53e+04 298.346 289.5
SCD active subspace 412 0.0459 3.34e+06 230.719 215
SCD 384 0.0492 2.87e+06 231.401 223
GD 1e+03 19.4 7.52e+06 211.387 178
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Table 4.15: Medium noise (σ = 1) result for the Ridge test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 0.113 0.0223 0.067 756.392 755
TrustyRSM (CCD) 0.01 1.66e-05 0.0039 1068.2 469
SSD agreement (l = 2) 15.8 0.175 1.83e+05 264.934 255
SSD weighted (l = 2) 8.98 0.197 5.72e+04 263.635 252.5
SSD (l = 2) 14.3 0.161 1.27e+05 270.415 258
SCD active subspace 329 0.409 1.86e+06 219.818 205
SCD 381 0.488 2.35e+06 216.734 203
GD 978 13.6 6.82e+06 205.682 180

Table 4.16: High noise (σ = 10) result for the Ridge test function.

Method Mean Median MSE Mean fVals Median fVals
TrustyRSM (LHD) 2.55 0.816 28.7 746.619 755
TrustyRSM (CCD) 0.242 0.0217 0.662 2288.51 2263
SSD agreement (l = 2) 12.5 2.54 2.86e+04 228.917 215.5
SSD weighted (l = 2) 15.8 2.89 1.64e+04 216.013 206
SSD (l = 2) 29.4 2.28 1.46e+05 231.735 219
SCD active subspace 355 3.85 2.48e+06 202.735 192
SCD 455 4.44 3.06e+06 199.344 187
GD 1.04e+03 31.4 8.77e+06 197.667 169

4.2 Application to Pre-Hospital Care

4.2.1 Median Time Performance Measure
The positioning obtained from the optimization with the median time performance mea-
sure can be seen in Figure 4.1. Here we can see that the positions of the ambulances
all strive to be located the central parts of the municipal of Ume̊a. This behaviour is
expected, since as we mentioned before, more than half of the calls are from the urban
parts.

Comparing the initial location with the optimized location by running the simulation
for each positioning 10 times we have that the mean of the performance measure for
the initial location is 426.4 seconds, while the mean of the optimized location is 387.6
seconds. This is a 38.8 seconds, or 9.1%, decrease. The table with all these 10 runs can
be seen in Appendix I.1.
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Figure 4.1: Optimization result when using the median time performance measure.
The initial location where the ambulances are currently positioned is also included as a
reference point.

4.2.2 90:th Percentile Time Performance Measure
The positioning obtained from the optimization with the 90:th percentile time perfor-
mance measure can be seen in Figure 4.2. Here we can see that the positions of the
ambulances still are fairly central, but have moved a bit further from the city centre
compared to the median performance measure.

Comparing the initial location with the optimized location by running the simulation
for each positioning 10 times we have that the mean of the performance measure for
the initial location is 1086.2 seconds, while the mean of the optimized location is 938.1
seconds. This is a 148.1 seconds, or 13.6%, decrease. The table with all these 10 runs
can be seen in Appendix I.2.
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Figure 4.2: Optimization result when using the 90:th percentile time performance mea-
sure. The initial location where the ambulances are currently positioned is also included
as a reference point.

4.2.3 Maximum DeSO Median Time Performance Measure
The positioning obtained from the optimization with the maximum DeSO median time
performance measure can be seen in Figure 4.3. Here we can see that the positions of
the ambulances now have moved to cover a larger part of the municipal. The biggest
difference, is that the optimization now suggest that two ambulances should be moved
to the northern part of the municipal. We still have one ambulance in the center of the
city and the last ambulance should be located slightly south of the city. Further, we see
that the two northern ambulances are quite close to each other, which might be counter
intuitive. But by noting that in the case that one of those ambulances are on a mission
in their respective DeSO zone and another call comes from the same zone, this closeness
means that the second ambulance have the possibility to cover this new call in the zone
of the first ambulance.

Comparing the initial location with the optimized location by running the simulation
for each positioning 10 times we have that the mean of the performance measure for
the initial location is 1567.7 seconds, while the mean of the optimized location is 1203.4
seconds. This is a 356.5 seconds, or 23.2%, decrease. The table with all these 10 runs
can be seen in Appendix I.3.
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Figure 4.3: Optimization result when using the maximum DeSO median time perfor-
mance measure. The initial location where the ambulances are currently positioned is
also included as a reference point.
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Chapter 5

Conclusion

5.1 Simulation study
From the simulation study we see that the trusy RSM methods performs the best.
However, they scale badly when increasing the dimensions as the number of observations
needed to fit the second order model scales as O(m2), which we could see from equation
(2.9).

