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ABSTRACT Small non-coding RNAs (ncRNAs) are attracting increasing attention as they are now consid-
ered potentially valuable resources in the development of new drugs intended to cure several human diseases.
A prerequisite for the development of drugs targeting ncRNAs or the related pathways is the identification
and correct classification of such ncRNAs. State-of-the-art small ncRNA classification methodologies
use secondary structural features as input. However, such feature extraction approaches only take global
characteristics into account and completely ignore co-relative effects of local structures. Furthermore,
secondary structure based approaches incorporate high dimensional feature space which is computationally
expensive. The present paper proposes a novel Robust and Precise ConvNet (RPC-snRC)methodologywhich
classifies small ncRNAs into relevant families by utilizing their primary sequence. RPC-snRC methodology
learns hierarchical representation of features by utilizing positioning and information on the occurrence of
nucleotides. To avoid exploding and vanishing gradient problems, we use an approach similar to DenseNet in
which gradient can flow straight from subsequent layers to previous layers. In order to assess the effectiveness
of deeper architectures for small ncRNA classification, we also adapted two ResNet architectures having
a different number of layers. Experimental results on a benchmark small ncRNA dataset show that the
proposed methodology does not only outperform existing small ncRNA classification approaches with a
significant performance margin of 10% but it also gives better results than adapted ResNet architectures.
To reproduce the results Source code and data set is available at https://github.com/muas16/small-non-
coding-RNA-classification

INDEX TERMS RNA sequence analysis, small non-coding RNA classification, DenseNet, ResNet.

I. INTRODUCTION
Besides serving as coding template in the expression of pro-
teins, RNA has a plethora of additional biological functions
and plays a key role in several diseases such as Alzheimer,
cardiovascular, Cancer, and type 2 diabetes [1], [2]. RNA
can be classified into protein coding or non-coding, where
about 3% of total RNA is coding for proteins (so called
messenger RNA = mRNA) and the remaining 97% known
as non-coding (ncRNA) or functional RNA [3]. While the
function of mRNAs is well known and has been studied
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extensively, ncRNAs were considered useless for quite some
time. However, with the progress in biological research, it was
discovered that the majority ncRNAs are involved in many
essential biological processes such as dosage compensation,
genomic imprinting, and cell differentiation [4], [5]. Over
time, the analysis of ncRNAs has become even more inter-
esting because of their importance in understanding the phe-
nomena behind human health and disease [4].

ncRNAs differ from each other in terms of length, con-
formation, and biological function. As shown in Figure 1,
ncRNAs are typically classified into small non-coding
RNAs (sncRNA) and long non-coding RNAs (lncRNA). The
lncRNAs are larger than 200 bp in size [5] and are further
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FIGURE 1. Overall taxonomy of non-coding RNA families, adapted from [4]. Where the magenta colored square at top layer represents non-coding RNA,
dark green squares at second layer namely small non coding and long non coding refer to the subclasses of non-coding RNA. Similarly, light green
squares are the major subclasses of small, and large non-coding RNA. At last level, yellow squares show the types of Cis-regulatory sequences, light pink
show the kinds of Gene sequences, purple shows the subtypes of Intron sequences. On the other hand, navy blue reveals the kinds of Linear long
non-coding RNA sequences, and Circular subclasses are shown by Red squares.

divided into linear RNAs and circular RNAs. Linear RNAs
have been demonstrated to play a role in gene transcription
and translation [6]. Circular RNAs are involved in gene regu-
lation and strongly connected with complex human diseases
like lung cancer and are considered important in identifi-
cation and treatment of tumors [7], [8]. Classification of
RNA throughmanual experimentation is time consuming and
expensive [9]. Extensive research has been done to differen-
tiate protein coding RNA from non-coding RNA. Especially,
in order to discriminate long non-coding RNA (lncRNA)
from mRNA or to classify long non-coding RNAs (lncRNA)
into their corresponding families, diverse machine and deep
learning based methodologies have been proposed [6], [7],
[10]–[13].

Small ncRNAs have a length of around 20-30 bp and
are involved in translation, splicing, and regulation of
genes [14]. Primarily, small ncRNAs are classified into
13 subclasses where each subclass has distinct medical
and biological significance. For instance, scaRNAs, most of
which are functionally and structurally identical to snoRNAs
can guide modifications in pseudo uridylation and methy-
lation. miRNAs are involved in post transcriptional gene
expression regulation and RNA silencing. They target almost
60% of all human genes and play an important role in several
biological processes like cell differentiation, proliferation,
and death [15]–[18]. Studies have demonstrated that miRNAs
are also involved in diverse and complex human diseases such
as cancer, autoimmune, cardiovascular, and neurodegenera-
tive diseases [19]. Similarly, Ribosomal RNA (rRNA) plays
an essential role in protein synthesis and its characteristics
are considered very valuable for the development of antibi-
otics. 5.8S ribosomal RNA actively participates in protein
translocation [20], forms covalent connection with tumour
suppressor proteins [21], can be used to detect miRNA [22]
and to understand other rRNA pathways and processes in the
cell [23]. Although the function is 5 S ribosomal RNA has

not been discovered yet, it has been shown that its deletion
substantially reduces protein synthesis and has detrimental
effects on cell fitness [24].