In the simulation study we also see that there is only a small improvement of the descent
based methods when using them in conjunction with the active subspace methodology,
which only is apparent for the ridge function with no or little noise. The reason for this
could be the way we are building our matrix Ĉ, which is by sampling at our current
position every q iterations when we compute the full gradient. If we for example let
q = 5, this means that after 50 iterations we have still only computed the full gradient,
for updating Ĉ, 10 times. Furthermore, if we are dealing with a noisy function this few
calculated full gradients might even show opposite behaviour compared to the underlying
function. This will then rather prohibit instead of helping us to achieve a fast rate of
convergence, since we then might have an active subspace that is not aligned with
the true function, and therefore will prioritize a subspace selection that might even be
orthogonal to steepest descent of our current position. A remedy for this problem could
be to pre-calculate the active subspace before beginning the optimization. However,
this will only be useful if we know that we will do many optimization runs since this
pre-calculation itself might become costly.

In general, we could see that the trusty RSM methods performed the best over all
functions and levels of noises since those handled the different types of functions and
levels of noise well. The descent-based methods were worse, especially when adding more
noise, which could be due to the fact that they were heavily affected by single function
evaluations that contained much noise. The reason why the trusty RSM methods weren’t
as affected by single high-noise evaluations was probably since these methods use many
function evaluations in each iteration. This lead to the noise averaging out in the fitting
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of the second order model (as one would expect from the law of large numbers) since
the function evaluations are unbiased.

5.2 Application to Pre-Hospital Care
For the application to the pre-hospital care problem of the ambulance optimization,
we could find possible improvement for all three performance measures. Furthermore,
could see that the current positioning is good if we only look at the median performance
measure, which is the one most commonly used when looking at pre-hospital care, since
we only were able to improve upon this measurement by around 30 seconds (or 6.2%).
But if we instead look at the 90:th percentile performance measure, or the even more
extreme maximum DeSO median time performance measure, there was room for more
improvement. This is then speaking for the fact that the pre-hospital care is favoring
people living close to the more urban parts of the municipality while it disfavours people
living in the more rural areas.

5.3 Future work
One interesting improvement of the trusty RSM methods would be to try to project the
points on a lower dimensional subspace, similar to as done with the SSD methods, as
a workaround to the quadratic scaling of the number of observations needed to fit the
regression model. This could possibly even be done with the active subspace approaches.

Another interesting way to improve the models could be to focus a bit more on explo-
ration compared to exploitation for the trusty RSM models. This since we only are
using the current ambulance positioning as a starting point and initialize our search
from there. Even if we choose a large trust radius, the algorithm will favor point close
to this initial position due to the fact that it is a relatively good positioning and thus
can be seen a local minimum. This is most problematic in case of the median response
time performance measure. We therefore think that the algorithm could benefit from
more exploration where we in an initial phase explore the permitted space X to identify
all the areas where a potential global minimum might reside. After identifying these
promising areas, they are then exploited to achieve a more accurate estimation of the
best points.

A third idea is to use the cheaper descent methods in the beginning of the optimization
to come close to the optimum point. After this first phase, the algorithm then switches
over to the more accurate, but also more expensive, trusty RSM method to improve
upon the accuracy of the first phase.

Finally, for the ambulance optimization, the results in this report serve as a proof of
concept that we can get improvements with some custom performance measures. How-
ever, the models covered here are relatively small scale, and a future project could be
to extend those models to optimize the ambulance positioning for all ambulances in the
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northern parts of Sweden. This is possible since the ambulance call simulation is built
to handle this larger region. Also, this problem is interesting since it is more realistic
due to the fact that ambulances sometimes co-operate across the borders of different
municipals. A final step for this extended model would then be to validate its result by
actually changing the ambulance positions in the real world temporarily and measure
the improvements.
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Appendix A

Proof Theorem 1

By contradiction. Assume the point x0 ∈ X is a local minimum but not a global
minimum, then there exists a point x∗ ∈ X such that f(x∗) < f(x0). Now, let y =
λx∗ + (1 − λ)x0 where 0 ≤ λ ≤ 1 and we know that the point y ∈ X due to the
convexity of the set X. By convexity of the function f and since f(x∗) < f(x0) we have
that f(y) ≤ λf(x∗) + (1− λ)f(x0) < f(x0). If we then let λ→ 0 we have that y→ x0.
Due to f(y) < f(x0) we have a contradiction when y enters the neighbourhood of x0
since x0 then cannot be a local minimum point and the conclusion follows.
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Appendix B

Proof Theorem 2

This proof is inspired by the proof of Lemma 1.2.3 in [28]. Here we are going to start
off by letting δ = y− x, we can now express f(y) as

f(y) = f(x) +
∫ 1

0
〈∇f(x + tδ), δ〉 dt

= f(x) + 〈∇f(x), δ〉+
∫ 1

0
〈∇f(x + tδ)−∇f(x), δ〉 dt

where we in the last equality just added and subtracted 〈∇f(x), δ〉. By using the triangle
inequality for integrals, the Cauchy-Schwarz inequality and the Lipschitz continuous
gradient property we can write

|f(y)− f(x)− 〈∇f(x), δ〉 | =
∣∣∣∣∫ 1

0
〈∇f(x + tδ)− f(x), δ〉 dt

∣∣∣∣
≤
∫ 1

0
|〈∇f(x + tδ)− f(x), δ〉| dt

≤
∫ 1

0
||∇f(x + tδ)− f(x)|| · ||δ||dt

≤
∫ 1

0
L2||x + tδ − x|| · ||δ||dt

=
∫ 1

0
L2t||δ||2dt

= L2||δ||2

2 .

We can now see that this bound is equivalent to

−L2||δ||2

2 ≤ f(y)− f(x)− 〈∇f(x), δ〉 ≤ L2||δ||2

2
and the conclusion follows by using the upper bound and the substitution of δ.
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Appendix C

Proof Theorem 4

Since the matrix is positive semi-definite it fulfills xTSx ≥ 0, for any vector x. By letting
x be the i:th eigenvector qi of S we thus gets qTi Sqi ≥ 0. Now, we use the spectral
decomposition of S and our expression becomes qTi (λ1q1qT1 + · · ·+λnqnqTn )qi ≥ 0. Due
to the orthogonality of the eigenvectors, which follows from the symmetry of S, this
simplifies to qTi (λ1q1qT1 + · · · + λnqnqTn )qi = λiqTi qiqTi qi = λi ≥ 0 where we also used
that the norm of every eigenvector is one.
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Appendix D

Gradient of ridge function

To find the gradient of f(x) = g(aTx) we start by rewriting the function as f(x) =
g(h(x)) where h(x) = aTx. Noting that ∂h(x)/∂xk = ak we can then apply the chain
rule to find the derivative of f(x) with respect to coordinate xk as

df(x)
dxk

= dg(aTx)
dxk

= ∂g(aTx)
∂h(x)

∂h(x)
∂xk

(chain rule)

= ak
∂g(aTx)
∂h(x)

= ak
∂g(aTx)
∂(aTx) (Using definition of h).

Since the term ∂g(aT x)
∂(aT x) is independent of which coordinate xk we are differentiating along,

the gradient expression becomes

∇f(x) =
[
df(x)
dx1

, . . . ,
df(x)
dxm

]T

=
[
a1
∂g(aTx)
∂(aTx) , . . . , am

∂g(aTx)
∂(aTx)

]T

=
(
∂g(aTx)
∂(aTx)

)
[a1, . . . , am]T

=
(
∂g(aTx)
∂(aTx)

)
a.
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Appendix E

Proof Theorem 10

Reusing the ideas from the proof of theorem 9, using standard tricks from optimization
theory and with a straightforward modification to handle the stochastic subspace instead
of the noise this proof is constructed as following:

By first taking the function evaluation of the scheme and using the expression of g(xk)
we get

f(xk+1) = f(xk − αkMkMT
k∇f(xk)

≤ f(xk)− αk
〈
MkMT

k∇f(xk)),∇f(xk)
〉

+ α2
kL||MkMT

k∇f(xk)||2

= f(xk)− αk
〈
MkMT

k∇f(xk)),∇f(xk)
〉

+ α2
kL∇f(xk)TMkMT

kMkMT
k∇f(xk)