Classification of small non-coding RNAs (sncRNAs) is of
high importance because of their large number and diverse
functions. It can support biologists and clinicians to get a
better understanding for the role of sncRNAs in biologi-
cal processes and the development of various diseases. For
example, classification of sncRNAs is important in devel-
oping strategies for cancer therapeutics [4]. To the best of
our knowledge, two computer based (in particular, deep
learning based) approaches have shown the best classifica-
tion results for small non-coding RNA to date. The first
approach,’’nRC’’, proposed by Fiannaca et al. [25] comprises
three fundamental tasks including estimation of secondary
structures from Rfam dataset (publicly available benchmark
dataset containing 8920 samples belonging to 13 sncRNA
subclasses), extraction of common substructures, and classi-
fication into 13 known ncRNA classes using a convolutional
neural network (CNN). This approach achieved 81% ncRNA
classification accuracy.

The second approach, proposed by Rossi et al. [26] extracts
secondary structural features from the same Rfam database.
However, rather than using a simple convolutional neural net-
work, the tool utilizes Graph based convolutional architecture
for the extraction of discriminative features and classification.
This approach is setting the standard with 85% accurate
classification of small non-coding RNA sequences.

As described above, both state-of-the-art small non-coding
RNA classification approaches use secondary structure of
RNA sequences as input and extract discriminative features
by utilizing convolution layers or graph based methodolo-
gies. However, feature extraction methods based on sec-
ondary structures usually only consider the global charac-
teristics while ignoring the mutual influence of local struc-
tures [27]. Such methods are usually neglecting important
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information that might have been available in the primary
sequences and was potentially lost while developing the sec-
ondary structures, on which the final classification is based.
Furthermore, secondary structure based methods integrate
high-dimensional feature space which is computationally
inefficient [27].

In the present paper, we propose to use primary RNA
sequences directly, instead of extracting discriminative fea-
tures from secondary structures. We present a Robust and
Precise Convolutional neural network for a small noncod-
ing RNA Classification (RPC-snRC) system. The proposed
system is based on an end to end small non-coding RNA
classification methodology which uses a set of deep convo-
lutional layers for the extraction of discriminative features
by utilizing positioning and information on the occurrence of
various nucleotides in non-coding RNA sequences. To evalu-
ate the integrity of the proposed methodology, we performed
experiments using the publicly available benchmark dataset
provided by Fiannaca et al. [25]. The proposed system clearly
outperforms state-of-the-art method (by Rossi et al. [26]) by
a fair 10% margin in terms of different performance met-
rics including accuracy, precision, recall and F1-measure.
In addition, extensive experimentation is performed with dif-
ferent sequence k-mers (1-mer, 3-mers) and representation
schemes including one hot vector, random embedding ini-
tialization, and pre-trained prot2vec embeddings. From this
it could be concluded weather deep architectures performs
better at atom level or word level and which kind of feature
representation is better for discriminative feature extraction.
Moreover, to further analyze the idea of utilizing primary
RNA sequences, we performed experiments with two adapted
deep ResNet architectures which vary in terms of hyper-
parameters. Both of these architectures also outperformed
state-of-the-art deep learning approaches thereby validating
the idea of utilizing the primary RNA sequence for classifi-
cation.

II. RELATED WORK
Non coding Ribonucleic Acid (ncRNA) has been classified
into a range of distinct classes or families which vary in
function and composition. The interest to develop sophisti-
cated methods for ncRNA classification has rocketed over
the period since knowing the family of ncRNA is substan-
tial for drug targeting and understanding growth of var-
ious complex diseases. Non-coding RNA classification is
a vast domain where classification at different levels of
ncRNA(shown in figure 1) has been performed. Mainly,
researchers have been focusing to 1) distinguish non-coding
RNA from coding RNA, 2) categorize ncRNA into long
and small non-coding RNA, 3) segregate non-coding RNA
into its subtypes such as circular RNA, and to 4) classify
small non-coding RNA into its 13 subclasses. Classifica-
tion at each level facilitates distinct biological advantages.
In order to discover more classes of non-coding RNA,
researchers have also developed clustering-based compu-
tational methodologies. Although the main focus of this

article is small non-coding RNA classification, however
considering the importance of ncRNA classification, this
section provides an overview of state-of-the-art non-coding
RNA classification approaches at diverse levels. It also sheds
light on clustering-based approaches for non-coding RNA
identification

In the last decade, researchers were more inclined towards
the development of computational methodologies which can
discriminate between non-coding RNA and coding RNA.
Washietl et al. [28] proposed a method, namely RNAz, based
on Support Vector Machines (SVM) to classify ncRNAs. The
RNAz combined sequence analysis approach with structure
prediction. Primarily two components consensus secondary
structure and thermodynamic stability were used. RNAz also
integrated multifold sequence alignment and pairwise align-
ment of ncRNA sequence with extremely high sensitivity
and specificity. They utilized RFAM genomic database [29]
containing ncRNAs of humans, mice, zebrafish, and rats.
RNAz exploited RNA folding of least free energy and com-
puted z-scores by performing regression through SVM. Input
parameters of proposed approach were number of align-
ment sequences, structure conservation index (SCI), and the
mean of MFE z-score [30] of diverse sequences present in
alignment excluding gaps. It also utilized the functionality
of program namely RNAALIFOLD [31] which was primar-
ily developed to estimate secondary structure from aligned
sequence. RNAz used a folding algorithm to predict the sec-
ondary structure of RNA’s through implementing dynamic,
and robust programming algorithms. They reported that when
SCI was almost zero, it indicated that consensus structure
was not found by the RNAALIFOLD, contrarily perfect con-
served structures had the SCI of almost 1. RNAz produced
decent results for genomic annotation performed at large
scale. Likewise, Liu et al. [32] presented a method based
on SVM namely Coding or non-coding (CONC) to clas-
sify ncRNAs. It integrated multiple sequence alignment and
used the databases FANTOM3 [33], NONCODE [34], and
RNAdb [35] for experimentation. This method utilized com-
position of amino acid, exposed residues estimated percent-
age, peptide length, compositional entropy, found homologs
from mentioned databases searches, alignment entropy, and
estimated content of secondary structure.

In order to raise the performance of ncRNA classifica-
tion further, few researchers explored ensemble approaches
considering the effectiveness of decision trees. For instance,
Lertampaiporn et al. [36] came up with a hybrid tool for
the task of ncRNAs classification. They combined an ensem-
ble of several decision trees and random forest with logstic
regression model to discriminate short, and long ncRNA
sequences. This tool includes naive feature SCORE which
was computed by logistic regression through the combina-
tion of five features, i.e., structure, robustness, sequence,
modularity, and coding potential. For experimentation,
it used multiple datasets including, RefSeq [37], Rfam [29],
lncRNAdb [38], and genome database ‘‘GenBank’’ of NCBI.
In the proposed methodology, a set of 369 features were
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extracted to predict ncRNAs. Amongst these features, dis-
criminative features were acquired through feature selection
based on correlation and genetic algorithm. While logistic
regression was utilized to locate relationships among fea-
tures, sequence similarity was facilitated by fundamental
local alignment finder (BLAST) [39]. Random forest acted as
primary classifier. Ensemble of several decision trees in ran-
dom forest was capable to acquire heterogeneity of ncRNA
subfamilies. This methodology was robust as it exploited
composite features which raised the classifier performance.
This approach was used to classify known ncRNAs, and also
unknown ncRNAs. Similarly, Achawanantakun et al. [40]
presented a method namely lncRNA-ID based on balanced
decision trees to identify long ncRNAs. This method uti-
lized multiple sequence alignment and LncRNADisease
database [41] for experimentation.

Furthermore, researchers also experimented with unsuper-
visedmethodologies for ncRNAs identification. For example,
Saito et al. [42] presented a methdology, namely Ensem-
bleClust, for hierarchical clustering of ncRNAs. Thismethod-
ology enabled the discovery of new ncRNA families [42] and
aided to investigate functional diversity of ncRNAs. Ensem-
bleClust implemented an unsupervised approach which uti-
lized unlabelled data to construct clusters of ncRNAs on
the basis of structural alignment results. As the compu-
tation of structural alignment was extremely expensive,
approximate algorithms were utilized which considered
all possible secondary structures and sequence alignments.
In addition, for the sake of accurate clustering, a robust
measure was used which considered primary sequences, and
secondary structures. EnsembleClust produced better perfor-
mance when compared with previous approaches such as
FOLDALIGN [43], Stem kernel [44], and LocARNA [45].
Moreover, Miladi et al. [46] came up with an approach,
RNAscClust, to identify ncRNAs. RNAscClust was used to
combine RNA sequences through structure conservation, and
graph oriented motifs [46]. This approach used structural
similarities in order to group paralogous RNAs. RNAscClust
enbaled clustering of humongous occurrences. Sequences
were transformed into a graph, where every nucleotide was
taken as graph vertices represented with the labels A, U, G,
C in form of base pair connections, and the edges were rep-
resenting encoded backbone. The structures were compared
with one another through graph kernels. This method con-
sidered the changes of base pairs-which were never encoun-
tered by previous clustering approaches. For experimenta-
tion, Rfam database having ncRNA sequences was used.
Authors reported that the proposed method managed to facil-
itate accurate clustering which made it possible to align large
clusters efficiently.