= f(xk)− αk
〈
MkMT

k∇f(xk)),∇f(xk)
〉

+ α2
kLm

l
∇f(xk)TMkMT

k∇f(xk))

where we have used that f has Lipschitz continuous gradient in conjunction with The-
orem 2 and also MT

kMk = m
l
Im. Define the filtration Fk = σ(M1, . . . ,Mk−1), k > 1,

F1 = {∅,Ω}. Then by conditional expectation and E[MkMT
k ] = Im we have

E[f(xk+1)|Fk] ≤ f(xk)− αk||∇f(xk))||2 + α2
kLm

l
||∇f(xk))||2

= f(xk)− αk||∇f(xk))||2
(

1− αkLm

l

)
≤ f(xk)−

αk
2 ||∇f(xk))||2

where we in the last equality assumed that αk ≤ l
2Lm . Taking the full expectation of

f(xk+1), using that the initial value x0 is known and telescoping we get
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E[f(xK+1)] ≤ E[f(xK)]− αK
2 ||∇f(xK)||2 (E.1)

≤ . . . (E.2)

≤ E[f(x0)]− 1
2

K∑
k=0

αk||∇f(xk)||2 (E.3)

≤ f(x0)− 1
2

K∑
k=0

αk||∇f(xk)||2. (E.4)

Normalizing both sides by the total step length ∑K
k=0 αk and multiplying by 2 we get

∑K
k=0 αk||∇f(xk)||2∑K

k=0 αk
≤ 2 (f(x0)− E[f(xK+1)])∑K

k=0 αk
(E.5)

≤ 2 (f(x0)− f ∗)∑K
k=0 αk

(E.6)

where the last equality follow from f ∗ = f(x∗) ≤ E[f(xk)], ∀k, where x∗ is the global
minimizer. Using the convex combination trick as in the previous proof we now have

min
0≤k≤K

||∇f(xk)||2 ≤
2 (f(x0)− f ∗)∑K

k=0 αk
. (E.7)

If we now let K →∞ we can use the assumption lim
K→∞

∑K
k=0 αk =∞ to get

lim
K→∞

min
0≤k≤K

||∇f(xk)||2 ≤ 0 (E.8)

and the proof is complete.
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Appendix F

Proof Theorem 11

Reusing the ideas from the proof of theorem 9, using standard tricks from optimization
theory and with a straightforward modification to handle the stochastic subspace with
the noise this proof is constructed as following:

By first taking the function evaluation of the scheme and using the expression of g(xk)
we get

f(xk+1) = f(xk − αkMkMT
k (∇f(xk) + εk))

≤ f(xk)− αk
〈
MkMT

k (∇f(xk) + εk),∇f(xk)
〉

+ α2
kL

2 ||MkMT
k∇f(xk) + MkMT

k εk||2

where we have used that f has Lipschitz continuous gradient in conjunction with Theo-
rem 2. Now, by the triangle inequality ||a + b||2 ≤ (||a||+ ||b||)2 and Youngs inequality
ab ≤ 1

2(a2 + b2) we get that ||a+ b||2 ≤ 2(||a||2 + ||b||2) and thus

f(xk+1) ≤ f(xk)− αk
〈
MkMT

k (∇f(xk) + εk),∇f(xk)
〉

+ α2
kL(||MkMT

k∇f(xk)||2 + ||MkMT
k εk||2)

= f(xk)− αk
〈
MkMT

k (∇f(xk) + εk),∇f(xk)
〉

+ . . .

α2
kL(∇f(xk)TMkMT

kMkMT
k∇f(xk) + εTkMkMT

kMkMT
k εk)

= f(xk)− αk
〈
MkMT

k (∇f(xk) + εk),∇f(xk)
〉

+ . . .

α2
kLd

l
(∇f(xk)TMkMT

k∇f(xk) + εTkMkMT
k εk)

where the last equality comes from MT
kMk = m

l
Im. Define the filtrations F (1)

k =
σ(ε1, . . . , εk−1), F (2)

k = σ(M1, . . . ,Mk−1), k > 1, F (1)
1 = F (2)

1 = {∅,Ω}. Then by
conditional expectation, E[MkMT

k ] = Im, properties of εk and the independence of Mk
and εk we have
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E[f(xk+1)|F (1)
k ,F (2)

k ] ≤ f(xk)− αk||∇f(xk)||2 + Lα2
km

l

(
||∇f(xk)||2 + σ2

)
= f(xk)− αk||∇f(xk)||2

(
1− Lαkm

l

)
+ Lα2

kmσ
2

l

≤ f(xk)−
αk
2 ||∇f(xk)||2 + Lα2

kmσ
2

l

where we in the last equality assumed that αk ≤ l
2dL . Taking the full expectation of

f(xk+1), using that the initial value x0 is known and telescoping we get

E[f(xK+1)] ≤ E[f(xK)]− αK
2 ||∇f(xK)||2 + Lα2

kmσ
2

l
(F.1)