Considering the promising performance of deep neu-
ral network for diverse natural language processing tasks,
researchers employed Convolutional Neural Networks
(CNNs) to classify ncRNAs. For example, Aoki and
Sakakibara [47] proposed a methodology CNNClust to make
the clusters of ncRNAs. This technique integrated pair wise

alignment of ncRNA sequences. CNN was trained using
positional weigh matrices of underlying sequence motifs.
Two kinds of neural word embeddings, one hot encoding
and word2vec, were used by CNNClust. Information of
secondary structures and read mapping were also utilized
in CNNClust. Matrix of similarity score was computed for
each pair of RNA sequences and clustering was performed
to group highly similar structures. CNNClust categorizes
ncRNA into either positive or negative class. When both
ncRNA sequences belong to the same class then it was
classified as positive otherwise negative. Several new kinds
of ncRNA such as microRNA, tRNA, and snoRNA were dis-
covered through this approach. For experimentation, authors
used Rfam, HUGO gene nomenclature committee (HGNC),
and Genomic tRNA (GtRNAdb) datbabses. Similarly, Fian-
naca et al. [25] presented an approach, nRC, for classifica-
tion of ncRNAs. This approach used features of secondary
structures and incorporated alignment of multiple sequences
to categorize 13 known ncRNA classes using a CNN. The
nRC utilizes IPKnot43 which is capable of predicting sec-
ondary structures and generate an accurate graph based
on multifarious topologies of non-coding RNA sequences.
IPKnot43 yields a graph database as it generates an undi-
rected label graph for every input transcript. Considering
the ideology that graphs having similar substructure usually
belong to same RNA family, common subgraph extraction
is exploited with a minimum threshold to locate frequent
substructures which represent features of diverse small non-
coding RNA subclasses. In order to locate subgraphs, nRC
utilizes Molecular Substructure Miner (MoSS) which pro-
duces common subgraphs using a depth-first search. In this
way, nRC only considers close common subgraphs. Lastly,
nRC leverages the power of a CNN containing two convolu-
tional and two fully connected layers.

Likewise, few researchers experimented with Recurrent
Neural Networks (RNN) to classify ncRNAs. Baek et al. [11]
presented a methodology namely lncRNAnet for the ncRNA
classification. LncRNAnet identified long ncRNA through
next generation sequencing [11] and deep learning. They used
both CNN and RNN. While RNN was exploited to model
RNA sequences, CNN was used to spot stop condons in
order to locate an idicator of open reading frame. LncRNAnet
showed decent performance while classifying short length
RNA sequences. It learned intrinsic features through RNN
for modelling RNA sequences. Authors performed experi-
mentation on GENCODE, ENSEMBL and Human and Ver-
tebrate Analysis and Annotation (HAVANA) databases. They
reported that the proposed methodology produced robust per-
formance regardless of variable sequence length, and helped
to identify latest lncRNA from large transcriptome data.
Moreover, Park et al. [43] proposed a methodology based
on deep RNN for the task of ncRNA classification. The
proposed method utilized the features of secondary structures
to identify ncRNA and incorporated pairwise alingment of
sequences. Authors used fRNAdb, NON-CODE, and NCBI
datasets for extensive experimentation.
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TABLE 1. Summary of the previous work for non-coding RNA classification and clustering in terms of exploited technique, alignment of sequences
information, and type of features used as an input. In Table three methodologies namely Ensemble clust, RNAscClust, SHARAKU and CNN clust makes
groups of non coding RNAs according to their structural similarities. LNCRNAid and LncRNANet performs long non coding RNA identification. Two
machine learning based methodologies namely RNAZ, and CONC differentiates between coding and non coding RNA sequences. Hybrid random forest
methodology is used to discriminate between small non coding and long non coding RNA sequences. Deep RNN methodology identifies microRNAs.Two
deep learning methodologies namely nRC and RNAGCN methodologies performs classification of small non coding RNA.

Contrarily deep sequencing has also been employed for
ncRNA classification. For instance, Tsuchiya et al. [49]
presented an approach SHARAKU based on deep sequenc-
ing for ncRNA classification. SHARAKU incorporated an
algorithm which aligned read mapping profiles of ncRNAs
next generation data containing sequences. This system also
implemented a program for the alignment of read mapping
profile which used decomposition for the sake of folding
and aligning RNA sequences at the same time [52]. Profiles
of read mapping allowed the detection of common patterns.
Secondary structure and sequence information were acquired
concurrently in this approach. The proposed approach helped
to locate ncRNAs specifically combined in brain. The authors
used NCBI, ENSEMBLE, and next generation sequenc-
ing output databases as reference. SHARAKU managed to
achieve better performance than deepBlockAlign [53]. Like-
wise, Weikard et al. [50] presented a method based on
next generation deep sequencing for the task of classify-
ing ncRNA. The proposed method utilized features of pro-
tein coding to discriminate among coding and non-coding
RNAs. It incorporated alignment of pairwise sequences

and used lncRNA, NONCODE, NCBI datasbases for
experimentation.

In order to improve the performance of small non coding
RNA classification, more recently, Rossi et al. [26] pro-
posed Graph convolutional neural network based methodol-
ogy which also takes secondary structural features as input.
This methodology uses Graph convolutions for the extrac-
tion of discriminative features from the secondary structural
features. According to our best knowledge, this is the latest
methodology which has excludedmanual feature engineering
and produced state-of-the-art performance for small non-
coding RNA classification. Table 1 summarizes the state-of-
the-art work for RNA sequence classification.

In this article, we proposed a RPC-snRC methodology
which takes input RNA sequence data and utilises convo-
lutional layers for the extraction of discriminative features
which are eventually passed to dense layers for classifica-
tion. Note that our methodology does not require any align-
ment or manual feature extraction technique as it provides an
end to end deep learning system which takes RNA sequences
as input and provides class label as output.
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FIGURE 2. Proposed RPC-snRC methodology for small non-coding RNA classification. In figure, (128,16,18) indicates there are 128 kernels,
each of width 16 and length 18 in a convolutional layer and (1,4) indicates kernel width and length are set to 1 and 4 respectively in a
pooling layer. Others have the similar meaning.

III. MATERIALS AND METHODS
Following the success of deep learning methodologies in
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC),1 researchers became more interested to employ
deep learning for diverse computer vision, natural language
processing, and bioinformatics tasks [54]–[58]. Generally,
the aim was to develop deeper architectures with proper
gradient flow among the layers which could learn better
hierarchical representation of features.

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
sequences are often treated in the same way as traditional
text in natural language processing [59]. A term K-mers
is used for DNA and RNA sequences where a group of
three or four nucleotides are combined to form a word known
as 3-mers or 4-mers. However, there is a debate about which
atom-level (single nucleotide known as character or K-mers
known as word) would be the most effective representation
for DNA and RNA sequence analysis tasks. Furthermore,
researchers are also working on proteomic and genomic data
to provide biomedical pretrained neural word embeddings for
different k-mers. This is because neural word embeddings,
known as continuous representations of features or words,
have played an important role to improve the performance
of various NLP tasks. In this regard, Asgari and Mofrad
[60] recently provided pretrained neural word embeddings
for proteins and genes. However, there are again several open
questions about the impact of utilizing pretrained neural word
embeddings for DNA, and RNA sequence analysis, e,g., will
deep architectures learn better features using pretrained word
embeddings of proteins and genes?

The present paper presents a robust and precise convnet
based system for small non-coding RNA classification. The
proposed system takes direct RNA sequence data as input
and utilizes convolutional layers for the extraction of dis-
criminative features which are eventually passed to dense
layers for classification. This system does not require any

1http://www.image-net.org/challenges/LSVRC/

alignment or manual feature extraction as it provides an
end to end deep learning based system which takes primary
RNA sequences as input and provides class labels as out-
put. Furthermore, to provide answers to the questions above,
we have performed detailed experimentation on small non-
coding RNA classification dataset with the proposed system
and also with two adapted Res-Net architectures. Parameter
details of the adapted Res-Net architectures are summarized
in Table 2.

A. PROPOSED METHODOLOGY
This section briefly describes the proposed methodology
of RPC-snRC for classification of small non-coding RNA.
We develop a deep classifier in which a phenomenon similar
to DenseNet is used to enable proper flow of gradient between
the layers. RPC-snRC utilizes a set of convolutional layers
for extraction of discriminative features from the primary
sequences of small non-coding RNA. Discriminative features
are then fed to dense layers for classification of sequences
into a set of predefined classes.

Figure 2 illustrates the architecture of the proposed
methodology along with noteworthy model parameters. The
proposed RPC-snRC methodology is based on three dense
modules. Each dense module contains the same number of
layers; however, output units get doubled in every follow-
ing dense module. Each dense module first performs batch
normalization on the given input and then applies ReLu
activation to introduce non-linearity followed by convolution
operation to extract discriminative features. Finally, it repeats
the discussed operations onemore time in order to better learn
hierarchical representation of data. Each dense module is
followed by a transition layer which performs batch normal-
ization, ReLu activation, convolution with the filter size 1×1,
and max pooling with the size of 4 to retain discriminative
features and discard useless ones. Dense architecture was
proposed by Huang et al. [58], and has been widely utilized
for various applications of computer vision. We utilize this
architecture for sequence data which is one dimensional and
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TABLE 2. Architecture summary of Res18-nRC and Res50-nRC: In both architectures, before res modules, there is a convolutional layer through which
ncRNA samples are passed. Both architectures have 4 res modules, while each module of Res18-nRC has 2 basic blocks, where each basic block has two
convolutional layers, but Res50-nRC architecture has variable bottleneck blocks in each res module which are mentioned by a number outside the matrix
brackets, i.e., first res module has 3 bottleneck blocks and second has 4. In fist matrix (64,17) 64 represents number of feature maps and 17 shows the
kernel size.

entirely different from visual data. Integral components of
the proposed methodology such as DenseNet, Dense connec-
tivity, Composite function, Pooling layers, Growth rate and
Bottleneck layers which are adapted to cope one dimensional
data, are discussed below.