≤ . . . (F.2)

≤ E[f(x0)]− 1
2

K∑
k=0

αk||∇f(xk)||2 + Lmσ2

l

K∑
k=0

α2
k (F.3)

≤ f(x0)− 1
2

K∑
k=0

αk||∇f(xk)||2 + Lmσ2

l

K∑
k=0

α2
k. (F.4)

Normalizing both sides by the total step length ∑K
k=0 αk and multiplying by 2 we get

∑K
k=0 αk||∇f(xk)||2∑K

k=0 αk
≤ 2 (f(x0)− E[f(xK+1)])∑K

k=0 αk
+

Lmσ2

l

∑K
k=0 α

2
k∑K

k=0 αk
(F.5)

≤ 2 (f(x0)− f ∗)∑K
k=0 αk

+
Lmσ2

l

∑K
k=0 α

2
k∑K

k=0 αk
(F.6)

where the last equality follow from f ∗ = f(x∗) ≤ E[f(xk)], ∀k, where x∗ is the global
minimizer. Realizing that the left hand side is an convex combination of the form ∑

i βici,∑
i βi = 1, βi ≥ 0 with the property min ci ≤

∑
i βici ≤ max ci we now have

min
0≤k≤K

||∇f(xk)||2 ≤
2 (f(x0)− f ∗)∑K

k=0 αk
+

2Lmσ2

l

∑K
k=0 α

2
k∑K

k=0 αk
. (F.7)

If we now letK →∞ we can use the assumptions lim
K→∞

∑K
k=0 α

2
k <∞ and lim

K→∞

∑K
k=0 αk =

∞ we get

lim
K→∞

min
0≤k≤K

||∇f(xk)||2 ≤ 0 (F.8)

and the proof is complete.
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Appendix G

Proof Theorem 13

This proof is similar to the proof showed in theorem 3.1 in [17], but we are here showing
how this proof can be modified to extend the convergence result when considering the
backtracking Armijo serch when considering stochastic subspaces.

Start off by dividing the step length αk = γβmk into the two cases

K1 = {k : αk = γ}
K2 = {k : αk < γ}

Denote fk = f(xk) and gk = g(xk). We can then see that the backtracking Armijo line
search condition in equation (2.6) can be rewritten as

fk − f(xk + αkdk) ≥ −σαkgTk dk. (G.1)

Thus we have that

fk − f(xk + αkdk) ≥ −σγgkdk, if k ∈ K1

fkk − f(xk + αkdk) ≥ −σαkgkdk, if k ∈ K2.

Since mk in αk = γβmk is chosen to be the smallest non-negative integer to fulfilling
equation (G.1), we know that using the step length αk/β would violate the inequality,
hence

fk − f
(

xk + αkdk
β

)
< −σαkgkdk

β
, k ∈ K2. (G.2)
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The mean value theorem states that there exists a point c ∈ [a,b] such that f(b)−f(a) =
g(c)T (b− a). By using the mean value theorem on the left hand side of equation (G.2)
where we recognize a = x + αkdk

β
, b = xk and c = θka + (1 − θk)b = xk + θkαkdk

β
,

θk = [0, 1], we get

−g
(

xk + θkαkdk
β

)T
αkdk
β

< −σαkg
T
k dk
β

.

Dividing both sides by −αk

β
then yields

g

(
xk + θkαkdk

β

)T
dk > σgTk dk. (G.3)

Now, we want to find a lower bound of αk for k ∈ K2. Starting off, by using θk ∈ [0, 1],
we have

L
αk||dk||2

β
≥ L

θkαk||dk||2

β

= L
θkαkdk
β

· ||dk||

≥
∣∣∣∣∣
∣∣∣∣∣g
(

xk + θkαkdk
β

)
− gk

∣∣∣∣∣
∣∣∣∣∣ · ||dk||

where we used the lipschitz continuous property of the gradient in the last inequality. By
first using the Cauchy-Schwarz inequality (||x|| · ||y|| ≥ 〈x,y〉) and then using equation
(G.3) we get

L
αk||dk||2

β
≥
(
g

(
xk + θkαkdk

β

)
− gk

)T
dk

> −(1− σ)gTk dk.