1) DenseNets
Consider a small non-coding RNA sample S0 that is passed
through a convolutional network. The network consists of
L layers, each of which performs a non-linear conversion
HL(·), where L indicates the layer. HL(·) may be a composite
function for operations like batch normalization [61], recti-
fied linear units (RELU) [62], Pooling [63], or Convolution
(Conv). We refer to the L th layer output as xL .

a: DENSE CONNECTIVITY
State-of-the-art feed-forward convolutional networks attach
the L th layer output as an input to the (L + 1)th layer, which
produces the following transition layer xL = HL(xL−1) [54].
ResNets [57] along with skip connection strategy use an

identity function to bypass non-linear transformations shown
in equation 1

XL = HL (XL−1)+ xL−1 (1)

ResNets benefit is that the gradient can flow straight from
subsequent layers to previous layers through the identity
function. However, the identity function and output ofHL are
mixed by summation which can hinder the flow of data in the
network.

We utiliZe Densenet a distinct connectivity model to fur-
ther enhance the information flow between layers. In this
model L th layer gets all previous layers ’ feature maps,
x0,· · · ; xL−1, as input.

XL = HL ([x0, x1,· · · ; xL−1]) (2)

In equation 2, x0,· · · ; xL−1 relates to the concatenation of the
feature maps in the 0,· · · ,L − 1 layers

b: COMPOSITE FUNCTION
Following He et al. [57], we define HL(·) as a composite
function of three successive operations: Batch Normalization
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(BN) [61], accompanied by Activation function named as
rectified linear unit (ReLU) [62] and a convolution (Conv)
layer.

c: TRANSITION LAYERS
We refer to the layers between blocks that perform convolu-
tion and pooling operations as transition layers. The proce-
dure of concatenation used in equation 2 is not applicable
if size of feature maps is variable. In our architecture we
split the network into various tightly linked dense blocks
to make the same size of feature maps. Down sampling is
performed through transition layers which consist of batch
normalization layer and a convolution layer of kernel size 1,
followed by an average pooling layer of kernel size 4.

d: GROWTH RATE
If each composite function HL(·) produces N feature maps,
then L th layer will have N0 + N × (L − 1) input feature-
maps, where N0 denotes number of channels in the input
layer. We refer to the N hyper parameter as the network’s
growth rate.

B. VALIDATION METHOD AND EVALUATION CRITERIA
We perform experimentation on a small non-coding
RNA classification dataset manually tagged by
Antonino et al. [25]. This is the only benchmark dataset
which is publicly available. It consists of 8920 samples that
belong to 13 different ncRNA classes: miRNA, ribozymes,
5S rRNA, 5_8S_rRNA, HACA-box, CD-box, tRNA,
scaRNA, IRES, Intron_gpI, Intron_gpII, riboswitch, and
leader. This dataset is quite balanced as almost every class has
700 samples except the ires class which contains 520 samples.
Detailed statistics of this dataset are shown in table 3.

TABLE 3. Characteristics of Non-coding RNA classification dataset, where
Max-seq length and Min-seq length illustrate maximum and minimum
length of neucleotides in each class.

The dataset has benchmark defined split with 6320 training
and 2600 test samples belonging to 13 classes of ncRNA.
In the test set, each class has 200 samples, whereas in training
set, each class has 500 samples except the IRES class which
has 320 samples available for training. A well known sta-
tistical cross validation method namely leave one out cross

validation is used to better analyze behaviour of the proposed
model. We have used the training set for training and valida-
tion of the proposed model while the test set is only used for
the final evaluation of the model. Furthermore, the training
set is split into 5 equal parts, 4 parts are used to train the
model and the 5th part is used to validate the trained model.
For dual evaluation, the trained model is also evaluated on
the test data set which was held out separate. The process
of training and dual evaluation is repeated five times where
every time the test set remains the same but every next fold is
taken as validation set. Final results are computed by taking
the average of 5 results which are produced by the proposed
model at each fold.

1) EVALUATION METRICS
The proposed system is evaluated using four different eval-
uation metrics namely Accuracy, Precision, Recall, and F1
measure. All four evaluation metrics compute scores by uti-
lizing four parameters, i.e., true positives, true negatives, false
positives, and false negatives, as shown in Table 4.

TABLE 4. Confusion Matrix where True Positive illustrates the count of
correctly predicted positive class values, e.g., if both the actual and
predicted class labels will be yes then it will be considered as true
prediction of positive class label. Similarly, True Negative is accurate
prediction of negative class labels. False Positive denotes the count for
wrongly predicted class labels, i.e., when actual class is ‘no’ but model
predicts ‘yes’, similarly, False Negative is wrong prediction of ‘no’ class
when actual class was ‘yes’.

2) ACCURACY
Accuracy is considered as a reasonable metric when dataset is
symmetric-where values of false negatives and false positive
are nearly equal. It computes the ratio of correctly predicted
samples to the total samples.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(3)

3) PRECISION
Precision is the ratio between correctly predicted positive
samples and total predicted positive samples.

Precision =
Tp

Fp + Tp
(4)

4) RECALL
Recall is the ratio among correctly predicted positive samples
and actual number of positive samples. It is also known as
sensitivity. Recall is preferred when we are more concerned
with false negatives. For instance, if a person having cancer is
predicted as normal then the value of false negative gets high
which eventually decreases the recall.

Recall =
Tp

Fn + Tp
(5)
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TABLE 5. Performance of the proposed RPC-snRC, Adapted (Res18-nRC, Res50-nRC), and state-of-the-art (nRC [51], and RNAGCN [26]) methodologies on
the benchmark small non-coding RNA dataset.

5) F1 MEASURE
F1measure is harmonic average of precision and recall. It per-
forms better than accuracy for imbalance class distributed
dataset because it keeps track of both precision and recall.

F1Measure = 2×
Precision× Recall
Precision+ Recall

(6)

IV. EXPERIMENTAL SETUP AND RESULTS
We implement the proposed RPC-snRC and ResNet based
methodologies in Python using Pytorch [64]. Detailed para-
metric description about adapted ResNet based methodolo-
gies is summarized in Table 2. Cross entropy is used as
a loss function with Adam [65] optimizer where learn-
ing rate is initialized from 0.001. In order to alleviate
training time, an early stopping approach is used. High-
performance NVIDIA GeForce GTX 1080Ti GPU is used for
experimentation.
Results: This section briefly describes the performance

of the proposed RPC-snRC classification system and two
adapted ResNet architectures (res-net 18 layer, res-net
50 layer) for the task of ncRNA classification. It shows
the impact of three sequence representation schemes while
treating RNA sequence as a set of characters, and k-mers
based word for both proposed and adapted methodologies.
In the benchmark dataset maximum length of the sequence
is 1180, so to make the length of sequences equal, we apply
paddings for the sequences which has length less than 1180.
To make all sequences of equal lengths, we apply padding
where the size of sequence is less than 1180. Experimentation
is performed in two different ways: First, RNA sequence is
taken as a set of characters with two different representa-
tion schemes namely one hot vector encoding and random
embedding initialization, which are separately fed to the
proposed RPC-snRC system. Second, we generate 3-mers
of the sequence by sliding a window of size three on
the sequence. K-mers based sequence representation along
with one hot vector encoding, random embedding ini-
tialization, and pretrained word embeddings provided by
Asgari et al. [60] are fed to the proposed RPC-snRC system.
Table 5 compares the performance of state-of-the-art and

adapted res-net based methodologies with the proposed
RPC-snRC methodology for the task of small non-coding
RNA classification. It also illustrates the performance of the
proposed RPC-snRC methodology when RNA sequence is
treated as set of characters, 3-mers based features with ran-
dom, and pre-trained neural word embeddings. As is depicted
by the Table 5 renowned methodology proposed by Antonio
Fiannaca et al. [25] managed to achieve the performance
figures of 78%, 77%, 78%, and 77% in terms of accuracy,

precision, recall, and F 1 measure, respectively. This perfor-
mance is outperformed by a recent Graph Convolutional Neu-
ral architecture based methodology given by Rossi et al. [26]
as it marked state-of-the-art performance for small non-
coding RNA classification with 85.7% accuracy. However,
the adapted ResNet-18 and Res-Net-50 manage to produce
the peak performance of 91%, and 89% by representing RNA
sequences as character with one hot encoding and as 3-mers
features with pre-trained prot2vec embedding, respectively.
On the other hand, the proposed RPC-snRC classification
system has significantly outperformed the state-of-the-art
methodology as well as the two adapted ResNet architectures
in all settings.While, RPC-snRCwith 3-mers random embed-
ding initialization and pre-trained neural word embeddings
schemes has raised state-of-the-art performance almost by
the figure of 8% in terms of F_1 measure, the RPC-snRC
with character level features and one hot encoding manages
to mark the peak performance at 95% thereby clearly out-
performing all the other systems (previously existing systems
and ResNet based systems adapted in this research).

In a nutshell, convolutional neural network based deep
architectures have the ability to extract discriminative fea-
tures directly from primary sequences of small non-coding
RNA. This is depicted by the results where performances
of the proposed and adapted methodologies are significantly
higher than the state-of-the-art methodologieswhich take sec-
ondary structural features as input. Moreover, performance
of ResNet based architectures is lower than the performance
of the proposed RPC-snRC methodology because in ResNet
models gradient does not flow properly from subsequent
layers to previous layers [58]. It can also be inferred that
ResNet model with 50 layers extracted some irrelevant and
redundant features which slightly reduced its performance as
compared to the performance of ResNet 18 layers model.