Rewriting this expression then yield the lower bound of αk as

αk ≥ −
β(1− σ)gTk dk

L||dk||2
, k ∈ K2. (G.4)

Using this lower bound and by using γ = − gT
k dk

||dk||2
we have
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fk − f(xk + αkdk) ≥ σ

(
gT

k dk

||dk||

)2
, if k ∈ K1

fk − f(xk + αkdk) ≥ βσ(1−σ)
L

(
gT

k dk

||dk||

)2
, if k ∈ K2.

By defining η = min(σ, βσ(1−σ)
L

) we have

fk − fk+1 ≥ η

(
gTk dk
||dk||

)2

, ∀k. (G.5)

If we now use the stochastic subspace descent as dk = −MkMT
k gk we get

fk+1 ≤ fk − η
(

gTk dk
||dk||

)2

= fk − η
(gTk MkMT

k gk)2

||MkMT
k gk||2

= fk − η
(gTk MkMT

k gk)2

gTk MkMT
kMkMT

k gk

= fk −
ηl

d
· (gTk MkMT

k gk)2

gTk MkMT
k gk

= fk −
ηl

d
· (gTk MkMT

k gk)

where we in the second to last equality have used that MT
kMk = d

l
Il. Now, define the

filtration Fk = σ(M1, . . . ,Mk−1), k > 1, F1 = {∅,Ω}. Then by conditional expectation
and E[MkMT

k ] = Im we have

E[fK+1|FK ] ≤ fK −
ηl

m
||gK ||2.

Taking the full expectation, using that that f∗ ≤ E[fK+1] and that x0 is known we have
by telescoping that

f∗ ≤ E[fK+1]

≤ E[fk]−
ηl

m
||gk||2

≤ . . .

≤ f0 −
ηl

m

K∑
k=0
||gk||2.
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Rearranging and letting K →∞ we it follows from f0 − f∗ <∞ that

lim
K→∞

K∑
k=0
||gk||2 ≤

m

ηl
(f0 − f∗) <∞

from which we see that lim
K→∞

||gK ||2 = 0, and the proof is complete.
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Appendix H

Proof Theorem 14

We have
g(τpS) = (τpS)Tb + (τpS)TB(τpS)

which we can differentiate with respect to τ to obtain

g′(τpS) = (pS)Tb + τ(pS)TB(pS) = −bTg
||g||

+ τ
gTBg
||g||2

= −||g||
2

||g||
+ τ

gTBg
||g||2

.

Case 1 (gTBg ≤ 0): Here we see that m′(τpS) is non-increasing, and to minimize pC we
thus want to pick τ as large as possible. Hence τ = ∆.
Case 2 (gTBg > 0): Solving m′(τpS) = 0 for τ gives

τ = ||g||3

gTBg

But since we are limited to the trust region, we let we can safeguard ourselves by setting

τ = min
{

∆, ||g||
3

gTBg

}
.
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Appendix I

Tables - Application to Pre-Hospital
Care

I.1 Median Time Performance Measure

Table I.1: Median times for original and optimized positioning for 10 runs, using the
median time performance measure.

Original positioning times (s) Optimized positioning times (s)
426.7 387.6
426.7 388.1
426.7 387.3
426.7 388.5
427.6 387.5
426.7 387.5
426.7 387.5
426.7 387.4
426.7 387.5
427.4 387.5
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I.2 90:th Percentile Time Performance Measure

Table I.2: Median times for original and optimized positioning for 10 runs, using the
90:th percentile time performance measure.

Original positioning times (s) Optimized positioning times (s)
1076.2 939.2
1087.5 939.2
1090.6 936.9
1081.1 940.7
1090.6 939.2
1079.8 939.0
1087.6 940.7
1085.8 927.9
1079.8 939.2
1088.8 938.9

I.3 Maximum DeSO Median Time Performance Mea-
sure

Table I.3: Median times for original and optimized positioning for 10 runs, using the
maximum DeSO median time performance measure.

Original positioning times (s) Optimized positioning times (s)
1695.7 1211.2
1559.1 1202.5
1559.1 1202.5
1695.7 1202.5
1695.7 1202.5
1559.1 1202.5
1550.7 1202.5
1695.7 1202.5
1559.1 1202.5
1550.7 1202.5
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