A. CLASS LEVEL PERFORMANCE COMPARISON OF
PROPOSED RPC-snRC AND STATE-OF-THE-ART nRC
METHODOLOGIES
In order to further compare the performance of the
proposed RPC-snRC and the adapted ResNet based method-
ologies with the state-of-the-art methods, a class level
performance comparison is performed in terms of accu-
racy confusion matrix. Accuracy confusion matrices of
RPC-snRC, ResNet-18, and nRC methodologies on the test
set of nCR dataset are shown in the Figure 3.RNAGCN [26] is
the most recently reported method for small non-coding RNA
classification, however, the authors have not provided class
level results of their method. Therefore, we performed class
level performance comparison of the proposed RPC-snRC
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FIGURE 3. Accuracy Confusion matrix of the proposed RPC-snRC, Adapted Res18-nRC and state-of-the-art nRC [51] classification
methodologies.

and adapted methodologies with nRC classification method-
ology. The proposed RPC-snRC and the adapted Res18snRC
basedmethodologies produce highest performance with char-
acter level and one hot vector representation. So here we take
confusion matrices of both methodologies with highest per-
formance values. As depicted in Figure 3, RPCsnRCmethod-
ology correctly classifies all 200 samples of two classes
namely Intron gpII and tRNA as compared to the state-of-the-
art nRC methodology which manages to correctly classify
only 180 samples of tRNA and 196 samples of Intron gpII
class. Performance of Res18-snRC remains in between the
performance of nrc and RPC-snRC methodologies as it cor-
rectly predicted 198 samples of Intron gpII and 193 samples
of tRNA class. In addition, state-of-the-art nRC method-
ology fails to mark prominent performance as significant
samples of almost every class are mistakenly classified in
miRNA, HACA-box, CD-box, and IRES classes, while, only
a few samples of each class are misclassified in the proposed
RPC-snRC methodology.

Although, miRNA has shown the lowest performance
amongst all classes in both methodologies, however, the pro-
posed RPC-snRC still correctly classifies 163 samples out
of the maximum possible 200 as compared to state-of-
the-art nRC methodology which only manages to correctly
classify 98 samples. Also, the proposed RPC-snRC

methodology successfully classifies more than 190 samples
in each of the nine classes, i.e., introl_gpll, tRNA, 5S_rRNA,
5_8S_rRNA, leader, scaRNA, ribozyme, introl_gpl, and
CD-box. Whereas, the other classes achieve counts of 180’s
and 160’s as shown by Figure3. In contrast to the state-
of-the-art nRC methodology, only two classes intron_gpl,
and intron_gpll correctly classify more than 190 samples.
Similarly, the adapted Res18-nRc methodology was able to
correctly predict more than 190 samples for 4 classes, namely
5S_rRNA, 5_8S_rRNA, introl_gpll, and tRNA.

Figure 4 shows individual class level performances of
RPC-snRC and nRC classification methodologies over small
ncRNA classification dataset in terms of precision, recall, and
F1 measure. Overall, for all classes, RPC-snRCmethodology
significantly outperforms the state-of-the-art nRC method-
ology in all three performance metrics with exception of
the miRNA class, where nRC methodology manages to
deliver better recall figure. Moreover, amongst all perfor-
mance metrices, nRC classification methodology manages
to sustain performance values of precision, recall and F1
measure only for three classes(IRES, 5.8S rRNA, scaRNA),
on the other hand, the performance of RPC-snRC classifi-
cation methodology stays consistent for 7 classes namely
ribozymes, 5_8S_rRNA, tRNA, scaRNA, Intron_gpII, and
riboswitch. This unique behavior of RPC-snRCmethodology
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FIGURE 4. Individual class performance of proposed RPC-snRC methodology and state-of-the-art nRC [51] methodology on small ncRNA
classification dataset.

shows that it suffers less from type I, and type II errors as
compared to nRCmethodology-performance of whom seems
less stable at class level.

V. CONCLUSION
This article proposes a novel methodology, named
RPC-snRC, which classifies small non-coding RNA
sequences into their relevant families by utilizing positioning
and occurrences information of various nucleotides. Exper-
imental results have shown that the proposed RPC-snRC
methodology is highly robust as it is neither biased towards
false positive nor towards false negative predictions. Adapted
Res18-snRC and Res50-snRC methodologies perform better
than the state-of the-art small non-coding RNA classifica-
tion methodologies. However, their performance is not as
promising as with the proposed RPC-snRC methodology
because in ResNet architectures gradient cannot flow prop-
erly from subsequent layers to previous layers. The proposed
RPC-snRC methodology marks highest F1-score of 95% by
representing character based features through one hot encod-
ing as compared to state-of-the-art ncRNA, RNAGCN, and
the adapted Res18-nRC, Res50-nRC classification method-
ologies which only manage to produce the performance
of 77%, 85%, 91%, and 89% respectively. Moreover, in our
experimentation, almost all methodologies perform better
with one hot vector encoding than randomly initialized or pre-
trained word embeddings. From these results, it can be
concluded that character or atom level feature generates
better performance as compared to k-mers based features.
A compelling future line of our work would be exploring the
impact of a hybrid methodology combining the benefits of
both primary and secondary structural features.
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